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Abstract

Let LAn(τ) be the length of the longest alternating subsequence of a uniform
random permutation τ ∈ [n]. Classical probabilistic arguments are used to rederive
the asymptotic mean, variance and limiting law of LAn (τ). Our methodology is
robust enough to tackle similar problems for finite alphabet random words or even
Markovian sequences in which case our results are mainly original. A sketch of how
some cases of pattern restricted permutations can also be tackled with probabilistic
methods is finally presented.
Keywords: Longest alternating subsequence, random permutations, random words, m-

dependence, central limit theorem, law of the iterated logarithm.

1 Introduction

Let a := (a1, a2, . . . , an) be a sequence of length n whose elements belong to a totally
ordered set Λ. Given an increasing set of indices {ℓi}m

i=1, we say that the subsequence
(aℓ1 , aℓ2, . . . , aℓm

) is alternating if aℓ1 > aℓ2 < aℓ3 > · · ·aℓm
. The length of the longest

alternating subsequence is then defined as

LAn(a) := max {m : a has an alternating subsequence of length m} .

We revisit, here, the problem of finding the asymptotic behavior (in mean, variance
and limiting law) of the length of the longest alternating subsequence in the context of
random permutations and random words. For random permutations, these problems have
seen complete solutions with contributions independently given (in alphabetical order) by
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Pemantle, Stanley and Widom. The reader will find in [18] a comprehensive survey, with
precise bibliography and credits, on these and related problems. In the context of random
words, Mansour [12] contains very recent contributions where mean and variance are ob-
tained. Let us just say that, to date, the proofs developed to solve these problems are of
a combinatorial or analytic nature and that we wish below to provide probabilistic ones.
Our approach is developed via iid sequences uniformly distributed on [0, 1], counting min-
ima and maxima and the central limit theorem for 2-dependent random variables. Not
only does our approach recover the permutation case, but it works as well for random
words, a ∈ An where A is a finite ordered alphabet, recovering known results and pro-
viding new ones. Properly modified it also works for several kinds of pattern restricted
subsequences. Finally, similar results are also obtained for words generated by a Markov
sequence.

2 Random permutations

The asymptotic behavior of the length of the longest alternating subsequence has been
studied by several authors, including Pemantle [18, page 684], Stanley [17] and
Widom [20], who by a mixture of generating function methods and saddle point techniques
get the following result:

Theorem 2.1 Let τ , be a uniform random permutation in the symmetric group Sn, and
let LAn(τ) be the length of the longest alternating subsequence of τ . Then,

E LAn (τ ) =
2n

3
+

1

6
, n ≥ 2

VarLAn (τ ) =
8n

45
− 13

180
, n ≥ 4.

Moreover, as n → ∞,
LAn(τ ) − 2n/3
√

8n/45
=⇒ Z,

where Z is a standard normal random variable and where =⇒ denotes convergence in
distribution.

The present section is devoted to give a simple probabilistic proof of the above result.
To provide such a proof we make use of a well known correspondence which transform the
problem into that of counting the maxima of a sequence of iid random variables uniformly
distributed on [0, 1]. In order to establish the weak limit result, a central limit theorem
for m-dependent random variables is then briefly recalled.

Let us start by recalling some well known facts (Durrett [4, Chapter 1], Resnick
[14, Chapter 4]). For each n ≥ 1 (including n = ∞), let µn be the uniform mea-
sure on [0, 1]n and, for each n ≥ 1, let the function Tn : [0, 1]n → Sn be defined
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by Tn(a1, a2, . . . , an) = τ−1, where τ is the unique permutation τ ∈ Sn that satisfies
aτ1 < aτ2 < · · · < aτn

. Note that Tn is defined for all a ∈ [0, 1]n except for those for which
ai = aj for some i 6= j, and this set has µn-measure zero. A well known fact, sometimes
attributed to Rényi [14], asserts that the pushforward measure Tnµn, i.e., the image of µn

by Tn, corresponds to the uniform measure on Sn, which we denote by νn. The importance
of this fact relies in the observation that the map Tn is order preserving, that is, ai < aj if
and only if (Tna)i < (Tna)j. This implies that any event in Sn has a canonical representa-
tive in [0, 1]n in terms of the order relation of its components. Explicitly, if we consider the
language L of the formulas with no quantifiers, one variable, say x, and with atoms of the
form xi < xj , i, j ∈ [n], then any event of the form {x : ϕ (x)} where ϕ ∈ L, has the same
probability in [0, 1]n and in Sn under the uniform measure. To give some examples, events
like {x : x has an increasing subsequence of length k}, {x : x avoids the permutation σ},
{x : x has an alternating subsequence of length k} have the same probability in [0, 1]n

and Sn. In particular, it should be clear that

LAn (τ )
d
= LAn(a), (1)

where τ is a uniform random permutation in Sn, a is a uniform random sequence in [0, 1]n

and where d means equality in distribution.

Maxima and minima. Next, we say that the sequence a = (a1, a2, . . . , an) has a local
maximum at the index k if (i) ak > ak+1 or k = n, and (ii) ak > ak−1 or k = 1.
Similarly, we say that a has a local minimum at the index k if (i) ak < ak+1 or k = n, and
(ii) ak < ak−1. An observation that comes in handy is the fact that counting the length
of the longest alternating subsequence is equivalent to counting maxima and minima of
the sequence (starting with a local minimum). This is attributed to Bóna in Stanley [18];
for completeness, we prove it next.

Proposition 2.2 For µn-almost all sequences a = (a1, a2, . . . , an) ∈ [0, 1]n,

LAn(a) = # local maxima of a + # local minima of a (2)

= 1 (an > an−1) + 2 1 (a1 > a2) + 2
n−1
∑

k=2

1 (ak−1 < ak > ak+1) . (3)

Proof. For µn-almost all a ∈ [0, 1]n, ai 6= aj whenever i 6= j, therefore we can assume
that a has no repeated components. Let t1, . . . , tr be the positions, in increasing order,
of the local maxima of the sequence a, and let s1, . . . , sr′ be the positions, in increasing
order, of the local minima of a, not including the local minima before the position t1.
Notice that the maxima and minima are alternating, that is, ti < si < ti+1 for every
i, implying that r′ = r or r′ = r − 1. Also notice, that in case r′ = r − 1, necessarily
tr = n. Therefore, since (at1 , as1, at2 , as2, . . .) is an alternating subsequence of a, we have
LAn(a) ≥ r + r′ = # local maxima +# local minima.

To establish the opposite inequality, take a maximal sequence of indices {ℓi}m
i=1 such

that (aℓi
)m
i=1 is alternating. Move every odd index upward, following the gradient of a
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(the direction, left or right, in which the sequence a increases), till it reaches a local
maximum of a. Next, move every even index downward, following the gradient of a (the
direction, left or right, in which the sequence a decreases), till it reaches a local minimum
of a. Notice, importantly, that this sequence of motions preserves the order relation
between the indices, therefore the resulting sequence of indices {ℓ′i}m

i=1 is still increasing
and, in addition, it is a subsequence of (t1, s1, t2, s2, . . .). Now, since the sequence

(

aℓ′i

)m

i=1
is alternating, it follows that LAn(a) ≤ # local maxima +# local minima. Finally,
associating every local maxima not in the n−th position with the closest local minima to
its right, we obtain a one to one correspondence, which leads to (3). �

Mean and variance. The above correspondence allows us to easily compute the
mean and the variance of the length of the longest alternating subsequence by going
‘back and forth’ between [0, 1]n and Sn. For instance, given a random uniform se-
quence a = (a1, . . . , an) ∈ [0, 1]n, let Mk := 1(a has a local maximum at the index
k), k ∈ {2, . . . , n − 1}. Then

EMk = µn(ak−1 < ak > ak+1) = µ3(a1 < a2 > a3) = ν3(τ1 < τ2 > τ3),

where again, νn is the uniform measure on Sn, n ≥ 1. The event, {τ1 < τ2 > τ3} corre-
sponds to the permutations {132, 231}, which shows that EMk = 1/3.

Similarly,

EM1 = ν2(τ1 > τ2) = 1/2 and EMn = ν2(τ1 < τ2) = 1/2.

Plugging these values into (3), we get that

E LAn(τ ) =
2n

3
+

1

6
.

To compute the variance of LAn(τ), first note that Cov (Mk, Mk+r) = 0 whenever
r ≥ 3, and that E [MkMk+1] = 0. Now, going again back and forth between [0, 1]n and
Sn, we also obtain

E [MkMk+2] = ν5(τ1 < τ2 > τ3 < τ4 > τ5) = 2/15,

E [M1M3] = ν4(τ1 > τ2 < τ3 > τ4) = 1/6

and
E [Mn−2Mn] = ν4(τ1 < τ2 > τ3 < τ4) = 1/6.

This implies from Proposition 2.2 and (1), that

Var LAn(τ ) =
8n

45
− 13

180
.

Asymptotic normality. Recall that collection of random variables {Xi}∞i=1 is called
m-dependent if Xt+m+1 is independent of {Xi}t

i=1 for every t ≥ 1. For such sequences
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the strong law of large numbers extends in a straightforward manner just partitioning the
summand in appropriate sums of independent random variables, but the extension of the
central limit theorem to this context is less trivial (although a ‘small block’ - ‘big block’
argument will do the job). For this purpose recall also the following particular case of
a theorem due to Hoeffding and Robbins [7] (which can be also found in standard texts
such as Durrett [4, Chapter 7] or Resnick [14, Chapter 8]).

Theorem 2.3 Let (Xi)i≥1 be a sequence of identical distributed m-dependent bounded
random variables. Then

X1 + · · ·+ Xn − nEX1

γ
√

n
=⇒ Z,

where Z is a standard normal random variable, and where the variance term is given by

γ2 = Var X1 + 2
m+1
∑

t=2

Cov (X1, Xt) .

Now, let a = (a1, a2, . . .) be a sequence of iid random variables uniformly distributed
in [0, 1], and let a

(n) = (a1, . . . , an) be the restriction of the sequence a to the first
n indices. Recalling (1) and Proposition 2.2, it is clear that if τ is a uniform random
permutation in Sn,

LAn(τ )
d
= 1 [an > an−1] + 21 [a1 > a2] + 2

n−1
∑

k=2

1 [ak−1 < ak > ak+1] , (4)

where
d
= denotes equality in distribution. Therefore, since the random variables

{1 [ak−1 < ak > ak+1] : k ≥ 2} are identically distributed and 2-dependent, we have by
the strong law of large numbers that with probability one

lim
n→∞

1

n

n−1
∑

k=2

1 [ak−1 < ak > ak+1] = µ3 (a1 < a2 > a3) =
1

3
.

Therefore, from (4) we get that, in probability,

lim
n→∞

1

n
LAn(τ ) =

2

3
.

Finally, applying the above central limit theorem, we have as n → ∞
LAn (τ ) − 2n/3√

nγ
=⇒ N(0, 1), (5)

where in our case, the variance term is given by

γ2 = Var (21 [a1 < a2 > a3]) + 2 Cov (21 [a1 < a2 > a3] , 21 [a2 < a3 > a4])

+ 2 Cov (21 [a1 < a2 > a3] , 21 [a3 < a4 > a5])

=
8

45
,

from the computations carried out in the previous paragraph.
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Remark 2.4 The above approach via m-dependence has another advantage, it provides
using standard m-dependent probabilistic statements various types of results on LAn(τ)
such as, for example, the exact fluctutation theory via the law of iterated logarithm. In
our setting, it gives:

lim sup
n→∞

LAn(τ ) −E LAn(τ)√
n log log n

=
4

3
√

5
,

lim inf
n→∞

LAn(τ ) −E LAn(τ)√
n log log n

= − 4

3
√

5
.

Besides the LIL, other types of probabilistic statements on LAn(τ) are possible, e.g., local
limit theorems [15], large deviations [8], exponential inequalities [1], etc. This types of
statements are also true in the settings of our next sections.

3 Finite alphabet random words

Consider a (finite) random sequence a = (a1, a2, . . . , an) with distribution µ(n), where
µ is a probability measure supported on a finite set [q] = {1, . . . , q}. Our goal now is
to study the length of the longest alternating subsequence of the random sequence a.
This new situation differs from the previous one mainly in that the sequence can have
repeated values. Thus, in order to check if a point is a maximum or a minimum, it is not
enough to ‘look at’ its nearest neighbors, losing the advantage of the 2-dependence that
we had in the previous case. However, Instead, we can use the stationarity of the property
‘being a local maximum’ with respect to some extended sequence to study the asymptotic
behaviour of LAn (a). As a matter of notation, we will use generically, the expression
LAn (µ) for the distribution of the length of the longest alternating subsequence of a
sequence a = (a1, a2, . . . , an) having the product distribution µ(n).

In this section we proceed more or less along the lines of the previous section, re-
lating the counting of maxima to the length of the longest alternating subsequence and
then, through mixing and ergodicity, obtain results on the asymptotic mean, variance,
convergence of averages and asymptotic normality of the longest alternating subsequence.
These results are presented in Theorem 3.1 (convergence in probability), and Theorem
3.6 (asymptotic normality).

Counting maxima and minima. Given a sequence a = (a1, a2, . . . , an) ∈ [q]n, we say
that a has a local maximum at the index k, if (i) ak > ak+1 or k = n, and if (ii) for some
j < k, aj < aj+1 = · · ·ak−1 = ak or for all j < k, aj = ak. Likewise, we say that a has
a local minimum at the index k, if (i) ak < ak+1 or k = n, and if (ii) for some j < k,
aj > aj+1 = · · ·ak−1 = ak. The identity (2) can be generalized, in a straightforward
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manner to this context, so that

LAn (a) = # local maxima of a + # local minima of a

= 1 (a has a local maximum at n) + 2
n−1
∑

k=1

1 (a has a local maximum at k) .

Now, the only difficulty in adapting the proof of Theorem 2.2 to our current framework
is when moving in the direction of the gradient when trying to modify the alternating
subsequence to consist of only maxima and minima. Indeed, we could get stuck at an
index of gradient zero that is neither maximum nor minimum. But this difficulty can easily
be overcome by just deciding to move to the right whenever we get in such a situation.
We then end up with an alternating subsequence consisting of only maxima and minima
through order preserving moves.

Infinite bilateral sequences. More generally, given an infinite bilateral sequence
a = (. . . , a−1, a0, a1, . . .) ∈ [q]Z, we say that a has a local maximum at the index k, if
for some j < k, aj < aj+1 = · · · = ak > ak+1 and that a has a local minimum at the index
k, if for some j < k, aj > aj+1 = · · · = ak < ak+1. Also, set a(n) = (a1, . . . , an) to be the
truncation of a to the first n positive indices. An important observation is the following:
Let

Ak =
{

a ∈ [q]Z : For some j ≤ 0, aj > aj+1 = · · · = ak > ak+1

}

,

A′
k =

{

a ∈ [q]Z : For some j ≤ 0, aj 6= aj+1 = · · · = ak ≤ ak+1

}

,

and
A′′

k =
{

a ∈ [q]Z : For some j ≥ 1, aj < aj+1 = · · · = ak ≤ ak+1

}

.

Then, for any bilateral sequence a ∈ [q]Z, we have

1
(

a(n) has a local maximum at k
)

= 1 (a has a local maximum at k)+1Ak
(a) , if k < n,

and

1
(

a(n) has a local maximum at n
)

= 1 (a has a local maximum at n)

+ 1An
(a) + 1A′

n
(a) + 1A′′

n
(a).

Hence,
LAn(a(n)) = 2

∑n−1
k=11 (a has a local maximum at k) + Rn (a) , (6)

where the remainder term is given by

Rn (a) := 2
n−1
∑

k=1

1Ak
(a) + 1

(

a(n) has a local maximum at n
)

,

and is such that |Rn (a)| ≤ 3, since the sets {Ak}n
k=1 are pairwise disjoint.

Stationarity. Define the function f : [q]Z → R via
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f (a) = 2 1 (a has a local maximum at the index 0) .

If T : [q]Z → [q]Z is the (shift) transformation such that (Ta)i = ai+1, and T (k) is the
k-th iterate of T , it is clear that f ◦ T (k)(a) = 2 1 (a has a local maximum at k). With

these notations, (6) becomes LAn(a(n)) =
n−1
∑

k=1

f ◦ T (k)(a) + Rn (a). In particular, if a is a

random sequence with distribution µ(Z), and if T (k)f is short for f ◦ T (k)(a) the following
holds true:

LAn (µ)
d
=

n−1
∑

k=1

T (k)f + Rn (a) . (7)

The transformation T is measure preserving with respect to µ(Z) and, moreover, er-
godic. Thus, by the classical ergodic theorem (see, for example, [16, Chapter V]), as

n → ∞,
n
∑

k=1

T (k)f/n → Ef , where the convergence occurs almost surely and also in the

mean. The limit can be easily computed:

Ef = 2
∞
∑

k=0

P
(

a−(k+1) < a−k = · · · = a0 > a1

)

= 2
∞
∑

k=0

∑

x∈[q]

L2
xp

k+1
x

= 2
∑

x∈[q]

px

1 − px
L2

x

=
∑

x∈[q]

(

L2
x + U2

x

1 − px

)

px,

where for x ∈ [q], px := µ ({x}), Lx :=
∑

y<x

py and Ux :=
∑

y>x

py.

Oscillation. Given a probability distribution µ supported on [q], define the ‘oscillation
of µ at x’, as oscµ(x) := (L2

x + U2
x)/(Lx + Ux) and the total oscillation of the measure µ

as Osc (µ) :=
∑

x∈[q]

oscµ(x)px. Interpreting the results of the previous paragraph through

(7), we conclude that

Theorem 3.1 Let a = (ai)
n
i=1 be a sequence of iid random variables with common dis-

tribution µ supported on [q], and let LAn(µ) be the length of the longest alternating sub-
sequence of a. Then,

lim
n→∞

LAn (µ)

n
= Osc (µ) , in the mean.

In particular, if µ a uniform distribution on [q], Osc (µ) = (2/3 − 1/3q), and thus
LAn (µ) /n is concentrated around (2/3− 1/3q) both in the mean and in probability. We
should mention here that Mansour [12], using generating function methods obtained, for µ
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uniform, an explicit formula for E LAn (µ), which, of course, is asymptotically equivalent
to (2/3 − 1/3q) n. From (7) it is not difficult to derive also a nonasymptotic expression
for E LAn (µ):

E LAn (µ) = n Osc (µ) +
∑

x∈[q]R1(x)px +
∑

x∈[q]R2(x)pn
x, (8)

where the terms R1(x) and R2(x) are given by:

R1(x) =
Lx

Lx + Ux

+
2LxUx

(Lx + Ux)
2 − oscµ(x) and R2(x) =

Ux

Lx + Ux

− 2LxUx

(Lx + Ux)
2 .

Applying (8) in the uniform case recovers computations as given in [12].
As far as the asymptotic limit of Osc (µ) is concerned, we have the following bounds

for a general µ.

Proposition 3.2 Let µ be a probability measure supported on the finite set [q], then

1

2

(

1 −
∑

x∈[q]

p2
x

)

≤ Osc (µ) ≤ 2

3

(

1 −
∑

x∈[q]

p3
x

)

. (9)

Proof. Note that
∑

x∈[q]

Lxpx =
∑

i<j

pipj =
∑

x∈[q]

Uxpx and
∑

x∈[q]

Lxpx +
∑

x∈[q]

Uxpx +
∑

x∈[q]

p2
x = 1,

which implies that

∑

x∈[q]

Lxpx =
∑

x∈[q]

Uxpx =
1

2

(

1 − ∑

x∈[q]

p2
x

)

. (10)

Similarly, for any permutation σ ∈ S3, we have that
∑

x∈[q]

LxUxpx =
∑

i1<i2<i3

pi1pi2pi3 =

∑

iσ(1)<iσ(2)<iσ(3)

pi1pi2pi3 , which implies that 6
∑

x∈[q]

LxUxpx =
∑

i1 6=i2 6=i3

pi1pi2pi3 . Finally, an

inclusion-exclusion argument leads to
∑

i1 6=i2 6=i3

pi1pi2pi3 = 1 − 3
∑

ii=i2

pi1pi2 + 2
∑

ii=i2

pi1pi2pi3 = 1 − 3
∑

x∈[q]

p2
x + 2

∑

x∈[q]

p3
x ,

and therefore
∑

x∈[q]

LxUxpx =
1

6
− 1

2

∑

x∈[q]

p2
x +

1

3

∑

x∈[q]

p3
x. (11)

Now, to obtain the upper bound in (9), note that

Osc (µ) =
∑

x∈[q]

L2
x + U2

x

Lx + Ux
px =

∑

x∈[q]

(Lx + Ux) px − 2
∑

x∈[q]

LxUx

Lx + Ux
px (12)

so that in particular, Osc (µ) ≤
∑

x∈[q]

(Lx + Ux) px − 2
∑

x∈[q]

LxUxpx. Hence, using (10) and

(11),

Osc (µ) ≤ 2

3

(

1 − ∑

x∈[q]

p3
x

)

.
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For the lower bound, note that 4
∑

x∈[q]

LxUx

Lx+Ux
px ≤

∑

x∈[q]

(Lx + Ux) px, and from (12) we

get

Osc (µ) ≥ 1

2

∑

x∈[q]

(Lx + Ux) px =
1

2

(

1 −
∑

x∈[q]

p2
x

)

.

�

An interesting problem would be to determine the distribution µ over [q] that maxi-
mizes the oscillation. It is not hard to prove that such an optimal distribution should be
symmetric about (q − 1) /2, but it is harder to establish its shape (at least asymptotically
in q).

Mixing. The use of ergodic properties to analyze the random variable LAn (µ) goes
beyond the mere application of the ergodic theorem. Indeed, the random variables
{

T (k)f : k ∈ Z
}

introduced above exhibit mixing, or “long range independence”, meaning
that as n → ∞

sup
A∈F≥0,B∈F<−n

|P (A |B ) − P (A)| → 0,

where, for n ≥ 0, F≥n (respectively F<n) is the σ-field of events generated by
{

T (k)f : k ≥ n
}

(respectively
{

T (k)f : k < n
}

). This kind of mixing condition is usually
called uniformly strong mixing or ϕ-mixing , and the decreasing sequence

ϕ (n) := sup
A∈F≥0,B∈F<−n

|P (A |B ) − P (A)| , (13)

is called the rate of uniformly strong mixing (see, for example, [11, Chapter 1]). Below,
Proposition 3.4 asserts that, in our case, such a rate decreases exponentially. Let us prove
the following lemma first.

Lemma 3.3 Let a = (ai)i∈Z be a bilateral sequence of iid random variables with common
distribution µ supported on [q]. Let Cn,t = {a−n = · · · = a−n+t−1 6= a−n+t}, n ≥ 1,
0 ≤ t ≤ n, then:

(i) For any A ∈ F≥0 and any t ≤ n, the event Cn,t ∩ A is independent of the σ-field
G<−n of events generated by {ai : i < −n}.

(ii) Restricted to the event Cn,t, the σ-fields F≥0 and G<−n are independent.

Proof. Let the event Br,s := {ar < ar+1 = · · · = as > as+1}. Then, for s1 < s2 < · · · <
sm,

∏m
i=1 T (si)f =

∑∏n
i=11Bri,si

holds true, where the sum runs over the r1, . . . , rn such
that si−1 < ri < si (letting s0 = −∞) and where

f (a) = 2 1 (a has a local maximum at the index 0) .

Now, since the random variables
{

T (i)f, i ∈ Z
}

are binary, then for any A ∈ F≥0 the

random variable 1A can be expressed as a linear combination of terms of the form
m
∏

i=1

T (si)f ,

where 0 ≤ s1 < · · · < sm.
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Next, 1Cn,t

m
∏

i=1

T (si)f = 1Cn,t

(

∑

n
∏

i=1

1Bri,si

)

= 1Cn,t

(

∑

r1≥−n+t−1

n
∏

i=1

1Bri,si

)

, which im-

plies that 1Cn,t

m
∏

i=1

T (si)f and G<−n are independent. This implies, in particular, the inde-

pendence of the events Cn,t ∩A and B, for any A ∈ F≥0 and B ∈ G<−n, proving (i). The
statement (ii) follows directly from (i). �

Proposition 3.4 Let a = (ai)i∈Z be a bilateral sequence of iid random variables with µ
supported on [q]. If the event A belongs to the σ-field F≥0, then for any n ≥ 1,

‖P (A|G<−n) − P(A)‖∞ := sup
B∈G<−n

|P (A |B ) − P(A)| ≤ 2qκn,

where κ := max
x∈[q]

µ ({x}). In particular, the rate of uniform strong mixing of the sequence
{

T (k)f : k ∈ Z
}

(see (13)), satisfies ϕ (n) ≤ 2qκn−1.

Proof. Let A ∈ F≥0. By Lemma 3.3, P (A ∩ Cn,r |G<−n ) = P (A ∩ Cn,r), whenever r ≤ n.
Therefore,

P (A |G<−n ) =
n
∑

r=1

P (A ∩ Cn,r |G<−n ) + P (A ∩ {a−n = · · · = a0} |G<−n )

=
n
∑

r=1

P (A ∩ Cn,r) + P (A ∩ {a−n = · · · = a0} |G<−n )

= P(A) + (P (A ∩ {a−n = · · · = a0} |G<−n ) − P (A ∩ {a−n = · · · = a0})) .

Then, it follows:

‖P (A |G<−n ) − P(A)‖∞ ≤ P (A ∩ {a−n = · · · = a0})
+ ‖P (A ∩ {a−n = · · · = a0} |G<−n )‖∞
≤ 2 ‖P (a−n = · · · = a0 |G<−n )‖∞
≤ 2qκn

where the last conclusion follows trivially from G<−n ⊇ F≤−(n+1). �

Taking advantage of the mixing property we can now infer without much effort the
behaviour of the asymptotic variance and also deduce the asymptotic normality of the
statistic LAn (µ) . This is done in the next two paragraphs.

Variance. The computation of the variance of the sequence Sn =
n
∑

k=1

T (k)f is straight-

forward. Indeed

Var Sn = n

[

Cov (f, f) + 2
n−1
∑

k=1

Cov
(

f, T (k)f
)

]

− 2
n−1
∑

k=1

k Cov
(

f, T (k)f
)

, (14)
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and the mixing property from Proposition 3.4 implies that
∣

∣Cov
(

f, T (k)f
)
∣

∣ decreases
geometrically in k, so that all the series involved in (14) converge. Therefore,

VarSn = nγ2 + O (1) , where γ2 = Cov (f, f) + 2
n−1
∑

k=1

Cov
(

f, T (k)f
)

. (15)

Moreover, for k ≤ l,
∣

∣Cov
(

1A(a), T (k)f
)
∣

∣ ≤ E1A(a) ≤ κl, and for k ≥ l, and making

use of Proposition 3.4,
∣

∣Cov
(

1A(a), T (k)f
)
∣

∣ ≤ 4qκk−l−2E1A(a) ≤ 4qκk−2. This implies
that, as n → ∞,

∣

∣

∣

∣

Cov

(

n−1
∑

k=1

T (k)f,
n−1
∑

k=1

1Ak
(a)

)
∣

∣

∣

∣

≤ 4q3

{

∑

k≤l

κl +
∑

l≤k

κk

}

= O(1) .

Similarly, using the Cauchy-Schwarz inequality, we have that Cov

(

n
∑

k=1

T (k)f, 1Ãn
(a)

)

→

0 where Ãn is either one of the events An, A′
n or A′′

n. Finally using the fact that

Cov

(

n−1
∑

k=1

T (k)f, T (n)f

)

=
n−1
∑

k=1

Cov
(

f, T (k)f
)

is bounded as n → ∞, we conclude that

Cov

(

n−1
∑

k=1

T (k)f, R (n)

)

= O(1), as n → ∞. This implies the corresponding extension of

(15) to LAn (µ):
Var LAn(µ) = nγ2 + O(1) as n → ∞.

Note that the bound just established is not meaningless since the boundedness of
Rn (a) only guarantees the weaker estimate Var LAn(µ) = nγ2 + O

(

n1/2
)

.

Let us proceed to compute γ2. Let fl : [q]Z → R via

fl (a) = 2 1 (a−l < a−l+1 = · · · = a0 > a1) ,

so that f (a) =
∞
∑

l=1

fl (a). Note that

Cov
(

f, T (k)fl

)

=































0 if k ≥ l + 2

4
∑

x,y∈[q]

(

Lx

1−px

)

(

Lyp
l
y

)

Lx∧ypx − 2 Osc (µ)
∑

y∈[q]

L2
yp

l
y if k = l + 1

−2 Osc (µ)
∑

y∈[q]

L2
yp

l
y if 1 ≤ k ≤ l

4
∑

y∈[q]

L2
yp

l
y − 2 Osc (µ)

∑

y∈[q]

L2
yp

l
y if 0 = k ≤ l,

and thus

γ2 = Var f + 2
∞
∑

k=1

∞
∑

l=k−1

Cov
(

f, T (k)fl

)

= Osc (µ)

(

2 − 3 Osc (µ) − 4
∑

x∈[q]

(

Lx

1 − px

)2

px

)

+ 8
∑

x,y∈[q]

LxLyLx∧y

(1 − px) (1 − py)
pxpy.
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We further mention at this point that Mansour [12] already obtained, with generating
function methods, an exact expression for the variance when µ is the uniform distribution
on [q]. It is given (as it can also be checked from (15)) by

γ2 =
8

45

[

(1 + 1/q) (1 − 3/4q)(1 − 1/2q)

(1 − 1/2q)

]

.

Asymptotic normality. Under appropriate conditions (say, asymptotic positive vari-
ance and fast enough mixing), it is natural to expect for the sequence of partial sums to be
asymptotically normal. In our model, this is indeed the case. Let us recall the following
central limit theorem which goes back to Volkonskii and Rozanov [19, Theorem 1.2] and
which can be found, greatly generalized, in texts such as Bradley [2, Theorem 10.3].

Theorem 3.5 Let x = (xi)i∈Z
be a strictly stationary sequence of bounded random vari-

ables such that the sequence

α(n):= sup
A∈F≥0,B∈F<−n

|P (A ∩ B) − P(A)P(B)|

is summable (i.e.
∑

n≥1

α (n) < ∞), where F≥0 is the σ-field generated by the random

variables {xi : i ≥ 0} and F<−n, n ≥ 1, is the σ-field generated by the random variables
{xi : i < −n}. Then,

i. γ2 := Varx0+2
∞
∑

t=1

Cov(x0, xt) exists in [0,∞), the sum being absolutely convergent.

ii. If γ2 > 0, then as n → ∞,

n
∑

t=1

xt − nEx0

√
nγ

=⇒ Z,

where Z is a standard normal random variable.

Now, the asymptotic normality of LAn (µ), namely, the fact that as n → ∞,

LAn(µ) − n Osc(µ)√
nγ

=⇒ Z,

is clear: By Proposition 3.4, the mixing coefficients α(n) decrease geometrically, implying
the summability of

∑

α (n). Summarizing, we get:

Theorem 3.6 Let a = (ai)
n
i=1 be a sequence of iid random variables, with common dis-

tribution µ supported on [q], and let LAn(µ) be the length of the longest alternating sub-
sequence of a. Then, as n → ∞,

LAn(µ) − n Osc(µ)√
nγ

=⇒ Z,

where Z is a standard normal random variable and γ is given by (15).
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Remark 3.7 It is clear that the above proofs extend to countable infinite alphabets, with-
out major modification. A parallel situation for the longest increasing subsequence is given
in [9], though in that context a more delicate “sandwich” argument is required.

4 Markovian words

Our probabilistic methodologies also provide results beyond the iid framework. Let now
(xk)k≥0 be an ergodic Markov chain started at stationarity and whose state space is a
finite linearly ordered set A, so that without loss of generality, A = [q]. Our objective (as
before), is to study the behavior of the statistics LAn (x0, . . . , xn).

Adding gradient information to the chain. Let us consider the related process (yk)k≥0

defined recursively as follows:

- y0 = 1.

- yk+1 = 1 if xk+1 >xk or if xk+1 =xk and yk = 1.

- yk+1 = −1 if xk+1 < xk or if xk+1 = xk and yk = −1.

This new sequence basically carries the information indicating that the sequence is
increasing or decreasing at k (we define the sequence x1, x2, . . . to be increasing at k if
xk > xk−1 or if it is increasing at k−1 and xk = xk−1, likewise, the sequence is decreasing
at k if xk < xk−1 or if it is decreasing at k − 1 and xk = xk−1).

The following holds true for the process (xk, yk)k≥0:

Proposition 4.1 The process (xk, yk)k≥0 is Markov, with transition probabilities given
by

p(r,±1)→(s,1) = pr,s1 (s > r) , p(r,1)→(r,1) = pr,r

p(r,±1)→(s,−1) = pr,s1 (s < r) , p(r,−1)→(r,−1) = pr,r

and stationary measure given by

π(r,1) = (1 − pr,r)
−1 ∑

s<r

πsps,r, π(r,−1) = (1 − pr,r)
−1 ∑

s>r

πsps,r.

Moreover, the Markov process
(

xk, yk−1, yk

)

k≥0
has a stationary measure given by

π(r,1,1) =
∑

t<s≤r

πtpt,sps,r

1 − ps,s
, π(r,−1,−1) =

∑

t>s≥r

πtpt,sps,r

1 − ps,s

π(r,1,−1) =
∑

t<s>r

πtpt,sps,r

1 − ps,s
, π(r,−1,1) =

∑

t>s<r

πtpt,sps,r

1 − ps,s
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Proof. The process is Markov since by definition yk+1 ∈ σ (xk, xk+1, yk) and since
(xk)k≥0 is Markov. The transition probabilities are easily obtained from the definition,
and moreover,

∑

r

π(r,1)p(r,1)→(u,1) +
∑

r

π(r,−1)p(r,−1)→(u,1)

=
∑

r≤u

(1 − pr,r)
−1∑

t<r

πtpt,rpr,u +
∑

r<u

(1 − pr,r)
−1∑

t>r

πtpt,rpr,u

=
∑

r<u

(1 − pr,r)
−1∑

t6=r

πtpt,rpr,u + (1 − pu,u)
−1 ∑

t<u

πtpt,upu,u

=
∑

t<u

πtpt,u + (1 − pu,u)
−1 ∑

t<u

πtpt,upu,u

= π(u,1).

Similar computations show that

∑

r

π(r,1)p(r,1)→(u,−1) +
∑

r

π(r,−1)p(r,−1)→(u,−1) = π(u,−1),

thus proving that π(u,±1) is the stationary measure of (xk, yk)k≥0.

For the chain
(

xk, yk−1, yk

)

k≥1
let us only verify one case since the others are similar:

∑

r

π(r,1,1)p(r,1,1)→(u,1,1)
+
∑

r

π(r,−1,1)p(r,−1,1)→(u,1,1)

=
∑

r≤u

∑

t<s≤r

πtpt,sps,r

1 − ps,s

pr,u +
∑

r≤u

∑

t>s<r

πtpt,sps,r

1 − ps,s

pr,u

=
∑

s<r≤u

ps,r

1 − ps,s
pr,u

∑

t<s

πtpt,s +
∑

s<r≤u

ps,r

1 − ps,s
pr,u

∑

t>s

πtpt,s +
∑

s=r≤u

ps,r

1 − ps,s
pr,u

∑

t<s

πtpt,s

=
∑

s<r≤u

πsps,rpr,u +
∑

s<r≤u

πsps,rpr,upr,r

1 − pr,r

= π(u,1,1).

�

Oscillations of a Markov chain. Given an ergodic Markov chain x := (xk)k≥1 whose
state space is a finite linearly ordered set, define

Osc+ (x) :=
∑

t<s>r

(πtpt,sps,r)/(1 − ps,s)

Osc− (x) :=
∑

t>s<r

(πtpt,sps,r)/(1 − ps,s)

and Osc (x) := Osc+ (x)+Osc− (x) ( = 2 Osc+ (x) = 2 Osc− (x) ). With these notations,
we have:
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Theorem 4.2 Let LAn (x0, . . . , xn) be the length of the longest alternating subsequence
of the first n + 1 elements of the Markov chain (xk)k≥0. Then, as n → ∞,

LAn (x0, . . . , xn)

n
→ Osc (x) ,

in the mean and almost surely.

Proof. From the very definition of yk,

LAn (x0, . . . , xn) =
n−1
∑

k=0

1
(

ykyk+1 = −1
)

,

therefore, by the ergodic theorem,

LAn (x0, . . . , xn)

n
→ Π (y0y1 = −1) ,

in the mean and almost surely and where Π is the stationary measure of the chain. Now,
from Proposition 4.1,

Π (y0y1 = −1) =
∑

t<s>r

πtpt,sps,r

1 − ps,s

+
∑

t>s<r

πtpt,sps,r

1 − ps,s

,

from which the result follows. �

Remark 4.3 Above, the case pt,s = ps (and therefore πt = pt), corresponds to iid letters
thus recovering Theorem 3.1.

Central limit theorem: In case the asymptotic variance term of LAn (x1, . . . , xn) is
nonzero, then since
LAn (x1, . . . , xn) is an additive functional of the finite Markov chain

(

xk, yk−1, yk

)

k≥0
, and

since the mixing rate of an ergodic Markov chain with finite state space is exponentially
decreasing, Theorem 3.5 imply that, for some γ > 0,

LAn (x0, . . . , xn) − n Osc (x)√
nγ

=⇒ Z,

where Z is a standard normal random variable. The reader should contrast this last fact
with the increasing subsequence results where the iid and Markov limiting laws differ
when the alphabet has a size of four or more ([10]).
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5 Concluding remarks

Determining the length of the longest alternating subsequence of a random pattern-
avoiding permutation or word, has been recently studied by Firro, Mansour and Wilson
[5, 6, 13] inspired by the work of Deutsch, Hildebrand and Wilf [3] on the longest increas-
ing subsequence of pattern-avoiding permutations. In such a case, a probabilistic (i.e.
measure theoretic) approach is also possible once an appropriate recursive description of
the pattern-avoiding permutations is given. Such recursive description is the subject of
an extensive list of works, originating from an old standing conjecture of Zeilberger [21]
claiming in particular, that the set of pattern avoiding permutations is P -recursive. In the
case of avoiding patterns of length 3 a concise work is found in [5]. A canonical example
of this situation is the case of permutations avoiding the pattern (123), or equivalently,
sequences in [0, 1]n avoiding the pattern (123) (recall the observation at the beginning of
Section 2). In this context, if we let Gn to be the set of sequences in [0, 1]n that avoid the
pattern (123), and for n ≥ 1 let

υn (xn, . . . , x1) = dxn . . . dx11 ((xn, . . . , x1) ∈ Gn) ,

then, the recursive construction υ1 = dx1 and

υn+1 (xn+1, . . . , x1) = dxn+1υn (xn, . . . , x1)1 (xn+1 > xn)

+ dxnυn (xn+1, xn−1, . . . , x1)1 (xn > max {x1, . . . , xn−1, xn}) .

for n ≥ 1, holds. This recursive formulation for the restricted measure translates to a
recursive formula for the distribution of the number of local maxima of the sequence
(xn, . . . , x1) on Gn: Let Mn = max {x1, . . . , xn}, let Ln = #{i : xi < xi+1 > xi+2,
i = 1, . . . , n − 2} and let χn = 1 (Mn = xn), ̺n = 1 (xn < xn−1 > xn−2), then

υn+1 (Mn+1 = m, xn+1 = x, Ln = k, χn+1 = 0, ̺n+1 = 1)

= υn (Mn < m, xn = x, Ln = k, χn = 0, ̺n = 1) dm

+ υn (Mn < m, xn = x, Ln = k − 1, χn = 0, ̺n = 0) dm

+ υn (Mn = x, xn = x, Ln = k − 1, χn = 1, ̺n = 0) dm

υn+1 (Mn+1 = m, xn+1 = x, Ln = k, χn+1 = 0, ̺n+1 = 0)

= υn (Mn = m, xn < x, Ln = k, χn = 0) dx

υn+1 (Mn+1 = x, xn+1 = x, Ln = k, χn+1 = 1, ̺n+1 = 0)

= υn (Mn < x, xn < x, Ln = k, χn = 0) dx

+ υn (Mn < x, xn < x, Ln = k, χn = 1, ̺n = 0) dx.

These formulas can be interpreted as Markovian formulations of the process of count-
ing local maxima (therefore, the length of the longest alternating subsequence), in the
restricted space of permutations avoiding the pattern (123). Therefore the appropriate
extension of the methods of Section 4 lead to the corresponding results in this context.
Notice however, that such Markovian formulation is not measure preserving, and the cor-
responding modification of the ergodic theorem, central limit theorem, etc., should be
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introduced. It is our goal in subsequent research, to study these methods for tractable (in
the above sense), sets of pattern avoiding permutations or words, following this alternative
probabilistic path just presented.
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[10] Houdré, C. and Litherland, T.L., “On the Limiting Shape of Random Young
Tableaux For Markovian Words,” arXiv:0810.2982, 2009.

[11] Lin, Z., Zhengyan, L., Lu, C., and Chuanrong, L., Limit theory for mixing
dependent random variables. Kluwer Academic Pub, 1996.

[12] Mansour, T., “Longest alternating subsequences of k-ary words,” Discrete Applied
Mathematics, vol. 156, no. 1, pp. 119–124, 2008.

[13] Mansour, T., “Longest alternating subsequences in pattern-restricted k-ary
words,” Online J. Analytic Combin, vol. 3, 2008.

[14] Resnick, S., A probability path. Birkhauser, 1999.

[15] Riauba, B., “A local limit theorem for dependent random variables,” Lithuanian
Mathematical Journal, vol. 17, no. 1, pp. 119–129, 1977.

[16] Shiryaev, A., “Probability. Number 95 in Graduate Texts in Mathematics,” 1996.

the electronic journal of combinatorics 17 (2010), #R168 18



[17] Stanley, R., “Longest alternating subsequences of permutations,” Michigan Math-
ematical Journal, vol. 57, pp. 675–687, 2008.

[18] Stanley, R., “Increasing and decreasing subsequences and their variants,” Proc.
Internat. Cong. Math (Madrid 2006), American Mathematical Society, pp. 549–579,
2007.

[19] Volkonskii, V. and Rozanov, Y., “Some limit theorems for random functions.
I,” Theory of Probability and its Applications, vol. 4, p. 178, 1959.

[20] Widom, H., “On the Limiting Distribution for the Length of the Longest Alternat-
ing Sequence in a Random Permutation,” The Electronic Journal of Combinatorics,
vol. 13, no. R25, 2006.

[21] Zeilberger, D, “A holonomic systems approach to special functions identities* 1,”
Journal of Computational and Applied Mathematics, vol. 32, no. 3, p. 321-368, 1990.

the electronic journal of combinatorics 17 (2010), #R168 19


	Introduction
	Random permutations
	Finite alphabet random words
	Markovian words
	Concluding remarks

