# Regular factors of regular graphs from eigenvalues* 

Hongliang Lu<br>Department of Mathematics, Xi'an Jiaotong University<br>Xi'an, Shanxi, 710049, P. R. China

luhongliang215@sina.com
Submitted: Apr 5, 2010; Accepted: Nov 9, 2010; Published: Nov 26, 2010
Mathematics Subject Classifications: 05C50, 05C70


#### Abstract

Let $r$ and $m$ be two integers such that $r \geqslant m$. Let $H$ be a graph with order $|H|$, size $e$ and maximum degree $r$ such that $2 e \geqslant|H| r-m$. We find a best lower bound on spectral radius of graph $H$ in terms of $m$ and $r$. Let $G$ be a connected $r$-regular graph of order $|G|$ and $k<r$ be an integer. Using the previous results, we find some best upper bounds (in terms of $r$ and $k$ ) on the third largest eigenvalue that is sufficient to guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover, we find a best bound on the second largest eigenvalue that is sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd. Our results extend the work of Cioabă, Gregory and Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.


## 1 Introduction

Throughout this paper, $G$ denotes a simple graph of order $n$ (the number of vertices) and size $e$ (the number of edges). For two subsets $S, T \subseteq V(G)$, let $e_{G}(S, T)$ denote the number of edges of $G$ joining $S$ to $T$. The eigenvalues of G are the eigenvalues $\lambda_{i}$ of its adjacency matrix $A$, indexed so that $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$. The largest eigenvalue is often called spectral radius. If $G$ is $k$-regular, then it is easy to see that $\lambda_{1}=k$ and also, $\lambda_{2}<k$ if and only if $G$ is connected. A matching of a graph $G$ is a set of mutually disjoint edges. A matching is perfect if every vertex of $G$ is incident with an edge of the matching. Let $a$ be a nonnegative integer and we denote a matching of size $a$ by $M_{a}$. Let $\bar{G}$ denote the complement of a graph $G$. The join $G+H$ denotes the graph with vertex $V(G) \cup V(H)$ and edge set

$$
E(G+H)=E(G) \cup E(H) \cup\{x y \mid x \in V(G) \text { and } y \in V(H)\}
$$

[^0]For a general graph $G$ and an integer $k$, a spanning subgraph $F$ of $G$ such that

$$
d_{F}(x)=k \text { for all } x \in V(G)
$$

is called a $k$-factor. Given a subgraph $H$ of $G$, we define the deficiency of $H$ with respect to $k$-factor as

$$
d e f_{H}(G)=\sum_{v \in V}\left|k-d_{H}(v)\right|
$$

The total deficiency of a graph $G$ is defined as

$$
\operatorname{def}(G)=\min _{H \subseteq G} \operatorname{def}_{H}(G)
$$

$F$ is called a $k$-optimal subgraph of $G$ if $\operatorname{def}_{F}(G)=\operatorname{def}(G)$. Clearly, $G$ has a $k$-factor if and only if $\operatorname{def}(G)=0$. We call a graph $G k$-critical, if $G$ contains no $k$-factors, but for any fixed vertex $x$ of $V(G)$, there exists a subgraph $H$ of $G$ such that $d_{H}(x)=k \pm 1$ and $d_{H}(y)=k$ for any vertex $y(y \neq x)$. Tutte [13] obtained the well-known $k$-Factor Theorem in 1952.

Theorem 1.1 (Tutte [13]) Let $k \geqslant 1$ be an integer and $G$ be a general graph. Then $G$ has a $k$-factor if and only if for all disjoint subsets $S$ and $T$ of $V(G)$,

$$
\begin{aligned}
\delta_{G}(S, T) & =k|T|+e_{G}(S, T)+\tau_{G}(S, T)-k|S|-\sum_{x \in T} d_{G}(x) \\
& =k|T|+\tau_{G}(S, T)-k|S|-\sum_{x \in T} d_{G-S}(x) \leqslant 0,
\end{aligned}
$$

where $\tau_{G}(S, T)$ denotes the number of components $C$, called $k$-odd components of $G-(S \cup$ $T)$ such that $e_{G}(V(C), T)+k|C| \equiv 1(\bmod 2)$. Moreover, $\delta(S, T) \equiv k|V(G)|(\bmod 2)$.

Furthermore, Lovász proved the well-known $k$-defficiency Theorem in 1970.
Theorem 1.2 (Lovász [10]) Let $G$ be a graph and $k$ a positive integer. Then

$$
\begin{aligned}
\operatorname{def}(G) & =\max \delta_{G}(S, T) \\
& =\max \left\{k|T|+\tau_{G}(S, T)-k|S|-\sum_{x \in T} d_{G-S}(x) \mid S, T \subseteq V(G), \text { and } S \cap T=\emptyset\right\}
\end{aligned}
$$

where $\tau_{G}(S, T)$ is the number of components $C$ of $G-(S \cup T)$ such that $e(V(C), T)+k|C| \equiv$ $1(\bmod 2)$. Moreover, $\delta_{G}(S, T) \equiv k|V(G)|(\bmod 2)$. Furthermore, $G$ is not $k$-critical if and only if there exist two disjoint subsets $S$ and $T$ with $S \cup T \neq \emptyset$ such that $\delta_{G}(S, T)>0$.

In [2], Brouwer and Haemers gave sufficient conditions for a graph to have a 1-factor in terms of its Laplacian eigenvalues and, for a regular graph, gave an improvement in terms of the third largest adjacency eigenvalue $\lambda_{3}$. Cioabă and Gregory [4] also studied relations
between 1-factors and eigenvalues. Later, Cioabă, Gregory and Haemers [5] found a best upper bound on $\lambda_{3}$ that is sufficient to guarantee that a regular graph $G$ of order $v$ has a 1 -factor when $v$ is even, and a matching of order $v-1$ when $v$ is odd. In [11], the author studied the relation of eigenvalues and regular factors of regular graphs.

We are now able to state our main theorems and prove them in Section 2. Recently, Suil O and Cioabă [12] also independently proved Theorems 1.3 and 1.4 with different method and applied their results to matching problems.

Theorem 1.3 Let $r \geqslant 4$ be an integer and $m$ an even integer, where $2 \leqslant m \leqslant r+1$. Let $\mathcal{H}(r, m)$ denote the class of all connected irregular graphs with order $n \neq r(\bmod 2)$, maximum degree $r$, and size $e$ with $2 e \geqslant r n-m$. Let

$$
\begin{equation*}
\rho_{1}(r, m)=\frac{1}{2}\left(r-2+\sqrt{(r+2)^{2}-4 m}\right) . \tag{1}
\end{equation*}
$$

Then $\lambda_{1}(H) \geqslant \rho_{1}(r, m)$ for each $H \in \mathcal{H}(r, m)$ with equality if $H$ is the join of $K_{r+1-m}$ and $\overline{M_{m / 2}}$.

Theorem 1.4 Let $r$ and $m$ be two integers such that $m \equiv r(\bmod 2)$ and $1 \leqslant m \leqslant r$. Let $\mathcal{H}(r, m)$ denote the class of all connected irregular graphs with order $n \equiv r(\bmod 2)$, maximum degree $r$, and size $e$ with $2 e \geqslant r n-m$.
(i) If $m \geqslant 3$, let

$$
\begin{equation*}
\rho_{2}(r, m)=\frac{1}{2}\left(r-3+\sqrt{(r+3)^{2}-4 m}\right) \tag{2}
\end{equation*}
$$

then $\lambda_{1}(H) \geqslant \rho_{2}(r, m)$ for each $H \in \mathcal{H}(r, m)$ with equality if $H$ is the join of $\overline{M_{(r+2-m) / 2}}$ and $\bar{C}$, where $C$ with order $m$ consists of disjoint cycles;
(ii) if $m=1$, let $\rho_{2}(r, m)$ is the greatest root of $P(x)$, where $P(x)=x^{3}-(r-2) x^{2}-$ $2 r x+(r-1)$, then $\lambda_{1}(H) \geqslant \rho_{2}(r, m)$ for each $H \in \mathcal{H}(r, m)$ with equality if $H$ is the join of $\overline{K_{1,2}}$ and $\overline{M_{(r-1) / 2}}$;
(iii) if $m=2$, let $\rho_{2}(r, m)$ is the greatest root of $f_{1}(x)$, where $f_{1}(x)=x^{3}-(r-2) x^{2}-$ $(2 r-1) x+r$, then $\lambda_{1}(H) \geqslant \rho_{2}(r, m)$ for each $H \in \mathcal{H}(r, m)$ with equality if $H$ is the join of $\overline{P_{4}}$ and $\overline{M_{(r-2) / 2}}$, where $P_{4}$ denote the path of length three.

Theorems 1.3 and 1.4 improve the recent results from [11]. The proofs of these theorems are contained in Section 2.

Theorem 1.5 Suppose that $r$ is even, $k$ is odd. Let $G$ be a connected $r$-regular graph with order $n$. Let $m \geqslant 3$ be an integer and $m_{0} \in\{m, m-1\}$ be an odd integer. Suppose that $\frac{r}{m} \leqslant k \leqslant r\left(1-\frac{1}{m}\right)$.
(i) If $n$ is odd and $\lambda_{2}(G)<\rho_{1}\left(r, m_{0}-1\right)$, then $G$ is $k$-critical;
(ii) if $n$ is even and $\lambda_{3}(G)<\rho_{1}\left(r, m_{0}-1\right)$, then $G$ has a $k$-factor.

Theorem 1.6 Letr and $k$ be two integers. Let $m$ be an integer such that $m^{*} \in\{m, m+1\}$ and $m^{*} \equiv 1(\bmod 2)$. Let $G$ be a connected $r$-regular graph with order $n$. Suppose that

$$
\lambda_{3}(G)< \begin{cases}\rho_{1}(r, m-1) & \text { if } m \text { is odd } \\ \rho_{2}(r, m-1) & \text { if } m \text { is even } .\end{cases}
$$

If one of the following conditions holds, then $G$ has a $k$-factor.
(i) $r$ is odd, $k$ is even and $k \leqslant r\left(1-\frac{1}{m^{*}}\right)$;
(ii) both $r$ and $k$ are odd and $\frac{r}{m^{*}} \leqslant k$.

The main tool in our arguments is eigenvalue interlacing (see [9]).
Theorem 1.7 (Interlacing Theorem) If $A$ is a real symmetric $n \times n$ matrix and $B$ is a principal submatrix of $A$ with order $m \times m$, then for $1 \leqslant i \leqslant m, \lambda_{i}(A) \geqslant \lambda_{i}(B) \geqslant$ $\lambda_{n-m+i}(A)$.

## 2 The proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let $H$ be a graph in $\mathcal{H}(r, m)$ with $\lambda_{1}(H) \leqslant \rho_{1}(r, m)$. Firstly, we prove the following claim.

Claim 1. $H$ has order $n$ and size $e$, where $n=r+1$ and $2 e=r n-m$.
Suppose that $2 e>r n-m$. Then, since $r n-m$ is even, so $2 e \geqslant r n-m+2$. Because the spectral radius of a graph is at least the average degree, $\lambda_{1}(H) \geqslant \frac{2 e}{n} \geqslant r-\frac{m-2}{r+1}$. Since

$$
\begin{aligned}
\rho_{1}(r, m) & =\frac{1}{2}\left(r-2+\sqrt{(r+2)^{2}-4 m}\right) \\
& =\frac{1}{2}(r-2)+\frac{1}{2}(r+2) \sqrt{1-\frac{4 m}{(r+2)^{2}}} \\
& <\frac{1}{2}(r-2)+\frac{1}{2}(r+2)\left(1-\frac{2 m}{(r+2)^{2}}\right) \\
& =r-\frac{m}{r+2} \\
& <r-\frac{m-2}{r+1},
\end{aligned}
$$

so $\lambda_{1}(H)>\rho_{1}(r, m)$. Thus $2 e=r n-m$. Because $H$ has order $n$ with maximum degree $r$, we have $n \geqslant r+1$. If $n>r+1$, since $n+r$ is odd, so $n \geqslant r+3$, it is straightforward to check that

$$
\lambda_{1}(H)>\frac{2 e}{n} \geqslant r-\frac{m}{r+3}>\rho_{1}(r, m),
$$

a contradiction. This completes the claim.
Then by Claim 1, $H$ has order $n=r+1$ and at least $r+1-m$ vertices of degree $r$. Let $G_{1}$ be the subgraph of $H$ induced by $n_{1}=n+1-m$ vertices of all the vertices of degree $r$ and $G_{2}$ be the subgraph induced by the remaining $n_{2}=m$ vertices. Also, let $G_{12}$ be the bipartite subgraph induced by the partition and let $e_{12}$ be the size of $G_{12}$. A theorem of Haemers [7] shows that eigenvalues of the quotient matrix of the partition interlace the eigenvalues of the adjacency matrix of $G$. Because each vertex in $G_{1}$ is adjacent to all other vertices in $H$, the quotient matrix $Q$ is the following

$$
Q=\left(\begin{array}{ll}
\frac{2 e_{1}}{n_{1}} & \frac{e_{12}}{n_{1}} \\
\frac{e_{12}}{n_{2}} & \frac{2 e_{2}}{n_{2}}
\end{array}\right)=\left(\begin{array}{cc}
r-m & m \\
r+1-m & m-2
\end{array}\right) .
$$

Applying eigenvalue interlacing to the greatest eigenvalue of $G$, we get

$$
\begin{equation*}
\lambda_{1}(H) \geqslant \lambda_{1}(Q)=\frac{1}{2}\left(r-2+\sqrt{(r+2)^{2}-4 m}\right) \tag{3}
\end{equation*}
$$

with the equality if the partition is equitable [[9], p.202]; equivalently, if $G_{1}$ and $G_{2}$ are regular, and $G_{12}$ is semiregular; or equivalently, if $G_{2}=\overline{M_{m / 2}}, G_{1}=K_{r+1-m}$ and $G_{12}=K_{r+1-m, m}$. Hence $\lambda_{1}(R) \geqslant \rho_{1}(r, m)$ for each $R \in \mathcal{H}(r, m)$ and the equality holds if $R=K_{r+1-m}+\overline{M_{m / 2}}$. This completes the proof.

Proof of Theorem 1.4. Let $H$ be a graph in $\mathcal{H}(r, m)$ with $\lambda_{1}(H) \leqslant \rho_{2}(r, m)$. With similar proof of Claim 1 in Theorem 1.3, we obtain the following claim.

Claim 1. $H$ has order $n$ and size $e$, where $n=r+2$ and $2 e=r n-m$.
By Claim 1, $H$ has order $n=r+2$ and at least $r+2-m$ vertices of degree $r$. Let $G_{1}$ be the subgraph of $H$ induced by the $n_{1}=n+2-m$ vertices of degree $r$ and $G_{2}$ be the subgraph induced by the remaining $n_{2}=m$ vertices. Also, let $G_{12}$ be the bipartite subgraph induced by the partition and let $e_{12}$ be the size of $G_{12}$. The quotient matrix $Q$ is the following

$$
Q=\left(\begin{array}{ll}
\frac{2 e_{1}}{n_{1}} & \frac{e_{12}}{n_{1}} \\
\frac{e_{12}}{n_{2}} & \frac{2 e_{2}}{n_{2}}
\end{array}\right) .
$$

Suppose that $e_{12}=t$. Then $2 e_{1}=(r+2-m) r-t$ and $2 e_{2}=r m-m-t$. Applying eigenvalue interlacing to greatest eigenvalue

$$
\begin{aligned}
\lambda_{1}(G) \geqslant \lambda_{1}(Q) & =\frac{2 e_{1}}{n_{1}}+\frac{2 e_{2}}{n_{2}}+\sqrt{\left(\frac{2 e_{1}}{n_{1}}-\frac{2 e_{2}}{n_{2}}\right)^{2}+\frac{e_{12}^{2}}{n_{1} n_{2}}} \\
& =\frac{2 r-1}{2}-\frac{(r+2) t}{2 m(r+2-m)}+\sqrt{\left(\frac{1}{2}+\frac{t(r+2-2 m)}{2 m(r+2-m)}\right)^{2}+\frac{t^{2}}{m(r+2-m)}}
\end{aligned}
$$

Let $s=\frac{t}{m(r+2-m)}$, where $0<s \leqslant 1$, then we have

$$
2 \lambda_{1}(Q)=f(s)=(2 r-1)-s(r+2)+\sqrt{1+2 s(r+2-2 m)+s^{2}(r+2)^{2}}
$$

For $s>0$, since

$$
f^{\prime}(s)=-(r+2)+\frac{(r+2-2 m)+s(r+2)^{2}}{\sqrt{1+2 s(r+2-2 m)+s^{2}(r+2)^{2}}}<0
$$

Then $0<t \leqslant m(r+2-m)$, so we have

$$
\begin{aligned}
2 \lambda_{1}(Q) \geqslant f(1) & =(r-3)+\sqrt{1+2(r+2-2 m)+(r+2)^{2}} \\
& =(r-3)+\sqrt{(r+3)^{2}-4 m}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lambda_{1}(H) \geqslant \lambda_{1}(Q) \geqslant \frac{1}{2}(r-3)+\frac{1}{2} \sqrt{(r+3)^{2}-4 m} \tag{4}
\end{equation*}
$$

with equality if $t=m(r+2-m)$, both $G_{1}$ and $G_{2}$ are regular and $G_{12}$ is semiregular; equivalently, if $\overline{G_{1}}$ is a perfect matching with order $r+2-m$ and $\overline{G_{2}}$ is a 2-regular graph with order $m$. Hence $\lambda_{1}(R) \geqslant \rho_{2}(r, m)$ for each $R \in \mathcal{H}(r, m)$ and the equality holds if $R=\overline{M_{(r+2-m) / 2}}+\bar{C}$, where $C$ is a 2-regular graph with order $m$.

Now we consider $m=1$. Then $r$ is odd and $n=r+2$. So $H$ contains one vertex of degree $r-1$, say $v$ and the rest vertices have degree $r$. Hence $\bar{H}=K_{1,2} \cup M_{(r-1) / 2}$. Partition the vertex of $V(\bar{H})$ into three parts: the two endpoints of $K_{1,2}$; the internal vertex of $K_{1,2}$; the $(r-1)$ vertices of $M_{(r-1) / 2}$. This is an equitable partition of $H$ with quotient matrix

$$
Q=\left(\begin{array}{lll}
0 & 0 & r-1 \\
0 & 1 & r-1 \\
1 & 2 & r-3
\end{array}\right)
$$

The characteristic polynomial of the quotient matrix is

$$
P(x)=x^{3}-(r-2) x^{2}-2 r x+(r-1) .
$$

Since the partition is equitable, so $\lambda_{1}(H)=\lambda_{1}(Q)$ and $\lambda_{1}(H)$ is a root of $P(x)$.
Finally, we consider $m=2$. Then $r$ is even. Let $G \in \mathcal{H}(r, m)$ be the graph with order $r+2$ and size $e=(r(r+2)-2) / 2$.

We discuss three cases.
Case 3.1. $G$ has two nonadjacent vertices of degree $r-1$.
Then $G=\overline{P_{4}}+\overline{M_{(r-2) / 2}}$ and $\bar{G}=P_{4} \cup M_{(r-2) / 2}$. Partition the vertex of $V(\bar{G})$ into three parts: the two endpoints of $P_{4}$; the two internal vertices of $P_{4}$; the $(r-2)$ vertices of $M_{(r-1) / 2}$. This is an equitable partition of $G$ with quotient matrix

$$
Q_{1}=\left(\begin{array}{lll}
1 & 1 & r-2 \\
0 & 1 & r-2 \\
2 & 2 & r-4
\end{array}\right)
$$

The characteristic polynomial of the quotient matrix is

$$
f_{1}(x)=x^{3}-(r-2) x^{2}-(2 r-1) x+r .
$$

Case 3.2. $G$ has two adjacent vertices of degree $r-1$.
Then $\bar{G}=2 P_{3} \cup M_{(r-4) / 2}$. Partition the vertex of $V(\bar{G})$ into three parts: the four endpoints of two $P_{3}$; the two internal vertices of two $P_{3}$; the $(r-4)$ vertices of $M_{(r-4) / 2}$. This is an equitable partition of $G$ with quotient matrix

$$
Q_{3}=\left(\begin{array}{lll}
3 & 1 & r-4 \\
2 & 1 & r-4 \\
4 & 2 & r-6
\end{array}\right) .
$$

The characteristic polynomial of the quotient matrix is

$$
f_{2}(x)=x^{3}-(r-2) x^{2}-(2 r-1) x+r-2
$$

Case 3.3. $G$ has one vertex of degree $r-2$.
Then $\bar{G}=K_{1,3} \cup M_{(r-2) / 2}$. Partition the vertex set of $\bar{G}$ into three parts: the center vertex of $K_{1,3}$; the three endpoints of $K_{1,3}$; the $(r-2)$ vertices of $M_{(r-2) / 2}$. This is an equitable partition of $G$ with quotient matrix

$$
Q_{2}=\left(\begin{array}{ccc}
0 & 0 & r-2 \\
0 & 2 & r-2 \\
1 & 3 & r-4
\end{array}\right) .
$$

The characteristic polynomial of the quotient matrix is

$$
f_{3}(x)=x^{3}-(r-2) x^{2}-2 r x+2(r-2) .
$$

Note that $\lambda_{1}\left(Q_{1}\right)<\lambda_{1}\left(Q_{2}\right)<\lambda_{1}\left(Q_{3}\right)$. We have $\rho_{2}(r, m)=\lambda_{1}\left(Q_{1}\right)$. So $\bar{H}=P_{4} \cup$ $M_{(r-2) / 2}$. Hence $\lambda_{1}(H)$ is a root of $f_{1}(x)=0$. This completes the proof.

## 3 The proof of Theorems 1.5 and 1.6

We will need the following technical lemma whose proof is an easy modification of the proof of Theorem 2.2 from [11]. We provide the proof here for completeness.

Lemma 3.1 Let $r$ and $k$ be integers such that $1 \leqslant k<r$. Let $G$ be a connected $r$-regular graph with $n$ vertices. Let $m$ be an integer and $m^{*} \in\{m, m+1\}$ be an odd integer. Suppose that one of the following conditions holds
(i) $r$ is even, $k$ is odd, and $\frac{r}{m} \leqslant k \leqslant r\left(1-\frac{1}{m}\right)$;
(ii) $r$ is odd, $k$ is even and $k \leqslant r\left(1-\frac{1}{m^{*}}\right)$;
(iii) both $r$ and $k$ are odd and $\frac{r}{m^{*}} \leqslant k$.

If $G$ contains no a $k$-factor and is not $k$-critical, then $G$ contains def $(G)+1$ vertex disjoint induced subgraph $H_{1}, H_{2}, \ldots, H_{\text {def }(G)+1}$ such that $2 e\left(H_{i}\right) \geqslant r\left|V\left(H_{i}\right)\right|-(m-1)$ for $i=1,2, \ldots, \operatorname{def}(G)+1$.

Proof. Suppose that the result does not hold. Let $\theta=k / r$. Since $G$ is not $k$-critical and contains no $k$-factors, so by Theorem 1.2 , there exist two disjoint subsets $S$ and $T$ of $V(G)$ such that $S \cup T \neq \emptyset$ and $\delta(S, T)=\operatorname{def}(G) \geqslant 1$. Let $C_{1}, \ldots, C_{\tau}$ be the $k$-odd components of $G-(S \cup T)$. We have

$$
\begin{equation*}
\operatorname{def}(G)=\delta(S, T)=k|T|+e_{G}(S, T)+\tau-k|S|-\sum_{x \in T} d_{G}(x) \tag{5}
\end{equation*}
$$

Claim 1. $\tau \geqslant \operatorname{def}(G)+1$.
Otherwise, let $\tau \leqslant \operatorname{def}(G)$. Then we have

$$
\begin{equation*}
0 \geqslant k|S|+\sum_{x \in T} d_{G-S}(x)-k|T| . \tag{6}
\end{equation*}
$$

So we have $|S| \leqslant|T|$, and equality holds only if $\sum_{x \in T} d_{G-S}(x)=0$. Since $G$ is $r$-regular, so we have

$$
\begin{equation*}
r|S| \geqslant e_{G}(S, T)=r|T|-\sum_{x \in T} d_{G-S}(x) \tag{7}
\end{equation*}
$$

By (6) and (7), we have

$$
(r-k)(|T|-|S|) \leqslant 0
$$

Hence $|T|=|S|$ and $\sum_{x \in T} d_{G-S}(x)=0$. So we have $\tau=\operatorname{def}(G)>0$. Since $G$ is connected, then $e_{G}\left(C_{i}, S \cup T\right)>0$ and so $e_{G}\left(C_{1}, S\right)>0$. Note that $G$ is $r$-regular, then we have $r|S| \geqslant r|T|-\sum_{x \in T} d_{G-S}(x)+e\left(C_{i}, S\right)$, a contradiction. We complete the claim.

By the hypothesis, without loss of generality, we can say $e\left(S \cup T, C_{i}\right) \geqslant m$ for $i=$ $1, \ldots, \tau-\operatorname{def}(G)$. Then $0<\theta<1$, and we have

$$
\begin{aligned}
& -\operatorname{def}(G) \\
= & -\delta(S, T)=k|S|+\sum_{x \in T} d_{G}(x)-k|T|-e_{G}(S, T)-\tau \\
= & k|S|+(r-k)|T|-e_{G}(S, T)-\tau \\
= & \theta r|S|+(1-\theta) r|T|-e_{G}(S, T)-\tau \\
= & \theta \sum_{x \in S} d_{G}(x)+(1-\theta) \sum_{x \in T} d_{G}(x)-e_{G}(S, T)-\tau \\
\geqslant & \theta\left(e_{G}(S, T)+\sum_{i=1}^{\tau} e_{G}\left(S, C_{i}\right)\right)+(1-\theta)\left(e_{G}(S, T)+\sum_{i=1}^{\tau} e_{G}\left(T, C_{i}\right)\right)-e_{G}(S, T)-\tau \\
= & \sum_{i=1}^{\tau}\left(\theta e_{G}\left(S, C_{i}\right)+(1-\theta) e_{G}\left(T, C_{i}\right)-1\right) .
\end{aligned}
$$

Since $G$ is connected, so we have $\theta e_{G}\left(S, C_{i}\right)+(1-\theta) e_{G}\left(T, C_{i}\right)>0$ for $1 \leqslant i \leqslant \tau$. Hence it suffices to show that for every $C=C_{i}, 1 \leqslant i \leqslant \tau-\operatorname{def}(G)$,

$$
\begin{equation*}
\theta e_{G}\left(S, C_{i}\right)+(1-\theta) e_{G}\left(T, C_{i}\right) \geqslant 1 \tag{8}
\end{equation*}
$$

Since $C$ is a $k$-odd component of $G-(S \cup T)$, we have

$$
\begin{equation*}
k|C|+e_{G}(T, C) \equiv 1(\bmod 2) \tag{9}
\end{equation*}
$$

Moreover, since $r|C|=e_{G}(S \cup T, C)+2|E(C)|$, then we have

$$
\begin{equation*}
r|C| \equiv e_{G}(S \cup T, C)(\bmod 2) \tag{10}
\end{equation*}
$$

It is obvious that the two inequalities $e_{G}(S, C) \geqslant 1$ and $e_{G}(T, C) \geqslant 1$ implies

$$
\theta e_{G}(S, C)+(1-\theta) e_{G}(T, C) \geqslant \theta+(1-\theta)=1
$$

Hence we may assume $e_{G}(S, C)=0$ or $e_{G}(T, C)=0$. We consider two cases.
First we consider (i). If $e_{G}(S, C)=0$, since $1 \leqslant k \leqslant r\left(1-\frac{1}{m}\right)$, then $\theta \leqslant 1-\frac{1}{m}$ and so $1 \leqslant(1-\theta) m$. Note that $e(T, C) \geqslant m$, so we have

$$
(1-\theta) e_{G}(T, C) \geqslant(1-\theta) m \geqslant 1
$$

If $e_{G}(T, C)=0$, since $k \geqslant r / m$, so $m \theta \geqslant 1$. Hence we obtain

$$
\theta e_{G}(S, C) \geqslant m \theta \geqslant 1 .
$$

In order to prove that (ii) implies the claim, it suffices to show that (8) holds under the assumption that $e_{G}(S, C)$ or $e_{G}(T, C)=0$. If $e_{G}(S, C)=0$, then by (9), we have $e_{G}(T, C) \equiv 1(\bmod 2)$. Hence $e_{G}(T, C) \geqslant m^{*}$, and thus

$$
(1-\theta) e_{G}(T, C) \geqslant(1-\theta) m^{*} \geqslant 1 .
$$

If $e_{G}(T, C)=0$, then by $(10)$, we have $k|C| \equiv 1(\bmod 2)$, which contradicts the assumption that $k$ is even.

We next consider (iii), i.e., we assume that both $r$ and $k$ are odd and $\frac{r}{m^{*}} \leqslant k$. If $e_{G}(S, C)=0$, then by (9) and (10), we have

$$
|C|+e_{G}(T, C) \equiv 1(\bmod 2) \text { and }|C| \equiv e_{G}(T, C)(\bmod 2) .
$$

This is a contradiction. If $e_{G}(T, C)=0$, then by (9) and (10), we have

$$
|C| \equiv 1(\bmod 2) \text { and }|C| \equiv e_{G}(S, C)(\bmod 2)
$$

which implies $e_{G}(S, C) \geqslant m^{*}$. Thus

$$
\theta e_{G}(S, C) \geqslant \theta m^{*} \geqslant 1
$$

So we have

$$
-\operatorname{def}(G) \geqslant \delta(S, T)>-\operatorname{def}(G),
$$

a contradiction. This completes the proof.
Proof of Theorem 1.5. Firstly, we prove (i). Suppose that $G$ is not $k$-critical. By Lemma 3.1, $G$ contains two vertex disjoint induced subgraphs $H_{1}$ and $H_{2}$ such that $2 e\left(H_{i}\right) \geqslant r n_{i}-(m-1)$, where $n_{i}=\left|V\left(H_{i}\right)\right|$ for $i=1,2$. Hence we have $2 e\left(H_{i}\right) \geqslant$ $r n_{i}-\left(m_{0}-1\right)$. So by Interlacing Theorem, we have

$$
\begin{aligned}
\lambda_{2}(G) & \geqslant \min \left\{\lambda_{1}\left(H_{1}\right), \lambda_{1}\left(H_{2}\right)\right\} \\
& \geqslant \min \left\{\rho_{1}\left(r, m_{0}-1\right), \rho_{2}\left(r, m_{0}-1\right)\right\}=\rho_{1}\left(r, m_{0}-1\right) .
\end{aligned}
$$

So we have $\lambda_{2}(G) \geqslant \rho_{1}\left(r, m_{0}-1\right)$, a contradiction.
Now we prove (ii). Suppose that $G$ contains no a $k$-factor. Then we have $\operatorname{def}(G) \geqslant 2$. So by Lemma 3.1, $G$ contains three vertex disjoint induced subgraphs $H_{1}, H_{2}$ and $H_{3}$ such that $2 e\left(H_{i}\right) \geqslant r n_{i}-(m-1)$, where $n_{i}=\left|V\left(H_{i}\right)\right|$ for $i=1,2,3$. Since $r$ is even, so $2 e\left(H_{i}\right) \geqslant r n_{i}-\left(m_{0}-1\right)$ for $i=1,2,3$. So by Interlacing Theorem, we have

$$
\begin{aligned}
\lambda_{3}(G) & \geqslant \min \left\{\lambda_{1}\left(H_{1}\right), \lambda_{1}\left(H_{2}\right), \lambda_{1}\left(H_{3}\right)\right\} \\
& \geqslant \min \left\{\rho_{1}\left(r, m_{0}-1\right), \rho_{2}\left(r, m_{0}-1\right)\right\}=\rho_{1}\left(r, m_{0}-1\right)
\end{aligned}
$$

a contradiction. We complete the proof.
Remark. Now we show that the upper bound in Theorems 1.5 (ii) is the best possible function of $r$ and $m$ when $2 m^{2}<r$. Let $r$ be even and $m$ be odd. Let $k$ be an odd integer such that $r /(m-1)>k \geqslant r / m$. Let $m_{0}=m-1$ and $H\left(r, m_{0}\right)=K_{r+1-m_{0}}+\overline{M_{m_{0} / 2}}$. Let $G\left(r, m_{0}\right)$ be the $r$-regular graph obtained by matching the $m_{0}$ vertices of degree $r-1$ in each $r$ copies of $H\left(r, m_{0}\right)$ to a set $S$ of $|S|=m_{0}$ independent vertices. Then $G\left(r, m_{0}\right)-S$ has $r>k m_{0}$ copies of odd order graph $H\left(r, m_{0}\right)$ as its components and so, by Theorem 1.1, $G\left(r, m_{0}\right)$ has no $k$-factors. Moreover,

$$
\lambda_{2}\left(G\left(r, m_{0}\right)\right)=\lambda_{3}\left(G\left(r, m_{0}\right)\right)=\rho_{1}\left(r, m_{0}\right) .
$$

(For the proof, we refer the reader to [5], where the statement is proved for 1-factors.) For (i), let $k$ be even such that $(r-1) /(m-1)>k \geqslant r / m$. Let $G^{\prime}\left(r, m_{0}\right)$ be the $r$ regular graph obtained by matching the $m_{0}$ vertices of degree $r-1$ in each $r-1$ copies of $H\left(r, m_{0}\right)$ to a set $S$ of $M_{m_{0} / 2}$. Then $G^{\prime}\left(r, m_{0}\right)$ has $n=m-1+(r-1)(r+1)$ vertices. Since $(r-1) /(m-1)>k \geqslant r / m$ and $\delta_{G^{\prime}\left(r, m_{0}\right)}(S, \emptyset)=(r-1)-k(m-1)>0$, so by Theorem 1.2, $G^{\prime}\left(r, m_{0}\right)$ is not $k$-critical. Similarly, we have

$$
\lambda_{2}\left(G^{\prime}\left(r, m_{0}\right)\right)=\lambda_{3}\left(G^{\prime}\left(r, m_{0}\right)\right)=\rho_{1}\left(r, m_{0}\right)
$$

Proof of Theorem 1.6. Suppose that $G$ contains no a $k$-factor. By Lemma 3.1, $G$ contains three vertex disjoint induced subgraph $H_{1}, H_{2}, H_{3}$ such that $2 e\left(H_{i}\right) \geqslant r\left|V\left(H_{i}\right)\right|-$ $(m-1)$ for $i=1,2,3$. Firstly, let $m$ be odd. By Interlacing Theorem we have

$$
\lambda_{3}(G) \geqslant \min _{1 \leqslant i \leqslant 3} \lambda_{1}\left(H_{i}\right) \geqslant \min \left\{\rho_{1}(r, m-1), \rho_{2}(r, m-2)\right\}=\rho_{1}(r, m-1)
$$

So we have $\lambda_{3}(G) \geqslant \rho_{2}(r, m-1)$, a contradiction.
Next, let $m$ be even. By Interlacing Theorem we have

$$
\lambda_{3}(G) \geqslant \min _{1 \leqslant i \leqslant 3} \lambda_{1}\left(H_{i}\right) \geqslant \min \left\{\rho_{1}(r, m-2), \rho_{2}(r, m-1)\right\}=\rho_{2}(r, m-1)
$$

a contradiction. We complete the proof.
Remark. The upper bound in Theorems 1.6 is best possible when $m$ is even and $m^{2}<r$. Let $r$ and $k$ be two odd integers. Let $G$ be an $r$-regular graph. Note that $G$ contains a $k$-factor if and only if $G$ contains an $(r-k)$-factor. So we only need to show that the upper bound in Theorems 1.6 (ii) is best possible. Let $m$ be an even integer and $m^{*}=m+1$ such that $r / m^{*} \leqslant k<r /(m-1)$. Let $H(r, m-1)$ denote the extremal graph in Theorem 1.4. Let $G(r, m-1)$ be the $r$-regular graph obtained by matching the $m-1$ vertices of degree $r-1$ in each $r$ copies of $H(r, m-1)$ to a set $S$ of $|S|=m-1$ independent vertices. Similarly, we have

$$
\lambda_{3}(G(r, m-1))=\rho_{2}(r, m-1) .
$$

But $G(r, m-1)$ contains no $k$-factors.

## Acknowledgments

The author would like to thank the anonymous referees for their valuable comments which resulted in a much improved paper and Quanjie Dou for her helpful suggestions.

## References

[1] B. Bollobás, A. Saito, and N. C. Wormald, Regular factors of regular graphs, J. Graph Theory, 9 (1985), 97-103.
[2] A. E. Brouwer and W. H. Haemers, Eigenvalues and perfect matchings, Linear Algebra and its Applications, 395 (2005), 155-162.
[3] S. M. Cioabă, Perfect matchings, eigenvalues and expansion, C. R. Math. Acad. Sci. Soc. R. Can., 27 (2005), 101-104.
[4] S. M. Cioabă and D. A. Gregory, Large matchings from eigenvalues, Linear Algebra and its Applications, 422 (2007), 308-317.
[5] S. M. Cioabă, D. A. Gregory and W. H. Haemers, Matchings in regular graphs from eigenvalues, J. Combin. Theory Ser. B, 99 (2009), 287-297.
[6] L. Collatz, and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg, 21 (1957), 63-77.
[7] W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra and its Applications, 226 (1995), 593-616.
[8] T. Gallai, The factorisation of graphs, Acta Math. Acad. Sci. Hung, 1 (1950), 133-153.
[9] C. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag New York, (2001).
[10] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory, 8 (1970), 391416.
[11] H. Lu, Regular graph, eigenvalues and regular factors, (preprint, 2009).
[12] S. O and S. M. Cioabă, Edge-connectivity, eigenvalues, and matchings in regular graph, SIAM Journal of Discrete Mathematics, 24 (2010), 1470-1481.
[13] W. T. Tutte, The factors of graphs, Canad. J. Math., 4 (1952), 314-328.


[^0]:    *This work is supported by the Fundamental Research Funds for the Central Universities.

