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Abstract

Let Ω be a set of 24 points with the structure of the (5,8,24) Steiner system,
S, defined on it. The automorphism group of S acts on the famous Leech lattice,
as does the binary Golay code defined by S. Let A,B ⊂ Ω be subsets of size
four (“tetrads”). The structure of S forces each tetrad to define a certain partition
of Ω into six tetrads called a sextet. For each tetrad Conway defined a certain
automorphism of the Leech lattice that extends the group generated by the above
to the full automorphism group of the lattice. For the tetrad A he denoted this
automorphism ζA. It is well known that for ζA and ζB to commute it is sufficient
to have A and B belong to the same sextet. We extend this to a much less obvious
necessary and sufficient condition, namely ζA and ζB will commute if and only if
A∪B is contained in a block of S. We go on to extend this result to similar conditions
for other elements of the group and show how neatly these results restrict to certain
important subgroups.

1 Introduction

The Leech lattice, Λ, was discovered by Leech in 1965 in connection with the packing of
spheres into 24-dimensional space R

24, so that their centres form a lattice. Its construction
relies heavily on the rich combinatorial structure of the Mathieu group M24. Leech himself
considered the group of symmetries fixing the origin 0; he had enough geometric evidence
to predict the order of this group to within a factor of two, but could not prove the
existence of all the symmetries he anticipated. John Conway subsequently produced a
beautifully simple additional symmetry of Λ and in doing so determined the order of the
group it generated together with the monomial subgroup used in the construction of Λ
(see [3]). He proved that this is the full group of symmetries of Λ fixing the origin; that
it was perfect; had centre of order two and that the quotient by its centre was simple.

In this paper we give a combinatorial condition that enables one to immediately see
with minimal effort when Conway’s additional symmetries of ·0 commute. As we shall

the electronic journal of combinatorics 17 (2010), #R18 1



see this is readily adapted to analogous conditions for other elements of the group and to
certain subgroups.

In Section 2 we recall some notation along with the basic construction of the Leech
lattice and the group ·0. In Section 3 we state and prove our main theorem. In Section 4
we use this to prove a similar result for the ‘Golay codewords’, as defined in Section 2. In
Section 4 we show how these results may be readily adapted for use with other elements.
Finally in Section 5 we see how these results restrict to some subgroups of ·0.

2 The Leech Lattice and ·0

In this section we shall define the Leech lattice and the Conway group ·0. We will closely
follow the account given by Conway [4] which may be found in Conway and Sloane [6,
Chapter 10].

A Steiner system, S(5,8,24), is a collection of 759 8-element subsets of a 24-element
set, Ω, known as octads, with the property that any 5-element subset of Ω is contained in
precisely one octad. It turns out that such a system is unique up to relabeling and the
group of permutations of Ω that preserve such a system is a copy of the sporadic simple
Mathieu group M24 which acts 5-transitively on the 24 points of Ω. Moreover the set of
all octads passing through a fixed point of Ω will form a Steiner system S(4,7,23) defined
analogously to S(5,8,24) whose automorphism group is the sporadic group M23. Similarly
a fixed pair of points define a Steiner system S(3,6,22) and the sporadic group M22.

The symmetric difference of two octads that intersect in four points may be shown to be
another octad. Consequently the 24 points of Ω can be partitioned into 6 complementary
tetrads (4-element subsets) such that the union of any two of them is an octad. Such a
partition is called a sextet.

Let P(Ω) denote the powerset of Ω regarded as a 24-dimensional vector space over the
field of two elements, F2. The subspace spanned by the 759 octads contains the empty
set; the 759 octads; 2576 12-element subsets known as dodecads ; the 759 complements
of the octads, known as 16-ads, and the whole set Ω. This is a 12 dimensional subspace
known as the Binary Golay code. We shall denote this C24. We shall further write C(8)
for the octads of C24 and C(12) for the dodecads. We define the weight of a codeword to
be its number of non-zero components.

A much used approach to this Steiner system is the Miracle Octad Generator (MOG)
discovered by Curtis [7]. A more modern account is given in [6, Chapter 11]. Since we
shall make great use of this important piece of notation we shall describe it here in some
detail.

The MOG is an arrangement of the 24 points of Ω into a 4×6 array in which the
octads assume a particularly recognizable form; so it is easy to read them off. Naturally
the six columns of the MOG, that we label 1, . . . ,6, will form a sextet. The pairing of
the columns 12 · 34 · 56 are known as the bricks of the MOG. The Hexacode, H, is a
3-dimensional quarternary code of length six whose codewords give an algebraic notation
for the binary codewords of H as given in the MOG. Explicitly if {0, 1, ω, ω̄} = K ∼= F4,
then
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0 × × × ×
1 × × × ×
ω × × × ×
ω̄ × × × ×

0∼ or , 1∼ or , ω∼ or , ω̄∼ or

The Odd Interpretation

0 × × × ×
1 × × × ×
ω × × × ×
ω̄ × × × ×

0∼ or , 1∼ or , ω∼ or , ω̄∼ or

The Even Interpretation

Figure 1: The odd and even interpretations of hexacode words

H = 〈(1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1), (ω̄, ω, ω̄, ω, ω̄, ω)〉
= {(0, 0, 0, 0, 0, 0) (1 such), (0, 0, 1, 1, 1, 1) (9 such),

(ω̄, ω, ω̄, ω, ω̄, ω) (12 such),
(ω̄, ω, 0, 1, 0, 1) (36 such), (1, 1, ω, ω, ω̄, ω̄) (6 such)}

where multiplication by powers of ω are of course allowed, as is an S4 of permutations of the
coordinates corresponding to the symmetric group S4

∼= 〈(135)(246), (12)(34), (13)(24)〉
(the even permutations of the wreath product of shape 2≀S3 fixing the pairing 12 · 34 ·
56). Each hexacode word has an even and odd interpretation and each interpretation
corresponds to 25 binary codewords in H, giving the 26 × 2 × 25 = 212 binary codewords
of C24. The rows of the MOG are labeled in descending order with the elements of K as
shown in Figure 1, thus the top row is labeled 0.

Let (h1, . . . , h6) ∈ H. Then in the odd interpretation, if hi = λ ∈ K we place a 1
in the λ position in the ith column and zeros in the other three positions, or we may
complement this and place 0 in the λth position and 1s in the other three positions. We
do this for each of the 6 values of i and may complement freely so long as the the number
of 1s in the top row is odd. So there are 25 choices.

In the even interpretation if hi = λ 6= 0 we place 1 in the 0th and λth positions and
zeros in the other two, so as before we may complement. If hi = 0 then we place 0 in all
four positions or 1 in all four positions. This time we may complement freely so long as
the number of 1s in the top row is even. Thus for instance

(0, 1, ω̄, ω, 0, 1) ∼
×
×

×
×
×

× ×
×

or

×
×
×

×

×

×

×
×

24 23 11 1 22 2

3 19 4 20 18 10

6 15 1614 8 17

9 5 13 2112 7

in the odd and even interpretations respectively, where evenly many complementations
are allowed in each case. The last Figure shows the standard labeling of the 24 points
of Ω used when entering information into a computer. (One often finds the ‘23’ and
‘24’ replaced with the symbols ‘0’ and ‘∞’ so that the 24 points are labeled using the
projective line P1(23) such that all the permutations of L2(23) are in M24.) Here we have
described the Curtis form of the MOG. To obtain the Conway form of the MOG, also
commonly found in the literature, one need only swap over the rightmost two columns.
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Following [6], we let {e1, . . . e24} be an orthonormal basis for R
24. Given a set S ⊆ Ω

we write eS to denote the vectors Σi∈Sei. We shall write Λ0 for the lattice spanned by the
vectors of the form 2eC for C ∈ C(8). In Theorem 24 of [4] Conway proves:

Theorem 1 Λ0 contains all vectors of the form 4eT (T ⊆ Ω with |T | = 4) and 4ei ± 4ej

(i, j ∈ Ω, i 6= j).

In particular Λ0 contains all the vectors of the form 8ei = (4ei+4ej)+(4ei−4ej), j 6= i.
These vectors are useful for minimizing the amount of work involved in verifying results
such as those given here.

The Leech lattice is defined to be the lattice spanned by Λ0 and a vector u = eΩ−4e∞ =
(−3, 123). (Note that u 6∈ Λ0 since the components of all the vectors of Λ0 are even.) This
is well defined since:

-3 1 1 1 . . .

+ 4 -4 0 0 . . .

1 -3 1 1 . . .

We define the group ·0 to be the group of all Euclidean congruences of R
24 that fix the

origin and preserve the Leech lattice as a whole. We define a signchange on a set S ⊆ Ω,
ǫS, to be a an element of the form:

ǫS(ei) =

{

−ei for i ∈ S;
ei for i 6∈ S.

Conway found that every element of ·0 may be expressed as πǫCw where π ∈M24,
C ∈ C24 and w is a word of elements that we define as follows. If A ⊂ Ω is a tetrad, then
let αA be the operation taking ei to ei −

1
2
eB where i ∈ B ⊂ Ω and B is in the same

sextet as A. In [3] Conway showed that the element ζA := αAǫA (defined by extending
linearly the action on the basis vectors given for αA and ǫA) is then an automorphism of
the Leech lattice not equal to a product of permutations and signchanges. Note that if
A and B are distinct tetrads of a given sextet then αA = αB but ζA 6= ζB. We note that
these elements have the following property:

Lemma 2 If A and B are two distinct tetrads belonging to the same sextet then ζAζB = ǫA∪B

Proof: ζAζB = αAǫAαBǫB = αAαBǫAǫB = ǫA∪B. �

For further details see [6].

3 The Main Theorem

In this section A, B ⊆ Ω will be tetrads.

Theorem 3 ζAζB = ζBζA if and only if A ∪ B is contained in an octad of the Steiner
system S(5,8,24).

the electronic journal of combinatorics 17 (2010), #R18 4



×
×
×
×

×
×
×
×

×
×

×
×

×

×
×
×

×
×
×
×

×
×××

×
×××

×××× ×××
×

×
×
×
× ×

×

×
×

×
×

×× ×××× ×××
×

Figure 2: Representatives for the fourteen orbits of B under the action of the stabilizer
of A in the group M24

Proof Let π ∈M24. Clearly the result holds for A and B if and only if it holds for Aπ and
Bπ. It is therefore sufficient to check the result for one member of each orbit of ordered
pairs of tetrads (A, B) under the action of M24. Since the action of M24 on 24 points is
five transitive we may fix A to be the leftmost column of the MOG. By inspecting the
possibilities for B we see there are now fourteen orbits to be checked. It remains to verify
the result for each of the orbits. We give a representative for each of these orbits in Figure
2.

Now, clearly the result is true if A = B. If A ∪ B ∈ S(5,8,24) then the result is
immediate from Lemma 2 since A ∪ B = B ∪ A.

Clearly, a necessary condition for the elements ζA and ζB to commute is that each of
the tetrads A and B intersect each others’ sextet in the same manner. Compared to the
leftmost column of the MOG, this condition is not met in each of the four cases given in
Figure 4. It is thus immediate that none of these will commute with ζA for A the leftmost
column of the MOG, without any calculation at all. The theorem is therefore true in
these cases.

We next observe that if A ∪ B ⊂ O ∈ S(5,8,24) then the result will hold whenever
|A ∪ B|=5 if and only if it holds whenever |A ∪ B|=7 since:

ζAζB = ζAζBζ2
O\B = ζAǫOζO\B = ǫOζO\BζA = ζBζ2

O\BζA = ζBζA

the second and fourth equalities holding by Lemma 2.
The remaining seven cases may all be verified by easy calculation on the vectors of

the Leech lattice. As an example of the sort of calculation that’s required we give all
calculation necessary to verify the result in the unique case with |A∪B| = 5 in Figure 3.
�

We remark that theorem 3 has been verified computationally using the programme of
[8]. We further remark that the direct calculations performed to verify theorem 3 reveal
slightly more is true. Consider the natural 24 dimensional representation of ·0. Let χ

be the character of this representation. (The full character table of ·0 may found in [5,
p.184-187].) The character values of each of the 14 possible words ζAζB depends only on
the order of ζAζB. We give these in the Table 5. From this table we can see that many
of the words are conjugate to each other. Moreover, they are all conjugate, not only to
other words of length two, but to non-fixed point free permutations in M24!

Finally note that since the Leach lattice is defined over Z it may be used to define
modular representations of ·0 by reading all vectors mod p. Since this does not effect the
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2 2 2
2 2 2
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8
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2
2
2

-2 6
2
2
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8
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4
-4
4
4
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-2
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-2
-2

6

8

7→

-4
4
4
4

7→
2
2
2

6 -2
2
2
2

8

7→

4 -4-4-4

7→
-2
-2
-2

2-2-2-2
2 2 2
2 2 2
2 2 2

Figure 3: The action of a elements of the form ζAζB and ζBζA with |A ∪ B| = 5 on some
vectors of the form (8,023). All other cases are immediate from the above by the high
transitivity of M24.

×
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×
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Figure 4: Tetrads whose sextets meet the columns of the MOG, the standard sextet,
asymmetrically
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|tAtB| χ(tAtB)
1 24
2 8
3 6
4 4
5 4
6 2

Figure 5: The character values of words of length two

structure of the S(5, 8, 24) Steiner system or the status of a tetrad as a subset of Ω of
size four, the result clearly also hold in any characteristic. Few results of representation
theory are completely characteristic free.

4 The Golay codewords

In this section we classify the signchanges on Golay codewords that commute with ζT for
a given tetrad T . Let C ∈ C24 be a codeword.

Definition 4 T is said to refine C if either C may be expressed as a union of tetrads
of the sextet of T or C is the empty codeword and let T be a tetrad with corresponding
element ζT .

Theorem 5 We have ζT ǫC = ǫCζT if and only if T refines C.

Proof First observe that without loss of generality T ∩ C 6= ∅, otherwise if U is a tetrad
from the sextet of T meeting C then

ζT ǫC = ǫCζT ⇔ ǫU∪T ζT ǫC = ǫU∪T ǫCζT = ǫCǫU∪T ζT ⇔ ζUǫC = ǫCζU (†)

since ǫU∪T = ζUζT by Lemma 2. Next we note that the weight of any binary Golay code
word is either 0, 8, 12, 16 or 24. Clearly the theorem holds when C is the empty word
(the weight 0 codeword) or ǫC is the central involution of ·0 (the weight 24 codeword).
Now we observe that the result holds for 16-ads if and only if it holds for octads, since one
is equal to the other multiplied by the central involution. It remains to prove the result
for octads and dodecads.

Again M24 act transitively on octads. Moreover the stabiliser of an octad has structure
28 :A8, the 24 acting regularly on the complementary 16ad and the A8 acting in a natural
way on the 8 points of the octad. Fix a tetrad T and an octad O. By observation (†), we
may assume that T meets O and does so in either two, three or four points. If T meets O

in four points, then Lemma 2 immediately gives our result since A ∪ B = B ∪ A for any
tetrads A and B. The action of the octad stabilizer in M24 is transitive on each of these

the electronic journal of combinatorics 17 (2010), #R18 7



×
×
×

× c

c

c

c

c

c

c

c

8

7→
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c
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c

8

7→

-4 4 4 4

7→

4 -4 4 4

c

c

c

c

c

c

c

c

××××

8

7→

-8

7→

4 -4-4-4

Figure 6: (ζT ǫO)2 6= 1. Here we use × to denote the points in a tetrad, T , used to define an
element ζT and we use ◦ to denote the points of an octad, O, used to define a signchange
ǫO

orbits, so it is sufficient to prove the result for particular choices of T and O. We do this
by direct calculation in Figure 6.

Finally it remains to prove the result for dodecads. There are three different possible
intersections for a sextet and a dodecad, namely (13, 33),(0, 24, 4) and (26). As in the
octad case, M24 is transitive on dodecads and the stabiliser of a dodecad in this action,
which has the structure of the sporadic group M12, is transitive on each of these orbits,
so it is sufficient to prove the result in a special case of each of these orbits. We do this
in Figure 7. �

5 Other Groups

The results presented here neatly restrict to some of the more interesting subgroups of ·0.
Elements of the form ζT ǫΩ will fix a vector of the form v := (−3, 123) whenever the -3

component of v lies in T . If the -3 component of v is at i ∈ Ω, then we define a triad to be

the electronic journal of combinatorics 17 (2010), #R18 8



c c c

c c c

c c c

c c c

××××

8

7→

8

7→

-4 4 4 4

××××
c c c

c c c

c c c

c c c

8

7→

-4 4 4 4

7→

-4-4 4-4

c c c

c c c

c c c

c c c

××
××

8

7→

8

7→

-4 4
4 4

××
×× c c c

c c c

c c c

c c c

8

7→

-4 4
4 4

7→

-4-4
-4 4

c c c

c c c

c c c

c c c

×
×
×
×

8

7→

8

7→

-4
4
4
4

×
×
×
×

c c c

c c c

c c c

c c c

8

7→

-4
4
4
4

7→

-4
-4
-4
-4

Figure 7: The action of elements of the form ζT ǫD for D a dodecad. Here we again use ×
to denote the points in a tetrad, T , used to define an element ζT and we use ◦ to denote
the points of an octad, O, used to define a signchange ǫO
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any set of size three R ⊆ Ω\ {i} and define a triad element to be any element of the form
ηR := ζR∪{i}ǫΩ. Any permutation in the stabiliser of i under the action of M24, which has
structure M23, will also fix v. Clealy no Golay codewords fix v. Since the central element
of ·0 is ǫΩ we thus have

ηAηB = ζA∪{i}ǫΩζB∪{i}ǫΩ = ζA∪{i}ζB∪{i}ǫ
2
Ω = ζA∪{i}ζB∪{i}

for any triads A, B ∈ Ω\{i}. Consequently we have as an immediate Corollary of theorem
3:

Corollary 6 ηAηB = ηBηA if and only if A ∪ B ⊆ H ∈ S(4,7,23).

We thus have a result of the form of theorem 3 in the sporadic group Co2.
We further find a form of this result in the group U6(2). Fix i, j ∈ Ω. The Leech

lattice vectors v1 := (−3, 1, 122), v2 := (−1, 3,−122), v3 := (4,−4, 022) are all 2-vectors
and have the property that v1+v2+v3 = 0, the first two components corresponding to the
positions i and j. The stabiliser in ·0 of such a triangle in the Leech lattice is a maximal
subgroup of structure U6(2):S3, the U6(2) fixing all three vectors and the S3 naturally
permuting them. Elements of the form ζT ǫΩ fix each vk whenever {i, j} ⊂ T . Clearly
any permutation in the pointwise stabiliser of {i, j} under the action of M24, which has
structure M22, will also fix each vk. Again, clearly no Golay codeword will fix these three
vectors. We define a duad to be any set of size two D ⊆ Ω \ {i, j} and define a duad
element to be any element of the form θD := ζD∪{i,j}ǫΩ. Again, since ǫΩ is central we
have:

Corollary 7 θAθB = θBθA if and only if A ∪ B ⊆ H ∈ S(3,6,22).

Whilst the sporadic groups Co1(∼= ·0/Z(·0)) and Co2 are exceptional in their nature, the
classical group U6(2) is part of a well-behaved infinite family. Since connections between
unitary groups and design theory are well established (see for instance [11], [10]) it seems
likely that similar results to those presented here for other groups may be possible.

Finally we again note that just as theorem 3 was characteristic free, the two corollaries
given above will hold independent of the characteristic of the representation.

6 Concluding Remarks

The results of this paper were originally observed for elements of the form ζT ǫΩ using the
relation of Figure 8 which was employed by Bray and Curtis in [1] to construct ·0 using
the techniques of ‘symmetric generation’.
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