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Abstract

For a bar and joint framework (G, p) with point group C3 which describes 3-fold
rotational symmetry in the plane, it was recently shown in (Schulze, Discret. Comp.

Geom. 44:946-972) that the standard Laman conditions, together with the condition
derived in (Connelly et al., Int. J. Solids Struct. 46:762-773) that no vertices are
fixed by the automorphism corresponding to the 3-fold rotation (geometrically, no
vertices are placed on the center of rotation), are both necessary and sufficient
for (G, p) to be isostatic, provided that its joints are positioned as generically as
possible subject to the given symmetry constraints. In this paper we prove the
analogous Laman-type conjectures for the groups C2 and Cs which are generated
by a half-turn and a reflection in the plane, respectively. In addition, analogously
to the results in (Schulze, Discret. Comp. Geom. 44:946-972), we also characterize
symmetry generic isostatic graphs for the groups C2 and Cs in terms of inductive
Henneberg-type constructions, as well as Crapo-type 3Tree2 partitions - the full
sweep of methods used for the simpler problem without symmetry.

1 Introduction

The major problem in generic rigidity is to find a combinatorial characterization of
graphs whose generic realizations as bar-and-joint frameworks in d-space are rigid. While
for dimension d > 3, only partial results for this problem have been found, it is completely
solved for dimension 2. In fact, using a number of both algebraic and combinatorial
techniques, a series of characterizations of generically rigid graphs in the plane have been
established, ranging from Laman’s famous counts from 1970 on the number of vertices
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and edges of a graph [12], and Henneberg’s inductive construction sequences from 1911
[11], to Crapo’s characterization in terms of proper partitions of the edge set of a graph
into three trees (3Tree2 partitions) from 1989 [4].

Using techniques from representation theory, it was recently shown in [3] that if a
2-dimensional isostatic bar and joint framework possesses non-trivial symmetries, then
it must not only satisfy the Laman conditions, but also some very simply stated extra
conditions concerning the number of joints and bars that are fixed by various symmetry
operations of the framework (see also [15, 17, 16]). In particular, these restrictions imply
that a 2-dimensional isostatic framework must belong to one of only six possible point
groups. In the Schoenflies notation [2], these groups are denoted by C1, C2, C3, Cs, C2v, and
C3v.

It was conjectured in [3] that for these groups, the Laman conditions, together with
the corresponding additional conditions concerning the number of fixed structural com-
ponents, are not only necessary, but also sufficient for a symmetric framework to be
isostatic, provided that its joints are positioned as generically as possible subject to the
given symmetry constraints.

Using the definition of ‘generic’ for symmetry groups established in [18], this conjec-
ture was confirmed in [19] for the symmetry group C3 which describes 3-fold rotational
symmetry in the plane (Z3 as an abstract group). In this paper, we verify the analogous
conjectures for the symmetry groups C2 and Cs which are generated by a half-turn and a
reflection in the plane, respectively (Z2 as abstract groups).

Similarly to the C3 case, these results are striking in their simplicity: to test a ‘generic’
framework with C2 or Cs symmetry for isostaticity, we just need to check the number of
joints and bars that are ‘fixed’ by the corresponding symmetry operations, as well as the
standard conditions for generic rigidity without symmetry.

By defining appropriate symmetrized inductive construction techniques, as well as ap-
propriate symmetrized 3Tree2 partitions of a graph, we also establish symmetric versions
of Henneberg’s Theorem (see [7, 11]) and Crapo’s Theorem ([4, 7, 22]) for the groups C2

and Cs. These results provide us with some alternate techniques to give a ‘certificate’ that
a graph is ‘generically’ isostatic modulo the given symmetry, and they also enable us to
generate all such graphs by means of an inductive construction sequence.

With each of the main results presented in this paper, we also lay the foundation to
design algorithms that decide whether a given graph is generically isostatic modulo the
given symmetry.

As we will see in Sections 4.2 and 5.2, it turns out that the proofs for the character-
izations of symmetry generically isostatic graphs for the group C2, and in particular for
the group Cs, are considerably more complex than the ones for C3. An initial indication
for this is that Crapo’s Theorem uses partitions of the edges of a graph into three edge-
disjoint trees, so that it is less obvious how to extend this result to the groups C2 and Cs

of order 2 than to the cyclic group C3 of order 3.
Moreover, due to the nature of the necessary conditions for a graph to be generically

isostatic modulo C2 or Cs symmetry derived in [3], the simple number-theoretic arguments
used in the proof of the symmetric Laman theorem for C3 (see [19]) cannot be used in the
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proofs of the corresponding Laman-type theorems for the groups C2 and Cs.
The Laman-type conjectures for the dihedral groups C2v and C3v still remain open. A

discussion on some of the difficulties that arise in proving these conjectures is given in
Section 6 (see also [16, 19] for further comments).

2 Preliminaries on frameworks

2.1 Graph theory terminology

All graphs considered in this paper are finite graphs without loops or multiple edges.
We denote the vertex set of a graph G by V (G) and the edge set of G by E(G). Two
vertices u 6= v of G are said to be adjacent if {u, v} ∈ E(G), and independent otherwise.
A set S of vertices of G is independent if every two vertices of S are independent. The
neighborhood NG(v) of a vertex v ∈ V (G) is the set of all vertices that are adjacent to v
and the elements of NG(v) are called the neighbors of v.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case we
write H ⊆ G. For v ∈ V (G) and e ∈ E(G) we write G − {v} for the subgraph of G that
has V (G)\{v} as its vertex set and whose edges are those of G that are not incident with
v. Similarly, we write G − {e} for the subgraph of G that has V (G) as its vertex set and
E(G) \ {e} as its edge set. The deletion of a set of vertices or a set of edges from G is
defined and denoted analogously.

If u and v are independent vertices of G, then we write G +
{
{u, v}

}
for the graph

that has V (G) as its vertex set and E(G) ∪
{
{u, v}

}
as its edge set. The addition of a

set of edges is again defined and denoted analogously.
For a nonempty subset U of V (G), the subgraph 〈U〉 of G induced by U is the graph

having vertex set U and whose edges are those of G that are incident with two elements
of U .

The intersection G = G1 ∩ G2 of two graphs G1 and G2 is the graph with V (G) =
V (G1) ∩ V (G2) and E(G) = E(G1) ∩ E(G2). Similarly, the union G = G1 ∪ G2 is the
graph with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).

An automorphism of a graph G is a permutation α of V (G) such that {u, v} ∈ E(G)
if and only if {α(u), α(v)} ∈ E(G). The group of automorphisms of a graph G is denoted
by Aut(G).

Let H be a subgraph of G and α ∈ Aut(G). We define α(H) to be the subgraph of G
that has α

(
V (H)

)
as its vertex set and α

(
E(H)

)
as its edge set, where {u, v} ∈ α

(
E(H)

)

if and only if α−1({u, v}) = {α−1(u), α−1(v)} ∈ E(H).
We say that H is invariant under α if α

(
V (H)

)
= V (H) and α

(
E(H)

)
= E(H), in

which case we write α(H) = H .
The graph G in Figure 1 (a), for example, has the automorphism α = (v1 v3)(v2 v4).

The subgraph H1 of G is invariant under α, but the subgraph H2 of G is not, because
α
(
E(H2)

)
6= E(H2).

Let u and v be two (not necessarily distinct) vertices of a graph G. A u-v path in G
is a finite alternating sequence u = u0, e1, u1, e2, . . . , uk−1, ek, uk = v of vertices and edges
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v1 v2

v3v4

G:

(a)
v1 v2

v3v4

H1:

(b)
v1 v2

v3v4

H2:

(c)

Figure 1: An invariant (b) and a non-invariant subgraph (c) of the graph G under
α = (v1 v3)(v2 v4) ∈ Aut(G).

of G in which no vertex is repeated and ei = {ui−1, ui} for i = 1, 2, . . . , k. A u-v path is
called a cycle if k > 3 and u = v.

Let a u-v path P in G be given by u = u0, e1, u1, e2, . . . , uk−1, ek, uk = v
and let α ∈ Aut(G). Then we denote α(P ) to be the α(u)-α(v) path α(u) =
α(u0), α(e1), α(u1), α(e2), . . . , α(uk−1), α(ek), α(uk) = α(v) in G.

A vertex u is said to be connected to a vertex v in G if there exists a u− v path in G.
A graph G is connected if every two vertices of G are connected.

A graph with no cycles is called a forest and a connected forest is called a tree.
A connected subgraph H of a graph G is a component of G if H = H ′ whenever H ′ is

a connected subgraph of G containing H .

2.2 Infinitesimal rigidity

A framework in Rd is a pair (G, p), where G is a graph and p : V (G) → Rd is a map
with the property that p(u) 6= p(v) for all {u, v} ∈ E(G) [6, 7, 28]. We also say that (G, p)
is a d-dimensional realization of the underlying graph G. An ordered pair

(
v, p(v)

)
, where

v ∈ V (G), is a joint of (G, p), and an unordered pair
{(

u, p(u)
)
,
(
v, p(v)

)}
of joints, where

{u, v} ∈ E(G), is a bar of (G, p). For a framework (G, p) whose underlying graph G has
a vertex set that is indexed from 1 to n, say V (G) = {v1, v2, . . . , vn}, we will frequently
denote p(vi) by pi for i = 1, 2, . . . , n. The kth component of a vector x is denoted by (x)k.

Let (G, p) be a framework in Rd with V (G) = {v1, v2, . . . , vn}. An infinitesimal motion
of (G, p) is a function u : V (G) → Rd such that

(
pi − pj

)
·
(
ui − uj

)
= 0 for all {vi, vj} ∈ E(G), (1)

where ui = u(vi) for each i = 1, . . . n.
An infinitesimal motion u of (G, p) is an infinitesimal rigid motion if there exists a

skew-symmetric matrix S (a rotation) and a vector t (a translation) such that u(v) =
Sp(v) + t for all v ∈ V (G). Otherwise u is an infinitesimal flex of (G, p).

(G, p) is infinitesimally rigid if every infinitesimal motion of (G, p) is an infinitesimal
rigid motion. Otherwise (G, p) is said to be infinitesimally flexible [6, 7, 28].
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u6

u1

u2

u3u4

u5

(c)

Figure 2: The arrows indicate the non-zero displacement vectors of an infinitesimal rigid
motion (a) and infinitesimal flexes (b, c) of frameworks in R2.

The rigidity matrix R(G, p) of (G, p) is the |E(G)| × dn matrix




vi vj

...
{vi, vj} 0 . . . 0 pi − pj 0 . . . 0 pj − pi 0 . . . 0

...


,

that is, for each edge {vi, vj} ∈ E(G), R(G, p) has the row with (pi−pj)1, . . . , (pi−pj)d in
the columns d(i−1)+1, . . . , di, (pj −pi)1, . . . , (pj −pi)d in the columns d(j−1)+1, . . . , dj,
and 0 elsewhere [6, 7, 28].

Note that if we identify an infinitesimal motion u of (G, p) with a column vector in Rdn

(by using the order on V (G)), then the equations in (1) can be written as R(G, p)u = 0.
So, the kernel of the rigidity matrix R(G, p) is the space of all infinitesimal motions of
(G, p). It is well known that a framework (G, p) in Rd is infinitesimally rigid if and only
if either the rank of its associated rigidity matrix R(G, p) is precisely dn −

(
d+1
2

)
, or G is

a complete graph Kn and the points pi, i = 1, . . . , n, are affinely independent [1].

Remark 2.1 Let 1 6 m 6 d and let (G, p) be a framework in Rd. If (G, p) has at least
m + 1 joints and the points p(v), v ∈ V (G), span an affine subspace of Rd of dimension
less than m, then (G, p) is infinitesimally flexible (recall Figure 2 (b)). In particular, if
(G, p) is infinitesimally rigid and |V (G)| > d, then the points p(v), v ∈ V (G), span an
affine subspace of Rd of dimension at least d − 1.

A framework (G, p) is independent if the row vectors of the rigidity matrix R(G, p) are
linearly independent. A framework which is both independent and infinitesimally rigid is
called isostatic [6, 7, 28].

Theorem 2.1 [7] For a d-dimensional realization (G, p) of a graph G with |V (G)| > d,
the following are equivalent:

(i) (G, p) is isostatic;
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(ii) (G, p) is infinitesimally rigid and |E(G)| = d|V (G)| −
(

d+1
2

)
;

(iii) (G, p) is independent and |E(G)| = d|V (G)| −
(

d+1
2

)
;

(iv) (G, p) is minimal infinitesimally rigid, i.e., (G, p) is infinitesimally rigid and the
removal of any bar results in a framework that is not infinitesimally rigid.

2.3 Generic rigidity

Let G be a graph with V (G) = {v1, . . . , vn} and Kn be the complete graph on V (G).
A framework (G, p) is called generic if the determinant of any submatrix of R(Kn, p) is
zero only if it is (identically) zero in the variables p′i [7].

Note that it follows immediately from this definition that the set of all generic realiza-
tions of a given graph G in Rd forms a dense open subset of all possible realizations of G
in Rd. Moreover, it is known that the framework (G, p) is infinitesimally rigid (indepen-
dent, isostatic) for some map p : V (G) → Rd if and only if every d-dimensional generic
realization of G is infinitesimally rigid (independent, isostatic) [7]. Thus, for generic
frameworks, infinitesimal rigidity is purely combinatorial, and hence a property of the un-
derlying graph. We say that a graph G is generically d-rigid (d-independent, d-isostatic)
if d-dimensional generic realizations of G are infinitesimally rigid (independent, isostatic).

In 1970, Laman gave a complete characterization of generically 2-isostatic graphs:

Theorem 2.2 (Laman, 1970) [12] A graph G with |V (G)| > 2 is generically 2-isostatic
if and only if

(i) |E(G)| = 2|V (G)| − 3;

(ii) |E(H)| 6 2|V (H)| − 3 for all H ⊆ G with |V (H)| > 2.

Various proofs of Laman’s Theorem can be found in [6], [7], [14], [22], and [27], for
example. Throughout this paper, we will refer to the conditions (i) and (ii) in Theorem
2.2 as the Laman conditions.

A combinatorial characterization of generically isostatic graphs in dimension 3 or
higher is not yet known. The so-called ‘double banana’, for instance, provides a clas-
sic counterexample to the existence of a straightforward 3-dimensional analog of Laman’s
Theorem [6, 7, 23].

In 1911, L. Henneberg showed that generically 2-isostatic graphs can also be charac-
terized using an inductive construction sequence. The two Henneberg construction steps
for a graph G are defined as follows (see also Figure 3):

First, let U ⊆ V (G) with |U | = 2 and v /∈ V (G). Then the graph Ĝ with V (Ĝ) =

V (G)∪ {v} and E(Ĝ) = E(G)∪
{
{v, u}|u ∈ U

}
is called a vertex 2-addition (by v) of G

[23, 28].
Secondly, let U ⊆ V (G) with |U | = 3 and {u1, u2} ∈ E(G) for some u1, u2 ∈ U .

Further, let v /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v} and E(Ĝ) =(
E(G) \

{
{u1, u2}

})
∪

{
{v, u}|u ∈ U

}
is called an edge 2-split (on u1, u2; v) of G.
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(a) (b)

Figure 3: Illustrations of a vertex 2-addition (a) and an edge 2-split (b).

Theorem 2.3 (Henneberg, 1911) [11] A graph is generically 2-isostatic if and only
if it may be constructed from a single edge by a sequence of vertex 2-additions and edge
2-splits.

For a proof of Henneberg’s Theorem, see [7] or [23], for example.
There exist a few additional inductive construction techniques that are frequently used

in rigidity theory. One of these techniques, the ‘X-replacement’, will play a pivotal role
in proving the symmetric version of Laman’s Theorem for a symmetry group consisting
of the identity and a single reflection.

Let G be a graph, u1, u2, u3, u4 be four distinct vertices of G with {u1, u2}, {u3, u4} ∈

E(G), and let v /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v} and E(Ĝ) =(
E(G) \

{
{u1, u2}, {u3, u4}

})
∪

{
{v, ui}|i ∈ {1, 2, 3, 4}

}
is called an X-replacement (by v)

of G [23, 28] (see also Figure 4).

Figure 4: Illustration of an X-replacement of a graph G.

Theorem 2.4 (X-Replacement Theorem) [23, 28] An X-replacement of a generically
2-isostatic graph is generically 2-isostatic.

The reverse operation of an X-replacement performed on a generically 2-isostatic graph
does in general not result in a generically 2-isostatic graph. For more details and some
additional inductive construction techniques, we refer the reader to [23].

Another way of characterizing generically 2-isostatic graphs is due to H. Crapo and
uses partitions of a graph into edge disjoint trees.

A 3Tree2 partition of a graph G is a partition of E(G) into the edge sets of three edge
disjoint trees T0, T1, T2 such that each vertex of G belongs to exactly two of the trees.

A 3Tree2 partition is called proper if no non-trivial subtrees of distinct trees Ti have
the same span, i.e., the same vertex sets (see also Figure 5).
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(a) (b)

Figure 5: A proper (a) and a non-proper (b) 3Tree2 partition.

Remark 2.2 If a graph G has a 3Tree2 partition, then it satisfies |E(G)| = 2|V (G)| − 3.
This follows from the presence of exactly two trees at each vertex of G and the fact that
for every tree T we have |E(T )| = |V (T )| − 1. Moreover, note that a 3Tree2 partition of
a graph G is proper if and only if every non-trivial subgraph H of G satisfies the count
|E(H)| 6 2|V (H)| − 3 [13].

Theorem 2.5 (Crapo, 1989) [4] A graph G is generically 2-isostatic if and only if G
has a proper 3Tree2 partition.

2.4 Symmetry in frameworks

Throughout this paper, we will only consider 2-dimensional frameworks. A symmetry
operation of a framework (G, p) in R2 is an isometry x of R2 such that for some α ∈
Aut(G), we have x

(
p(v)

)
= p

(
α(v)

)
for all v ∈ V (G) [9, 17, 16, 18, 19].

The set of all symmetry operations of a framework (G, p) forms a group under com-
position, called the point group of (G, p) [2, 9, 16, 18, 19]. Since translating a framework
does not change its rigidity properties, we may assume wlog that the point group of any
framework in this paper is a symmetry group, i.e., a subgroup of the orthogonal group
O(R2) [16, 17, 18, 19].

We use the Schoenflies notation for the symmetry operations and symmetry groups
considered in this paper, as this is one of the standard notations in the literature about
symmetric structures (see [2, 3, 5, 8, 9, 16, 17, 18, 19], for example). In particular, we
denote the group generated by the half-turn C2 about the origin in 2D by C2, and a group
generated by a reflection s in 2D by Cs.

Given a symmetry group S and a graph G, we let R(G,S) denote the set of all 2-
dimensional realizations of G whose point group is either equal to S or contains S as a
subgroup [16, 17, 18]. In other words, the set R(G,S) consists of all realizations (G, p) of
G for which there exists a map Φ : S → Aut(G) so that

x
(
p(v)

)
= p

(
Φ(x)(v)

)
for all v ∈ V (G) and all x ∈ S. (2)

A framework (G, p) ∈ R(G,S) satisfying the equations in (2) for the map Φ : S → Aut(G)
is said to be of type Φ, and the set of all realizations in R(G,S) which are of type Φ is
denoted by R(G,S,Φ) (see again [16, 17, 18, 19] as well as Figure 6).
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Figure 6: Examples illustrating Theorem 2.7: (a,b) 2-dimensional realizations of the graph
Gtp of the triangular prism in the set R(Gtp,C2) of different types. While the framework in
(a) is isostatic, the framework in (b) is not, since it has three bars that are fixed by the
half-turn in C2. (c,d) 2-dimensional realizations of the complete bipartite graph K3,3 in
the set R(K3,3,Cs) of different types. While the framework in (c) is isostatic, the framework
in (d) is not, since it has three bars that are fixed by the reflection in Cs.

Remark 2.3 Note that a set R(G,S) can possibly be empty and that for a non-empty set
R(G,S), it is also possible that R(G,S,Φ) = ∅ for some map Φ : S → Aut(G). For examples
and further details see [16, 18].

For the set R(G,S,Φ), a symmetry-adapted notion of generic was introduced in [18] (see
also [16]). Intuitively, an (S, Φ)-generic realization of a graph G is obtained by placing
the vertices of a set of representatives for the symmetry orbits S(v) = {Φ(x)(v)| x ∈ S}
into ‘generic’ positions. The positions for the remaining vertices of G are then uniquely
determined by the symmetry constraints imposed by S and Φ. It is shown in [18] that
the set of (S, Φ)-generic realizations of a graph G forms an open dense subset of the set
R(G,S,Φ). Moreover, the infinitesimal rigidity properties are the same for all (S, Φ)-generic
realizations of G, as the following theorem shows.

Theorem 2.6 [16, 18] Let G be a graph, S be a symmetry group, and Φ be a map from
S to Aut(G) such that R(G,S,Φ) 6= ∅. The following are equivalent.

(i) There exists a framework (G, p) ∈ R(G,S,Φ) that is infinitesimally rigid (independent,
isostatic);

(ii) every (S, Φ)-generic realization of G is infinitesimally rigid (independent, isostatic).
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It follows that infinitesimal rigidity (independence, isostaticity) is an (S, Φ)-generic
property. So we define a graph G to be (S, Φ)-generically infinitesimally rigid (indepen-
dent, isostatic) if all realizations of G which are (S, Φ)-generic are infinitesimally rigid
(independent, isostatic).

Using techniques from group representation theory, it is shown in [3] that if a symmet-
ric isostatic framework (G, p) belongs to a set R(G,S,Φ), where S is a non-trivial symmetry
group and Φ : S → Aut(G) is a homomorphism, then (G, p) needs to satisfy certain
restrictions on the number of joints and bars that are ‘fixed’ by various symmetry opera-
tions of (G, p) (see Theorem 2.7 and [5, 16, 18, 19]). An alternate way of deriving these
restrictions is given in [15].

We say that a joint
(
v, p(v)

)
of (G, p) is fixed by a symmetry operation x ∈ S (with

respect to Φ) if Φ(x)(v) = v, and a bar {(vi, pi), (vj, pj)} of (G, p) is fixed by x (with
respect to Φ) if Φ(x)

(
{vi, vj}

)
= {vi, vj}.

The number of joints of (G, p) that are fixed by x (with respect to Φ) is denoted by
jΦ(x) and the number of bars of (G, p) that are fixed by x (with respect to Φ) is denoted
by bΦ(x).

Remark 2.4 It follows immediately from these definitions that if a joint of a framework
(G, p) ∈ R(G,C2,Φ) is fixed by the half-turn C2, then it must lie at the center of the rotation
C2, i.e., at the origin in R2. Further, if a bar of (G, p) is fixed by C2, then it must be
centered at the origin.

Similarly, if a joint of a framework (G, p) ∈ R(G,Cs,Φ) is fixed by the reflection s ∈ Cs,
then it must lie on the mirror line corresponding to s, and if a bar of (G, p) is fixed by
s, then it must either lie within the mirror line or perpendicular to and centered at the
mirror line corresponding to s [3, 17].

Theorem 2.7 [3, 16] Let G be a graph, Φ : S → Aut(G) be a homomorphism, and (G, p)
be an isostatic framework in R(G,S,Φ) with the property that the points p(v), v ∈ V (G),
span all of R2.

(i) If S = C2, then |E(G)| = 2|V (G)| − 3, jΦ(C2) = 0 and bΦ(C2) = 1;

(ii) if S = Cs, then |E(G)| = 2|V (G)| − 3 and bΦ(s) = 1;

In Sections 4.2 and 5.2 we verify the conjectures proposed in [3] that the necessary
conditions in Theorem 2.7, together with the Laman conditions, are also sufficient for
(S, Φ)-generic realizations of G to be isostatic - for both S = C2 and S = Cs. In addi-
tion, we provide Henneberg-type and Crapo-type characterizations of (S, Φ)-generically
isostatic graphs for these two groups.

3 Preliminary results and remarks

In our proofs of the symmetric Laman theorems for C2 and Cs, we will frequently use
the following basic lemmas.
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Lemma 3.1 Let G be a graph with |V (G)| > 3 that satisfies the Laman conditions. Then

(i) G has a vertex of valence 2 or 3;

(ii) if G has no vertex of valence 2, then G has at least six vertices of valence 3.

Proof. (i) The average valence in G is

2|E(G)|

|V (G)|
=

2(2|V (G)| − 3)

|V (G)|
= 4 −

6

|V (G)|
< 4.

Since G satisfies the Laman conditions and |V (G)| > 3, it is easy to see that G has no
vertex of valence 0 or 1.

(ii) Suppose G has no vertex of valence 2 and k vertices of valence 3, where k < 6.
Then the average valence in G is at least

3k + 4(|V (G)| − k)

|V (G)|
= 4 −

k

|V (G)|
> 4 −

6

|V (G)|

contradicting (i). �

Lemma 3.2 Let G be a graph that satisfies the Laman conditions and let v be a vertex
of G with NG(v) = {v1, v2, v3}. Further, let α ∈ Aut(G) and

(
v α(v) . . . αn(v)

)
be the

permutation cycle of α containing v. If {v, α(v), . . . , αn(v)} is an independent set of
vertices in G, then

(i) there exists {i, j} ⊆ {1, 2, 3} such that for every subgraph H ′ of G′ = G −
{v, α(v), . . . , αn(v)} with vi, vj ∈ V (H ′), we have |E(H ′)| 6 2|V (H ′)| − 4;

(ii) if {i, j} ⊆ {1, 2, 3} is the only pair for which (i) holds, then {αk(vi), α
k(vj)} 6=

{αm(vi), α
m(vj)} for all 0 6 k < m 6 n, and G′ +

{
{αt(vi), α

t(vj)}| t = 0, 1, . . . , n
}

satisfies the Laman conditions.

Proof. (i) It follows from Laman’s Theorem (Theorem 2.2) and the Edge 2-Split
Theorem (see Proposition 3.3 in [23]) that there exists {in, jn} ⊆ {1, 2, 3} such that
Gn = G − {αn(v)} +

{
{αn(vin), αn(vjn

)}
}

satisfies the Laman conditions. By the same
argument, there exists {in−1, jn−1} ⊆ {1, 2, 3} such that Gn−1 = Gn − {αn−1(v)} +{
{αn−1(vin−1

), αn−1(vjn−1
)}

}
satisfies the Laman conditions. Continuing in this fashion,

we arrive at a graph G0 with V (G0) = V (G) \ {v, α(v), . . . , αn(v)} = V (G′) and E(G0) =
E(G′)∪

{
{αn(vin), αn(vjn

)}, . . . , {vi0 , vj0}
}

that satisfies the Laman conditions. Therefore,
every subgraph H of G0−

{
{vi0 , vj0}

}
with vi0 , vj0 ∈ V (H) satisfies |E(H)| 6 2|V (H)|−4.

Since V (G′) = V
(
G0 −

{
{vi0, vj0}

})
and E(G′) ⊆ E

(
G0 −

{
{vi0 , vj0}

})
, it follows that

every subgraph H ′ of G′ with vi0 , vj0 ∈ V (H ′) satisfies |E(H ′)| 6 2|V (H ′)| − 4.
(ii) Wlog we suppose that {i, j} = {1, 2} is the only pair in {1, 2, 3} for which (i) holds.

Then there exists a subgraph H1 of G′ with v1, v3 ∈ V (H1) satisfying |E(H1)| = 2|V (H1)|−
3 and a subgraph H2 of G′ with v2, v3 ∈ V (H2) satisfying |E(H2)| = 2|V (H2)| − 3. Since
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v

αn(v)α(v)

G G0 G′

Figure 7: Illustration of the proof of Lemma 3.2.

G′ is invariant under α (recall Section 2.1), αk(H1) and αk(H2) are also subgraphs of G′

for all 1 6 k 6 n. Moreover, for all 0 6 k 6 n, we have

αk(v1), α
k(v3) ∈ V

(
αk(H1)

)

|E
(
αk(H1)

)
| = 2|V

(
αk(H1)

)
| − 3

and
αk(v2), α

k(v3) ∈ V
(
αk(H2)

)

|E
(
αk(H2)

)
| = 2|V

(
αk(H2)

)
| − 3.

By Laman’s Theorem and the Edge 2-Split Theorem (Proposition 3.3 in [23]), there
exists {in, jn} ⊆ {1, 2, 3} such that Gn = G − {αn(v)} +

{
{αn(vin), αn(vjn

)}
}

satisfies
the Laman conditions. Likewise, for all 0 6 k 6 n − 1, there exists {ik, jk} ⊆ {1, 2, 3}
such that Gk = Gk+1 − {αk(v)} +

{
{αk(vik), α

k(vjk
)}

}
satisfies the Laman conditions.

Since for all 0 6 k 6 n, we have G′ ⊆ Gk, and hence αk(H1), α
k(H2) ⊆ Gk, we must

have {ik, jk} = {1, 2} for all k. In particular, {αk(v1), α
k(v2)} 6= {αm(v1), α

m(v2)} for all
0 6 k < m 6 n and G0 = G′ +

{
{αt(v1), α

t(v2)}| t = 0, 1, . . . , n
}

satisfies the Laman
conditions. �

For both of the groups C2 and Cs, we will prove a symmetrized version of Crapo’s The-
orem by using an approach that is in the style of Tay’s proof (see [22]) of Crapo’s original
result. This requires the notion of a ‘frame’, i.e., a generalized notion of a framework that
allows joints to be located at the same point in space, even if their corresponding vertices
are adjacent. Formally, for a graph G with V (G) = {v1, . . . , vn}, a frame in R2 is a triple
(G, p, q), where p : V (G) → R2 and q : E(G) → R2 \ {0} are maps with the property that
for all {vi, vj} ∈ E(G) there exists a scalar λij ∈ R (which is possibly zero) such that
p(vi) − p(vj) = λijq({vi, vj}).

The generalized rigidity matrix R(G, p, q) of a frame (G, p, q) in R2 is the |E(G)| × 2n
matrix




vi vj

...
{vi, vj} 0 . . . 0 q({vi, vj}) 0 . . . 0 −q({vi, vj}) 0 . . . 0

...


,
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i.e., for each edge {vi, vj} ∈ E(G), R(G, p, q) has the row with
(
q({vi, vj})

)
1

and(
q({vi, vj})

)
2

in the columns 2i − 1 and 2i, −
(
q({vi, vj})

)
1

and −
(
q({vi, vj})

)
2

in the
columns 2(j − 1) and 2j, and 0 elsewhere.

We say that (G, p, q) is independent if R(G, p, q) has linearly independent rows.

Remark 3.1 If (G, p, q) is a frame with the property that p(vi) 6= p(vj) whenever
{vi, vj} ∈ E(G), then we obtain the rigidity matrix of the framework (G, p) by multi-
plying each row of R(G, p, q) by its corresponding scalar λij . Therefore, if (G, p, q) is
independent, so is (G, p).

Lemma 3.3 Let (G, p, q) be an independent frame in R2 and let pt : V (G) → R[t] × R[t]
and qt : E(G) → R[t] × R[t] be such that (G, pa, qa) is a frame in R2 for every a ∈ R. If
(G, pa, qa) = (G, p, q) for a = 0, then (G, pa, qa) is an independent frame in R2 for almost
all a ∈ R.

Proof. Note that the rows of R(G, pt, qt) are linearly dependent (over the quotient field of
R[t]) if and only if the determinants of all the |E(G)|× |E(G)| submatrices of R(G, pt, qt)
are identically zero. These determinants are polynomials in t. Thus, the set of all a ∈ R
with the property that R(G, pa, qa) has a non-trivial row dependency is a variety F whose
complement, if non-empty, is a dense open set. Since a = 0 is in the complement of F we
can conclude that for almost all a, (G, pa, qa) is independent. �

Each time Lemma 3.3 is applied in this paper, the polynomials in R(G, pt, qt) are
linear polynomials in t.

4 Characterizations of (C2, Φ)-generically isostatic

graphs

4.1 Symmetrized Henneberg moves and 3Tree2 partitions for C2

We need the following inductive construction techniques to obtain a symmetrized
Henneberg’s Theorem for C2.

v1

v2
γ(v1)

γ(v2)
v1

v2 γ(v1)

γ(v2)v w

Figure 8: A (C2, Φ) vertex addition of a graph G, where Φ(C2) = γ.

Definition 4.1 Let G be a graph, C2 = {Id, C2} be the half-turn symmetry group in
dimension 2, and Φ : C2 → Aut(G) be a homomorphism. Let v1, v2 be two distinct
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vertices of G and v, w /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v, w} and

E(Ĝ) = E(G)∪
{
{v, v1}, {v, v2}, {w, Φ(C2)(v1)}, {w, Φ(C2)(v2)}

}
is called a (C2, Φ) vertex

addition (by (v, w)) of G.

v1

v2

v3

γ(v1)

γ(v2)

γ(v3)

v1

v2

v3

γ(v1)

γ(v2)

γ(v3)
v w

Figure 9: A (C2, Φ) edge split of a graph G, where Φ(C2) = γ.

Definition 4.2 Let G be a graph, C2 = {Id, C2} be the half-turn symmetry group in
dimension 2, and Φ : C2 → Aut(G) be a homomorphism. Let v1, v2, v3 be three dis-
tinct vertices of G such that {v1, v2} ∈ E(G) and {v1, v2} is not fixed by Φ(C2) and let

v, w /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v, w} and E(Ĝ) =
(
E(G) \{

{v1, v2}, {Φ(C2)(v1), Φ(C2)(v2)}
})

∪
{
{v, vi}| i = 1, 2, 3

}
∪

{
{w, Φ(C2)(vi)}| i = 1, 2, 3

}

is called a (C2, Φ) edge split (on ({v1, v2}, {Φ(C2)(v1), Φ(C2)(v2)}); (v, w)) of G.

Remark 4.1 Each of the constructions in Definitions 4.1 and 4.2 has the property that if
the graph G satisfies the Laman conditions, then so does Ĝ. This follows from Theorems
2.2 and 2.3 and the fact that we can obtain a (C2, Φ) vertex addition of G by a sequence
of two vertex 2-additions, and a (C2, Φ) edge split of G by a sequence of two edge 2-splits.

In order to extend Crapo’s Theorem to C2 we need the following symmetrized definition
of a 3Tree2 partition.

v1 v2

γ(v1)γ(v2)

v1

v2

γ(v1)

v3 γ(v2)

γ(v3)

Figure 10: (C2, Φ) 3Tree2 partitions of graphs, where Φ(C2) = γ. The edges in black color
represent edges of the invariant trees.

Definition 4.3 Let G be a graph, C2 = {Id, C2} be the half-turn symmetry group in
dimension 2, and Φ : C2 → Aut(G) be a homomorphism. A (C2, Φ) 3Tree2 partition
of G is a 3Tree2 partition {E(T0), E(T1), E(T2)} of G such that Φ(C2)(T1) = T2 and
Φ(C2)(T0) = T0. The tree T0 is called the invariant tree of {E(T0), E(T1), E(T2)}.
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4.2 The main result for C2

Theorem 4.1 Let G be a graph with |V (G)| > 2, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. The following are
equivalent:

(i) R(G,C2,Φ) 6= ∅ and G is (C2, Φ)-generically isostatic;

(ii) |E(G)| = 2|V (G)| − 3, |E(H)| 6 2|V (H)| − 3 for all H ⊆ G with |V (H)| > 2
(Laman conditions), jΦ(C2) = 0, and bΦ(C2) = 1;

(iii) there exists a (C2, Φ) construction sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G, Φ)

such that

(a) Gi+1 is a (C2, Φi) vertex addition or a (C2, Φi) edge split of Gi with V (Gi+1) =
V (Gi) ∪ {vi+1, wi+1} for all i = 0, 1, . . . , k − 1;

(b) Φ0 : C2 → Aut(K2) is a non-trivial homomorphism and for all i = 0, 1, . . . , k−
1, Φi+1 : C2 → Aut(Gi+1) is the homomorphism defined by Φi+1(C2)|V (Gi) =
Φi(C2) and Φi+1(C2)|{vi+1,wi+1} = (vi+1 wi+1);

(iv) G has a proper (C2, Φ) 3Tree2 partition whose invariant tree is a spanning tree of
G.

We break the proof of this result up into four Lemmas.

Lemma 4.2 Let G be a graph with |V (G)| > 2, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. If R(G,C2,Φ) 6= ∅ and G is
(C2, Φ)-generically isostatic, then G satisfies the Laman conditions and we have jΦ(C2) = 0
and bΦ(C2) = 1.

Proof. The result is trivial if |V (G)| = 2, and it follows from Laman’s Theorem (Theorem
2.2), Theorem 2.7, and Remark 2.1 if |V (G)| > 2. �

Lemma 4.3 Let G be a graph with |V (G)| > 2, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. If G satisfies the
Laman conditions and we also have jΦ(C2) = 0 and bΦ(C2) = 1, then there exists a (C2, Φ)
construction sequence for G.

Proof. We employ induction on |V (G)|. Note first that if for a graph G, there exists a
homomorphism Φ : C2 → Aut(G) such that jΦ(C2) = 0, then |V (G)| ≡ 0 (mod 2). The
only graph with two vertices that satisfies the Laman conditions is the graph K2 and if
Φ : C2 → Aut(K2) is a homomorphism such that jΦ(C2) = 0 and bΦ(C2) = 1, then Φ is
clearly a non-trivial homomorphism. This proves the base case.
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So we let n > 2 and we assume that the result holds for all graphs with n or fewer
than n vertices.

Let G be a graph with |V (G)| = n+2 that satisfies the Laman conditions and suppose
jΦ(C2) = 0 and bΦ(C2) = 1 for a homomorphism Φ : C2 → Aut(G). In the following, we
denote Φ(C2) by γ. By Lemma 3.1, G has a vertex of valence 2 or 3.

We assume first that G has a vertex v of valence 2, say NG(v) = {v1, v2}. Then
γ(v) 6= v since jγ = 0. Also, γ(v) 6= v1, v2, for otherwise, say wlog γ(v) = v1, the graph
G′ = G − {v, γ(v)} satisfies

|E(G′)| = |E(G)| − 3 = 2|V (G)| − 6 = 2|V (G′)| − 2,

contradicting the fact that G satisfies the Laman conditions, since |V (G′)| > 2.
Thus, the edges {v, v1}, {v, v2}, {γ(v), γ(v1)}, {γ(v), γ(v2)} are pairwise distinct.

Therefore,
|E(G′)| = |E(G)| − 4 = 2|V (G)| − 7 = 2|V (G′)| − 3.

Also, for H ⊆ G′ with |V (H)| > 2, we have H ⊆ G, and hence

|E(H)| 6 2|V (H)| − 3,

so that G′ satisfies the Laman conditions.
Let Φ′ : C2 → Aut(G′) be the homomorphism with Φ′(x) = Φ(x)|V (G′) for all x ∈ C2.

Then we have jΦ′(C2) = 0 and bΦ′(C2) = 1, because none of the edges we removed was fixed
by γ. Thus, by the induction hypothesis, there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G′, Φ′)

satisfying the conditions in Theorem 4.1 (iii). Since G is a (C2, Φ
′) vertex addition of G′

with V (G) = V (G′) ∪ {v, γ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G
′, Φ′), (G, Φ)

is a sequence with the desired properties.
Suppose now that G has a vertex of valence 3 and no vertex of valence 2. Then, by

Lemma 3.1, G has at least six vertices of valence 3. Therefore, since bγ = 1, there exists
a vertex v ∈ V (G) with valG(v) = 3, say NG(v) = {v1, v2, v3}, and {v, γ(v)} /∈ E(G).
Since jγ = 0, we have γ(vi) 6= vi for all i = 1, 2, 3, and hence we only need to consider the
following two cases (see also Figure 11):

Case 1: vs = γ(vt) for some {s, t} ⊆ {1, 2, 3}. Wlog we assume v1 = γ(v2). Then we
also have v2 = γ(v1).

Case 2: The six vertices vi, γ(vi), i = 1, 2, 3, are all pairwise distinct.

Case 1: Since γ({v1, v2}) = {v1, v2}, it follows from Lemma 3.2 (i) and (ii) that there
exists {i, j} ⊆ {1, 2, 3} with {i, j} 6= {1, 2}, say wlog {i, j} = {1, 3}, such that for every
subgraph H of G′ = G − {v, γ(v)} with vi, vj ∈ V (H), we have |E(H)| 6 2|V (H)| − 4.
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v1 = γ(v2)

v3

v2 = γ(v1)

γ(v3)v γ(v)

(Case 1)

v1

v3

v2

γ(v1)

γ(v3)

γ(v2)
v γ(v)

(Case 2)

Figure 11: If a graph G satisfies the conditions in Theorem 4.1 (ii) and has a vertex v of
valence 3, then G is a graph of one of the types depicted above.

Since G′ is invariant under γ, every subgraph H of G′ with γ(v1), γ(v3) ∈ V (H) also
satisfies |E(H)| 6 2|V (H)| − 4.

Note that {v1, v3} and {γ(v1), γ(v3)} are two distinct pairs of vertices (though not
edges, by the above counts), for otherwise we have γ(v1) = v3 (since jγ = 0), and hence
v3 = v2, a contradiction.

We claim that G̃ = G′ +
{
{v1, v3}, {γ(v1), γ(v3)}

}
satisfies the Laman conditions. We

clearly have

|E(G̃)| = |E(G′)| + 2 = |E(G)| − 4 = 2|V (G)| − 7 = 2|V (G̃)| − 3.

Suppose there exists a subgraph H of G′ with v1, v3, γ(v1), γ(v3) ∈ V (H) and |E(H)| =

2|V (H)| − 4. Then the subgraph Ĥ of G′ with V (Ĥ) = V (H) ∪ {v, γ(v)} and E(Ĥ) =
E(H) ∪

{
{v, vi}| i = 1, 2, 3

}
∪

{
{γ(v), γ(vi)}| i = 1, 2, 3

}
satisfies

|E(Ĥ)| = |E(H)| + 6 = 2|V (H)| + 2 = 2|V (Ĥ)| − 2,

contradicting the fact that G satisfies the Laman conditions.
Therefore, every subgraph H of G′ with v1, v3, γ(v1), γ(v3) ∈ V (H) satisfies |E(H)| 6

2|V (H)| − 5.

Thus, as claimed, the graph G̃ = G′ +
{
{v1, v3}, {γ(v1), γ(v3)}

}
satisfies the Laman

conditions.
Further, if we define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ C2, then Φ̃(x) ∈ Aut(G̃) for

all x ∈ C2 and Φ̃ : C2 → Aut(G̃) is a homomorphism. Since we also have jeΦ(C2) = 0 and
beΦ(C2) = 1, it follows from the induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 4.1 (iii). Since G is a (C2, Φ̃) edge split of G̃ with

V (G) = V (G̃) ∪ {v, γ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

the electronic journal of combinatorics 17 (2010), #R154 17



is a sequence with the desired properties.
Case 2: By Lemma 3.2 (i), there exists {i, j} ⊆ {1, 2, 3} such that for every subgraph

H of G′ = G − {v, γ(v)} with vi, vj ∈ V (H), we have |E(H)| 6 2|V (H)| − 4. Suppose
first that wlog {i, j} = {1, 2} is the only pair in {1, 2, 3} with this property. Then, by

Lemma 3.2 (ii), G̃ = G′ +
{
{v1, v2}, {γ(v1), γ(v2)}

}
satisfies the Laman conditions.

Further, if we define Φ̃ by Φ̃(x) = Φ(x)|
V ( eG) for all x ∈ C2 then Φ̃(x) ∈ Aut(G̃) for

all x ∈ C2 and Φ̃ : C2 → Aut(G̃) is a homomorphism. Since we also have jeΦ(C2) = 0 and
beΦ(C2) = 1 it follows from the induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 4.1 (iii). Since G is a (C2, Φ̃) edge split of G̃ with

V (G) = V (G̃) ∪ {v, γ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
Suppose now that there exist two distinct pairs in {1, 2, 3}, say wlog {1, 2} and {1, 3},

such that every subgraph H of G′ with v1, v2 ∈ V (H) or v1, v3 ∈ V (H) satisfies |E(H)| 6

2|V (H)| − 4. Then every subgraph H of G′ with γ(v1), γ(v2) ∈ V (H) or γ(v1), γ(v3) ∈
V (H) also satisfies |E(H)| 6 2|V (H)| − 4, because G′ is invariant under γ.

Suppose there exists a subgraph H of G′ with vi, γ(vi) ∈ V (H) for all i = 1, 2, 3 and

|E(H)| = 2|V (H)| − 4. Then the subgraph Ĥ of G with V (Ĥ) = V (H) ∪ {v, γ(v)} and

E(Ĥ) = E(H) ∪
{
{v, vi}| i = 1, 2, 3

}
∪

{
{γ(v), γ(vi)}| i = 1, 2, 3

}
satisfies

|E(Ĥ)| = |E(H)| + 6 = 2|V (H)| + 2 = 2|V (Ĥ)| − 2,

contradicting the fact that G satisfies the Laman conditions.
Thus, every subgraph H of G′ with vi, γ(vi) ∈ V (H) for all i = 1, 2, 3 satisfies the

count |E(H)| 6 2|V (H)| − 5.
Now, suppose there exist subgraphs H1 and H2 of G′ with v1, v2, γ(v1), γ(v2) ∈ V (H1)

and v1, v3, γ(v1), γ(v3) ∈ V (H2) satisfying |E(Hi)| = 2|V (Hi)| − 4 for i = 1, 2. Then
there also exist γ(H1) ⊆ G′ and γ(H2) ⊆ G′ with v1, v2, γ(v1), γ(v2) ∈ V

(
γ(H1)

)
and

v1, v3, γ(v1), γ(v3) ∈ V
(
γ(H2)

)
satisfying |E

(
γ(Hi)

)
| = 2|V

(
γ(Hi)

)
| − 4 for i = 1, 2. Let

H ′
i = Hi ∪ γ(Hi) for i = 1, 2. Then

|E(H ′
1)| = |E(H1)| + |E

(
γ(H1)

)
| − |E

(
H1 ∩ γ(H1)

)
|

> 2|V (H1)| − 4 + 2|V
(
γ(H1)

)
| − 4 − (2|V

(
H1 ∩ γ(H1)

)
| − 4)

= 2|V (H ′
1)| − 4,

because H1 ∩ γ(H1) is a subgraph of G′ with v1, v2 ∈ V
(
H1 ∩ γ(H1)

)
. Since H ′

1 is also a
subgraph of G′ with v1, v2 ∈ V (H ′

1), it follows that

|E(H ′
1)| = 2|V (H ′

1)| − 4.
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Similarly,
|E(H ′

2)| = 2|V (H ′
2)| − 4.

So, both H ′
1 and H ′

2 have an even number of edges. Moreover, both of these graphs are
invariant under γ, which says that neither E(H ′

1) nor E(H ′
2) contains the edge e of G that

is fixed by γ.
Note that H ′

1∩H ′
2 is a subgraph of G with v1, γ(v1) ∈ V (H ′

1∩H ′
2). Therefore, we have

|E(H ′
1 ∩ H ′

2)| 6 2|V (H ′
1 ∩ H ′

2)| − 3,

because G satisfies the Laman conditions. Since H ′
1 ∩ H ′

2 is also invariant under γ and
E(H ′

1 ∩ H ′
2) does not contain the edge e, |E(H ′

1 ∩ H ′
2)| is an even number. The above

upper bound for |E(H ′
1 ∩ H ′

2)| can therefore be lowered to

|E(H ′
1 ∩ H ′

2)| 6 2|V (H ′
1 ∩ H ′

2)| − 4.

Thus, H ′ = H ′
1 ∪ H ′

2 satisfies

|E(H ′)| = |E(H ′
1)| + |E(H ′

2)| − |E(H ′
1 ∩ H ′

2)|

> 2|V (H ′
1)| − 4 + 2|V (H ′

2)
)
| − 4 − (2|V (H ′

1 ∩ H ′
2)| − 4)

= 2|V (H ′)| − 4.

This is a contradiction, because H ′ is a subgraph of G′ with vi, γ(vi) ∈ V (H ′) for all
i = 1, 2, 3.

So, for {i, j} = {1, 2} or {i, j} = {1, 3}, say wlog {i, j} = {1, 2}, we have that every
subgraph H of G′ with vi, vj, γ(vi), γ(vj) ∈ V (H) satisfies |E(H)| = 2|V (H)| − 5.

Thus, G̃ = G′ +
{
{v1, v2}, {γ(v1), γ(v2)}

}
satisfies the Laman conditions and if we

define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ C2, then Φ̃(x) ∈ Aut(G̃) for all x ∈ C2 and

Φ̃ : C2 → Aut(G̃) is a homomorphism. Since we also have jeΦ(C2) = 0 and beΦ(C2) = 1, it
follows from the induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 4.1 (iii). Since G is a (C2, Φ̃) edge split of G̃ with

V (G) = V (G̃) ∪ {v, γ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties. �

Lemma 4.4 Let G be a graph with |V (G)| > 2, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. If there exists a (C2, Φ)
construction sequence for G, then G has a proper (C2, Φ) 3Tree2 partition whose invariant
tree is a spanning tree of G.
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Proof. We proceed by induction on |V (G)|. Let V (K2) = {v1, v2} and let Φ : C2 → K2 be
the homomorphism defined by Φ(C2) = (v1 v2). Then K2 has the proper (C2, Φ) 3Tree2
partition {E(T0), E(T1), E(T2)}, where T0 = 〈{v1, v2}〉, T1 = 〈{v1}〉, and T2 = 〈{v2}〉.
Clearly, T0 is a spanning tree of K2. This proves the base case.

Assume, then, that the result holds for all graphs with n or fewer than n vertices,
where n > 2.

Let G be a graph with |V (G)| = n + 2 and let Φ : C2 → Aut(G) be a homomorphism
such that there exists a (C2, Φ) construction sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G, Φ)

satisfying the conditions in Theorem 4.1 (iii). By Remark 4.1, G satisfies the Laman
conditions, and hence, by Remark 2.2, any 3Tree2 partition of G must be proper. There-
fore, it suffices to show that G has some (C2, Φ) 3Tree2 partition whose invariant tree is
a spanning tree of G. In the following, we denote Φ(C2) by γ.

By the induction hypothesis, Gk−1 has a (C2, Φk−1) 3Tree2 partition{
E

(
T

(k−1)
0

)
, E

(
T

(k−1)
1

)
, E

(
T

(k−1)
2

)}
whose invariant tree T

(k−1)
0 is a spanning tree

of Gk−1.
Suppose first that G is a (C2, Φk−1) vertex addition by (v w) of Gk−1 with NG(v) =

{v1, v2}. Since Φk−1(C2) = γ|V (Gk−1), we have NG(w) = {γ(v1), γ(v2)}. Note that

v1, v2, γ(v1), γ(v2) ∈ V
(
T

(k−1)
0

)
, because T

(k−1)
0 is a spanning tree of Gk−1. Also, v2 be-

longs to either T
(k−1)
1 or T

(k−1)
2 , say wlog v2 ∈ V

(
T

(k−1)
1

)
. Then γ(v2) ∈ V

(
T

(k−1)
2

)
. So, if

we define T
(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
∪

{
{v, v1}, {w, γ(v1)}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v2}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{w, γ(v2)}

}
,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (C2, Φ) 3Tree2 partition of G whose invariant tree

T
(k)
0 is a spanning tree of G.

Suppose next that G is a (C2, Φk−1) edge split on ({v1, v2}, {γ(v1), γ(v2)}); (v, w)
of Gk−1 with E(Gk) =

(
E(Gk−1) \

{
{v1, v2}, {γ(v1), γ(v2)}

})
∪

{
{v, vi}| i = 1, 2, 3

}
∪{

{w, γ(vi)}| i = 1, 2, 3
}
. First, we assume that {v1, v2} ∈ E

(
T

(k−1)
0

)
, and hence
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v1

v2
γ(v1)

γ(v2)
v1

v2 γ(v1)

γ(v2)v w

Figure 12: Construction of a (C2, Φ) 3Tree2 partition of G in the case where G is a
(C2, Φk−1) vertex addition of Gk−1. The edges in black color represent edges of the invariant

tree T
(k)
0 .

{γ(v1), γ(v2)} ∈ E
(
T

(k−1)
0

)
. Note that v3 belongs to either T

(k−1)
1 or T

(k−1)
2 , say wlog

v3 ∈ V
(
T

(k−1)
1

)
. Then γ(v3) ∈ V

(
T

(k−1)
2

)
. So if we define T

(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
=

(
E

(
T

(k−1)
0

)
\

{
{v1, v2}, {γ(v1), γ(v2)}

})

∪
{
{v, v1}, {v, v2}, {w, γ(v1)}, {w, γ(v2)}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v3}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{w, γ(v3)}

}
,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (C2, Φ) 3Tree2 partition of G whose invariant tree

T
(k)
0 is a spanning tree of G.

Assume now that {v1, v2} /∈ E
(
T

(k−1)
0

)
. Then wlog {v1, v2} ∈ E

(
T

(k−1)
1

)
and

{γ(v1), γ(v2)} ∈ E
(
T

(k−1)
2

)
. In this case we define T

(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
∪

{
{v, v3}, {w, γ(v3)}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
=

(
E

(
T

(k−1)
1

)
\

{
{v1, v2}

})
∪

{
{v, v1}, {v, v2}

}
,
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v1

v2

v3

γ(v1)

γ(v2)

γ(v3)

v1

v2

v3

γ(v1)

γ(v2)

γ(v3)
v w

v1

v2

v3

γ(v1)

γ(v2)

γ(v3)

v1

v2

v3

γ(v1)

γ(v2)

γ(v3)
v w

Figure 13: Construction of a (C2, Φ) 3Tree2 partition of G in the case where G is a
(C2, Φk−1) edge split of Gk−1. The edges in black color represent edges of the invariant
trees.

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
=

(
E

(
T

(k−1)
2

)
\

{
{γ(v1), γ(v2)}

})

∪
{
{w, γ(v1)}, {w, γ(v2)}.

Then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (C2, Φ) 3Tree2 partition of G whose invariant tree

T
(k)
0 is a spanning tree of G. �

Lemma 4.5 Let G be a graph with |V (G)| > 2, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. If G has a proper
(C2, Φ) 3Tree2 partition whose invariant tree is a spanning tree of G, then R(G,C2,Φ) 6= ∅
and G is (C2, Φ)-generically isostatic.

Proof. Suppose G has a proper (C2, Φ) 3Tree2 partition {E(T0), E(T1), E(T2)} whose
invariant tree T0 is a spanning tree of G. By Theorem 2.6, it suffices to find some
framework (G, p) ∈ R(G,C2,Φ) that is isostatic. Since G has a 3Tree2 partition, G satisfies
the count |E(G)| = 2|V (G)| − 3, and hence, by Theorem 2.1, it suffices to find a map
p : V (G) → R2 such that (G, p) ∈ R(G,C2,Φ) is independent. In the following, we again
denote Φ(C2) by γ.

Let Vi be the set of vertices of G that are not in V (Ti) for i = 0, 1, 2. Then V0 = ∅
since T0 is a spanning tree of G. Let e1 = (0, 0) and e2 = (0, 1) and let (G, p, q) be the
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frame with p : V (G) → R2 and q : E(G) → R2 defined by

p(v) = ei if v ∈ Vi

q(b) =





(0, 1) if b ∈ E(T0)
(−1, 0) if b ∈ E(T1)
(1, 0) if b ∈ E(T2)

.

T1

T2V1

V2

e1

e2

T0

Figure 14: The frame (G, p, q).

We claim that the generalized rigidity matrix R(G, p, q) has linearly independent rows.
To see this, we first rearrange the columns of R(G, p, q) in such a way that we obtain the
matrix R′(G, p, q) which has the (2i− 1)st column of R(G, p, q) in its ith column and the
(2i)th column of R(G, p, q) in its (|V (G)| + i)th column for i = 1, 2, . . . , |V (G)|. Let Fb

denote the row vector of R′(G, p, q) that corresponds to the edge b ∈ E(G). We then
rearrange the rows of R′(G, p, q) in such a way that we obtain the matrix R′′(G, p, q)
which has the vectors Fb with b ∈ E(T0) in the rows 1, 2, . . . , |E(T0)|, the vectors Fb with
b ∈ E(T1) in the following |E(T1)| rows, and the vectors Fb with b ∈ E(T2) in the last
|E(T2)| rows. So R′′(G, p, q) is of the form




1 −1

0
...
1 −1

−1 1
... 0

−1 1
1 −1

... 0
1 −1




.

Clearly, R(G, p, q) has a row dependency if and only if R′′(G, p, q) does. Suppose
R′′(G, p, q) has a row dependency of the form

∑

b∈E(G)

αbFb = 0,
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where αb 6= 0 for some b ∈ E(T0). Since T0 is a tree, it follows that

∑

b∈E(T0)

αbFb 6= 0.

Thus, there exists a vertex vr ∈ V (T0), r ∈ {1, 2, . . . , |V (G)|}, such that

∑

b∈E(T0)

αb(Fb)|V (G)|+r = C 6= 0,

and hence ∑

b∈E(G)

αb(Fb)|V (G)|+r = C 6= 0,

a contradiction.
So, suppose ∑

b∈E(T1)∪E(T2)

αbFb = 0,

where αb 6= 0 for some b ∈ E(T1)∪E(T2), say wlog b ∈ E(T1). Since T1 is a tree, we have

∑

b∈E(T1)

αbFb 6= 0,

and hence there exists a vertex vs ∈ V (T1), s ∈ {1, 2, . . . , |V (G)|}, such that

∑

b∈E(T1)

αb(Fb)s = D 6= 0.

Then ∑

b∈E(T1)∪E(T2)

αb(Fb)s = D 6= 0,

because the trees T1 and T2 have disjoint vertex sets. This is again a contradiction, and
hence the frame (G, p, q) is indeed independent.

Now, if (G, p) is not a framework, then we need to symmetrically pull apart those joints
of (G, p, q) that have the same location ei in R2 and whose vertices are adjacent. So, wlog
suppose |V1| > 2. Then, since G has the (C2, Φ) 3Tree2 partition {E(T0), E(T1), E(T2)},
we have γ(V1) = V2, and hence |V1| = |V2| > 2. Since {E(T0), E(T1), E(T2)} is proper,
one of 〈V1〉 ∩ Ti, i = 0, 2, is not connected. Note that T2 ⊆ 〈V1〉, and hence 〈V1〉 ∩ T2 is
connected. Thus, 〈V1〉 ∩ T0 is not connected. Therefore, 〈V2〉 ∩ T0 is also not connected.
Let A be the set of vertices in one of the components of 〈V1〉 ∩ T0 and γ(A) be the set of
vertices in the corresponding component of 〈V2〉∩T0. For t ∈ R, we define pt : V (G) → R2
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and qt : E(G) → R2 by

pt(v) =






(t, 0) if v ∈ A
(−t, 1) if v ∈ γ(A)
p(v) otherwise

qt(b) =





(−t, 1) if b ∈ EA,V2\γ(A)

(−2t, 1) if b ∈ EA,γ(A)

(−t, 1) if b ∈ Eγ(A),V1\A

q(b) otherwise

,

where for disjoint sets X, Y ∈ V (G), EX,Y denotes the set of edges of G incident with a
vertex in X and a vertex in Y . Then (G, pt, qt) = (G, p, q) if t = 0. Therefore, by Lemma

T1

T2V1 \ A

V2 \ γ(A)

A

γ(A)

e1

e2

T0

Figure 15: The frame (G, pt, qt).

3.3, there exists a t0 ∈ R, t0 6= 0, such that the frame (G, pt0, qt0) is independent.
If (G, pt0) is still not a framework, then V1 \A or A, say wlog V1 \A, contains at least

two vertices that are adjacent in G, as does V2 \ γ(A). Since {E(T0), E(T1), E(T2)} is
proper, one of 〈V1 \ A〉 ∩ Ti, i = 0, 2 is not connected.

If 〈V1 \A〉∩T0 is not connected, then 〈V2 \γ(A)〉∩T0 is also not connected. Let B and
γ(B) be the vertex sets of components of 〈V1 \A〉 ∩ T0 and 〈V2 \ γ(A)〉 ∩ T0, respectively.
Then we can pull apart the vertices of B from (V1 \A) \B and the vertices of γ(B) from
(V2 \ γ(A)) \ γ(B) in an analogous way as before in order to obtain a new independent
frame.

If 〈V1 \A〉 ∩T2 and 〈V2 \ γ(A)〉 ∩T1 are not connected, then we let B and γ(B) be the
vertex sets of components of 〈V1 \A〉 ∩ T2 and 〈V2 \ γ(A)〉 ∩ T1, respectively. In this case,
we may pull apart the vertices of B from (V1 \ A) \ B in direction of the vector (0,−1)
and the vertices of γ(B) from (V2 \ γ(A)) \ γ(B) in direction of the vector (0, 1) to obtain
a new independent frame.

This process can be continued until we obtain an independent frame (G, p̂, q̂) with
p̂(u) 6= p̂(v) for all {u, v} ∈ E(G). Then, by Remark 3.1, (G, p̂) is an independent
framework and the right translation of (G, p̂) yields an independent framework in the set
R(G,C2,Φ). �

Lemmas 4.2, 4.3, 4.4, and 4.5 provide a complete proof for Theorem 4.1

Remark 4.2 Let G be a graph with |V (G)| > 3, C2 = {Id, C2} be the half-turn symmetry
group in dimension 2, and Φ : C2 → Aut(G) be a homomorphism. If G is (C2, Φ)-
generically isostatic, then we can modify the construction in the proof of Lemma 4.4 to
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obtain proper (C2, Φ) 3Tree2 partitions of G whose invariant trees are not spanning. In
particular, it can be shown that if G is (C2, Φ)-generically isostatic, then there must exist
a proper (C2, Φ) 3Tree2 partition of G whose invariant tree is just a single edge of G.
However, the existence of a proper (C2, Φ) 3Tree2 partition of G whose invariant tree is
not spanning is not sufficient for G to be (C2, Φ)-generically isostatic. This is because a
vertex of G that does not belong to the invariant tree of such a (C2, Φ) 3Tree2 partition
can possibly be fixed by Φ(C2), and hence jΦ(C2) may not be zero.

For example, consider the complete graph K3 with V (K3) = {v1, v2, v3} and let
Φ be the homomorphism from the symmetry group C2 to Aut(K3) defined by Φ(C2) =
(v1 v2)(v3). Then K3 has the proper (C2, Φ) 3Tree2 partition {E(T0), E(T1), E(T2)}, where
T0 = 〈{v1, v2}〉, T1 = 〈{v2, v3}〉, and T2 = 〈{v1, v3}〉. Since v3 is fixed by Φ(C2), K3 is not
(C2, Φ)-generically isostatic. In fact, every realization in the set R(K3,C2,Φ) is a degenerate
triangle.

If however G has a proper (C2, Φ) 3Tree2 partition (whose invariant tree is not neces-
sarily a spanning tree of G) and we also impose the condition that jΦ(C2) = 0, then it is
quite easy to show that we must also have bΦ(C2) = 1. In other words, the two conditions
that G has any proper (C2, Φ) 3Tree2 partition and jΦ(C2) = 0 are sufficient for G to be
(C2, Φ)-generically isostatic.

5 Characterizations of (Cs, Φ)–generically isostatic

graphs

5.1 Symmetrized Henneberg moves and 3Tree2 partitions for Cs

We need the following symmetrized inductive construction techniques to obtain a
symmetrized Henneberg’s Theorem for Cs.

Definition 5.1 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2,
and Φ : Cs → Aut(G) be a homomorphism. Let v0 be a vertex of G that is not fixed

by Φ(s) and v /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v} and E(Ĝ) =

v0 σ(v0) v0 σ(v0)

v

Figure 16: A (Cs, Φ) single vertex addition of a graph G, where Φ(s) = σ.

E(G) ∪
{
{v, v0}, {v, Φ(s)(v0)}

}
is called a (Cs, Φ) single vertex addition (by (v)) of G.
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Definition 5.2 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2,
and Φ : Cs → Aut(G) be a homomorphism. Let v1, v2, v3 be three distinct vertices of G
such that {v1, v2} ∈ E(G), σ(v1) = v2, and σ(v3) = v3. Further, let v /∈ V (G). Then the

graph Ĝ with V (Ĝ) = V (G)∪{v} and E(Ĝ) =
(
E(G) \

{
{v1, v2}

})
∪

{
{v, vi}| i = 1, 2, 3

}

is called a (Cs, Φ) single edge split (on {v1, v2}; v) of G.

v1 v2 = σ(v1)

v3 = σ(v3)

v1 v2 = σ(v1)

v3 = σ(v3)

v

Figure 17: A (Cs, Φ) single edge split of a graph G, where Φ(s) = σ.

Definition 5.3 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2,
and Φ : Cs → Aut(G) be a homomorphism. Let v1, v2 be two distinct vertices of G and

v, w /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v, w} and E(Ĝ) = E(G) ∪{
{v, v1}, {v, v2}, {w, Φ(s)(v1)}, {w, Φ(s)(v2)}

}
is called a (Cs, Φ) double vertex addition

(by (v, w)) of G.

v2 σ(v2)

v1 σ(v1)

v2 σ(v2)

v1 σ(v1)

v w

Figure 18: A (Cs, Φ) double vertex addition of a graph G, where Φ(s) = σ.

Definition 5.4 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension
2, and Φ : Cs → Aut(G) be a homomorphism. Let v1, v2, v3 be three distinct ver-
tices of G such that {v1, v2} ∈ E(G) and {v1, v2} is not fixed by Φ(s). Further, let

v, w /∈ V (G). Then the graph Ĝ with V (Ĝ) = V (G) ∪ {v, w} and E(Ĝ) =
(
E(G) \{

{v1, v2}, {Φ(s)(v1), Φ(s)(v2)}
})

∪
{
{v, vi}| i = 1, 2, 3

}
∪

{
{w, Φ(s)(vi)}| i = 1, 2, 3

}
is

called a (Cs, Φ) double edge split (on ({v1, v2}, {Φ(s)(v1), Φ(s)(v2)}); (v, w)) of G.

Definition 5.5 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2, and
Φ : Cs → Aut(G) be a homomorphism. Let v1, v2, v3, v4 be four distinct vertices of G with
{v1, v2}, {v3, v4} ∈ E(G) and Φ(s)({v1, v2}) = {v3, v4}. Further, let v /∈ V (G). Then the

graph Ĝ with V (Ĝ) = V (G)∪{v} and E(Ĝ) =
(
E(G)\

{
{v1, v2}, {v3, v4}

})
∪

{
{v, vi}| i ∈

{1, 2, 3, 4}
}

is called a (Cs, Φ) X-replacement (by (v)) of G.
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v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v w

Figure 19: A (Cs, Φ) double edge split of a graph G, where Φ(s) = σ.

v1 v3 = σ(v1)

v4 = σ(v2) v2

v1 v3 = σ(v1)

v4 = σ(v2) v2

v

Figure 20: A (Cs, Φ) X-replacement of a graph G, where Φ(s) = σ.

Remark 5.1 Each of the constructions in Definitions 5.1, 5.2, 5.3, 5.4, and 5.5 has the
property that if the graph G satisfies the Laman conditions, then so does Ĝ. This follows
from Theorems 2.2, 2.3, 2.4, and the fact that we can obtain a (Cs, Φ) double vertex
addition of G by a sequence of two vertex 2-additions and a (Cs, Φ) double edge split of
G by a sequence of two edge 2-splits.

In order to extend Crapo’s Theorem to Cs we need the following symmetrized defini-
tions of a 3Tree2 partition.

Definition 5.6 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2,
and Φ : Cs → Aut(G) be a homomorphism. A (Cs, Φ) 3Tree2 ⊥ partition of G is a 3Tree2
partition {E(T0), E(T1), E(T2)} of G such that Φ(s)(T1) = T2 and Φ(s)(T0) = T0. The
tree T0 is called the invariant tree of {E(T0), E(T1), E(T2)}.

Remark 5.2 Let {E(T0), E(T1), E(T2)} be a (Cs, Φ) 3Tree2 ⊥ partition of a graph G.
Then the vertex set of the invariant tree T0 of {E(T0), E(T1), E(T2)} does not contain a
vertex v ∈ V (G) with Φ(s)(v) = v, for otherwise v ∈ V (T1) implies v ∈ V (T2) and vice
versa, contradicting the fact that v only belongs to exactly two of the trees Ti. Therefore,
it is easy to see that E(T0) must contain an edge e = {v, w} of G with Φ(s)(v) = w.

Let G be a graph and Φ : Cs → Aut(G) be a homomorphism such that E(G) contains
an edge e = {v, w} with Φ(s)(v) = v and Φ(s)(w) = w. Then it follows immediately from
the previous remark that G cannot have a (Cs, Φ) 3Tree2 ⊥ partition. However, G may
have a symmetric 3Tree2 partition of the following kind:
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Definition 5.7 Let G be a graph, Cs = {Id, s} be a symmetry group in dimension 2, and
Φ : Cs → Aut(G) be a homomorphism such that there exists an edge e = {v, w} ∈ E(G)
with Φ(s)(v) = v and Φ(s)(w) = w. A (Cs, Φ) 3Tree2 ‖ partition of G is a 3Tree2 partition
{E(T0), E(T1), E(T2)} of G such that e ∈ E(T1), Φ(s)(T1 −{v}) = T2 and Φ(s)(T0) = T0.
The tree T0 is called the invariant tree of {E(T0), E(T1), E(T2)}.

v1 σ(v1)

v3 = σ(v3)

v2 = σ(v2)

T1 T2
T0

(a)

v2 = σ(v2)

v4 σ(v4)

v3 σ(v3)

v1 = σ(v1)

T1 T2

T0

(b)

Figure 21: A (Cs, Φ) 3Tree2 ⊥ partition of a graph (a) and a (Cs, Φ) 3Tree2 ‖ partition of
a graph (b), where Φ(s) = σ.

Remark 5.3 Let {E(T0), E(T1), E(T2)} be a (Cs, Φ) 3Tree2 ‖ partition of a graph G.
Since T2 is a tree, so is Φ(s)(T2) = T1 −{v}, and hence valT1

(v) = 1. Also, v ∈ V (T0), for
otherwise we have v ∈ V (Ti) for i = 1, 2, which contradicts the facts that Φ(s)(T1−{v}) =
T2 and that v /∈ V

(
Φ(s)(T1 − {v})

)
since v is fixed by Φ(s). Moreover, there does not

exist a vertex x ∈ V (G) with x 6= v, x ∈ V (T0), and Φ(s)(x) = x, for otherwise x ∈ V (T1)
implies x ∈ V (T2) and vice versa, contradicting the fact that x only belongs to exactly
two of the trees Ti.

Remark 5.4 Let G be a graph and Φ : Cs → Aut(G) be a homomorphism such that
E(G) contains an edge e = {v, w} with Φ(s)(v) = w. Then G cannot have a (Cs, Φ)
3Tree2 ‖ partition {E(T0), E(T1), E(T2)}, for otherwise e ∈ E(T0) and, by Remark 5.3,
there also exists a vertex in V (T0) that is fixed by Φ(s), which implies that there must
exist a cycle in T0.

5.2 The main result for Cs

Theorem 5.1 Let G be a graph with |V (G)| > 2, Cs = {Id, s} be a symmetry group in
dimension 2, and Φ : Cs → Aut(G) be a homomorphism. The following are equivalent:

(i) R(G,Cs,Φ) 6= ∅ and G is (Cs, Φ)-generically isostatic;

(ii) |E(G)| = 2|V (G)| − 3, |E(H)| 6 2|V (H)| − 3 for all H ⊆ G with |V (H)| > 2
(Laman conditions), and bΦ(s) = 1;
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(iii) there exists a (Cs, Φ) construction sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G, Φ)

such that

(a) Gi+1 is a (Cs, Φi) single or double vertex addition, a (Cs, Φi) single or double
edge split, or a (Cs, Φi) X-replacement of Gi with V (Gi+1) = V (Gi)∪{vi+1} or
V (Gi+1) = V (Gi) ∪ {vi+1, wi+1} for all i = 0, 1, . . . , k − 1;

(b) Φ0 : Cs → Aut(K2) is a homomorphism and for all i = 0, 1, . . . , k − 1,
Φi+1 : Cs → Aut(Gi+1) is the homomorphism defined by Φi+1(s)|V (Gi) =
Φi(s) and Φi+1(s)(vi+1) = vi+1 whenever V (Gi+1) = V (Gi) ∪ {vi+1} and
Φi+1(s)|{vi+1,wi+1} = (vi+1 wi+1) whenever V (Gi+1) = V (Gi) ∪ {vi+1, wi+1};

(iv) G has a proper (Cs, Φ) 3Tree2 ⊥ partition or a proper (Cs, Φ) 3Tree2 ‖ partition.

We break the proof of this result up into four Lemmas.

Lemma 5.2 Let G be a graph with |V (G)| > 2, Cs = {Id, s} be a symmetry group in
dimension 2, and Φ : Cs → Aut(G) be a homomorphism. If R(G,Cs,Φ) 6= ∅ and G is
(Cs, Φ)-generically isostatic, then G satisfies the Laman conditions and we have bΦ(s) = 1.

Proof. The result is trivial if |V (G)| = 2, and it follows from Laman’s Theorem (Theorem
2.2), Theorem 2.7, and Remark 2.1 if |V (G)| > 2. �

Lemma 5.3 Let G be a graph with |V (G)| > 2, Cs = {Id, s} be a symmetry group
in dimension 2, and Φ : Cs → Aut(G) be a homomorphism. If G satisfies the Laman
conditions and we also have bΦ(s) = 1, then there exists a (Cs, Φ) construction sequence
for G.

Proof. We employ induction on |V (G)|. The only graph with two vertices that satisfies
the Laman conditions is the graph K2, and hence the result trivially holds for |V (G)| = 2.
This proves the base case.

So we let n > 2 and we assume that the result holds for all graphs with n or fewer
than n vertices.

Let G be a graph with |V (G)| = n+1 that satisfies the Laman conditions and suppose
bΦ(s) = 1 for a homomorphism Φ : Cs → Aut(G). In the following, we denote Φ(s) by σ.
By Lemma 3.1, G has a vertex of valence 2 or 3.

Case A: G has a vertex v of valence 2, say NG(v) = {v1, v2}.
Case A.1: Suppose v is fixed by σ. Then σ(v1) = v2, because bσ = 1. So, G′ = G−{v}

clearly satisfies the Laman conditions and if we define Φ′ : Cs → Aut(G′) to be the
homomorphism with Φ′(x) = Φ(x)|V (G′) for all x ∈ Cs, then we have bΦ′(s) = 1, and hence,
by the induction hypothesis, there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G′, Φ′)
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satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ
′) single vertex addition

of G′ with V (G) = V (G′) ∪ {v},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G
′, Φ′), (G, Φ)

is a sequence with the desired properties.
Case A.2: Suppose v 6= σ(v). Then σ(v) 6= v1, v2, for otherwise the graph G′ =

G − {v, σ(v)} satisfies

|E(G′)| = |E(G)| − 3 = 2|V (G)| − 6 = 2|V (G′)| − 2,

contradicting the fact that G satisfies the Laman conditions.
Thus, the edges {v, v1}, {v, v2}, {σ(v), σ(v1)}, {σ(v), σ(v2)} are pairwise distinct.

Therefore,
|E(G′)| = |E(G)| − 4 = 2|V (G)| − 7 = 2|V (G′)| − 3

and for H ⊆ G′ with |V (H)| > 2, we have H ⊆ G, and hence

|E(H)| 6 2|V (H)| − 3,

so that G′ satisfies the Laman conditions.
Let Φ′ : Cs → Aut(G′) be the homomorphism with Φ′(x) = Φ(x)|V (G′) for all x ∈ Cs.

Then we have bΦ′(s) = 1, and hence, by the induction hypothesis, there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G′, Φ′)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ
′) double vertex addition

of G′ with V (G) = V (G′) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G
′, Φ′), (G, Φ)

is a sequence with the desired properties.
Case B: G has a vertex v of valence 3, say NG(v) = {v1, v2, v3}, and no vertex of

valence 2.
Case B.1: Suppose σ(v) = v. Then wlog σ(v1) = v1 and σ(v2) = v3, because bσ = 1.

So, the edge {v, v1} of G is fixed by σ and bσ = 1 implies that {v2, v3} /∈ E(G).

We claim that the graph G̃ = G − {v} +
{
{v2, v3}

}
satisfies the Laman conditions.

Clearly, we have
|E(G̃)| = 2|V (G̃)| − 3.

Let G′ = G − {v} and suppose there exists a subgraph H of G′ with v2, v3 ∈ V (H) and
|E(H)| = 2|V (H)| − 3. Since G′ is invariant under σ, σ(H) is also a subgraph of G′ and
we have v2, v3 ∈ V

(
σ(H)

)
and |E

(
σ(H)

)
| = 2|V

(
σ(H)

)
| − 3. Note that H ∩ σ(H) is a

subgraph of G with v2, v3 ∈ V (H∩σ(H)), and hence |E
(
H∩σ(H)

)
6 2|V

(
H∩σ(H)

)
|−3.

Since H ∩ σ(H) is invariant under σ and E
(
H ∩σ(H)

)
does not contain the edge {v, v1},
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|E
(
H ∩σ(H)

)
| is an even number. Thus, we have |E

(
H ∩σ(H)

)
| 6 2|V

(
H ∩σ(H)

)
| − 4.

It follows that the graph H ′ = H ∪ σ(H) satisfies

|E(H ′)| = |E(H)| + |E
(
σ(H)

)
| − |E

(
H ∩ σ(H)

)
|

> 2|V (H)| − 3 + 2|V
(
σ(H)

)
| − 3 − (2|V

(
H ∩ σ(H)

)
| − 4)

= 2|V (H ′)| − 2,

contradicting the fact that G satisfies the Laman conditions. So, as claimed, the graph
G̃ satisfies the Laman conditions.

If we define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs

and Φ̃ : Cs → Aut(G̃) is a homomorphism. Since {v2, v3} is the only edge that is fixed by

Φ̃, we also have beΦ(s) = 1. So, by the induction hypothesis, there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) single edge split of G̃

with V (G) = V (G̃) ∪ {v},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
Case B.2: Suppose v is not fixed by σ. By Lemma 3.1, G has at least six vertices of

valence 3. So, since bσ = 1, we may assume wlog that {v, σ(v)} /∈ E(G).
Let G′ = G − {v, σ(v)} and suppose there exists a subgraph H of G′ with vi, σ(vi) ∈

V (H) for all i = 1, 2, 3 and |E(H)| > 2|V (H)| − 4. Then the subgraph Ĥ of G with

V (Ĥ) = V (H) ∪ {v, σ(v)} and E(Ĥ) = E(H) ∪
{
{v, vi}| i = 1, 2, 3

}
∪

{
{σ(v), σ(vi)}| i =

1, 2, 3
}

satisfies

|E(Ĥ)| = |E(H)| + 6 > 2|V (H)| + 2 = 2|V (Ĥ)| − 2,

contradicting the fact that G satisfies the Laman conditions.
Thus, every subgraph H of G′ with vi, σ(vi) ∈ V (H) for all i = 1, 2, 3 satisfies the

count |E(H)| 6 2|V (H)| − 5. In the following, we will frequently make use of this fact.
Case B.2.1: Suppose that for every pair {i, j} ⊆ {1, 2, 3}, we have σ({vi, vj}) 6=

{vi, vj}. Then we need to consider the following two subcases (see also Figure 22):

Case B.2.1a: The vertices vi, σ(vi), i = 1, 2, 3, are all pairwise distinct.

Case B.2.1b: One of the vi, say wlog vi = v1, is fixed by σ and the vertices
v2, v3, σ(v2), σ(v3) are pairwise distinct.

Case B.2.1a: By Lemma 3.2 (i), there exists {i, j} ⊆ {1, 2, 3} such that for every
subgraph H of G′ = G − {v, σ(v)} with vi, vj ∈ V (H), we have |E(H)| 6 2|V (H)| − 4.

Suppose first that wlog {i, j} = {1, 2} is the only pair in {1, 2, 3} with this property.

Then, by Lemma 3.2 (ii), G̃ = G′ +
{
{v1, v2}, {σ(v1), σ(v2)}

}
satisfies the Laman condi-

tions and if we define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all
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v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v σ(v)

(Case B.2.1a)

v1 = σ(v1)

v2 σ(v2)

v3 σ(v3)

v σ(v)

(Case B.2.1b)

Figure 22: If a graph G satisfies the conditions in Theorem 5.1 (ii) and has a vertex v
with NG(v) = {v1, v2, v3} such that σ({vi, vj}) 6= {vi, vj} for all {i, j} ⊆ {1, 2, 3}, then G
is a graph of one of the types depicted above.

x ∈ Cs and Φ̃ : Cs → Aut(G̃) is a homomorphism. Since we also have beΦ(s) = 1, it follows
from the induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) double edge split of G̃

with V (G) = V (G̃) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
So, suppose there exist two distinct pairs in {1, 2, 3}, say wlog {1, 2} and {1, 3}, such

that every subgraph H of G′ with v1, v2 ∈ V (H) or v1, v3 ∈ V (H) satisfies |E(H)| 6

2|V (H)| − 4. Then every subgraph H of G′ with σ(v1), σ(v2) ∈ V (H) or σ(v1), σ(v3) ∈
V (H) also satisfies |E(H)| 6 2|V (H)| − 4, because G′ is invariant under σ.

Suppose there exist subgraphs H1 and H2 of G′ with v1, v2, σ(v1), σ(v2) ∈ V (H1) and
v1, v3, σ(v1), σ(v3) ∈ V (H2) satisfying |E(Hi)| = 2|V (Hi)|−4 for i = 1, 2. Then there also
exist subgraphs σ(H1) ⊆ G′ and σ(H2) ⊆ G′ with v1, v2, σ(v1), σ(v2) ∈ V

(
σ(H1)

)
and

v1, v3, σ(v1), σ(v3) ∈ V
(
σ(H2)

)
satisfying |E

(
σ(Hi)

)
| = 2|V

(
σ(Hi)

)
| − 4 for i = 1, 2. Let

H ′
i = Hi ∪ σ(Hi) for i = 1, 2. Then

|E(H ′
1)| = |E(H1)| + |E

(
σ(H1)

)
| − |E

(
H1 ∩ σ(H1)

)
|

> 2|V (H1)| − 4 + 2|V
(
σ(H1)

)
| − 4 − (2|V

(
H1 ∩ σ(H1)

)
| − 4)

= 2|V (H ′
1)| − 4,

because H1 ∩ σ(H1) is a subgraph of G′ with v1, v2 ∈ V
(
H1 ∩ σ(H1)

)
. Since H ′

1 is also a
subgraph of G′ with v1, v2 ∈ V (H ′

1) it follows that

|E(H ′
1)| = 2|V (H ′

1)| − 4.

Similarly, we have
|E(H ′

2)| = 2|V (H ′
2)| − 4.
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So, both H ′
1 and H ′

2 have an even number of edges. Moreover, both of these graphs are
invariant under σ, which says that neither E(H ′

1) nor E(H ′
2) contains the edge e of G

that is fixed by σ. Note that H ′
1 ∩ H ′

2 is a subgraph of G with v1, σ(v1) ∈ V (H ′
1 ∩ H ′

2),
and hence satisfies the count

|E(H ′
1 ∩ H ′

2)| 6 2|V (H ′
1 ∩ H ′

2)| − 3,

because G satisfies the Laman conditions. Since H ′
1 ∩ H ′

2 is also invariant under σ and
E(H ′

1 ∩H ′
2) does not contain the edge e, |E(H ′

1 ∩H ′
2)| is an even number, and hence the

above upper bound for |E(H ′
1 ∩ H ′

2)| can be lowered to

|E(H ′
1 ∩ H ′

2)| 6 2|V (H ′
1 ∩ H ′

2)| − 4.

Thus, H ′ = H ′
1 ∪ H ′

2 satisfies

|E(H ′)| = |E(H ′
1)| + |E(H ′

2)| − |E(H ′
1 ∩ H ′

2)|

> 2|V (H ′
1)| − 4 + 2|V (H ′

2)| − 4 − (2|V (H ′
1 ∩ H ′

2)| − 4)

= 2|V (H ′)| − 4.

This is a contradiction, because H ′ is a subgraph of G′ with vi, σ(vi) ∈ V (H ′) for all
i = 1, 2, 3.

So, for {i, j} = {1, 2} or {i, j} = {1, 3}, say wlog {i, j} = {1, 2}, we have that every
subgraph H of G′ with vi, vj, σ(vi), σ(vj) ∈ V (H) satisfies |E(H)| 6 2|V (H)| − 5.

Thus, G̃ = G′ +
{
{v1, v2}, {σ(v1), σ(v2)}

}
satisfies the Laman conditions and if we

define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs and

Φ̃ : Cs → Aut(G̃) is a homomorphism. Since we also have beΦ(s) = 1, it follows from the
induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) double edge split of G̃

with V (G) = V (G̃) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
Case B.2.1b: By Lemma 3.2 (i), there exists {i, j} ⊆ {1, 2, 3} such that for every

subgraph H of G′ = G − {v, σ(v)} with vi, vj ∈ V (H) we have |E(H)| 6 2|V (H)| − 4. If
wlog {i, j} = {1, 2} is the only pair in {1, 2, 3} with this property, then, by Lemma 3.2

(ii), G̃ = G′ +
{
{v1, v2}, {σ(v1), σ(v2)}

}
satisfies the Laman conditions and we obtain a

sequence
(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

with the desired properties in the same way as in Case B.2.1a.

the electronic journal of combinatorics 17 (2010), #R154 34



So, suppose there exist two distinct pairs {i, j} and {q, r} in {1, 2, 3} such that every
subgraph H of G′ with vi, vj ∈ V (H) or vq, vr ∈ V (H) satisfies |E(H)| 6 2|V (H)| − 4.
If one of the pairs {i, j} or {q, r} is the pair {2, 3}, then the proof of Case B.2.1a also
applies.

So, suppose that every subgraph H of G′ with v1, v2 ∈ V (H) or v1, v3 ∈ V (H) satisfies
|E(H)| 6 2|V (H)| − 4 and that there exists a subgraph A of G′ with v2, v3 ∈ V (A)
and |E(A)| = 2|V (A)| − 3. Then every subgraph H of G′ with v1, σ(v2) ∈ V (H) or
v1, σ(v3) ∈ V (H) also satisfies |E(H)| 6 2|V (H)| − 4, because σ(v1) = v1 and G′ is
invariant under σ.

Suppose there exist subgraphs H1 and H2 of G′ with v1, v2, σ(v2) ∈ V (H1) and
v1, v3, σ(v3) ∈ V (H2) satisfying |E(Hi)| = 2|V (Hi)| − 4 for i = 1, 2. Then there also exist
σ(H1) ⊆ G′ and σ(H2) ⊆ G′ with v1, v2, σ(v2) ∈ V

(
σ(H1)

)
and v1, v3, σ(v3) ∈ V

(
σ(H2)

)

satisfying |E
(
σ(Hi)

)
| = 2|V

(
σ(Hi)

)
| − 4 for i = 1, 2. Let H ′

i = Hi ∪ σ(Hi) for i = 1, 2.
Then

|E(H ′
1)| = |E(H1)| + |E

(
σ(H1)

)
| − |E

(
H1 ∩ σ(H1)

)
|

> 2|V (H1)| − 4 + 2|V
(
σ(H1)

)
| − 4 − (2|V

(
H1 ∩ σ(H1)

)
| − 4)

= 2|V (H ′
1)| − 4,

because H1 ∩ σ(H1) is a subgraph of G′ with v1, v2 ∈ V
(
H1 ∩ σ(H1)

)
. Since H ′

1 is also a
subgraph of G′ with v1, v2 ∈ V (H ′

1) it follows that

|E(H ′
1)| = 2|V (H ′

1)| − 4.

Similarly, we have
|E(H ′

2)| = 2|V (H ′
2)| − 4.

Let H ′ = H ′
1 ∪ H ′

2. If V (H ′
1 ∩ H ′

2) contains at least two vertices, then we can derive a
contradiction in the same way as in Case B.2.1a. So, suppose V (H ′

1 ∩ H ′
2) = {v1}. Then

|E(H ′)| = |E(H ′
1)| + |E(H ′

2)| − |E(H ′
1 ∩ H ′

2)|

= 2|V (H ′
1)| − 4 + 2|V (H ′

2)| − 4 − (2|V (H ′
1 ∩ H ′

2)| − 2)

= 2|V (H ′)| − 6.

Since G′ is invariant under σ, σ(A) is a subgraph of G′ with σ(v2), σ(v3) ∈ V
(
σ(A)

)
and

|E
(
σ(A)

)
| = 2|V

(
σ(A)

)
| − 3.

Suppose |V
(
A ∩ σ(A)

)
| > 2. Then |E

(
A ∩ σ(A)

)
| 6 2|V

(
A ∩ σ(A)

)
| − 3, because

G satisfies the Laman conditions, and hence A′ = A ∪ σ(A) is a subgraph of G′ with
v2, v3, σ(v2), σ(v3) ∈ V (A′) satisfying

|E(A′)| = |E(A)| + |E
(
σ(A)

)
| − |E

(
A ∩ σ(A)

)
|

> 2|V (A)| − 3 + 2|V
(
σ(A)

)
| − 3 − (2|V

(
A ∩ σ(A)

)
| − 3)

= 2|V (A′)| − 3.
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It follows that |E(A′)| = 2|V (A′)| − 3, because A′ ⊆ G. Since H1 ∩A′ is a subgraph of G
with at least two vertices, namely v2, σ(v2) ∈ V (H1 ∩ A′), we have

|E(H1 ∪ A′)| = |E(H1)| + |E(A′)| − |E(H1 ∩ A′)|

> 2|V (H1)| − 4 + 2|V (A′)| − 3 − (2|V (H1 ∩ A′)| − 3)

= 2|V (H1 ∪ A′)| − 4.

This is a contradiction, because H1 ∪ A′ is a subgraph of G′ with vi, σ(vi) ∈ V (H1 ∪ A′)
for all i = 1, 2, 3

So, suppose every subgraph A of G′ with v2, v3 ∈ V (A) and |E(A)| = 2|V (A)| − 3
satisfies |V

(
A ∩ σ(A)

)
| 6 1. Let Amin be a subgraph of G′ that satisfies v2, v3 ∈ V (Amin)

and |E(Amin)| = 2|V (Amin)| − 3 and has the smallest number of edges among all such
subgraphs of G′. Note that v1 /∈ V (Amin), for otherwise v1, v2 ∈ V (Amin), and hence
|E(Amin)| 6 2|V (Amin)| − 4. Also, Amin is connected as we see as follows.

Suppose to the contrary that Amin = A1 ∪A2, where V (A1)∩V (A2) = ∅. Clearly, one
of A1 or A2 has at least two vertices. If wlog |V (A1)| = 1 and |V (A2)| > 2, then

|E(Amin)| = |E(A1)| + |E(A2)| 6 2|V (A1)| − 2 + 2|V (A2)| − 3 = 2|V (Amin)| − 5

and if |V (A1)|, |V (A2)| > 2, then

|E(Amin)| = |E(A1)| + |E(A2)| 6 2|V (A1)| − 3 + 2|V (A2)| − 3 = 2|V (Amin)| − 6.

In both cases, we have a contradiction to the fact that |E(Amin)| = 2|V (Amin)| − 3. So,
Amin is indeed connected.

Now, consider H ′ ∪ Amin. We have

|E(H ′ ∪ Amin)| = |E(H ′)| + |E(Amin)| − |E(H ′ ∩ Amin)|.

Note that v2, v3 ∈ V (H ′ ∩ Amin) so that

|E(H ′ ∩ Amin)| 6 2|V (H ′ ∩ Amin)| − 3.

We claim that |E(H ′ ∩ Amin)| < |E(Amin)|.
Since Amin is connected, there exists a v2 − v3 path P in Amin and P does not contain

an edge incident with the vertex v1, because v1 /∈ V (Amin). Let E(P ) denote the set of
edges of P . Since V (H ′

1 ∩ H ′
2) = {v1}, we have v2 ∈ V (H ′

1), v2 /∈ V (H ′
2), v3 ∈ V (H ′

2),
v3 /∈ V (H ′

1), and every v2 − v3 path in H ′ = H ′
1 ∪ H ′

2 must contain an edge incident with
v1. Thus, E(P ) * E(H ′). So, as claimed, |E(H ′ ∩ Amin)| < |E(Amin)|.

By the minimality of |E(Amin)|, we can conclude that

|E(H ′ ∩ Amin)| 6 2|V (H ′ ∩ Amin)| − 4.

Thus,

|E(H ′ ∪ Amin)| = |E(H ′)| + |E(Amin)| − |E(H ′ ∩ Amin)|

> 2|V (H ′)| − 6 + 2|V (Amin)| − 3 − (2|V (H ′ ∩ Amin)| − 4)

= 2|V (H ′ ∪ Amin)| − 5.
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Now, consider (H ′ ∪ Amin) ∪ σ(Amin). We have

|E
(
(H ′ ∪ Amin) ∪ σ(Amin)

)
| = |E(H ′ ∪ Amin)| + |E

(
σ(Amin)

)
|

−|E
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
|.

Note that σ(v2), σ(v3) ∈ V
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
so that

|E
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| 6 2|V

(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| − 3.

By the definition of Amin, σ(Amin) is a subgraph of G′ with σ(v2), σ(v3) ∈ V
(
σ(Amin)

)
and

|E
(
σ(Amin)

)
| = 2|V

(
σ(Amin)

)
| − 3 and σ(Amin) has the smallest number of edges among

all such subgraphs of G′. We claim that |E
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| < |E

(
σ(Amin)

)
|.

Since Amin is a connected subgraph of G′, so is σ(Amin). Therefore, there exists a
σ(v2) − σ(v3) path P in σ(Amin) and E(P ) does not contain an edge incident with the
vertex v1, because v1 /∈ V

(
σ(Amin)

)
. Also, by assumption, |V

(
Amin∩σ(Amin)

)
| 6 1, which

says that E(P ) does not contain an edge of Amin. Since V (H ′
1 ∩ H ′

2) = {v1}, we have
σ(v2) ∈ V (H ′

1), σ(v2) /∈ V (H ′
2), σ(v3) ∈ V (H ′

2), σ(v3) /∈ V (H ′
1), and every σ(v2) − σ(v3)

path in H ′ ∪ Amin = (H ′
1 ∪ H ′

2) ∪ Amin must contain an edge incident with v1 or an edge
of Amin. Thus, E(P ) * E(H ′ ∪ Amin). So, as claimed, |E

(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| <

|E
(
σ(Amin)

)
|.

By the minimality of |E
(
σ(Amin)

)
|, we can conclude that

|E
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| 6 2|V

(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| − 4.

Thus,

|E
(
(H ′ ∪ Amin) ∪ σ(Amin)

)
| = |E(H ′ ∪ Amin)| + |E

(
σ(Amin)

)
|

−|E
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
|

> 2|V (H ′ ∪ Amin)| − 5 + 2|V
(
σ(Amin)

)
| − 3

−(2|V
(
(H ′ ∪ Amin) ∩ σ(Amin)

)
| − 4)

= 2|V
(
(H ′ ∪ Amin) ∪ σ(Amin)

)
| − 4.

This is a contradiction, since (H ′ ∪ Amin) ∪ σ(Amin) is a subgraph of G′ with vi, σ(vi) ∈
V

(
(H ′ ∪ Amin) ∪ σ(Amin)

)
for all i = 1, 2, 3.

So, for {i, j} = {1, 2} or {i, j} = {1, 3}, say wlog {i, j} = {1, 2}, we have that every
subgraph H of G′ with vi, vj, σ(vi), σ(vj) ∈ V (H) satisfies |E(H)| 6 2|V (H)| − 5. Thus,

G̃ = G′ +
{
{v1, v2}, {σ(v1), σ(v2)}

}
satisfies the Laman conditions and if we define Φ̃ by

Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs and Φ̃ : Cs → Aut(G̃)
is a homomorphism. Since we also have beΦ(s) = 1, it follows from the induction hypothesis
that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) double edge split of G̃

with V (G) = V (G̃) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)
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is a sequence with the desired properties.
Case B.2.2: Suppose there exists exactly one pair {i, j} in {1, 2, 3} such that

σ({vi, vj}) = {vi, vj}. Then we need to consider the following two subcases (see also
Figure 23):

Case B.2.2a: Exactly two of the vertices vi, i = 1, 2, 3, say wlog v1 and v2, are fixed
by σ.

Case B.2.2b: There exists a pair {i, j} ⊆ {1, 2, 3} such that σ(vi) = vj. Wlog we
assume σ(v1) = v2.

v1 = σ(v1)

v2 = σ(v2)

v3 σ(v3)

v σ(v)

(Case B.2.2a)

v1 = σ(v2) v2 = σ(v1)

v3 σ(v3)

v σ(v)

v1 = σ(v2) v2 = σ(v1)

v3 = σ(v3)

v σ(v)

(Case B.2.2b)

Figure 23: If a graph G satisfies the conditions in Theorem 5.1 (ii) and has a vertex v with
NG(v) = {v1, v2, v3} such that σ({vi, vj}) = {vi, vj} for exactly one pair {i, j} ⊆ {1, 2, 3},
then G is a graph of one of the types depicted above.

Case B.2.2a: Since σ({v1, v2}) = {v1, v2}, it follows from Lemma 3.2 (i) and (ii)
that there exists {i, j} ⊆ {1, 2, 3} with {i, j} 6= {1, 2} such that for every subgraph H of
G′ = G − {v, σ(v)} with vi, vj ∈ V (H), we have |E(H)| 6 2|V (H)| − 4.

If for every subgraph H of G′ with v1, v3 ∈ V (H) or v2, v3 ∈ V (H), we have |E(H)| 6

2|V (H)| − 4, then the proof of Case B.2.1a applies.
So, suppose wlog that every subgraph H of G′ with v1, v3 ∈ V (H) satisfies |E(H)| 6

2|V (H)| − 4 and that there exists a subgraph A of G′ with v2, v3 ∈ V (A) and |E(A)| =
2|V (A)| − 3. Since G′ is invariant under σ and vi = σ(vi) for i = 1, 2, every subgraph H
of G′ with v1, σ(v3) ∈ V (H) also satisfies |E(H)| 6 2|V (H)| − 4 and σ(A) is a subgraph
of G′ with v2, σ(v3) ∈ V

(
σ(A)

)
and |E

(
σ(A)

)
| = 2|V

(
σ(A)

)
| − 3.
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We claim that the graph G̃ = G′ +
{
{v1, v3}, {v1, σ(v3)}

}
satisfies the Laman condi-

tions. Clearly,
|E(G̃)| = 2|V (G̃)| − 3.

Suppose there exists a subgraph H of G′ with v1, v3, σ(v3) ∈ V (H) that satisfies |E(H)| =
2|V (H)| − 4. Then σ(H) is also a subgraph of G′ with v1, v3, σ(v3) ∈ V

(
σ(H)

)
that

satisfies |E
(
σ(H)

)
| = 2|V

(
σ(H)

)
| − 4. Let H ′ = H ∪ σ(H). Then

|E(H ′)| = |E(H)| + |E
(
σ(H)

)
| − |E

(
H ∩ σ(H)

)
|

> 2|V (H)| − 4 + 2|V
(
σ(H)

)
| − 4 − (2|V

(
H ∩ σ(H)

)
| − 4)

= 2|V (H ′)| − 4,

because H ∩ σ(H) is a subgraph of G′ with v1, v3 ∈ V
(
H ∩ σ(H)

)
. Since H ′ is also a

subgraph of G′ with v1, v3 ∈ V (H ′) it follows that

|E(H ′)| = 2|V (H ′)| − 4.

So, since H ′ has an even number of edges and is invariant under σ, E(H ′) does not contain
the edge e that is fixed by σ.

Let A′ = A∪ σ(A). Then H ′ ∩A′ is a subgraph of G with v3, σ(v3) ∈ V (H ′ ∩A′), and
hence satisfies the count

|E(H ′ ∩ A′)| 6 2|V (H ′ ∩ A′)| − 3.

Since H ′∩A′ is invariant under σ and E(H ′∩A′) does not contain the edge e, |E(H ′∩A′)|
is an even number. Therefore, the above upper bound for |E(H ′ ∩A′)| can be lowered to

|E(H ′ ∩ A′)| 6 2|V (H ′ ∩ A′)| − 4.

Note that if V
(
A ∩ σ(A)

)
= {v2}, then |E

(
A ∩ σ(A)

)
| = 2|V

(
A ∩ σ(A)

)
| − 2 and if

|V (A) ∩ σ(A)| > 2, then |E
(
A ∩ σ(A)

)
| 6 2|V

(
A ∩ σ(A)

)
| − 3, because A ∩ σ(A) is a

subgraph of G. Therefore,

|E
(
A ∩ σ(A)

)
| 6 2|V

(
A ∩ σ(A)

)
| − 2,

and hence

|E(A′)| = |E(A)| + |E
(
σ(A)

)
| − |E

(
A ∩ σ(A)

)
|

> 2|V (A)| − 3 + 2|V
(
σ(A)

)
| − 3 − (2|V

(
A ∩ σ(A)

)
| − 2)

= 2|V (A′)| − 4,

Thus,

|E(H ′ ∪ A′)| = |E(H ′)| + |E(A′)| − |E(H ′ ∩ A′)|

> 2|V (H ′)| − 4 + 2|V (A′)| − 4 − (2|V (H ′ ∩ A′)| − 4)

= 2|V (H ′ ∪ A′)| − 4.
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This is a contradiction, since H ′ ∪ A′ is a subgraph of G′ with vi, σ(vi) ∈ V (H ′ ∪ A′) for
all i = 1, 2, 3.

Thus, G̃ = G′ +
{
{v1, v3}, {σ(v1), σ(v3)}

}
satisfies the Laman conditions and if we

define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs and

Φ̃ : Cs → Aut(G̃) is a homomorphism. Since we also have beΦ(s) = 1, it follows from the
induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) double edge split of G̃

with V (G) = V (G̃) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
Case B.2.2b: By Lemma 3.2, for {i, j} = {1, 3} or {i, j} = {2, 3}, say wlog {i, j} =

{1, 3}, we have that every subgraph H of G′ = G − {v, σ(v)} with vi, vj ∈ V (H) satisfies
|E(H)| 6 2|V (H)| − 4. Since G′ is invariant under σ, every subgraph H of G′ with
σ(v1), σ(v3) ∈ V (H) also satisfies |E(H)| = 2|V (H)| − 4. Moreover, if there exists a
subgraph H of G′ with v1, v3, σ(v1), σ(v3) ∈ V (H), then vi, σ(vi) ∈ V (H) for all i = 1, 2, 3,
and hence |E(H)| 6 2|V (H)| − 5.

Therefore, G̃ = G′ +
{
{v1, v3}, {σ(v1), σ(v3)}

}
satisfies the Laman conditions and if

we define Φ̃ by Φ̃(x) = Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs and

Φ̃ : Cs → Aut(G̃) is a homomorphism. Since we also have beΦ(s) = 1, it follows from the
induction hypothesis that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) double edge split of G̃

with V (G) = V (G̃) ∪ {v, σ(v)},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties.
Case B.2.3: Finally, suppose G has no vertex of valence two, no vertex of valence

three that is fixed by σ, and every 3-valent vertex v of G (except possibly the two vertices
that are incident with the edge e ∈ E(G) that is fixed by σ) has the property that σ(u) = u
for all u ∈ NG(v).

Let T denote the set of 3-valent vertices of G. Then |T | = 2k, k ∈ N, and, by Lemma
3.1, k > 3. Also, let e = {y, z} be the edge of G that is fixed by σ.

We claim that G has a vertex v with NG(v) = {v1, v2, v3}, σ(vi) = vi for all i = 1, 2, 3,
and valG(vi) = 4 for some i ∈ {1, 2, 3}. Suppose to the contrary that there does not exist
such a vertex v in V (G).
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We suppose first that y, z /∈ T . Then for every v ∈ T , we have σ(u) = u for all
u ∈ NG(v). Let N =

⋃
v∈T NG(v) and suppose |N | = m 6 k + 1. The subgraph 〈T ∪ N〉

of G induced by T ∪ N satisfies |V (〈T ∪ N〉)| = 2k + m and |E(〈T ∪ N〉)| > 6k. Thus,

2|V (〈T ∪ N〉)| − 3 = 2(2k + m) − 3 6 6k − 1 < |E(〈T ∪ N〉)|,

which is a contradiction to the fact that G satisfies the Laman conditions. Therefore,
|N | > k +2. By assumption, every vertex in N has valence at least 5 in G. Since at most
two vertices in N can possibly be incident with e, it follows that at least k vertices in N
must have valence at least 6 in G. Therefore, the average valence in G is at least

2k · 3 + 2 · 5 + k · 6 +
(
|V (G)| − (2k + k + 2)

)
· 4

|V (G)|
= 4 +

2

|V (G)|
,

which contradicts the fact that the average valence in G is 4 − 6
|V (G)|

(see Lemma 3.1).

Suppose now that y or z is a vertex in T . Then σ(y) = z and both y and z are
in T . Let T ′ = T \ {y, z} and let N ′ =

⋃
v∈T ′ NG(v). Suppose |N ′| = m 6 k. The

subgraph 〈T ′ ∪ N ′〉 of G induced by T ′ ∪ N ′ satisfies |V (〈T ′ ∪ N ′〉)| = 2k − 2 + m and
|E(〈T ′ ∪ N ′〉)| = (2k − 2) · 3 = 6k − 6. Thus,

2|V (〈T ′ ∪ N ′〉)| − 3 = 2(2k − 2 + m) − 3 6 6k − 7 < |E(〈T ′ ∪ N ′〉)|,

which is a contradiction to the fact that G satisfies the Laman conditions. Therefore,
|N ′| > k + 1. By assumption, every vertex in N ′ has valence at least 5 in G, and since
y, z /∈ N ′, every vertex in N ′ must even have valence at least 6 in G. Therefore, the
average valence in G is at least

2k · 3 + (k + 1) · 6 +
(
|V (G)| − (2k + k + 1)

)
· 4

|V (G)|
= 4 +

2

|V (G)|
,

which again contradicts the fact that the average valence in G is 4 − 6
|V (G)|

(see Lemma

3.1).
So, as claimed, there exists a vertex v ∈ V (G) with NG(v) = {v1, v2, v3}, σ(vi) = vi

for all i = 1, 2, 3, and valG(vi) = 4 for some i ∈ {1, 2, 3}, say wlog valG(v1) = 4 with
NG(v1) = {v, σ(v), w, σ(w)}.

Let G′ = G−{v1}. We claim that G̃ = G′+
{
{v, w}, {σ(v), σ(w)}

}
satisfies the Laman

conditions. We have

|E(G̃)| = |E(G)| − 2 = 2|V (G)| − 5 = 2|V (G̃)| − 3.

Suppose there exists a subgraph H of G′ with v, w, σ(v), σ(w) ∈ V (G′) that satisfies

|E(H)| > 2|V (H)| − 4. Then the subgraph Ĥ of G with V (Ĥ) = V (H) ∪ {v1} and

E(Ĥ) = E(H) ∪
{
{v1, v}, {v1, σ(v)}, {v1, w}, {v1, σ(w)}

}
satisfies

|E(Ĥ)| = |E(H)| + 4 > 2|V (H)| = 2|V (Ĥ)| − 2,
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v3 = σ(v3)

v1 = σ(v1)

v2 = σ(v2)

σ(w) w

v σ(v)

Figure 24: If a graph G satisfies the conditions in Theorem 5.1 (ii), has no vertex of
valence two, no vertex of valence three that is fixed by σ, and every 3-valent vertex v of
G (except possibly the vertices that are incident with the edge that is fixed by σ) has the
property that σ(u) = u for all u ∈ NG(v), then there exists v ∈ V (G) with NG(v) =
{v1, v2, v3}, σ(vi) = vi for all i = 1, 2, 3, and valG(vi) = 4 for some i ∈ {1, 2, 3}.

contradicting the fact that G satisfies the Laman conditions.
Thus, every subgraph H of G′ with v, w, σ(v), σ(w) ∈ V (H) satisfies the count

|E(H)| 6 2|V (H)| − 5.
Suppose there exists a subgraph H of G′ with v, w ∈ V (H) that satisfies |E(H)| =

2|V (H)| − 3. Then |V (H)| > 3 since {v, w} /∈ E(H). Since G′ is invariant under σ,
σ(H) is also a subgraph of G′ and σ(H) satisfies σ(v), σ(w) ∈ V

(
σ(H)

)
and |E

(
σ(H)

)
| =

2|E
(
σ(H)

)
| − 3. Let H ′ = H ∪ σ(H). Then

|E(H ′)| = |E(H)| + |E
(
σ(H)

)
| − |E

(
H ∩ σ(H)

)
|.

Suppose first that E
(
H ∩ σ(H)

)
= ∅. Then v2, v3 /∈ V (H). Thus, v is an isolated vertex

in H , and hence

|E(H − {v})| = |E(H)| = 2|V (H)| − 3 = 2|V (H − {v})| − 1.

This contradicts the fact that G satisfies the Laman conditions, because |V (H−{v})| > 2.
Suppose now that |V

(
H ∩ σ(H)

)
| > 1. If |V

(
H ∩ σ(H)

)
| = 1, then |E

(
H ∩ σ(H)

)
| =

2|V
(
H∩σ(H)

)
|−2, and if |V

(
H∩σ(H)

)
| > 2, then |E

(
H∩σ(H)

)
| 6 2|V

(
H∩σ(H)

)
|−3,

because H ∩ σ(H) is a subgraph of G. Thus,

|E
(
H ∩ σ(H)

)
| 6 2|V

(
H ∩ σ(H)

)
| − 2,

and hence

|E(H ′)| = |E(H)| + |E
(
σ(H)

)
| − |E

(
H ∩ σ(H)

)
|

> 2|V (H)| − 3 + 2|V
(
σ(H)

)
| − 3 − (2|V

(
H ∩ σ(H)

)
| − 2)

= 2|V (H ′)| − 4.

This is a contradiction, because v, w, σ(v), σ(w) ∈ V (H ′).
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It follows that every subgraph H of G′ with v, w ∈ V (H) or σ(v), σ(w) ∈ V (H)
satisfies |E(H)| 6 2|V (H)| − 4.

Therefore, as claimed, G̃ satisfies the Laman conditions and if we define Φ̃ by Φ̃(x) =

Φ(x)|V ( eG) for all x ∈ Cs, then Φ̃(x) ∈ Aut(G̃) for all x ∈ Cs and Φ̃ : Cs → Aut(G̃) is a
homomorphism. Since we also have beΦ(s) = 1, it follows from the induction hypothesis
that there exists a sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G̃, Φ̃)

satisfying the conditions in Theorem 5.1 (iii). Since G is a (Cs, Φ̃) X-replacement of G̃

with V (G) = V (G̃) ∪ {v1},

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (G̃, Φ̃), (G, Φ)

is a sequence with the desired properties. �

Lemma 5.4 Let G be a graph with |V (G)| > 2, Cs = {Id, s} be a symmetry group
in dimension 2, and Φ : Cs → Aut(G) be a homomorphism. If there exists a (Cs, Φ)
construction sequence for G, then G has a proper (Cs, Φ) 3Tree2 ⊥ partition or a proper
(Cs, Φ) 3Tree2 ‖ partition.

Proof. We proceed by induction on |V (G)|. Let V (K2) = {v1, v2} and let Φ : Cs → K2

be the homomorphism defined by Φ(s) = (v1 v2). Then K2 has the proper (Cs, Φ) 3Tree2
⊥ partition {E(T0), E(T1), E(T2)}, where T0 = 〈{v1, v2}〉, T1 = 〈{v1}〉 and T2 = 〈{v2}〉.
Let Ψ : Cs → K2 be the homomorphism defined by Ψ(s) = id. Then K2 has the proper
(Cs, Ψ) 3Tree2 ‖ partition {E(T0), E(T1), E(T2)}, where T0 = 〈{v1}〉, T1 = 〈{v1, v2}〉 and
T2 = 〈{v2}〉. This proves the base case.

Assume, then, that the result holds for all graphs with n or fewer than n vertices,
where n > 2.

Let G be a graph with |V (G)| = n + 1 and let Φ : Cs → Aut(G) be a homomorphism
such that there exists a (Cs, Φ) construction sequence

(K2, Φ0) = (G0, Φ0), (G1, Φ1), . . . , (Gk, Φk) = (G, Φ)

satisfying the conditions in Theorem 5.1 (iii). By Remark 5.1, G satisfies the Laman
conditions, and hence, by Remark 2.2, any 3Tree2 partition of G must be proper. There-
fore, it suffices to show that G has some (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition. In the
following, we denote Φ(s) by σ.

By the induction hypothesis, Gk−1 has a (Cs, Φk−1) ⊥ or (Cs, Φk−1) ‖ 3Tree2 partition{
E

(
T

(k−1)
0

)
, E

(
T

(k−1)
1

)
, E

(
T

(k−1)
2

)}
.

Case 1: Suppose G is a (Cs, Φk−1) single vertex addition by v of Gk−1 with NG(v) =

{v0, σ(v0)}. Note that v0 is a vertex of T
(k−1)
1 or T

(k−1)
2 . Wlog, we assume v0 ∈ V

(
T

(k−1)
1

)
.

Then σ(v0) ∈ V
(
T

(k−1)
2

)
. So, if we define

T
(k)
0 = T

(k−1)
0 ,
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T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v0}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{v, σ(v0)}

}
,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

v0 σ(v0) v0 σ(v0)

v

Figure 25: Construction of a (Cs, Φ) ⊥ or (Cs, Φk−1) ‖ 3Tree2 partition of G in the case
where G is a (Cs, Φk−1) single vertex addition of Gk−1.

Case 2: Suppose G is a (Cs, Φk−1) single edge split on {v1, v2}; v of Gk−1 with NG(v) =
{v1, v2, v3}. Then Φk−1(s)(v1) = σ(v1) = v2 and Φk−1(s)(v3) = σ(v3) = v3. By Remark

5.4,
{
E

(
T

(k−1)
0

)
, E

(
T

(k−1)
1

)
, E

(
T

(k−1)
2

)}
must be a (Cs, Φk−1) ⊥ 3Tree2 partition of Gk−1.

Clearly, {v1, v2} ∈ E
(
T

(k−1)
0

)
and, by Remark 5.2, v3 /∈ V

(
T

(k−1)
0

)
. Therefore, v3 ∈

V
(
T

(k−1)
1

)
. So, if we define T

(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v}

E
(
T

(k)
0

)
=

(
E

(
T

(k−1)
0

)
\ {v1, v2}

)
∪

{
{v, v1}, {v, v2}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v3}

}
,

and
T

(k)
2 = T

(k−1)
2 ,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ‖ 3Tree2 partition of G.

Case 3: Suppose G is a (Cs, Φk−1) double vertex addition by (v, w) of Gk−1 with
NG(v) = {v1, v2}. Since Φk−1(s) = σ|V (Gk−1), we have NG(w) = {σ(v1), σ(v2)}.
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v1 v2 = σ(v1)

v3 = σ(v3)

v1 v2 = σ(v1)

v3 = σ(v3)

v

Figure 26: Construction of a (Cs, Φ) ‖ 3Tree2 partition of G in the case where G is
a (Cs, Φk−1) single edge split of Gk−1. The edges in black color represent edges of the
invariant trees.

Case 3.1: If v1, v2 /∈ V
(
T

(k−1)
0

)
, then v1, v2, σ(v1), σ(v2) ∈ V

(
T

(k−1)
i

)
for i = 1, 2. In

this case, we define
T

(k)
0 = T

(k−1)
0 ,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v, w}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v1}, {w, σ(v2)}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v, w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{v, v2}, {w, σ(v1)}

}
.

Then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

v2 σ(v2)

v1 σ(v1)

v2 σ(v2)

v1 σ(v1)

v w

Figure 27: Construction of a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G in the case where

G is a (Cs, Φk−1) double vertex addition of Gk−1 and v1, v2 /∈ V
(
T

(k−1)
0

)
.

Case 3.2: If v1 ∈ V
(
T

(k−1)
0

)
and v2 /∈ V

(
T

(k−1)
0

)
, then σ(v1) ∈ V

(
T

(k−1)
0

)
and

v2, σ(v2) ∈ V
(
T

(k−1)
i

)
for i = 1, 2. So, if we define T

(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
∪

{
{v, v1}, {w, σ(v1)}

}
,
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T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v2}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{w, σ(v2)}

}
,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

Case 3.3: If both v1 and v2 are vertices of T
(k−1)
0 and vi 6= σ(vi) for i = 1, 2, then

wlog v2 ∈ V
(
T

(k−1)
1

)
, and hence σ(v2) ∈ V

(
T

(k−1)
2

)
, so that the previous construction in

Case 3.2 can be used to obtain a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

Case 3.4: If both v1 and v2 are vertices of T
(k−1)
0 and vi = σ(vi) for some i ∈ {1, 2},

say wlog v1 = σ(v1), then, by Remarks 5.2 and 5.3,
{
E

(
T

(k−1)
0

)
, E

(
T

(k−1)
1

)
, E

(
T

(k−1)
2

)}
is

a (Cs, Φk−1) ‖ 3Tree2 partition of G and v2 6= σ(v2). Suppose wlog that v2 ∈ V
(
T

(k−1)
1

)
.

Then σ(v2) ∈ V
(
T

(k−1)
2

)
and the construction in Case 3.2 can again be used to obtain a

(Cs, Φ) ‖ 3Tree2 partition of G.

v2 σ(v2)

v1 σ(v1)

v2 σ(v2)

v1 σ(v1)

v w

Figure 28: Construction of a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G in the case where
G is a (Cs, Φk−1) double vertex addition of Gk−1 and at least one of v1 or v2 is a vertex

of T
(k−1)
0 . The edges in black color represent edges of the invariant tree.

Case 4: Suppose G is a (Cs, Φk−1) double edge split on ({v1, v2}, {σ(v1), σ(v2)}); (v, w)
of Gk−1 with E(Gk) =

(
E(Gk−1) \

{
{v1, v2}, {σ(v1), σ(v2)}

})
∪

{
{v, vi}| i = 1, 2, 3

}
∪{

{w, σ(vi)}| i = 1, 2, 3
}
.

Case 4.1: Suppose {v1, v2} ∈ E
(
T

(k−1)
0

)
. Then we also have {σ(v1), σ(v2)} ∈

E
(
T

(k−1)
0

)
.

Case 4.1a: If v3 /∈ V
(
T

(k−1)
0

)
, then v3, σ(v3) ∈ V

(
T

(k−1)
i

)
for i = 1, 2. In this case we

define T
(k)
0 to be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
=

(
E

(
T

(k−1)
0

)
\

{
{v1, v2}, {σ(v1), σ(v2)}

})

∪
{
{v, v1}, {v, v2}, {w, σ(v1)}, {w, σ(v2)}

}
,
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T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v3}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{w, σ(v3)}

}
.

Then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v w

Figure 29: Construction of a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G in the case where

G is a (Cs, Φk−1) double edge split of Gk−1, {v1, v2}, {σ(v1), σ(v2)} ∈ E
(
T

(k−1)
0

)
and either

v3 /∈ V
(
T

(k−1)
0

)
or v3 ∈ V

(
T

(k−1)
0

)
and σ(v3) 6= v3. The edges in black color represent

edges of the invariant trees.

Case 4.1b: If {v1, v2}, {σ(v1), σ(v2)} ∈ E
(
T

(k−1)
0

)
and v3 ∈ V

(
T

(k−1)
0

)
with σ(v3) 6=

v3, then wlog we have v3 ∈ V
(
T

(k−1)
1

)
, and hence σ(v3) ∈ V

(
T

(k−1)
2

)
, so that the previous

construction in Case 4.1a can again be used to obtain a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2
partition of G.

Case 4.1c: Suppose {v1, v2}, {σ(v1), σ(v2)} ∈ E
(
T

(k−1)
0

)
and v3 ∈ V

(
T

(k−1)
0

)
with

σ(v3) = v3. Then, by Remarks 5.2 and 5.3,
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ‖

3Tree2 partition of G and σ(vi) 6= vi for i = 1, 2. Since T
(k−1)
0 is connected, we have that

for i = 1 or i = 2, there exists a v3 − vi path in T
(k−1)
0 that does not contain the edge

{v1, v2}, say wlog P = v3, e1, . . . , em, v2 is a v3 − v2 path in T
(k−1)
0 not containing the edge

{v1, v2}. Then σ(P ) is a v3 − σ(v2) path in T
(k−1)
0 not containing the edge {σ(v1), σ(v2)}

and P and σ(P ) do not share a common vertex other than v3, for otherwise there exists

a cycle in T
(k−1)
0 . Assume wlog that v2 ∈ V

(
T

(k)
1

)
, and hence σ(v2) ∈ V

(
T

(k)
2

)
. Then we

define T
(k)
0 to be the graph with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
=

(
E

(
T

(k−1)
0

)
\

{
{v1, v2}, {σ(v1), σ(v2)}

})

∪
{
{v, v1}, {v, v3}, {w, σ(v1)}, {w, v3}

}
,
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T
(k)
1 to be the graph with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v2}

}
,

and T
(k)
2 to be the graph with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{w, σ(v2)}

}
.

v1 σ(v1)

v2 σ(v2)

v3 = σ(v3)

v1 σ(v1)

v2 σ(v2)

v3 = σ(v3)

v w

Figure 30: Construction of a (Cs, Φ) ‖ 3Tree2 partition of G in the case where G is a

(Cs, Φk−1) double edge split of Gk−1, {v1, v2}, {σ(v1), σ(v2)} ∈ E
(
T

(k−1)
0

)
, v3 ∈ V

(
T

(k−1)
0

)

and σ(v3) = v3. The edges in black color represent edges of the invariant trees.

Clearly, the graphs T
(k)
1 and T

(k)
2 are trees and T

(k)
0 is connected. If there exists a cycle

C in T
(k)
0 , then C must contain at least one of the edges {v, v3} or {w, v3}, for otherwise

C does not contain any edge incident with v or w and there exists a cycle in T
(k−1)
0 .

Suppose first that C contains only one of the two edges {v, v3} and {w, v3}, say wlog
C contains {v, v3}, but not {w, v3}. Then C contains the edge {v, v1}, but not {w, σ(v1)}.

Thus, there exists a v3−v1 path P ′ in T
(k−1)
0 that does not contain the edge {v1, v2}. This

is a contradiction, because v3, e1, . . . , em, v2, {v1, v2}, v1 is also a v3 − v1 path in T
(k−1)
0

distinct from P ′.
So, suppose C contains both edges {v, v3} and {w, v3}. Then C also con-

tains the edges {v, v1} and {w, σ(v1)}. Thus, there exists a v1 − σ(v1) path

P ′′ in T
(k−1)
0 that does not contain the edges {v1, v2} and {σ(v1), σ(v2)}. But

v1, {v1, v2}, v2, em, . . . , e1, v3, σ(e1), . . . , σ(em), σ(v2), {σ(v1), σ(v2)}, σ(v1) is also a v1 −

σ(v1) path in T
(k−1)
0 distinct from P ′′.

Thus, T
(k)
0 is a tree and

{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ‖ 3Tree2 partition of

G.
Case 4.2: Suppose {v1, v2} /∈ E

(
T

(k−1)
0

)
, say wlog {v1, v2} ∈ E

(
T

(k−1)
1

)
. Then we

also have {σ(v1), σ(v2)} ∈ E
(
T

(k−1)
2

)
.
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Case 4.2a: If v3 ∈ V
(
T

(k−1)
0

)
, then σ(v3) ∈ V

(
T

(k−1)
0

)
. In this case we define T

(k)
0 to

be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
∪ {v, w}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
∪

{
{v, v3}, {w, σ(v3)}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
=

(
E

(
T

(k−1)
1

)
\

{
{v1, v2}

})
∪

{
{v, v1}, {v, v2}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {w}

E
(
T

(k)
2

)
=

(
E

(
T

(k−1)
2

)
\

{
{σ(v1), σ(v2)}

})

∪
{
{w, σ(v1)}, {w, σ(v2)}

}
.

Then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v w

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v1 σ(v1)

v2 σ(v2)

v3 σ(v3)

v w

Figure 31: Construction of a (Cs, Φ) ‖ 3Tree2 partition of G in the case where G is a

(Cs, Φk−1) double edge split of Gk−1, {v1, v2} ∈ E
(
T

(k−1)
1

)
and {σ(v1), σ(v2)} ∈ E

(
T

(k−1)
2

)
.

The edges in black color represent edges of the invariant tree.

Case 4.2b: If v3 /∈ V
(
T

(k−1)
0

)
, then v3 ∈ V

(
T

(k−1)
i

)
for i = 1, 2, and we define

T
(k)
0 = T

(k−1)
0 ,
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T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v, w}

E
(
T

(k)
1

)
=

(
E

(
T

(k−1)
1

)
\

{
{v1, v2}

})

∪
{
{v, v1}, {v, v2}, {w, σ(v3)}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v, w}

E
(
T

(k)
2

)
=

(
E

(
T

(k−1)
2

)
\

{
{σ(v1), σ(v2)}

})

∪
{
{w, σ(v1)}, {w, σ(v2)}, {v, v3}

}
.

Then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is again a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

Case 5: Finally, suppose that G is a (Cs, Φk−1) X-replacement by v of Gk−1

with E(G) =
(
E(Gk−1) \

{
{v1, v2}, {v3, v4}

})
∪

{
{v, vi}| i ∈ {1, 2, 3, 4}

}
. Then

Φk−1(s)({v1, v2}) = {v3, v4}. Wlog we assume Φk−1(s)(v1) = σ(v1) = v3 and
Φk−1(s)(v2) = σ(v2) = v4.

Case 5.1: Suppose {v1, v2} /∈ E
(
T

(k−1)
0

)
, say wlog {v1, v2} ∈ E

(
T

(k−1)
1

)
. Then

{v3, v4} ∈ E
(
T

(k−1)
2

)
. So, if we define

T
(k)
0 = T

(k−1)
0 ,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v}

E
(
T

(k)
1

)
=

(
E

(
T

(k−1)
1

)
\

{
{v1, v2}

})
∪

{
{v, v1}, {v, v2}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v}

E
(
T

(k)
2

)
=

(
E

(
T

(k−1)
2

)
\

{
{v3, v4}

})
∪

{
{v, v3}, {v, v4}

}
,

then
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of G.

Case 5.2: Suppose {v1, v2}, {v3, v4} ∈ E
(
T

(k−1)
0

)
. Since T

(k−1)
0 is a tree and

Φk−1(s)
(
T

(k−1)
0

)
= T

(k−1)
0 , there either exists a v1 − v3 path that does not contain the

vertices v2 and v4 or a v2 − v4 path that does not contain the vertices v1 and v3 in T
(k−1)
0 .

Suppose wlog that P is a v2 − v4 path in T
(k−1)
0 that does not contain the vertices v1 and

v3. Wlog we may also assume that v2 ∈ V
(
T

(k−1)
2

)
, and hence v4 ∈ V

(
T

(k−1)
1

)
. If all

the vertices and edges of P , as well as the edges {v1, v2} and {v3, v4}, are deleted from

T
(k−1)
0 , then the resulting subgraph of T

(k−1)
0 has at least two components, namely the

components A with v1 ∈ V (A) and σ(A) = B with v3 ∈ V (B).
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v1 v3 = σ(v1)

v4 = σ(v2) v2

v1 v3 = σ(v1)

v4 = σ(v2) v2

v

Figure 32: Construction of a (Cs, Φ) ‖ 3Tree2 partition of G in the case where G is a

(Cs, Φk−1) X-replacement of Gk−1, {v1, v2} ∈ E
(
T

(k−1)
1

)
and {v3, v4} ∈ E

(
T

(k−1)
2

)
.

Case 5.2.1: Suppose V (A) = {v1}. Then we also have V (B) = {v3}.

Case 5.2.1a: If v1 ∈ V
(
T

(k−1)
1

)
, then v3 ∈ V

(
T

(k−1)
2

)
. In this case we define T

(k)
0 to

be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
\ {v1, v3}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
\

{
{v1, v2}, {v3, v4}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v, v3}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v3}, {v, v4}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v, v1}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{v, v1}, {v, v2}

}
.

Case 5.2.1b: If v1 ∈ V
(
T

(k−1)
2

)
, then v3 ∈ V

(
T

(k−1)
1

)
. In this case we define T

(k)
0 to

be the tree with

V
(
T

(k)
0

)
= V

(
T

(k−1)
0

)
\ {v1, v3}

E
(
T

(k)
0

)
= E

(
T

(k−1)
0

)
\

{
{v1, v2}, {v3, v4}

}
,

T
(k)
1 to be the tree with

V
(
T

(k)
1

)
= V

(
T

(k−1)
1

)
∪ {v, v1}

E
(
T

(k)
1

)
= E

(
T

(k−1)
1

)
∪

{
{v, v1}, {v, v4}

}
,

and T
(k)
2 to be the tree with

V
(
T

(k)
2

)
= V

(
T

(k−1)
2

)
∪ {v, v3}

E
(
T

(k)
2

)
= E

(
T

(k−1)
2

)
∪

{
{v, v2}, {v, v3}

}
.
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v1 v3 = σ(v1)

v4 = σ(v2) v2

v1 v3 = σ(v1)

v4 = σ(v2) v2

v

v1 v3 = σ(v1)

v4 = σ(v2) v2

v1 v3 = σ(v1)

v4 = σ(v2) v2

v

Figure 33: Construction of a (Cs, Φ) ‖ 3Tree2 partition of G in the case where G is a

(Cs, Φk−1) X-replacement of Gk−1 and {v1, v2}, {v3, v4} ∈ E
(
T

(k−1)
0

)
. The edges in black

color represent edges of the invariant tree.

In both cases,
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ) ‖ 3Tree2 partition of

G.
Case 5.2.2: Finally, suppose |V (A)| = |V (B)| = m > 2. Then we first carry out

the same construction as in Case 5.2.1. Subsequently, we delete all the edges of A and B
from E

(
T

(k)
0

)
, one edge from both A and B at a time, and add them to either E

(
T

(k)
1

)
or

E
(
T

(k)
2

)
in the following way.

Let Ã be the subgraph of A that only contains the single vertex v1 and let B̃ be the
subgraph of B that only contains the single vertex σ(v1) = v3. Let {v1, z} be an edge of

A. Then {v3, σ(z)} is an edge of B. By the construction in Case 5.2.1, v1, v3 ∈ V
(
T

(k)
i

)

for i = 1, 2. Also, σ(z) 6= z and z, σ(z) ∈ V
(
T

(k)
0

)
, which says that either z ∈ V

(
T

(k)
1

)

and σ(z) ∈ V
(
T

(k)
2

)
or z ∈ V

(
T

(k)
2

)
and σ(z) ∈ V

(
T

(k)
1

)
.

We now delete the edges {v1, z} and {v3, σ(z)} from E
(
T

(k)
0

)
and if z ∈ V

(
T

(k)
1

)
, then

we add {v1, z} to E
(
T

(k)
2

)
and {v3, σ(z)} to E

(
T

(k)
1

)
, and if z ∈ V

(
T

(k)
2

)
, then we add

{v1, z} to E
(
T

(k)
1

)
and {v3, σ(z)} to E

(
T

(k)
2

)
. Subsequently, we add the vertex z to V (Ã),

the vertex σ(z) to V (B̃), the edge {v1, z} to E(Ã), and the edge {v3, σ(z)} to E(B̃). If we

then have A = Ã, then B = B̃ and
{
E

(
T

(k)
0

)
, E

(
T

(k)
1

)
, E

(
T

(k)
2

)}
is a (Cs, Φ) ⊥ or (Cs, Φ)

‖ 3Tree2 partition of G.

Otherwise, there exists an edge {x, y} in E(A) \E(Ã) with x ∈ V (Ã) and y ∈ V (A) \

V (Ã), and hence there also exists the edge {σ(x), σ(y)} in E(B)\E(B̃) with σ(x) ∈ V (B̃)

and σ(y) ∈ V (B) \ V (B̃). Note that since x ∈ V (Ã) and σ(x) ∈ V (B̃), we have x, σ(x) ∈

V
(
T

(k)
i

)
for i = 1, 2. So, we can repeat the above construction step for the edges {x, y}

and {σ(x), σ(y)}. This process can be continued until A = Ã and B = B̃. �

Lemma 5.5 Let G be a graph with |V (G)| > 2, Cs = {Id, s} be a symmetry group in
dimension 2, and Φ : Cs → Aut(G) be a homomorphism. If G has a proper (Cs, Φ)
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3Tree2 ⊥ partition or a proper (Cs, Φ) 3Tree2 ‖ partition, then R(G,Cs,Φ) 6= ∅ and G is
(Cs, Φ)-generically isostatic.

Proof. Case 1: Suppose G has a proper (Cs, Φ) ‖ 3Tree2 partition {E(T0), E(T1), E(T2)}.
In the following, we again denote Φ(s) by σ. There exists an edge e = {w, z} ∈ E(T1)
such that σ(w) = w and σ(z) = z and, by Remark 5.3, valT1

(w) = 1, w ∈ E(T0), and no
other vertex of G that is fixed by σ is a vertex of T0.

Since G has a 3Tree2 partition, G satisfies the count |E(G)| = 2|V (G)|−3. Therefore,
by Theorems 2.1 and 2.6, it suffices to find some framework (G, p) ∈ R(G,Cs,Φ) that is
independent.

Let Vi be the set of vertices of G that are not in V (Ti) for i = 0, 1, 2 and let (G, p, q)
be the frame with p : V (G) → R2 and q : E(G) → R2 defined by

p(v) =






(0, 1) if v ∈ V0

(−1, 0) if v ∈ V1

(1, 0) if v ∈ V2 \ {v}
(0, 0) if v = w

q(b) =






(1, 0) if b ∈ EV1,{w} or b ∈ EV2\{w},{w}

(2, 0) if b ∈ EV1,V2\{w}

(−1, 1) if b ∈ E(T1) \
{
{w, z}

}

(1, 1) if b ∈ E(T2)
(0, 1) if b = {w, z}

,

where for disjoint sets X, Y ∈ V (G), EX,Y denotes the set of edges of G incident with a
vertex in X and a vertex in Y .

w
(−1, 0) (1, 0)

(0, 0)

(0, 1)

T1T2

V1 V2 \ {w}

V0

T0

Figure 34: The frame (G, p, q) in Case 1 of the proof of Lemma 5.5.

We claim that the generalized rigidity matrix R(G, p, q) has linearly independent rows.
To see this, we first rearrange the columns of R(G, p, q) in such a way that we obtain the
matrix R′(G, p, q) which has the (2i− 1)st column of R(G, p, q) in its ith column and the
(2i)th column of R(G, p, q) in its (|V (G)| + i)th column for i = 1, 2, . . . , |V (G)|. Let Fb

denote the row vector of R′(G, p, q) that corresponds to the edge b ∈ E(G). We then
rearrange the rows of R′(G, p, q) in such a way that we obtain the matrix R′′(G, p, q)
which has the vectors Fb with b ∈ E(T0) in the rows 1, 2, . . . , |E(T0)|, the vectors Fb with
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b ∈ E(T1) \
{
{w, z}

}
in the following |E(T1)| − 1 rows, the vector F{w,z} in the next row,

and the vectors Fb with b ∈ E(T2) in the last |E(T2)| rows. So R′′(G, p, q) is of the form



1 −1
... 0

2 −2
−1 1 1 −1

...
...

−1 1 1 −1
0 1 −1

1 −1 1 −1
...

...
1 −1 1 −1




.

Clearly, R(G, p, q) has a row dependency if and only if R′′(G, p, q) does. Suppose
R′′(G, p, q) has a row dependency of the form

∑

b∈E(G)

αbFb = 0,

where αb 6= 0 for some b ∈ E(T0). Since T0 is a tree, it follows that
∑

b∈E(T0)

αbFb 6= 0.

Thus, there exists a vertex vs ∈ V (T0), s ∈ {1, 2, . . . , |V (G)|}, such that
∑

b∈E(T0)

αb(Fb)s = C 6= 0.

Since vs ∈ V (T0), vs belongs to either T1 or T2.
Suppose first that vs ∈ V (T2) and vs /∈ V (T1). Then (Fb)s = 0 and (Fb)|V (G)|+s = 0

for all b ∈ E(T1) and we have
∑

b∈E(T2)

αb(Fb)s = −C.

This says that
∑

b∈E(T2)

αb(Fb)|V (G)|+s =
∑

b∈E(G)

αb(Fb)|V (G)|+s = −C 6= 0,

a contradiction.
So, suppose that vs ∈ V (T1) and vs /∈ V (T2). Then (Fb)s = 0 and (Fb)|V (G)|+s = 0 for

all b ∈ E(T2) and we have ∑

b∈E(T1)

αb(Fb)s = −C.
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Note that vs 6= w, because valT1
(w) = 1 and (F{w,z})s = 0 for all s = 1, 2, . . . , |V (G)|.

Also, vs 6= z, since z /∈ V (T0). Therefore,
∑

b∈E(T1)

αb(Fb)|V (G)|+s =
∑

b∈E(G)

αb(Fb)|V (G)|+s = C 6= 0,

which is again a contradiction. So, if
∑

b∈E(G) αbFb = 0 is a row dependency of R′′(G, p, q),

then αb = 0 for all b ∈ E(T0).

It is now only left to show that the matrix R̃(G, p, q) which is obtained from R′′(G, p, q)
by deleting those rows of R′′(G, p, q) that correspond to the edges of T0 has linearly

independent rows. Clearly, R̃(G, p, q) has linearly independent rows if and only if the

matrix R̂(G, p, q) has linearly independent rows, where R̂(G, p, q) is obtained by deleting

the row F{w,z} from R̃(G, p, q). In order to show that R̂(G, p, q) has linearly independent

rows we may multiply R̂(G, p, q) by appropriate matrices of basis transformation and then
use arguments analogous to above. So, as claimed, the frame (G, p, q) is independent.

Now, if (G, p) is not a framework, then we need to symmetrically pull apart those
joints of (G, p, q) that have the same location in R2 and whose vertices are adjacent. So
suppose |V1| > 2. Then it follows that |V1| = |V2 \ {w}| > 2, because σ(V1) = V2 \ {w}.
Since {E(T0), E(T1), E(T2)} is proper, one of 〈V1〉 ∩ Ti, i = 0, 2, is not connected.

Suppose first that 〈V1〉∩T0 is not connected. Then 〈V2\{w}〉∩T0 is also not connected.

w(−1, 0) (1, 0)(0, 0)

(0, 1)

T1T2

V1 \ A (V2 \ {w}) \ σ(A)

A σ(A)

V0

T0

Figure 35: The frame (G, pt, qt) in the case where 〈V1〉 ∩ T0 is not connected.

Let A be the set of vertices in one of the components of 〈V1〉 ∩ T0 and σ(A) be the set
of vertices in the corresponding component of 〈V2 \ {w}〉 ∩ T0. For t ∈ R, we define
pt : V (G) → R2 and qt : E(G) → R2 by

pt(v) =






(−1 − t,−t) if v ∈ A
(1 + t,−t) if v ∈ σ(A)
p(v) otherwise

qt(b) =






(1 + t, t) if b ∈ EA,{w}

(2 + t, t) if b ∈ EA,(V2\{w})\σ(A)

(1 + t,−t) if b ∈ Eσ(A),{w}

(2 + t,−t) if b ∈ Eσ(A),V1\A

q(b) otherwise

.
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Suppose now that 〈V1〉∩T2 is not connected. Then 〈V2\{w}〉∩T1 is also not connected.
Let B and σ(B) be the vertex sets of components of 〈V1〉 ∩ T2 and 〈V2 \ {w}〉 ∩ T1,
respectively. In this case, for t ∈ R, we define pt : V (G) → R2 and qt : E(G) → R2 by

w(−1, 0) (1, 0)(0, 0)

(0, 1)

V1 \ B (V2 \ {w}) \ σ(B)

V0

T0

T2 T1

B σ(B)

Figure 36: The frame (G, pt, qt) in the case where 〈V1〉 ∩ T2 is not connected.

pt(v) =





(−1 − t, 0) if v ∈ B
(1 + t, 0) if v ∈ σ(B)
p(v) otherwise

qt(b) =






(1 + t, 1) if b ∈ EB,V0

(−1 − t, 1) if b ∈ Eσ(B),V0

q(b) otherwise
.

In both cases, we have (G, pt, qt) = (G, p, q) if t = 0. Therefore, by Lemma 3.3, there
exists a t0 ∈ R, t0 6= 0, such that the frame (G, pt0, qt0) is independent. This process can
be continued until we obtain an independent frame (G, p̂, q̂) which has the property that
if p̂(u) = p̂(v) for some {u, v} ∈ E(G), then u, v ∈ V0.

Suppose (G, p̂) is still not a framework. Then |V0| > 2 and since {E(T0), E(T1), E(T2)}
is proper, 〈V0〉 ∩ T1 or 〈V0〉 ∩ T2 is not connected. In fact, since σ(〈V0〉 ∩ T1) = 〈V0〉 ∩ T2,
both 〈V0〉 ∩ T1 and 〈V0〉 ∩ T2 are not connected. Let A be the set of vertices in one of the
components of 〈V0〉 ∩ T2 and σ(A) be the set of vertices in the corresponding component
of 〈V0〉 ∩ T1. We denote A ∩ σ(A) by D and A ∪ σ(A) by F . Clearly, ED,V0\F = ∅,
EA\D,V0\F ⊆ E(T1) and Eσ(A)\D,V0\F ⊆ E(T2). Further, we have EA\D,σ(A)\D = ∅ as the
following argument shows.

Suppose to the contrary that there exists {x, y} ∈ E(G) with x ∈ A \ D and y ∈
σ(A) \ D. Then {x, y} ∈ E(T1) or {x, y} ∈ E(T2), say wlog {x, y} ∈ E(T2). Since
{x, y} ∈ E(〈V0〉), it follows that {x, y} ∈ E(〈V0〉 ∩ T2). Therefore, since x ∈ A, y must
also be a vertex of A, contradicting the fact that y ∈ σ(A) \ D.

Finally, note that EA\D,D ⊆ E(T2), because if {x, y} ∈ E(T1), where x ∈ A \ D
and y ∈ D, then we must have x ∈ σ(A), contradicting x ∈ A \ D. Similarly, we have
Eσ(A)\D,D ⊆ E(T1).
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So, for t ∈ R, we define p̂t : V (G) → R2 and q̂t : E(G) → R2 by

p̂t(v) =





(−t, 1 + t) if v ∈ A \ D
(t, 1 + t) if v ∈ σ(A) \ D
(0, 1 + 2t) if v ∈ D
p̂(v) otherwise

q̂t(b) =






q̂(b) + (t, t) if b ∈ EV2\{w},σ(A)\D

q̂(b) + (−t, t) if b ∈ EV1,A\D

q̂(b) + (0, 2t) if b ∈ EV2\{w},D

q̂(b) + (0, 2t) if b ∈ EV1,D

q̂(b) otherwise

.

Then (G, p̂t, q̂t) = (G, p̂, q̂) if t = 0. Therefore, by Lemma 3.3, there exists a t0 ∈ R,

w
(−1, 0) (1, 0)

(0, 0)

(0, 1)

V1 V2 \ {w}

V0 \ F

T0

D

A \ D σ(A) \ D

T2 T1

Figure 37: The frame (G, p̂t, q̂t).

t0 6= 0, such that the frame (G, p̂t0 , q̂t0) is independent.
Now, if |A \ D| > 2, then |σ(A) \ D| = |A \ D| > 2. Since {E(T0), E(T1), E(T2)}

is proper, 〈A \ D〉 ∩ T1 or 〈A \ D〉 ∩ T2 is not connected, say wlog 〈A \ D〉 ∩ T2 is not
connected. Then 〈σ(A)\D〉∩T1 is also not connected. Let B be the set of vertices in one
of the components of 〈A \ D〉 ∩ T2 and σ(B) be the set of vertices in the corresponding
component of 〈σ(A) \ D〉 ∩ T1. Then, by using arguments analogous to above, we can
pull apart the vertices of B from (A \ D) \ B in the direction of the vector (−t, t) and
the vertices of σ(B) from (σ(A) \ D) \ σ(B) in the direction of the vector (t, t) in order
to obtain a new independent frame.

This process can be continued until we obtain an independent frame (G, p̃, q̃) with
p̃(u) 6= p̃(v) for all {u, v} ∈ E(G). Then, by Remark 3.1, (G, p̃) is an independent
framework and, if necessary, an appropriate rotation of (G, p̃) about the origin yields an
independent framework in the set R(G,Cs,Φ).

Case 2: Suppose G has a proper (Cs, Φ) ⊥ 3Tree2 partition {E(T0), E(T1), E(T2)}.
Let Vi be the set of vertices of G that are not in V (Ti) for i = 0, 1, 2 and let e0 = (0, 1),
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e1 = (−1, 0), and e2 = (1, 0). We let (G, p, q) be the frame with p : V (G) → R2 and
q : E(G) → R2 defined by

p(v) = ei if v ∈ Vi

q(b) =





(2, 0) if b ∈ E(T0)
(−1, 1) if b ∈ E(T1)
(1, 1) if b ∈ E(T2)

.

e1 e2

e0

T1T2

V1 V2

V0

T0

Figure 38: The frame (G, p, q) in Case 2 of the proof of Lemma 5.5.

The proof that (G, p, q) is independent and that we can construct an independent
framework (G, p̃) ∈ R(G,Cs,Φ) is analogous to the proof of Case 1. �

Lemmas 5.2, 5.3, 5.4, and 5.5 provide a complete proof for Theorem 5.1.

Remark 5.5 Theorem 5.1 still holds if we omit (Cs, Φi) single edge splits in condition
(iii). However, all the other inductive construction techniques, including the (Cs, Φi) X-
replacement, are necessary to characterize all (Cs, Φ)-generically isostatic graphs in terms
of an inductive construction sequence [16].

Remark 5.6 The geometric proofs of Lemmas 5.2.6 and 5.2.7 in [16] can easily be
adapted to also give direct geometric proofs that condition (iii) implies condition (i)
in Theorems 4.1 and 5.1, i.e., that the existence of an (S, Φ) construction sequence for G
implies that R(G,S,Φ) 6= ∅ and that G is (S, Φ)-generically isostatic, for S = C2 or S = Cs.

6 Further work

If one wants to prove the Laman-type conjectures for the dihedral groups C2v and C3v

of respective orders 4 and 6 (see [3, 16]) in the analogous way as the symmetrized Laman
Theorems for C3, C2, and Cs, one has to consider two basic cases: first, the case where the
given graph G has a vertex of valence 2, and secondly, the case where G has a vertex of
valence 3 and no vertex of valence 2.

For each of the groups C2v and C3v, the first case can be treated in a straightforward
fashion by using appropriate symmetrized versions of a vertex 2-addition.

We have seen in Section 5.2 that for vertices of valence 3, the presence of a single
reflection s in the symmetry group S gives rise to a large number of subcases that need to
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be treated separately, where each subcase corresponds to a particular allocation of the 3-
valent vertex and its three neighbors to the permutation cycles of the graph automorphism
Φ(s). Since the symmetry groups C2v and C3v contain more than just one reflection (namely
two and three, respectively), the number of subcases that need to be considered for these
groups is even larger than it was in the case of Cs. So, while we suspect that the Laman-
type conjectures in [3] for the groups C2v and C3v can be proven in this way, the number
of cases that need to be treated in these proofs becomes extremely large.

For the dihedral group C3v of order 6, we conjecture that (C3v, Φ)-generically isostatic
graphs can also be characterized by means of suitably defined symmetrized 3Tree2 parti-
tions. For further details on this conjecture we refer the reader to [16].

Due to the structure of the dihedral group C2v of order 4, however, there does not seem
to exist an analogous characterization of (C2v, Φ)-generically isostatic graphs in terms of
symmetrized 3Tree2 partitions.

Note that it is an immediate consequence of the symmetrized Laman Theorems for
C3 (see [19]), C2, and Cs (and the analogous conjectures for C2v and C3v) that there is
(would be) a polynomial time algorithm to determine whether a given graph G is (S, Φ)-
generically isostatic. In fact, although the Laman conditions involve an exponential num-
ber of subgraphs of G, there are several algorithms that determine whether they hold
in c|V (G)||E(G)| steps, where c is a constant. The pebble game ([10]) is an example for
such an algorithm. The additional symmetry conditions for the number of fixed structural
elements can trivially be checked in constant time, from the graph automorphisms.

The results and methods presented in this paper open up a very wide range of new
questions and directions concerning the rigidity and flexibility of various geometric con-
straint systems that possess non-trivial symmetries, ranging from the rigidity of symmet-
ric pinned bar-and-joint frameworks (see [20, 16], for example), and symmetric body-bar,
body-hinge and molecular structures (see [21, 24, 29] for some background on these struc-
tures and [8, 16, 21, 24, 29] for a number of relevant conjectures as well as some initial
results), to various geometric constraint systems with symmetries appearing in CAD (see
[15], for example). For some of these framework systems, such as 2-dimensional pinned
bar-and-joint frameworks and body-bar structures with half-turn or reflectional symme-
try, for instance, the results of this paper have already been transferred to necessary
and sufficient conditions for these structures to be generically isostatic modulo the given
symmetry [8, 16].
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