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Abstract

Two square 0, 1 matrices A,B are a pair of Lehman matrices if ABT = J + dI,

where J is the matrix of all 1s and d is a positive integer. It is known that there

are infinitely many such matrices when d = 1, and these matrices are called thin

Lehman matrices. An induced subgraph of the Johnson graph may be defined given

any Lehman matrix, where the vertices of the graph correspond to rows of the

matrix. These graphs are used to study thin Lehman matrices. We show that any

connected component of such a graph determines the corresponding rows of the

matrix up to permutations of the columns. We also provide a sharp bound on the

maximum clique size of such graphs and give a complete classification of Lehman

matrices whose graphs have at most two connected components. Some constraints

on when a circulant matrix can be Lehman are also provided. Many general classes

of thin Lehman matrices are constructed in the paper.

1 Introduction

Lehman matrices were defined by Lütolf and Margot [7] to aid in the classification of min-
imally nonideal matrices, which are a key tool for understanding when the set covering
problem can be solved using linear programming (we refer the reader to [2] for more infor-
mation on minimally nonideal matrices). Lehman matrices lie at the heart of Lehman’s
central theorem on minimally nonideal matrices [5, 6]. He showed that for m ≥ n almost
every m× n minimally nonideal matrix contains a unique n× n Lehman matrix. Bridges
and Ryser [1] showed that every Lehman matrix is r-regular for some integer r ≥ 2, i.e.,
each row and column sums to r. Two infinite families of Lehman matrices are known: the
point-line incidence matrices of finite nondegenerate projective planes, a widely studied
topic [4], and thin Lehman matrices. Thin Lehman matrices were defined and studied by
Cornuéjols et al. [3].
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Two square n×n matrices A, B form a pair of Lehman matrices if each matrix has only
0, 1 as entries, and ABT = J +dI for some positive integer d (where J is the matrix of all
ones). Lütolf and Margot enumerated all Lehman matrices with n ≤ 11. If A = B, then
AAT = J + dI, and A is by definition the point-line incidence matrix of a nondegenerate
projective plane of order d. The classification of finite nondegenerate projective planes is
an open problem, and the only known orders are prime powers [4]. A Lehman matrix is
called thin in the case d = 1. A matrix is circulant if each row is a right 1-cyclic shift of
the previous row. Given integers r, s ≥ 2 and n = rs − 1, let the circulant matrix Cr

n be
the n × n matrix with columns indexed by Z/nZ and its ith row equal to the incidence
vector of {i, i + 1, . . . , i + r − 1}, i.e., the 0, 1 vector that has 1s in the specified columns,
for i ∈ Z/nZ. Also define the n×n circulant matrix Ds

n in the same way except with rows
equal to the incidence vectors of {i, i+r−1, i+2r−1, . . . , i+(s−1)r−1}. Cornuéjols et
al. [3] noted that Cr

n, Ds
n form a thin Lehman pair, which shows that there are infinitely

many thin Lehman matrices. Given a Lehman matrix A, Cornuéjols et al. introduced a
graph GA, which we call the Johnson subgraph induced by A, to study properties of the
matrix A. The graph GA has the rows of A as vertices, and two rows are adjacent if each
row has all but one 1 in the same column as the other row.

In this paper, we continue the study of thin Lehman matrices. We investigate the
Johnson subgraphs associated to thin Lehman matrices, which have particularly simple
structures. In Section 3, we show that the structures of a Lehman matrix and its graph
are closely related. Our main result shows that any connected component of the graph GA

determines the corresponding rows of A up to permutations of the columns. Bounds on
the maximum clique size and maximum degree of a Johnson subgraph of a thin Lehman
matrix are given in Section 4. We also prove that some of the bounds given are sharp.
We believe the new restrictions we impose on thin Lehman matrices will make it easier
to enumerate them. In Section 5, all Lehman matrices with graphs containing at most
two connected components are classified. Lastly, the induced Johnson subgraph is used
to provide constraints on when a circulant matrix is Lehman in Section 6. A complete
classification of all Lehman matrices is, however, still lacking. A Lehman matrix may not
be determined by its graph once the graph has more than two connected components,
which reveals one limitation of the induced Johnson subgraph.

2 Preliminaries

A 0, 1 matrix is r-regular if every row and column has exactly r ones. We restate the
theorem of Bridges and Ryser [1] on regularity of Lehman matrices.

Theorem 2.1 ([1], Theorem 1.2). Let A, B be a Lehman pair. Then there exist integers
r, s ≥ 2 such that A is r-regular, B is s-regular, and rs = n + d. Moreover, BT A =
ABT = J + dI.

Throughout this paper, we will use A, B to denote a Lehman pair of n × n matrices
with ABT = J + dI, where A is r-regular, B is s-regular, and rs = n + d. Observe that

A(BT − 1
r
J) = dI =⇒ BT = dA−1 + 1

r
J,
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which shows that d and B are unique given A, since B must be 0, 1. The matrix B is
called the Lehman dual of A. We also see that A and B are invertible.

Two matrices A1 and A2 are isomorphic, denoted A1 ≃ A2, if one can be obtained from
the other by permutations of rows and/or columns. Equivalently, there exist permutation
matrices P and Q such that PA1Q = A2. If A1B

T
1 = J + dI, then

(PA1Q)(PB1Q)T = PA1QQT BT
1 P T = P (J + dI)P T = J + dI,

so A2 is also a Lehman matrix.
Cornuéjols et al. [3] noted that if an n × n Lehman matrix A is 2-regular, then n ≥ 3

odd, and A ≃ C2
n. Therefore, we will assume r, s > 2 in the paper.

Let Z≥0 denote the set of nonnegative integers. We also define the intervals of integers
[a, b] := {c ∈ Z | a ≤ c ≤ b}, [a, b) := [a, b]\{b}, (a, b] := [a, b]\{a}, (a, b) := [a, b]\{a, b},
and [a] := [1, a]. Unless otherwise specified, we index rows and columns of an n×n matrix
by [n]. Since we are working with 0, 1 matrices, we may identify the rows and columns of
a matrix with subsets of [n]. Given an n × n 0, 1 matrix A and i ∈ [n], define

rowi(A) = {j ∈ [n] | aij = 1} ⊂ [n]

to be the set of column indices where row i has a 1. Define coli(A) analogously.
We provide some important observations that will be used in later proofs.

Remark 2.2. Observe that ABT = J +dI is equivalent to |rowi(A)∩ rowi(B)| = d+1 and
|rowi(A)∩ rowj(B)| = 1 for i 6= j. By Theorem 2.1, ABT = J +dI implies BT A = J +dI,
so we also have |coli(A) ∩ coli(B)| = d + 1 and |coli(A) ∩ colj(B)| = 1 for i 6= j. We
therefore deduce that for i 6= j and any k,

|rowi(A) ∩ rowj(A) ∩ rowk(B)| ≤ 1. (1)

Since A is invertible, the row vectors of A must be linearly independent. Therefore,

rowi(A) 6= rowj(A) (2)

for i 6= j. Note that (1) and (2) also hold with A and B switched or with rows replaced
by columns.

We now define the Johnson subgraph GA induced by an r-regular 0, 1 matrix A. The
vertices V (GA) are the rows [n] of A. Two rows i and j are adjacent in GA if

|rowi(A) ∩ rowj(A)| = r − 1.

The vertices of the Johnson graph J(n, r) are the size r subsets of [n], and two vertices
are adjacent if their intersection has size r − 1. Thus, GA is the subgraph of the Johnson
graph induced by the rows of A. If A is a Lehman matrix with d > 1, then Remark 2.2
implies that GA has no edges. We will therefore mainly use the graph GA to study A
when A is a thin Lehman matrix.

Example. The Johnson subgraph induced by Cr
n is a single cycle with n vertices.
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3 Structure of graphs

In this section we explore the relation between the structure of a thin Lehman matrix A
and the Johnson subgraph GA. We show that the structures of interest in these graphs
are paths and cliques. At the end of the section we prove the following theorem.

Theorem 3.1. Suppose A is a thin Lehman matrix. Let W ⊂ V (GA) be the vertices of
a connected component of GA. Then each rowi(A) for i ∈ W is determined by GA up to
permutations of the columns.

We believe that the structure of the induced Johnson subgraphs will aid in the enu-
meration of all nonisomorphic thin Lehman matrices.

Note that if A1 ≃ A2, then GA1
≃ GA2

since permuting rows and columns does not
affect the size of row intersections. Unfortunately, the converse does not hold. We provide
a counterexample below.

Example. We give two thin Lehman matrices A1, A2 with n = 14, r = 3 such that
GA1

≃ GA2
≃ P1 ⊔P2 ⊔P3 ⊔P4 ⊔P4, where Pk is a path with k vertices. We checked with

a computer program that A1 6≃ A2. In the diagram, dots represent 1s and blank spaces
represent 0s.

For the rest of this section, we assume A is an r-regular thin Lehman matrix, B is the
s-regular dual, and n = rs − 1.

3.1 Paths

We first build up some machinery to prove the following key lemma on the structure of
the rows in A corresponding to a subpath of GA.

Lemma 3.2. Let [k] be the vertices of a subpath of GA such that i, i + 1 are adjacent for
i < k, but i, i + 2 are not adjacent for any i < k − 1. Then either A ≃ Cr

n or the columns
of A can be permuted such that rowi(A) = [i, i + r) for i ∈ [k].

the electronic journal of combinatorics 17 (2010), #R165 4



If rows [k] of A satisfy rowi(A) = [i, i + r) for i ∈ [k], then we say these rows have a
cascading structure. We show that the cascading structure of rows in A determines part
of the dual matrix B.

Lemma 3.3. Suppose rowi(A) = [i, i + r) for i ∈ [k]. Then there exists a permutation
matrix P such that rowi(A) = rowi(AP ) and

rowi(BP ) ∩ [k + r − 1] = {i − rℓ, i + (r − 1) + rℓ | ℓ ∈ Z≥0} ∩ [k + r − 1]

for i ∈ [k]. That is, we can simultaneously permute the columns of A and B such that B
has the above form without changing the first k rows of A.

Proof. The claim is clear for k = 1, so assume otherwise. For i ∈ [2, k),

rowi−1(A) ∩ rowi(A) = [i, i + r − 2] and rowi(A) ∩ rowi+1(A) = [i + 1, i + r − 1],

so {i, i + r − 1} = rowi(A) ∩ rowi(B) by (1). Since row1(A) ∩ row1(B) = [r] ∩ row1(B)
contains two elements and row1(A) ∩ row2(A) = [2, r], we must have 1 ∈ row1(B) by (1).
Similarly, rowk−1(A) ∩ rowk(A) = [k, k + r − 2] implies k + r − 1 ∈ rowk(B).

Suppose k < r. By assumption, [k] ⊂ coli(A) for i ∈ [k, r]. The analog of (1) for
columns implies that

|[k] ∩ colj(B)| ≤ |colk(A) ∩ colr(A) ∩ colj(B)| ≤ 1 (3)

for any j. We have shown above that i ∈ rowi(B) for i ∈ [1, k), which implies i ∈ coli(B)
for i ∈ [1, k). By (3), we have 1 /∈ coli(B) for i ∈ [2, k). Therefore, row1(B)∩ [1, k) = {1},
so row1(B) contains one element in [k, r]. Let row1(B) ∩ [k, r] = {j}. Since [k] ⊂
colj(A) ∩ colr(A), we can swap columns j, r in both A and B to get {1, r} ⊂ row1(B)
while the first k rows of A stay the same. Thus, we have

{i, i + r − 1} ⊂ rowi(B) for i ∈ [k − 1]

and k+r−1 ∈ rowk(B). Observe that i ∈ coli+r−1(B) for i ∈ [k]. Now (3) implies that k /∈
coli+r−1(B) for i ∈ [k−1], or equivalently rowk(B)∩[r, k+r) = {k+r−1}. Hence rowk(B)
contains one element in [k, r). Let rowk(B) ∩ [k, r) = {j}. As [k] ⊂ colk(A) ∩ colj(A), we
can swap columns k, j in both A and B to get {k, k + r−1} ⊂ rowk(B) without changing
the first k rows of A. We conclude that

{i, i + r − 1} ⊂ rowi(B) for i ∈ [k]. (4)

Suppose k ≥ r. Then [r − 1] = colr−1(A) ∩ colr(A). Since i ∈ coli(B) for i ∈
[2, r), the analog of (1) for columns implies that 1 /∈ coli(B) for i ∈ [2, r). Therefore,
row1(A)∩row1(B) = {1, r}. Similarly, [k−r+2, k] = colk(A)∩colk+1, and i ∈ coli+r−1(B)
for i ∈ [k − r + 2, k) implies that k /∈ coli+r−1(B) for i ∈ [k − r + 2, k). Therefore,
rowk(A) ∩ rowk(B) = {k, k + r − 1}. We deduce that (4) holds.

In both cases, (4) is true. Fix i ∈ [k]. Given i − rℓ ∈ rowi(B) for ℓ ∈ Z≥0 such that
i − r(ℓ + 1) > 0, we have rowi−r(ℓ+1)+1(A) ∩ rowi(B) = {i − rℓ}. However, rowi(B) must
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intersect rowi−r(ℓ+1)(A), so i− r(ℓ+1) ∈ rowi(B). Similarly i+(r−1)+ rℓ ∈ rowi(B) for
ℓ ∈ Z≥0 implies i+ r − 1+ r(ℓ+1) ∈ rowi(B), assuming i+(r− 1)+ r(ℓ+1) ≤ k + r− 1.
Therefore, starting with ℓ = 0, we have by induction that

rowi(B) ∩ [k + r − 1] = {i − rℓ, i + (r − 1) + rℓ | ℓ ∈ Z≥0} ∩ [k + r − 1].

Observe that the first n − r + 1 = r(s − 1) rows of Cr
n have the cascading structure.

We show that if the same number of rows in A have the cascading structure, then A must
actually be isomorphic to Cr

n.

Lemma 3.4. If rowi(A) = [i, i + r) for i ∈ [r(s − 1)], then A ≃ Cr
n.

Proof. Permute A and B to have the form described in Lemma 3.3. Since A has dimension
n = rs − 1 and is r-regular, the size of A forces col1(A) = {1} ∪ [r(s − 1) + 1, rs) and
coln(A) = [r(s − 1), rs). Then by (1),

|coli(B) ∩ [r(s − 1) + 1, rs)| ≤ 1

for all i. For i ∈ [r − 1], Lemma 3.3 implies

{i, r + i, . . . , r(s − 2) + i} = coli(B) ∩ [r(s − 1)].

Since B is s-regular, each coli(B) contains exactly one additional element. By permuting
the last r−1 rows of A and B, we can assume r(s−1)+i ∈ coli(B). Taking 1 ≤ i < j < r,
observe that i ∈ coli(A) ∩ colj(A) ∩ coli(B). This implies r(s − 1) + i /∈ colj(A) by the
column analog of (1). Now using r-regularity of A, we must have

[r(s − 1) + i, n] ⊂ coli(A) =⇒ [i] ⊂ rowr(s−1)+i(A)

for i ∈ [r− 1]. Starting with i = 1, only columns [r(s− 1)+1, rs− i] and rows [r(s− 1)+
1, rs − i] of A do not have r ones already allocated. By r-regularity, we must have

colrs−i(A) = (r(s − 1) − i, rs − i] and rowrs−i(A) = [r − i] ∪ [rs − i, rs).

This fills row rs − i and column rs − i of A. Proceeding inductively for i = 1, . . . , r − 1,
we fill the matrix A and conclude that A ≃ Cr

rs−1 = Cr
n.

The next lemma demonstrates that if A contains the first n′ − r + 2 rows of Cr
n′ for

some n′, then n = n′ and A ≃ Cr
n.

Lemma 3.5. If rowi(A) = [i, i + r) for i ∈ [k] and rowk+1(A) = {1} ∪ [k + 1, k + r), then
k = r(s − 1) and A ≃ Cr

k+r−1.

Proof. Write k = r(t − 1) + ℓ for t ≥ 1 and 0 ≤ ℓ < r. Since

[i + 1, i + r) ⊂ rowi(A) ∩ rowi+1(A)
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for i ∈ [k], we have by Remark 2.2 that i ∈ rowi(B) for i ∈ [k], and 1 ∈ rowk+1(B). By
the cascading structure of the first k rows of A, we deduce that

{1, r + 1, . . . , r(t− 1) + 1, k + 1} ⊆ col1(B). (5)

Suppose ℓ > 0. Then r(t− 1)+1 and k +1 are distinct. This contradicts |colk+1(A)∩
col1(B)| = 1 since [r(t − 1) + 1, k + 1] ⊂ colk+1(A). Therefore, ℓ = 0 and k = r(t − 1).

We claim that B is t-regular. Suppose that 1 ∈ rowi(B) for i > k+1. By the cascading
structure of the first k rows of A, this implies {1, r + 1, . . . , r(t− 1) + 1} ⊆ rowi(B). This
contradicts |rowk+1(A) ∩ rowi(B)| = 1 since {1, r(t− 1) + 1} ⊂ rowk+1(A). Therefore, B
is t-regular, s = t, and n = rs − 1 = k + r − 1.

Lemma 3.4 implies that A ≃ Cr
n = Cr

k+r−1.

We now use the previous lemmas to present the proof of Lemma 3.2.

Proof of Lemma 3.2. We prove the lemma by induction on the rows of A. We can assume
row1(A) = [r] and row2(A) = [2, r + 1]. Now suppose rowi(A) = [i, i + r) for all i ∈ [ℓ]
and ℓ > 1. Then we apply Lemma 3.3 to assume

rowi(B) ∩ [ℓ + r − 1] = {i − rZ≥0, i + r − 1 + rZ≥0} ∩ [ℓ + r − 1].

By assumption, rows ℓ, ℓ + 1 are adjacent in A but rows ℓ − 1, ℓ + 1 are not, so

[ℓ, ℓ + r − 1) 6⊂ rowℓ−1(A) ∩ rowℓ(A) ∩ rowℓ+1(A).

Therefore, ℓ + r − 1 ∈ rowℓ+1(A). Since {ℓ, ℓ + r − 1} ⊂ rowℓ(B), ℓ /∈ rowℓ+1(A). By
adjacency, we deduce that

[ℓ + 1, ℓ + r) ⊂ rowℓ+1(A).

Suppose rowℓ+1(A) = {i} ∪ [ℓ + 1, ℓ + r) for i < ℓ. Then rows [i, ℓ + 1] satisfy Lemma 3.5.
Therefore, we either get a contradiction or A ≃ Cr

n.
Otherwise rowℓ+1(A) 6⊂ [ℓ+r−1], and we can permute columns to assume rowℓ+1(A) =

[ℓ + 1, ℓ + r]. This completes the inductive step. Hence either A ≃ Cr
n or we can permute

the columns of A such that rowi(A) = [i, i + r) for i ∈ [k].

Corollary 3.6. Suppose GA contains a cycle where vertices of distance 2 apart in the
cycle are not adjacent in GA. Then A ≃ Cr

n.

Proof. Let rows [k] correspond to the vertices of the cycle. We must have k > 3 in order
for the assumptions to hold. Suppose A 6≃ Cr

n. Then by Lemma 3.2, rowi(A) = [i, i + r)
for i ∈ [k]. Since |row1(A) ∩ rowk(A)| = max(r − k + 1, 0) < r − 2, rows 1 and k cannot
be adjacent, which is a contradiction.
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3.2 Cliques

In the previous section we considered triangle-free paths in the graph GA. We now look
at the structure of triangles, and in greater generality, cliques in GA. In particular, we
provide a lemma analogous to Lemma 3.2 for cliques.

Lemma 3.7. If rows [k] form a k-clique in GA, then the columns of A can be permuted
such that rowi(A) = [r − 1] ∪ {r + i − 1} and {i, r + i − 1} ⊂ rowi(B) for i ∈ [k].

Proof. Permute the columns so row1(A) = [r] and {1, r} ⊂ row1(B). Thus for i > 1,

|rowi(A) ∩ {1, r}| ≤ 1.

Since each row i ∈ (1, k] is adjacent to row 1, we have either

[r − 1] ⊂ rowi(A) or [2, r] ⊂ rowi(A).

By possibly switching columns 1 and r, we may assume without loss of generality that
[r − 1] ⊂ row2(A). Suppose [2, r] ⊂ rowi(A) for some i > 2. Since {1, 2, i} ⊂ col2(A) and
1 ∈ colr(B), we deduce that r /∈ rowi(B). Since rows 2 and i must be adjacent,

rowi(A) \ {r} ⊂ row2(A).

Thus, rowi(B) must contain two elements in row2(A), which is a contradiction. Therefore,
[r− 1] ⊂ rowi(A) for i ∈ [k]. No two rows of A may be equal, so we can permute columns
[r, n] to assume

rowi(A) = [r − 1] ∪ {r + i − 1}.

Since [r−1] ⊂ row1(A)∩rowi(A), we must have r+i−1 ∈ rowi(B) by (1). Additionally,
we know that

[k] ⊂
r−1
⋂

i=1

coli(A),

so no column of B can have two 1s in the first k rows. We may therefore permute the
first r − 1 columns of A and B simultaneously to assume {i, r + i − 1} ⊂ rowi(B).

Example. We give an example of the rows in A and B corresponding to a clique in GA.
Here r = 4 and k = 3. The diagram on the left shows rowi(A) and the diagram on the
right shows rowi(B) ∩ [k + r − 1] for i ∈ [k].

• • • •
• • • •
• • • •

• •
• •

• •

Remark 3.8. Suppose rows [k] form a clique in GA. By Lemma 3.7, we can permute
columns to get rowi(A) = [r − 1] ∪ {r + i − 1} for i ∈ [k]. Then

[r − 1] = row1(A) ∩ row2(A) =

k
⋂

i=1

rowi(A). (6)
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3.3 Connected components

We define a clique tree as follows. Start with a tree T . Create a new graph equal to the
disjoint union of |V (T )| cliques of arbitrary size. For each edge ij ∈ E(T ), choose one
vertex in clique i and one vertex in clique j of the new graph, and combine the two chosen
vertices into one vertex. We additionally require that the new graph does not contain a
vertex incident to more than two maximal cliques. We call the resulting graph a clique
tree. Note that a triangle-free clique tree is a path.

In this section, we show that if A 6≃ Cr
n, then the connected components of GA must be

clique trees. Moreover, connected components containing a triangle must contain fewer
than r vertices. At the end of the section we prove that a connected component of GA

uniquely determines, up to permutation of the columns, the corresponding rows of A.

Lemma 3.9. Suppose rows 1, 3, 4 are all adjacent to row 2 in A. Then two rows in
{1, 3, 4} must be adjacent.

Proof. Suppose rows 1 and 3 are not adjacent. Then using Lemmas 3.2 and 3.3, we can
permute columns such that rowi(A) = [i, i+ r) for i ∈ [3] and {2, r+1} ⊂ row2(B). Since
rows 2 and 4 are adjacent in A, we must have either [2, r] ⊂ row4(A) or [3, r+1] ⊂ row4(A).
Therefore, row 4 is adjacent to row 1 or 3 in A.

Note that the lemma implies that the only possible trees in GA are paths. We next
prove that if a vertex is adjacent to two vertices of a clique in GA, then it must be adjacent
to every vertex in the clique.

Lemma 3.10. Suppose rows [k] of A form a clique in GA, and row k + 1 is adjacent to
rows 1 and 2 in GA. Then row k + 1 is adjacent to every row i for i ∈ [k].

Proof. Lemma 3.7 implies that rowi(A) = [r − 1] ∪ {r + i − 1} for i ∈ [k]. Observe that
since rows 1, 2, k + 1 form a triangle, (6) implies that

[r − 1] = row1(A) ∩ row2(A) ⊂ rowk+1(A).

Therefore, row k + 1 is adjacent to every row i for i ∈ [k].

Observe that if two cliques share at least two vertices, Lemma 3.10 shows that their
union must also be a clique. Now Lemma 3.9 implies that any vertex is incident to at
most two maximal cliques. The previous two lemmas show that GA essentially contains
only paths and cliques. The next proposition will show that a connected component of
GA for A 6≃ Cr

n must indeed be a clique tree.

Lemma 3.11. If GA has a cycle that is not contained inside a clique, then A ≃ Cr
n.

Proof. Suppose GA contains such a cycle, and let the vertices of the cycle be [k]. If
k > 3 and there exists a row i ∈ [k] in the cycle with cyclically shifted rows i − 1 and
i + 1 adjacent in GA, consider instead the cycle with vertices [k] \ {i}. Repeating, we
either reduce the cycle to a triangle or a cycle where vertices of distance 2 apart are not
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adjacent. If the reduced cycle is a triangle, Lemma 3.10 implies that the original rows [k]
form a clique. Otherwise, the reduced cycle satisfies the conditions of Corollary 3.6, so
A ≃ Cr

n.

Combining Lemmas 3.9, 3.10, and 3.11, we conclude the following theorem.

Theorem 3.12. If A 6≃ Cr
n, then each connected component of GA is a clique tree.

Corollary 3.13. If GA is triangle-free, then either A ≃ Cr
n or GA is a disjoint union of

paths.

We next give a bound on the size of connected components that do contain triangles.

Lemma 3.14. If a connected component of GA contains a triangle, then the component
has fewer than r vertices.

Proof. Suppose a connected component contains at least r vertices. We can then choose a
subset of r vertices W ⊂ V (GA) such that the subgraph of GA induced by W is connected
and contains a triangle. Rearrange the rows so that W = [r], and each row j ∈ W \ {1}
is adjacent to some i < j. Let ti ∈ W for i ∈ [3] induce a triangle, with t1 < t2 < t3.

We claim that
∣

∣

∣

∣

∣

k
⋂

i=1

rowi(A)

∣

∣

∣

∣

∣

≥ r − (k − 1)

for k ∈ [r]. We prove this by induction. The case k = 1 is clear. Now assume the claim is
true for some k. Since |rowk+1(A)∩ rowi(A)| = r − 1 for some i ≤ k, there is at most one
element of rowi(A) that is not in rowk+1(A). Consequently there is at most one element
of

⋂k
i=1 rowi(A) that is not in rowk+1(A). Thus,

∣

∣

∣

∣

∣

k+1
⋂

i=1

rowi(A)

∣

∣

∣

∣

∣

≥ r − (k − 1) − 1 = r − ((k + 1) − 1),

proving the claim.
Therefore, |

⋂r
i=1 rowi(A)| ≥ 1, with equality if and only if

k
⋂

i=1

rowi(A) 6=
k+1
⋂

i=1

rowi(A) (7)

for every k ∈ [r − 1]. Since t1, t2, t3 induce a triangle in GA, (6) implies that rowt1(A) ∩
rowt2(A) ⊂ rowt3(A). Thus, (7) does not hold for k = t3 − 1. Therefore,

∣

∣

∣

∣

∣

r
⋂

i=1

rowi(A)

∣

∣

∣

∣

∣

> 1.

Thus, there exist two columns of A with r ones in the same rows. This is a contradiction
since A is invertible.
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Corollary 3.15. The graph GA is connected if and only if A ≃ Cr
n.

Proof. Suppose GA is connected and not isomorphic to Cr
n. Since n = rs − 1 > r,

Lemma 3.14 implies GA is triangle-free. By Corollary 3.13, GA is a disjoint union of paths.
If GA is a single path, Lemma 3.2 allows us to permute A such that rowi(A) = [i, i + r)
for i ∈ [n]. Since A is a square matrix, this is impossible.

The other direction is obvious.

We now present the proof of our main result relating induced Johnson subgraphs and
Lehman matrices.

Proof of Theorem 3.1. We may assume that W = [k]. If W induces a path, then
Lemma 3.2 proves the claim. Otherwise, the connected component contains a trian-
gle, so Lemma 3.14 implies k < r. From the proof of Lemma 3.14, we know that
|
⋂k

i=1 rowi(A)| ≥ 2. Therefore, there exist two columns of A that have 1s in rows [k].
Then (1) implies that

|coli(B) ∩ [k]| ≤ 1 (8)

for all i. Rearrange W so that each row j ∈ W \ {1} is adjacent to some i < j. We will
prove inductively that for ℓ ∈ [k], the columns of A can be permuted such that

1. rowℓ(A) ⊂ [ℓ + r − 1],

2. [ℓ, r) ⊂
⋂ℓ

i=1 rowi(A),

3. {ℓ, ℓ + r − 1} = rowℓ(A) ∩ rowℓ(B), and

4. rows [ℓ] are unique up to permutations of columns.

The claim is trivial for ℓ ≤ 2. Now assume the claim is true for all i ≤ ℓ for some ℓ ∈ [2, k).
By statement 3 of the inductive hypothesis,

i ∈ coli(B) ∩ coli+r−1(B)

for i ∈ [ℓ]. Therefore, (8) implies that ℓ+1 /∈ coli(B) for i ∈ [ℓ]∪ [r, r + ℓ), or equivalently
rowℓ+1(B) is disjoint from [ℓ] ∪ [r, r + ℓ). Since [ℓ, r) ⊂

⋂ℓ
i=1 rowi(A), (1) implies that

|rowℓ+1(B) ∩ [ℓ, r)| ≤ 1.

Thus, rowℓ+1(A) ∩ rowℓ+1(B) 6⊂ [r + ℓ − 1] because the intersection has size 2.
There exists i ∈ [ℓ] such that rows i and ℓ + 1 in A are adjacent. Thus,

|rowℓ+1(A) \ rowi(A)| = 1,

so row ℓ+1 in A has exactly one 1 outside [r+ℓ−1]. We can permute columns to assume

r + ℓ ∈ rowℓ+1(A) ∩ rowℓ+1(B).
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Thus, rowℓ+1(A) ⊂ [r + ℓ], proving statement 1. Since rows i and ℓ + 1 are adjacent in A
and {i, i + r − 1} ⊂ rowi(A) ∩ rowi(B), we have either

rowℓ+1(A) = rowi(A) ∪ {r + ℓ} \ {i} or rowℓ+1(A) = rowi(A) ∪ {r + ℓ} \ {i + r − 1}. (9)

Note that since [ℓ, r) ⊂ rowi(A), in both cases [ℓ + 1, r) ⊂ rowℓ+1(A), asserting statement
2. We showed above that rowℓ+1(B) is disjoint from [ℓ]∪ [r, r+ℓ). Since r+ℓ ∈ rowℓ+1(B)
and rowℓ+1(A) ⊂ [r + ℓ], we deduce that

|rowℓ+1(B) ∩ [ℓ + 1, r)| = 1.

Since [ℓ + 1, r) ⊂
⋂ℓ+1

i=1 rowi(A), we can permute the columns [ℓ + 1, r) of A and B
simultaneously to assume ℓ + 1 ∈ rowℓ+1(B), leaving the first ℓ + 1 rows of A unchanged.
We now have {ℓ + 1, ℓ + r} ⊂ rowℓ+1(A) ∩ rowℓ+1(B), proving statement 3.

To show uniqueness, we only need to show exactly one case in (9) is true. Take some
row j such that rows i and j are adjacent in GA and j ≤ ℓ (this is possible since ℓ ≥ 2
and rows 1 and 2 are adjacent). Let

{a} = {i, i + r − 1} ∩ rowj(A) = rowi(A) ∩ rowi(B) ∩ rowj(A),

which is a one element set since |rowi(A) ∩ rowj(A)| = r − 1 implies |{i, i + r − 1} ∩
rowj(A)| ≥ 1 and |rowi(B) ∩ rowj(A)| = 1 implies |{i, i + r − 1} ∩ rowj(A)| ≤ 1. Let

{b} = {i, i + r − 1} \ {a}.

Since rows i, j are adjacent, we have rowi(A) ∩ rowj(A) = rowi(A) \ {b}. If rowℓ+1(A) =
rowi(A) ∪ {r + ℓ} \ {b}, then rows j, ℓ + 1 are also adjacent. If rows j, ℓ + 1 are adjacent
in GA, then rows i, j, ℓ + 1 form a triangle, so

a ∈ rowi(A) ∩ rowj(A) ⊂ rowℓ+1(A)

by (6). Therefore,
rowℓ+1(A) = rowi(A) ∪ {r + ℓ} \ {b}

if and only if rows j, ℓ + 1 are adjacent in GA.
Thus, exactly one case in (9) can be true, and we conclude that the rows [ℓ + 1] are

uniquely determined by the graph GA up to permutations of the columns. This completes
the inductive step and proves the theorem.

4 Bounds on clique size and degree

In this section, we continue to assume that A is an r-regular thin Lehman matrix of
dimension n × n, B is its s-regular dual, and n = rs − 1. In Section 3, we showed that
either A ≃ Cr

n or the connected components of GA are clique trees. We are therefore
interested in the maximum size of cliques in GA, which would give us a better idea of the
possible structures of the induced Johnson subgraph.

We provide a sharp upper bound on the maximum clique size of the graph GA, and
give a relation between the clique sizes of GA and GBT . We also give an upper bound on
the maximum degree of GA.
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4.1 Maximum clique size

Let the clique number ω(GA) denote the number of vertices in a maximal clique in GA.
The equation ABT = J + I gives a condition on the size of cliques in GA and GBT .

Lemma 4.1. The clique numbers ω(GA) and ω(GBT ) are equal.

Proof. Let ω(GA) = k. Use Lemma 3.7 to permute rows/columns such that

rowi(A) = [r − 1] ∪ {i + r − 1} and {i, i + r − 1} ⊂ rowi(B)

for i ∈ [k]. Now consider any row i > k with r ∈ rowi(B). Then |row1(A) ∩ rowi(B)| = 1
implies [r − 1] ∩ rowi(B) = ∅. Now for j ∈ (1, k], |rowj(A) ∩ rowi(B)| = 1 implies
j + r − 1 ∈ rowi(B). Thus, [r, r + k) ⊂ rowi(B). Since [k] ⊂ coli(A) for i ∈ [r − 1], (1)
implies that |colr(B)∩ [k]| = 1. By s-regularity of B, there must be s− 1 rows i > k with
r ∈ rowi(B). Consequently there are s− 1 rows of B containing columns [r, r + k). These
columns form a k-clique in GBT .

This shows that ω(GA) ≤ ω(GBT ). Since ABT = BT A = J + I by Theorem 2.1, we
get equality via symmetry.

Corollary 4.2. The maximum clique size ω(GA) ≤ min(r − 1, s − 1).

Proof. Lemma 3.14 implies ω(GA) ≤ r − 1 and ω(GBT ) ≤ s − 1. It follows that

ω(GA) = ω(GBT ) ≤ min(r − 1, s − 1).

We will show that the previous upper bound is sharp. For r = s and n = r2−1, define
the block matrix

Ωr =



















Jr−1 E11 E22 . . . Er−1,r−1 0
0 Jr−1 E11 Er−2,r−2 Er−1,r−1

Er−1,r−1 0 Jr−1 Er−3,r−3 Er−2,r−2
...

. . .
...

E22 E33 E44 Jr−1 E11

E11 E22 E33 . . . 0 Jr−1



















,

where each block is (r − 1) × (r − 1), Jr−1 is the matrix of all 1s, and Eij is the matrix
with a single 1 in row i, column j. Observe that GΩr

=
⊔r+1 Kr−1, where Kr−1 is the

complete graph with r − 1 vertices. For this reason, we will call Ωr a clique matrix. In
[8], it is shown that Ωr is a thin Lehman matrix for r ≥ 3. For completeness, we give a
sketch of the proof.

Lemma 4.3 ([8], Lemma 4). For r ≥ 3, the clique matrix Ωr is a thin Lehman matrix.

Proof. Let π ∈ Sr+1 be the cycle permutation sending

π : 1 7→ 2, . . . , r 7→ r + 1, r + 1 7→ 1.
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For (i, j) ∈ [r + 1] × [r − 1], define the 0, 1 vector yij to be the incidence vector of

{(πk(i) − 1)(r − 1) + k, (πr(i) − 1)(r − 1) + j | k = 1, . . . , r − 1}.

By letting B be the n × n matrix with row (i − 1)(r − 1) + j equal to yπj+1(i),j , it can be
checked that Ωr · B

T = J + I.

Next, we consider the case when r < s.

Proposition 4.4. For any 3 ≤ r < s, there exists an r-regular Lehman matrix A such
that ω(GA) = r − 1, i.e., A contains Jr−1 as a submatrix.

Proof. Define the n × n matrix A0 to be

A0 =























Jr−1 E11 E21 E31 . . . Er−2,1 Er−1,1

E11 Jr−1 E22 E33 . . . Er−2,r−2 0
E12 0 Jr−1 E22 Er−3,r−3 Er−2,r−2

E13 Er−2,r−2 0
...

...
... E22

E1,r−1 E22 . . . Er−2,r−2 0 Jr−1

C























,

where Jr−1 is the (r − 1) × (r − 1) matrix of all 1s, Eij is the (r − 1) × (r − 1) matrix
with a single 1 in row i, column j, and C is the circulant matrix Cr

(s−r+1)r with the first
column and last row removed. The lines are placed to emphasize the matrix pattern.

Let B1(i, j) := (i − 1)(r − 1) + j and B2(i, j) := r(r − 1) + r(i − 1) + j. Define the
n × n matrix Σ with 1s only at

(B1(2, r − 1), B2(s − r + 1, r − 1)), (B1(r + 1 − i, r − 1)), B2(1, i)),

(B2(1, 1), B1(r, r − 1)), (B2(s − r + 1, r − i), B1(i + 1, r − 1))

for i ∈ [r − 2]. We claim that A := A0 + Σ is an r-regular thin Lehman matrix.
We provide the rows of B. For convenience, given a subset S ⊂ [n], let vec(S) denote

the incidence vector in {0, 1}n of S. Let ei := vec{i}. Define

xi = vec{B1(2, 1), . . . , B1(r, 1), B2(1, i), . . . , B2(s − r + 1, i)}

for i ∈ [r − 1]. Let τ ∈ Sr−1 be the cyclic permutation sending 1 7→ 2, . . . , r − 1 7→ 1. For
(i, j) ∈ [r − 1] × [r − 1], we define

yij = vec{B1(1, i), B1(1 + τ(i), 2), . . . , B1(1 + τ r−3(i), r − 2),

B1(1 + τ−1(i), j), B2(1, r − i), . . . , B2(s − r + 1, r − i)}.

Lastly for i ∈ [r − 1], define

zi = vec{B1(1, i), B1(2, r − 1), . . . , B1(r, r − 1), B2(1, r), . . . , B2(s − r, r)}.
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Now let the rows of B equal

xi for i ∈ [r − 1], (R1)

xr−1 +
s−r+1
∑

j=k

(eB2(j,r−2) − eB2(j,r−1)) for k ∈ [2, s − r + 1], (R2)

yij for (i, j) ∈ [r − 1] × [r − 1], (R3)

y1,r−1 +
k

∑

j=1

(eB2(j,r) − eB2(j,r−1)) for k ∈ [s − r], (R4)

yi,r−1 +

s−r+1
∑

j=k

(eB2(j,r−i−1) − eB2(j,r−i)) for (i, k) ∈ [2, r − 1] × [2, s − r + 1], and (R5)

zi for i ∈ [r − 1]. (R6)

There are

(r − 1) + (s − r) + (r − 1)(r − 1) + (s − r) + (r − 2)(s − r) + (r − 1) = rs − 1 = n

rows in total, so B is an n × n matrix. To avoid excessive technical details, we leave
it to the reader to check that ABT = J + P for some permutation matrix P . Thus,
A(PB)T = J + PP T = J + I. We conclude that A is a thin Lehman matrix.

Example. We provide an example of the matrices A and B described in Proposition 4.4
such that ABT = J + I. In the example r = 4, s = 5, and n = 19.

Proposition 4.4 shows that Corollary 4.2 is sharp for r < s. Since ω(GA) = ω(GT
B)

by Lemma 4.1, taking BT from Proposition 4.4 shows the bound is sharp for r > s. The
clique matrix Ωr shows sharpness for r = s, so we conclude that ω(GA) ≤ min(r−1, s−1)
is sharp in general.
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4.2 Maximum degree

We provide a relation between the maximum degree and the maximum clique size of the
induced Johnson subgraph. Using bounds on maximum clique size, we give a bound on
the maximum degree of GA. We do not, however, believe this bound is sharp.

Lemma 4.5. The maximum degree ∆(GA) ≤ 2(ω(GA) − 1).

Proof. If A ≃ Cr
n, then ∆(GA) = 2 and ω(GA) = 2, so the lemma holds. If A 6≃ Cr

n,
Theorem 3.12 says that each connected component of GA is a clique tree. Take a vertex
i of GA. By the definition of a clique tree, i is incident to at most two maximal cliques.
The degree of any vertex in a maximal clique of GA is ω(GA) − 1. Therefore, the degree
of i is at most 2(ω(GA) − 1).

Observe that in the case r = 3, Corollary 4.2 says ω(GA) ≤ 2, so the previous lemma
implies that ∆(GA) ≤ 2.

Proposition 4.6. For r > 3, the maximum degree ∆(GA) ≤ min(r − 2, 2(s − 2)).

Proof. Assume row1(A) = [r], and suppose that the r − 1 rows [2, r] are all adjacent to
row 1. We may also assume by permuting columns that {1, 2} ⊂ row1(B), which implies
that [3, r] ⊂ rowi(A) for i ∈ [r] by adjacency. Thus,

col3(A) = col4(A) = [r],

which contradicts A being invertible. Therefore, ∆(GA) ≤ r − 2. It follows from Corol-
lary 4.2 and Lemma 4.5 that ∆(GA) ≤ 2(s − 2).

5 Classification of graphs with two connected com-

ponents

In Section 3, we showed that a Lehman matrix A has a connected graph GA if and only
if A ≃ Cr

n. We now classify all Lehman matrices such that the graph GA has exactly two
connected components. Recall that a Lehman matrix A with d > 1 has no edges in GA.
Therefore, we may assume A is an r-regular thin Lehman matrix, B is the s-regular dual,
and n = rs − 1.

Theorem 5.1. For any r, s > 2, a graph G with n vertices and two connected components
is the Johnson subgraph GA associated to an r-regular Lehman matrix A if and only if
each component of G is a path with length greater than r and not equivalent to −1, 0
(mod r). Furthermore the matrix A is determined, up to isomorphism, by the graph G.

Proof. ( =⇒ ) Suppose a component of GA has length greater than n − r > r. Then it
must be either a path or a cycle by Lemma 3.14. Lemmas 3.2 and 3.4 imply that A ≃ Cr

n.
Since GA has two connected components, we must have that the number of vertices in
each component is at most n − r. Equivalently, each component has at least r vertices
and must be a path by Lemma 3.14.
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Claim 1. Neither path has length equivalent to −1, 0 (mod r).

Let the lengths of the two paths be k and n−k. Since k +(n−k) = n ≡ −1 (mod r),
we can assume the length of one of the paths is

k = rℓ + j

for ℓ ≥ 1 and 0 ≤ j < r/2. By Lemmas 3.2 and 3.3, we rearrange rows and columns to
get rowi(A) = [i, i + r) and

rowi(B) ∩ [k + r − 1] = {i − rZ≥0, i + r − 1 + rZ≥0} ∩ [k + r − 1] (10)

for i ∈ [k]. Lemma 3.2 also implies that there exists a permutation σ ∈ Sn such that

rowk+i(A) = σ([i, i + r)) for i ∈ [n − k]. (11)

Additionally since n − k > r, we may assume

{σ(i), σ(i + r − 1)} = rowk+i(B) ∩ σ([i, i + r)) (12)

for i ∈ [n − k] from the proof of Lemma 3.3.
Observe that

|coli(A) ∩ [k]| = min(i, k + r − i, r) for i ∈ [k + r − 1], and (13)

|colσ(i)(A) ∩ (k, n]| = min(i, n − k + r − i, r) for i ∈ [n − k + r − 1]. (14)

Since A is r-regular, we must have

|colσ(i)(A)∩[k]|+|colσ(i)(A)∩(k, n]| = min(σ(i), k+r−σ(i), r)+min(i, n−k+r−i, r) = r.

From this observation we deduce that

σ(i) ∈ {r − i, k + i} (15)

for i ∈ [r − 1]. If σ(1) = r − 1, we can swap rows i, k − i for i ∈ [k] and columns
i, k + r − i for i ∈ [k + r − 1] in A and B simultaneously to assume that σ(1) = k + 1 and
k + 1 ∈ rowk+1(A)∩ rowk+1(B). Due to the cascading structure of rows [k] of A, we have
that

{k + 1 − rZ≥0} ∩ [k] ⊂ rowk+1(B),

so j + 1 ∈ rowk+1(B). Since {j + 1, k + 1} ⊂ colj+1(B), Remark 2.2 says that

|{j + 1, k + 1} ∩ coli(A)| ≤ 1

for columns i > j + 1. As rowj+1(A) = [j + 1, j + r], we deduce that

[j + 2, j + r] ∩ rowk+1(A) = ∅.
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Noting that rowk+1(A) = σ([1, r]), if σ(r − i) = i for any i ∈ [j + 2, r), then

σ([1, r]) ∩ [j + 2, r) 6= ∅,

which gives a contradiction. Therefore, (15) implies that σ(r−i) = k+r−i for i ∈ [j+2, r).
Thus,

[k + 1, k + r − j − 2] ⊂ rowk+1(A).

Note that σ(r − j − 1) /∈ rowk+1(B) from (12). Therefore, σ(r − j − 1) 6= j + 1, which
forces σ(r−j−1) = k+r−j−1. If j = 0, we have shown that [k+1, k+r) ⊂ rowk+1(A),
which contradicts rows k and k + 1 not being adjacent in GA. Therefore, k 6≡ 0 (mod r)
and since n = rs − 1, n − k 6≡ −1 (mod r). Switching k and n − k, we get n − k 6≡ 0
(mod r) and k 6≡ −1 (mod r). This proves the claim.

Claim 2. If there exists a Lehman matrix A with GA = Pk ⊔ Pn−k, then A is unique up
to isomorphism.

We continue the discussion from the proof of Claim 1. We previously concluded that

[k + 1, k + r − j) ⊂ rowk+1(A).

Suppose k + r − j ∈ rowk+1(A). Then σ(r − j) = k + r − j by (11) and (15), so

k + r − j ∈ colk+r−j(B)

by (12). Since k + r − j = r(ℓ + 1), we also have k + r − j ∈ row1(B) by (10). Thus,

colk+r−j(B) ⊃ {1, k + r − j}.

If i ∈ rowk+1(A) for i ∈ [j], then σ(r − i) = i and

coli(A) = [i] ∪ [k + 1, k + r − i],

which contains {1, k + r − j}, giving a contradiction. Therefore, rowk+1(A)∩ [j] = ∅, and
σ(r − i) = k + r − i for i ∈ [j]. This implies

[k + 1, k + r) ⊂ rowk+1(A)

which is another contradiction because rows k and k+1 are not adjacent. Hence k+r−j /∈
rowk+1(A), so σ(r − j) = j.

Observe that j ∈ rowk(B) by (10) since k = rℓ + j. Thus, (12) implies that

colj(B) ⊃ {k, k + r − j}.

If k + r − i ∈ rowk+1(A) for i ∈ [j], then σ(r − i) = k + r − i and

colk+r−i(A) = (k − i, k + r − i],
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which contains {k, k + r − j}, giving a contradiction. We conclude that

[k + r − j, k + r) ∩ rowk+1(A) = ∅.

Now by (15), we conclude that

[j] ∪ [k + 1, k + r − j) ⊂ rowk+1(A) and

σ(i) =

{

k + i if i ∈ [r − j − 1]

r − i if i ∈ [r − j, r)
.

We further deduce from (13) and (14) that

σ(n − k + i) =

{

k + r − i if i ∈ [j]

i if i ∈ [j + 1, r)
.

We have thus determined the columns [k + r − 1] in A. This determines A up to a choice
of σ([r, n − k]). Since all 1s in rows [k] of A are contained in columns [k + r − 1], we can
permute the rest of the columns without affecting the first k rows. Therefore, we have
shown that if a thin Lehman matrix A exists with GA = Pk ⊔ Pn−k, then A is unique up
to isomorphism (Pk is a path of length k).

(⇐=) Let r < k < n − r and k = rℓ + j for 0 < j < r/2. We will construct an n × n
r-regular thin Lehman matrix A such that GA = Pk ⊔ Pn−k. First we divide Cr

n and Ds
n

into blocks. Write

Cr
n =

[

A11 0
A21 A22

]

and Ds
n =

[

B11 B12

B21 B22

]

where A11 and B11 are k×(k+r−1) matrices, and A22 and B22 are (n−k)×(n−k−r+1)
matrices. Let P be the (k + r − 1) × (k + r − 1) permutation matrix such that A21P
switches columns

i ↔ k + r − i for i /∈ (rt + j, r(t + 1)), t ∈ [0, ℓ]

and keeps all other columns fixed. Let Q be the (n−k−r+1)×(n−k−r+1) permutation
matrix such that B12Q switches columns

rt − j + i ↔ rt − i + 1 for i ∈ [j], t ∈ [1, s − ℓ − 2]

and keeps all other columns fixed.
Note that if ℓ = s−2, then n−k− r+1 = r(s− ℓ−1)− j = r− j, so Q is the identity

matrix. If ℓ = s − 3, then (r − j, r] = (r(s − ℓ − 2) − j, r(s − ℓ − 2)], so Q only switches
one block of columns.

Define A and B by

A =

[

A11 0
A21P A22

]

and B =

[

B11 B12Q
B21P B22

]

.
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Observe that A is r-regular with rows [k] and (k, n] forming two disjoint paths in GA. To
avoid excessive technical details, we leave it to the reader to confirm that ABT = J + I,
i.e., A and B form a thin Lehman pair. This proves the theorem.

Example. We give an example of A from Theorem 5.1 with GA = Pk ⊔ Pn−k. We also
provide the dual B. In the example r = 5, s = 5, n = 24, and k = 7.

6 Circulant matrices

Let S ⊂ Z/nZ. We define the circulant matrix CS to be the n × n matrix with columns
indexed by Z/nZ and rows equal to the incidence vectors of

i + S := {i + s | s ∈ S}

for i ∈ Z/nZ. By definition, any circulant matrix can be written in this form. We study
when a circulant matrix is also a Lehman matrix. We show that if CS is a Lehman matrix,
then either CS ≃ Cr

n or the Johnson subgraph GCS
has no edges. We then provide some

general constructions of circulant Lehman matrices CS such that the Johnson subgraph
indeed has no edges.

Note that if CS is a Lehman matrix, then its dual must also be circulant, since a
translation of Z/nZ is a bijection and the dual is unique. If CS is Lehman for d > 1, then
GCS

cannot have any edges. We therefore again only consider thin Lehman matrices.

Proposition 6.1. Let r = |S|. If CS is a thin Lehman matrix, then either CS ≃ Cr
n or

GCS
has no edges.

Proof. Note that since CS is circulant, the graph GCS
is vertex transitive (translating the

rows in Z/nZ is a graph automorphism). Suppose GCS
contains an edge. Then there

must exist t < n such that
|S ∩ (t + S)| = r − 1.
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Let {b} = S \ (t + S). There must exist k ≥ 0 such that

b, b + t, . . . , b + kt ∈ S but b + (k + 1)t /∈ S,

since otherwise b + nt = b contradicts b /∈ t + S. Therefore, {b + (k + 1)t} = (t + S) \ S.
Define

X = S \ {b, b + t, . . . , b + kt}.

We claim that t + X = X. Take a ∈ X and suppose a + t /∈ X. Then either a + t /∈ S or
a + t ∈ {b, b + t, . . . , b + kt}. If a + t /∈ S, then a + t ∈ (t + S) \ S, so a + t = b + (k + 1)t.
Hence a = b + kt /∈ X, a contradiction. Now suppose

a + t ∈ {b, b + t, . . . , b + kt}.

We cannot have a + t = b since b /∈ t + S. Therefore, a + t = b + ℓt for ℓ ≥ 1, so
a = b + (ℓ − 1)t /∈ X, which is another contradiction. We conclude that t + X = X.

Suppose k is positive. Since X − t = X + nt − t = X + (n− 1)t, we have X − t = X.
Therefore,

S − t = {b − t, b, . . . , b + (k − 1)t} ∪ (X − t) = {b − t, b, . . . , b + (k − 1)t} ∪ X.

By assumption b + (k + 1)t /∈ S, so b + (k + 1)t 6= b. Then b − t 6= b + kt, and

|S ∩ (S − t)| = r − 1.

Observe that
t + S = {b + t, b + 2t, . . . , b + kt, b + (k + 1)t} ∪ X.

Since b 6= b + (k + 1)t, we also have |S ∩ (t + S)| = r − 1. Note that

S ∩ (S − t) = {b, . . . , b + (k − 1)t} ∪ X and S ∩ (t + S) = {b + t, . . . , b + kt} ∪ X.

Therefore, rows −t, 0, t of CS cannot form a clique in GCS
because S∩(S−t) 6= S∩(t+S),

by (6). If CS is not isomorphic to Cr
n, then GCS

is a union of clique trees. As GCS
is vertex

transitive and thus regular, the only possible clique trees are single cliques. Since rows −t
and 0 and rows 0 and t are adjacent, but rows −t and t are not, this is a contradiction.
Therefore, we must have CS ≃ Cr

n.
Now suppose k = 0. Then S = {b} ∪ X and row t is the incidence vector of

t + S = {b + t} ∪ X.

Let B be the Lehman dual of CS. Take some row i ∈ colb(B) distinct from 0 or t, so
b ∈ rowi(B). Since |S ∩ rowi(B)| = 1, |(t + S) ∩ rowi(B)| = 1, and S ∩ (t + S) = X, we
must have

b + t ∈ rowi(B).

Observe that |X| = r − 1 ≥ 2, and pick distinct a1, a2 ∈ X. For j ∈ {1, 2}, we have
{aj , aj + t} ⊂ X, so

(b − aj) + S ⊃ {b, b + t}.

Thus, the distinct rows b − a1 and b − a2 of CS both intersect row i of B in at least 2
columns, which is a contradiction. In this case, CS cannot be a thin Lehman matrix.
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The previous lemma motivates the question of when a circulant Lehman matrix can
have a Johnson subgraph with no edges. We show that for composite r and s, there
do exist circulant matrices CS that are thin Lehman matrices with edgeless graphs. To
simplify our expressions, we use

AP(a, k, δ) := {a, a + δ, . . . , a + (k − 1)δ} ⊂ Z/nZ

to denote arithmetic progressions of length k and difference δ starting with element a.
Given two subsets X, Y ⊂ Z/nZ, let

X + Y := {x + y | x ∈ X, y ∈ Y }.

Proposition 6.2. Suppose r = r1r2 and s = s1s2 are composite integers, with ri, si ≥ 2.
Define

SA = AP(0, r1, 1) + AP(0, r2, r1s1) and

−SB = AP(0, s1, r1) + AP(0, s2, rs1).

Then CSA
, CSB

form a thin Lehman pair. Moreover GCSA
, GCSB

are edgeless graphs.

Proof. Let P be the circulant matrix C{1} of order n, where {1} ⊂ Z/nZ. Note that P is
a permutation matrix. Then we may write

CSA
=

∑

i∈SA

P i and CSB
=

∑

i∈SB

P i.

Since P T = P−1, we have (CSB
)T = C−SB

. We can thus express

CSA
(CSB

)T =
∑

(i,j)∈SA×SB

P i−j.

Since r1 < r1s1 and r1s1 < rs1, we see that |SA| = r1r2 = r and |SB| = s1s2 = s. Observe
that 0 ∈ SA ∩ SB and

(r1 − 1) + (r2 − 1)r1s1 = n − (s1 − 1)r1 − (s2 − 1)rs1 ∈ SA ∩ SB.

Thus, there are two pairs (i, j) ∈ SA × SB with i − j = 0. It is easy to check that

SA − SB = Z/nZ.

Since n = rs − 1, we conclude that

CSA
(CSB

)T = P 0 +
∑

i∈Z/nZ

P i = J + I.

Since r2 ≥ 2 and r1 + r2(r1s1) < n, we can deduce that GCSA
has no edges. Then

ω(GCSA
) = 0 implies ω(GCT

SB

) = 0 by Lemma 4.1. Since CT
SB

= C−SB
, this implies GCSB

also has no edges.
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Note that some of the matrices CSA
given above may be isomorphic for different choices

of r1, r2, s1, s2. We believe, however, that the previously mentioned matrices are the only
possible circulant thin Lehman matrices, up to isomorphism.

Conjecture 6.3. If CS is a thin Lehman matrix, then CS is isomorphic to Cr
n or one of

the matrices in Proposition 6.2.

We used a computer program to confirm that the conjecture is true when n < 48.

7 Open problems

The classification of Lehman matrices, or even only thin Lehman matrices, is still an
open problem. We have used the Johnson subgraph to give structural results for thin
Lehman matrices, which we believe will make it easier to enumerate them. We showed
that a connected component of the graph uniquely determines the corresponding rows
in the Lehman matrix, and we completely classified matrices where their graphs have
two connected components. Lehman matrices with graphs containing more connected
components have not been classified, however. Some of the constraints we provide for the
Johnson subgraph may also be improved upon.

If two matrices are isomorphic, then their Johnson subgraphs are also isomorphic. We
noted that the converse is false. It would be highly useful to find some simple structure
associated to a Lehman matrix such that the matrix is uniquely determined up to iso-
morphism. One possibility may be to use colored edges to combine the graphs GA and
GB into a single graph. Another possibility is to investigate when row intersections have
a fixed size other than r − 1.

We showed that a circulant Lehman matrix must either be isomorphic to Cr
n or have

an edgeless Johnson graph. We propose a conjecture on the classification of all circulant
thin Lehman matrices. In particular, it would be interesting to prove that if r or s is
prime, then any n × n circulant thin Lehman matrix is isomorphic to Cr

n, for n = rs− 1.
The only known infinite families of Lehman matrices are the thin Lehman matrices

and the point-line incidence matrices of nondegenerate finite projective planes. We would
like to know if there are any other infinite families of Lehman matrices.
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