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Abstract

Let Fn,tr(n) denote the family of all graphs on n vertices and tr(n) edges, where
tr(n) is the number of edges in the Turán’s graph Tr(n) – the complete r-partite
graph on n vertices with partition sizes as equal as possible. For a graph G and
a positive integer λ, let PG(λ) denote the number of proper vertex colorings of G

with at most λ colors, and let f(n, tr(n), λ) = max{PG(λ) : G ∈ Fn,tr(n)}. We prove
that for all n ≥ r ≥ 2, f(n, tr(n), r + 1) = PTr(n)(r + 1) and that Tr(n) is the only
extremal graph.

1 Introduction

All graphs in this paper are finite, undirected, and have neither loops nor multiple edges.
For all missing definitions and facts which are mentioned but not proved, we refer the
reader to Bollobás [3].

For a graph G, let V (G) and E(G) denote the vertex set of G and the edge set of
G, respectively. Let |A| denote the cardinality of a set A. Let n = v(G) = |V (G)| and
m = e(G) = |E(G)| denote the number of vertices the (order) of G, and number of edges
the (size) of G, respectively. An edge {x, y} of G will also be denoted by xy, or yx. For
sets X, Y , let X −Y = X \Y . For A ⊆ V (G), let G[A] denote the subgraph of G induced
by A, which means that V (G[A]) = A, and E(G[A]) consists of all edges xy of G with
both x and y in A. For a vertex v of G, let N(v) = NG(v) = {u ∈ V (G) : uv ∈ E(G)}
denote the neighborhood of v in G, and d(v) = dG(v) = |NG(v)| denote the degree of v in
G. For A ⊆ V (G), let dA(v) = |A ∩ NG(v)| denote the number of neighbors of a vertex
v in G which are in A. For two disjoint nonempty subsets A, B ⊆ V (G), by G[A, B]
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we denote the bipartite subgraph of G such that V (G[A, B]) = A ∪ B, and E(G[A, B])
consists of all edges of G with one end-vertex in A and the other in B.

A partition of a set S is a collection of its disjoint nonempty subsets, A1, A2, . . . , Ak,
such that S = A1 ∪ A2 ∪ . . . ∪ Ak. A graph G is called r-partite, r ≥ 1, with nonempty
vertex classes V1, V2, ..., Vr if V (G) is the disjoint union of V1, V2, ..., Vr and every edge
connects two vertices in different vertex classes. We say G is a complete r-partite graph
if it is r-partite and every two vertices in different vertex classes are connected. If r = 2,
and the vertex classes have a and b vertices, the complete 2-partite graph has ab edges,
and it is usually denoted by Ka,b. For r = n, the complete n-partite graph of order n
is called the complete graph of order n; it is denoted by Kn, and it has all possible

(

n

2

)

edges. For r = 1, the complete 1-partite graph or order n has no edges, hence, it is Kn

(the complement of Kn). The Turán graph Tr(n), r ≥ 1, is the complete r-partite graph
of order n with all parts of size either ⌊n/r⌋ or ⌈n/r⌉. It is easy to argue that such a
graph is unique. For example, if r = 1, T1(n) = Kn. If r = 2, T2(n) is Ka,a for n = 2a,
and Ka+1,a for n = 2a+1. If r = n, Tn(n) = Kn. Let tr(n) = e(Tr(n)) denote the number
of edges of Tr(n).

For a positive integer λ, let [λ] = {1, 2, ..., λ}. A function c : V (G) → [λ] such that
c(x) 6= c(y) for every edge xy of G is called a proper vertex coloring of G in at most λ
colors, or simply a λ-coloring of G. The set [λ] is often referred to as the set of colors.

Let PG(λ) denote the number of all λ-colorings of a given graph G. This number was
introduced and studied by Birkhoff [2], who proved that it is always a polynomial in λ.
It is now called the chromatic polynomial of G. Although PG(λ) has been studied for its
own sake, perhaps more interestingly there is a long history of diverse applications which
has led researchers to minimize or maximize PG(λ) over various families of graphs. A
good source of related references can be found in a recent article by Loh, Pikhurko and
Sudakov [8]. We would like to add to that list surveys by Read [10], Read and Tutte [11],
Read and Royle [12], and recent preprints by Norine [9] and Zhao [16].

Let Fn,m consist of all (n, m)-graphs, that is, graphs of order n and size m. The
problem of minimizing PG(λ) over Fn,m was solved by Linial [7], who showed that for
any n, m, there is a graph which simultaneously minimizes each |PG(λ)| over Fn,m, for
every integer λ. This graph is simply a clique Kt with an additional vertex adjacent to
s vertices of the Kt, plus n − t − 1 isolated vertices, where t, s are the unique integers
satisfying m =

(

t

2

)

+ s with 0 ≤ s < t. At the end of his paper, Linial posed the problem
of maximizing PG(λ) over all graphs in Fn,m. The same maximization problem, was also
considered at around the same time by Wilf (and his motivation was different). See Wilf
[15], and Bender and Wilf [1]. The maximization problem turned out to be much more
difficult, and was only solved in sporadic cases. Let

f(n, m, λ) = max{PG(λ) : G ∈ Fn,m}.
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Here is a list of known “exact” results on f(n, m, λ). Many various bounds on this function
can be found in the aforementioned references.

• The value of f(n, m, 2) was determined, and all extremal graphs were characterized
for all m, n in Lazebnik [4].

• In Lazebnik [5] it was proved that f(n, tr(n), λ) = PTr(n)(λ), and that Tr(n) is the
only extremal graph for all r ≥ 1 and all large λ = Ω(n6), as n → ∞.

• In Lazebnik, Pikhurko and Woldar [6], it was shown that for all t ≥ 1, f(2t, t2, 3) =
PKt,t

(3), and that T2(2t) = Kt,t is the only extremal graph. Thus it extended the
result from [5] to a small λ, namely λ = 3, but to only bipartite Turán graphs T2(2t).
It was also shown in [6] that

f(2t, t2, 4) ∼ PT2(2t)(4) ∼ (6 + o(1))4t, as t → ∞.

This can be stated in other words, as the graph T2(2t) is asymptotically extremal
for λ = 4.

• Most recently, Loh, Pikhurko and Sudakov [8] proved that for every r ≥ 3, there
exists n0 = n0(r), such that for all n ≥ n0,

f(n, tr(n), r + 1) = PTr(n)(r + 1),

and that Tr(n) is the only extremal graph. This result extends the one on f(2t, t2, 3)
from [6] to all r ≥ 3, but it holds only for sufficiently large n. Though an explicit
lower bound on n0 was not specified in [8], it must be super-exponential as r → ∞,
as the proof relies on a stability result of Simonovits, which, in turn, uses regularity.
Among other interesting results in [8], is a proof for large m of a conjecture from
[4] concerning the value of f(n, m, 3) and the structure of extremal graphs in the
case when an m ≤ n2/4. It stated that the extremal graphs are complete bipartite
graphs with certain ratio of partition sizes minus a star plus some isolated vertices
if necessary. In addition, it is shown in [8], that for all λ ≥ 4, large m, and
m ≈ 1

λ log λ
n2, the structure of extremal graphs is similar to the case of 3-colorings.

• Recently Norine [9] showed that for any positive integers r, λ, such that 2 ≤ r < λ
and r divides λ, there exists n0 = n0(r, λ), such that for all n ≥ n0,

f(n, tr(n), λ) = PTr(n)(λ),

and that Tr(n) is the only extremal graph.

We are now ready to present the main result of this paper.

Theorem 1. For all integers n, r, with n ≥ r ≥ 1,

f(n, tr(n), r + 1) = PTr(n)(r + 1),

and Tr(n) is the only extremal graph.
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In relation to the aforementioned results, Theorem 1 represents the following improve-
ments.

• It establishes the equality f(n, tr(n), λ) = PTr(n)(λ) for all n ≥ r ≥ 1 and λ = r + 1
(for λ = r the statement is an immediate corollary of Turán’s theorem, see Turán
[14] ). Previously it was known only for large λ = Ω(n6) ([5]).

• It generalizes the equality f(2t, t2, 3) = PT2(2t)(3) in [6] to all (n, tr(n), r +1)-graphs
with r ≥ 2, and it covers the missing special case for r = 2 and n = 2t + 1.

• It extends the equality f(n, tr(n), r+1) = PTr(n)(r+1) in [8] from ‘sufficiently large’
n to all n ≥ r.

The proof of Theorem 1, which first appeared in Tofts [13], is presented in Section 2. This
proof grew out of our attempts to extend the aforementioned result on f(2k, k2, 3) from [6]
to f(3k, 3k2, 4). After finally resolving this case and simplifying the method several times,
we began seeing the light: a much simpler and more general argument. It represents a
‘correct’ generalization of the main idea behind Theorem 3 in [6].

2 Proof of Theorem 1

Part (i) of the following lemma gives an explicit expression for PTr(n)(r + 1), which is an
essential tool in our proof of Theorem 1. Though it appears in the Appendix of [8], we
present our proof of this simple fact (obtained independently) for the sake of completeness.

Lemma 2.1 Let n and r be positive integers, such that 1 ≤ r ≤ n. Let k = ⌊n
r
⌋ ≥ 1, and

let s = n − rk, 0 ≤ s < r. Then

(i) PTr(n)(r + 1) = (r + 1)!(s 2k + (r − s)2k−1 − (r − 1)).

(ii) For n ≥ r + 1, PTr(n−1)(r + 1) < PTr(n)(r + 1).

Proof of (i): Denote the maximal independent sets of Tr(n) by V1, V2, ..., Vr, such that
|V1| = |V2| = ... = |Vs| = k + 1, and |Vs+1| = |Vs+2| = ... = |Vr| = k. Take a proper
(r + 1)-coloring of Tr(n). It is clear that it must use at least r colors, and that if it uses
all r + 1 colors that there exists exactly one Vi whose points are colored using two colors.
Therefore, in order to compute PTr(n)(r + 1), we consider three cases.

Case 1: Exactly r colors are used.

Obviously, there are exactly
(

r+1
r

)

r! = (r + 1)! colorings in this case.
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Case 2: All r + 1 colors are used, and there exists exactly one i, 1 ≤ i ≤ s, such that
Vi’s points are colored in two colors.

There are s ways to choose such Vi, and there are
(

r+1
2

)

ways to choose two colors for

it. There are 2|Vi| − 2 ordered partitions of Vi into 2 subsets, therefore there are 2|Vi| − 2
ways of coloring it with the chosen two colors. Finally, there are (r − 1)! ways to color
the remaining (r − 1) Vj’s with the remaining (r − 1) colors. So, there is a total of

s ·

(

r + 1

2

)

· (2|Vi| − 2) · (r − 1)! = s(r + 1)!(2k − 1)

colorings in this case.

Case 3: All r + 1 colors are used, and there exists exactly one i, s + 1 ≤ i ≤ r, such
that Vi’s points are colored in two colors.

There are r − s ways to choose such Vi, and there are
(

r+1
2

)

ways to choose two colors

for it. There are 2|Vi|−2 ordered partitions of Vi into 2 subsets, therefore there are 2|Vi|−2
ways of coloring it with the chosen two colors. Finally, there are (r − 1)! ways to color
the remaining (r − 1) Vj’s with the remaining (r − 1) colors. So, there is a total of

(r − s) ·

(

r + 1

2

)

· (2|Vi| − 2) · (r − 1)! = (r − s)(r + 1)!(2k−1 − 1)

colorings in this case.

Therefore, we have a total of

(r +1)!+ s(r +1)!(2k −1)+(r−s)(r +1)!(2k−1−1) = (r +1)!(s 2k +(r−s)2k−1 − (r−1))

colorings, as desired.

Proof of (ii): Assume s = 0. Then, n = rk, since n ≥ r + 1, k ≥ 2, and n − 1 =
r(k − 1) + (r − 1). Using part (i), we obtain

PTr(n)(r + 1) − PTr(n−1)(r + 1) = (r + 1)!(r 2k−1 − (r − 1))

− (r + 1)!((r − 1)2k−1 + 2k−2 − (r − 1))

= (r + 1)!(2k−1 − 2k−2)

> 0

However, if s ≥ 1, then by part (i), we find
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PTr(n)(r + 1) − PTr(n−1)(r + 1) = (r + 1)!(s 2k + (r − s) 2k−1 − (r − 1))

− (r + 1)!((s − 1)2k + (r − s + 1)2k−1 − (r − 1))

= (r + 1)!(2k − 2k−1)

> 0

Therefore, PTr(n)(r + 1) > PTr(n−1)(r + 1). �

Having established Lemma 2.1, we are ready to prove Theorem 1.

Proof of Theorem 1. We will use induction on n. The r = 1 case is trivial, and the r = 2,
s = 0 case was proved in Theorem 1 in [6], so we assume that r ≥ 3, or r ≥ 2 and s ≥ 1.

Now, if n = r, the result is obvious, as Tr(n) = Tn(n) = Kn and this is the only
(n, tr(n)) graph. Therefore, suppose the theorem is true for all m such that 2 ≤ r ≤ m <
n = rk + s, k = ⌊n

r
⌋ ≥ 1, 0 ≤ s < r.

Let G be a (n, tr(n)) graph not isomorphic to Tr(n). Then, by Turán’s Theorem, G
contains a subgraph isomorphic to Kr+1. Let the set of vertices of this complete subgraph
be A = {u1, . . . , ur+1}. Our proof is divided into two cases, depending on whether the
value of

∑r+1
i=1 d(ui) is less than (r + 1)((r− 1)k + s), or at least (r + 1)((r− 1)k + s), and

the arguments used in each case will differ.
Case 1: We assume that

d(u1) + d(u2) + . . . + d(ur+1) ≤ (r + 1)((r − 1)k + s) − 1.

We show that in this case at least one vertex ui has degree small enough that its
deletion from G results in a graph with more that tr(n − 1) edges, and the proof of the
theorem will easily follow. Let ui be a vertex in A with the lowest degree. Then

d(ui) ≤
1

r + 1

r+1
∑

j=1

d(uj) < (r − 1)k + s.

Case 1.1: Suppose that s ≥ 1. As n = rk + s, V (Tr(n − 1)) is partitioned into s − 1
parts each having k + 1 vertices and r − (s − 1) parts each having k vertices. Therefore
we have:

tr(n) = tr(rk + s) =

(

s

2

)

· (k + 1)2 + s(r − s) · (k + 1)k +

(

r − s

2

)

· k2,

and
tr(n − 1) = tr(rk + (s − 1)) =
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(

s − 1

2

)

· (k + 1)2 + (s − 1)(r − s + 1) · (k + 1)k +

(

r − s + 1

2

)

· k2.

Therefore
tr(n) − tr(n − 1) = (r − 1)k + (s − 1) ≥ d(ui).

Case 1.2: Suppose s = 0. In this case, V (Tr(n−1)) is partitioned into r−1 parts each
having k vertices and one part having k−1 vertices. So n−1 = rk−1 = r(k−1)+(r−1),
and we have:

tr(n) =

(

r

2

)

· k2,

and

tr(n − 1) =

(

r − 1

2

)

· k2 +

(

r − 1

1

)

· (k − 1)k.

Therefore
tr(n) − tr(n − 1) = (r − 1)k > d(ui).

Let G′ = G[V (G) − {ui}]. Then v(G′) = n − 1 and e(G′) > tr(n − 1). Also, G′ contains
a copy of Kr, namely G′[A − {ui}]. As ui is adjacent to all its vertices, there exists
at most one way to extend a proper (r + 1)-coloring of G′ to the one of G. Therefore,
PG(r + 1) ≤ PG′(r + 1). Deleting edges from G′, we can obtain a graph G′′ such that
v(G′′) = n − 1 and e(G′′) = tr(n − 1). Then PG′(r + 1) ≤ PG′′(r + 1), and, as n − 1 ≥ r,
we have PG′′(r + 1) ≤ PTr(n−1)(r + 1) by the induction hypothesis. Therefore, we have

PG(r + 1) ≤ PG′(r + 1) ≤ PG′′(r + 1) ≤ PTr(n−1)(r + 1) < PTr(n)(r + 1),

where the last inequality follows from Lemma 2(ii). This ends the proof of Case 1.

Case 2: We assume that

d(u1) + d(u2) + d(u3) + ... + d(ur+1) ≥ (r + 1)((r − 1)k + s).

For each i, 0 ≤ i ≤ r + 1, let us define the following subsets of V (G) − A:

Bi = {v ∈ V (G) − A| dA(v) = i}.

If G contains a subgraph isomorphic to Kr+2, then PG(r +1) = 0 < PTr(n)(r +1), and the
proof is finished. Therefore, we assume that G contains no (r + 2)-clique. Then Br+1 = ∅
and V (G) is the union of r + 2 pairwise disjoint subsets (with some possibly empty):

V (G) = A ∪ B0 ∪ B1 ∪ . . . ∪ Br.

Let bi = |Bi| for i = 0, . . . , r. Since G[A] is an (r + 1)-clique,

e(G[A, V (G) − A]) = d(u1) + d(u2) + d(u3) + . . . + d(ur+1) − (r + 1)r.

However, since every vertex in Bi is connected to exactly i vertices in A, therefore

e(G[A, Bi]) = ibi.
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Figure 1: An example graph of G[V (G) − A, A] in the r = 3, λ = 4 case.

As sets Bi are pairwise disjoint,

e(G[A, V (G) − A]) = e(G[A, B0]) + e(G[A, B1]) + . . . + e(G[A, Br]),

and since
d(u1) + d(u2) + d(u3) + ... + d(ur+1) ≥ (r + 1)((r − 1)k + s),

we obtain that:
r

∑

i=0

ibi ≥ (r + 1)((r − 1)k + s) − (r + 1)r. (1)

In addition, since there are n − (r + 1) = rk + s − (r + 1) vertices in V (G) − A, and
B0, B1, . . . , Br are all disjoint sets, we have that

r
∑

i=0

bi = rk + s − (r + 1). (2)

Now, by multiplying (2) by r and subtracting it from (1), we obtain

r
∑

i=0

(ibi − rbi) ≥ (r + 1)((r − 1)k + s) − r(r + 1) − (r2k + rs − r(r + 1)) = s − k.

Hence,
r

∑

i=0

(i − r)bi =

r−1
∑

i=0

(i − r)bi ≥ s − k,
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which gives

br−1 ≤ k − s −
r−2
∑

i=0

(r − i)bi. (3)

Consider an (r + 1)-coloring of G. Since all vertices of A are assigned distinct colors,
and since every vertex in Bi is adjacent to i vertices of A, there are at most (r + 1) − i
ways to color each vertex in Bi. As there are (r + 1)! ways to color A, using (3), we have
that

PG(r + 1) ≤ (r + 1)!

r
∏

i=0

(r + 1 − i)bi

≤ (r + 1)!2br−1

r−2
∏

i=0

(r + 1 − i)bi

≤ (r + 1)!2k−s

r−2
∏

i=0

(r + 1 − i)bi

2(r−i)bi

≤ (r + 1)!2k−s

r−2
∏

i=0

(r + 1 − i

2r−i

)bi

≤ (r + 1)!2k−s.

As n = rk + s > r, k = ⌊n
k
⌋ ≥ 1, and 0 ≤ s < r, we have either s ≥ 1, or k ≥ 2.

Suppose that s ≥ 1. Then, as r ≥ 2, we have

PTr(n)(r + 1) − (r + 1)!2k−s = (r + 1)!(s 2k + (r − s)2k−1 − (r − 1) − 2k−s)

≥ (r + 1)!(2k + (r − 1)2k−1 − (r − 1) − 2k−1)

= (r + 1)!(2k + (r − 2)2k−1 − (r − 1))

> 0.

Note that this extends the result in [6] for λ = 3 from (2k, k2)-graphs to
(2k + 1, k(k + 1))-graphs, and, hence, proves Theorem 1 for r = 2, λ = r + 1 = 3 case.

Finally we assume that r ≥ 3 and s = 0. If k ≥ 2, we obtain

PTr(n)(r + 1) − (r + 1)!2k−s = (r + 1)!(s 2k + (r − s)2k−1 − (r − 1) − 2k−s)

= (r + 1)!(r 2k−1 − (r − 1) − 2k)

= (r + 1)!((r − 2)2k−1 − (r − 1))

≥ (r + 1)!(2 (r − 2) − (r − 1))

= (r + 1)!(r − 3)

≥ 0,

with equality if and only if k = 2, r = 3, and s = 0. This implies n = 2 · 3 + 0 = 6.
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Therefore we assume that r = 3 and n = 6. In this case, A = {u1, . . . , u4}, and
PTr(n)(r + 1) = PT3(6)(4) = 4!(0 · 22 + 3 · 21 − 2) = 96. Now, since G has only 6 vertices,
then |V (G) − A| = 2, and e(G[V (G) − A]) ≤ e(K2) = 1. In addition,

e(G) = t3(6) = 12 = e(G[A]) + e(G[V (G) − A]) + e(G[A, V (G) − A]).

Therefore we have

12 ≤ 6 + 1 + (d(u1) + d(u2) + d(u3) + d(u4) − 12),

which leads to
d(u1) + d(u2) + d(u3) + d(u4) ≥ 17.

So, e(G[A, V (G) − A]) ≥ 5. Let V (G) − A = {x, y}, dA(x) ≥ dA(y). Then dA(x) +
dA(y) ≥ 5, and so dA(x) ≥ 3. If dA(x) ≥ 4, then G contains a copy of K5. This implies
PG(4) = 0 < PT3(6)(4).

If dA(x) = 3, then dA(y) = 2. Now, there exist 4! ways to color properly the vertices
in A. Each such coloring can be extended to a proper coloring of G in at most two ways,
as x can be colored uniquely, and y can be colored in at most 2 ways. This shows that
PG(4) ≤ 4! · 2 = 48, which is less than PTr(n)(r + 1) = PT3(6)(4) = 96, and so this ends the
proof of Case 2, and of Theorem 1. �
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