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Abstract

A honeycomb array is an analogue of a Costas array in the hexagonal grid; they
were first studied by Golomb and Taylor in 1984. A recent result of Blackburn,
Etzion, Martin and Paterson has shown that (in contrast to the situation for Costas
arrays) there are only finitely many examples of honeycomb arrays, though their
bound on the maximal size of a honeycomb array is too large to permit an exhaustive
search over all possibilities.

The present paper contains a theorem that significantly limits the number of pos-
sibilities for a honeycomb array (in particular, the theorem implies that the number
of dots in a honeycomb array must be odd). Computer searches for honeycomb
arrays are summarised, and two new examples of honeycomb arrays with 15 dots
are given.

1 Introduction

Honeycomb arrays were introduced by Golomb and Taylor [8] in 1984, as a hexagonal ana-
logue of Costas arrays. Examples of honeycomb arrays are given in Figures 7 to 11 below.
A honeycomb array is a collection of n dots in a hexagonal array with two properties:

• (The hexagonal permutation property) There are three natural directions in a
hexagonal grid (see Figure 1). Considering ‘rows’ in each of these three directions,
the dots occupy n consecutive rows, with exactly one dot in each row.

• (The distinct differences property) The n(n − 1) vector differences between
pairs of distinct dots are all different.
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Figure 1: A Lee sphere, and three natural directions

Golomb and Taylor found 10 examples of honeycomb arrays (up to symmetry), and
conjectured that infinite families of honeycomb arrays exist. Blackburn, Etzion, Martin
and Paterson [5] recently disproved this conjecture: there are only a finite number of
honeycomb arrays. Unfortunately, the bound on the maximal size of a honeycomb array
that Blackburn et al. provide is far too large to enable an exhaustive computer search over
all open cases. In this paper, we prove a theorem that significantly limits the possibilities
for a honeycomb array with n dots. (In particular, we show that n must be odd.) We
report on our computer searches for honeycomb arrays, and give two previously unknown
examples with 15 dots.

We now introduce a little more notation, so that we can state the main result of our
paper more precisely.

We say that a collection of dots in the hexagonal grid is a hexagonal permutation if it
satisfies the hexagonal permutation property. A collection of dots is a distinct difference
configuration if it satisfies the distinct difference property. So a honeycomb array is a
hexagonal permutation that is a distinct difference configuration.

We say that hexagons are adjacent if they share an edge, and we say that two hexagons
A and B are at distance d if the shortest path from A to B (travelling along adjacent
hexagons) has length d. A Lee sphere of radius r is a region of the hexagonal grid consisting
of all hexagons at distance r or less from a fixed hexagon (the centre of the sphere). The
region in Figure 1 is a Lee sphere of radius 2. Note that a Lee sphere of radius r intersects
exactly 2r +1 rows in each of the three natural directions in the grid. A honeycomb array
of radius r is a honeycomb array with 2r + 1 dots contained in a Lee sphere of radius r.

There are many other natural regions of the hexagonal grid that have the property
that they intersect n rows in each direction. One example, the tricentred Lee sphere of
radius r, is shown in Figure 2: it is the union of three Lee spheres of radius r with pairwise
adjacent centres, and intersects exactly 2r + 2 rows in any direction.

Does there exist a honeycomb array with 2r + 2 dots contained in a tricentred Lee
sphere of radius r? Golomb and Taylor did not find any such examples: they com-
mented [8, Page 1156] that all known examples of honeycomb arrays with n dots were in
fact honeycomb arrays of radius r, but stated “we have not proved that this must always
be the case”. We prove the following:
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Figure 2: A tricentred Lee sphere

Theorem 1 Let n be an integer, and suppose there exists a hexagonal permutation π with
n dots. Then n is odd, and the dots of π are contained in a Lee sphere of radius (n−1)/2.

Since any honeycomb array is a hexagonal permutation, the following result follows
immediately from Theorem 1:

Corollary 2 Any honeycomb array is a honeycomb array of radius r for some integer r.
In particular, a honeycomb array must consist of an odd number of dots.

So if we are looking for honeycomb arrays, we may restrict ourselves to searching for
honeycomb arrays of radius r.

The structure of the remainder of the paper is as follows. In Section 2, we state the
results on the hexagonal grid that we need. In Section 3, we remind the reader of the
notion of a brook, or bee-rook, and state a theorem on the maximum number of non-
attacking brooks on a triangular board. In Section 4 we prove Theorem 1, we summarise
our computer searches for honeycomb arrays, and we provide a list of all known arrays.
This last section also contains a conjecture, and some suggestions for further work.

2 The hexagonal grid

Because the hexagonal grid might be difficult to visualise, we use an equivalent repre-
sentation in the square grid (see Figure 3). In this representation, we define each square
to be adjacent to the four squares it shares an edge with, and the squares sharing its
‘North-East’ and ‘South-West’ corner vertices. The map ξ in Figure 3 distorts the centres
of the hexagons in the hexagonal grid to the centres of the squares in the square grid. The
three types of rows in the hexagonal grid become the rows, the columns and the diagonals
that run from North-East to South-West. For brevity, we define a standard diagonal to
mean a diagonal that runs North-East to South-West.

For non-negative integers n and i such that 0 ≤ i ≤ n − 1, define the region Si(n) of
the square grid as in Figure 4. Note that Si(n) and Sn−1−i(n) are essentially the same
region: one is obtained from the other by a reflection in a standard diagonal. The regions
ξ−1(Si(n)) are important in the hexagonal grid, as they are the maximal anticodes of
diameter n− 1; see Blackburn et al. [5, Theorem 5]. Note that the region ξ−1(Sr(2r + 1))
is a Lee sphere of radius r. Regions of the form ξ−1(Sr(2r + 2)) or ξ−1(Sr+1(2r + 2)) are
tricentred Lee spheres of radius r. Also note that the regions Si(n) as i varies are precisely
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Figure 3: From the hexagonal to the square grid
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Figure 4: The region Si(n)

the possible intersections of an n × n square region with n adjacent standard diagonals,
where each diagonal intersects the n× n square non-trivially.

In the lemma below, by a ‘region of the form X’, we mean a region that is a translation
of X in the square grid.

Lemma 3 Let π be a hexagonal permutation with n dots, and let ξ(π) be the image of π
in the square grid. Then the dots in ξ(π) are all contained in a region of the form Si(n)
for some i in the range 0 ≤ i ≤ n− 1.

Proof: Let R be the set of squares that share a row with a dot of ξ(π). Similarly, let C
and D be the sets squares sharing respectively a column or a standard diagonal with a
dot of ξ(π). The dots in ξ(π) are contained in R ∩ C ∩D.

Since π is a hexagonal permutation, R consists of n adjacent rows and C consists of n
adjacent columns. Hence R∩C is an n×n square region. (Since there is exactly one dot
in each row and column of the square R∩C, the dots in ξ(π) correspond to a permutation;
this justifies the terminology ‘hexagonal permutation’.)

Now, D consists of n adjacent standard diagonals; each diagonal contains a dot in
ξ(π), and so each diagonal intersects R ∩C non-trivially. Hence R ∩C ∩D is a region of
the form Si(n), as required. �

the electronic journal of combinatorics 17 (2010), #R172 4



w

Figure 5: A triangular board of width w

3 Brooks on a triangular board

A brook is a chess piece in the square grid that moves like a rook plus half a bishop:
it can move any distance along a row, a column or a standard (North-East to South-
West) diagonal. Brooks were first studied by Bennett and Potts [4], who pointed out
connections to constant-sum arrays and hexagonal lattices. A set of brooks in a square
grid is non-attacking if no two brooks lie in a row, a column or a standard diagonal.

Under the correspondence ξ between the square and hexagonal grids mentioned in the
previous section, brooks in the square grid correspond to bee-rooks in the hexagonal grid:
pieces that can move any distance along any row, where a row can go in each of the three
natural directions. A set of bee-rooks is therefore non-attacking if no two bee-rooks lie
in the same row of the hexagonal grid. In particular, bee-rooks placed on the dots in a
hexagonal permutation π are non-attacking, and so the corresponding set ξ(π) of brooks
in the square grid is non-attacking.

A triangular board of width w is the region S0(w) in the square grid depicted in
Figure 5. Let b(w) be the maximum number of non-attacking brooks that can be placed
in the triangular board of width w. The following theorem is proved by Nivasch and
Lev [10] and in Vaderlind, Guy and Larson [12, P252 and R252]:

Theorem 4 For any positive integer w, b(w) = b(2w + 1)/3c.

Three of the present authors have found an alternative proof for this theorem, us-
ing linear programming techniques [6]. See Bell and Stevens [3] for a survey of similar
combinatorial problems.

4 Honeycomb arrays

We begin this section with a proof of Theorem 1. We then describe our searches for
honeycomb arrays. We end the section by describing some avenues for further work.
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Figure 6: A triangular board covering π

Proof of Theorem 1: Let π be a hexagonal permutation with n dots. By Lemma 3,
the dots of ξ(π) are contained in a region of the form Si(n) where 0 ≤ i ≤ n− 1. When
i = (n− 1)/2 (so n is odd and ξ−1(Si(n)) is a Lee sphere) the theorem follows. Suppose,
for a contradiction, that i 6= (n− 1)/2.

By reflecting π in a horizontal row in the hexagonal grid, we produce a hexagonal
permutation π′ such that ξ(π′) is contained in a region of the form S(n−1)−i(n). By
replacing π by π′ if necessary, we may assume that i < (n− 1)/2.

Consider the triangular board of width n+i in Figure 6 containing Si(n). Since no two
dots in ξ(π) lie in the same row, column or standard diagonal, the dots in ξ(π) correspond
to n non-attacking brooks in this triangular board. But this contradicts Theorem 4, since

2(n + i) + 1

3
<

2n + (n− 1) + 1

3
= n.

This contradiction completes the proof of the theorem. �
Theorem 1 tells us that the only honeycomb arrays are those of radius r for some

non-negative integer r. A result of Blackburn et al [5, Corollary 12] shows that r ≤ 643.
We now report on our computer searches for examples of honeycomb arrays. The known
honeycomb arrays are drawn in Figures 7, 8, 9, 10 and 11. This list includes two new
examples not known to Golomb and Taylor [8], namely the second and third examples of
radius 7; we found these examples as follows.

A Costas array is a set of n dots in an n×n region of the square grid, with the distinct
difference property and such that every row and column of the array contains exactly one
dot. Golomb and Taylor observed that some Costas arrays produce honeycomb arrays,
by mapping the dots in the Costas array into the hexagonal grid using the map ξ−1 given
by Figure 3. Indeed, it is not difficult to see that all honeycomb arrays must arise in
this way. We searched for honeycomb arrays by taking each known Costas array with
200 or fewer dots, and checking whether the array gives rise to a honeycomb array. For
our search, we made use of a database of all known Costas arrays with 200 or fewer dots
that has been made available by James K. Beard [1]. This list is known to be complete
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Figure 7: Honeycomb arrays of radius 0, 1 and 3
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Figure 8: Honeycomb arrays of radius 4

for Costas arrays with 27 or fewer dots; see Drakakis et al. [7] for details. So our list of
honeycomb arrays of radius 13 or less is complete.

It is a remarkable fact that all known honeycomb arrays possess a non-trivial symmetry
(a horizontal reflection as we have drawn them). Indeed, apart from a single example of
radius 3 (the first radius 3 example in Figure 7) all known honeycomb arrays possess
a symmetry group of order 6: the group generated by the reflections along the three
lines through opposite ‘corners’ of the hexagonal sphere. We implemented an exhaustive
search for honeycomb arrays with r ≤ 31 having this 6-fold symmetry: we found no new
examples. We also checked all constructions of honeycomb arrays from Costas arrays in
Golomb and Taylor [8] (whether symmetrical or not) for r ≤ 325, and again we found no
new examples.
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Figure 9: Honeycomb arrays of radius 7
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Figure 10: Honeycomb arrays of radius 10 and 13
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Figure 11: A honeycomb array of radius 22
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After these searches, we feel that we can make the following conjecture:

Conjecture 1 The list of known honeycomb arrays is complete. So there are are exactly
12 honeycomb arrays, up to symmetry.

Theorem 1 shows that hexagonal permutations are always contained in some Lee
sphere. But such permutations have been prevously studied in several contexts: Bennett
and Potts [4] study them as non-attacking configurations of bee-rooks and as the number
of zero-sum arrays; Kotzig and Laufer [9] study them as the number of σ-permutations;
Bebeacua, Mansour, Postnikov and Severini [2] study them as X-rays of permutations
with maximum degeneracy. Let hn be the number of hexagonal permutations with 2n−1
dots. The On-Line Encyclopedia of Integer Sequences [11, Sequence A002047] quotes a
computation due to Alex Fink that computes the first few terms of the sequence hn:

n 1 2 3 4 5 6 7 8 9 10
hn 1 2 6 28 244 2544 35600 659632 15106128 425802176

Kotzig and Laufer ask: How big can hn be? It seems that the sequence grows faster than
exponentially with n. We ask a more precise question: Is it true that (log hn)/n log n
tends to a constant as n →∞?
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