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Abstract

We propose two procedures to choose members of
([n]

r

)

sequentially at random

to form a non-trivially intersecting hypergraph. In both cases we show what is the

limiting probability that if r = cnn
1/3 with cn → c, then the process results in a

Hilton-Milner-type hypergraph.

1 Introduction

In 1961, Erdős, Ko and Rado [5] proved that if 2r 6 n, then the edge set E of an
intersecting r-uniform hypergraph with vertex set V and |V | = n cannot have larger size
than

(

n−1
r−1

)

, moreover if 2r < n, then the only hypergraphs with that many edges are of

the form {e ∈
(

V
r

)

: v ∈ e} for some fixed v ∈ V . In the past almost five decades, the
area of intersection theorems has been widely studied, but randomized versions of the
Erdős-Ko-Rado theorem have only attracted the attention of researchers recently. There
are mainly two approaches to the randomized problem. Balogh, Bohman and Mubayi [2]
considered the problem of finding the largest intersecting hypergraph in the probability
space Gr(n, p) of all labeled r-uniform hypergraphs on n vertices where every hyperedge
appears randomly and independently with probability p = p(n). In this paper, we follow
the approach of Bohman et al. [3], [4]. They considered the following process to generate
an intersecting hypergraph by selecting edges sequentially and randomly.

Choose Random Intersecting System

Choose e1 ∈
(

[n]
r

)

uniformly at random. Given Fi = {e1, ..., ei} let A(Fi) = {e ∈
(

[n]
r

)

:
e /∈ Fi, ∀1 6 j 6 i : e ∩ ej 6= ∅}. Choose ei+1 uniformly at random from A(Fi). The
procedure halts when A(Fi) = ∅ and F = Fi is then output by the procedure.
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Theorem 1.1 (Bohman et al. [3]) Let Er,n denote the event that |F| =
(

n−1
r−1

)

. Then

if r = cnn1/3,

lim
n→∞

P(Er,n) =







1 if cn → 0
1

1+c3
if cn → c

0 if cn → ∞.

Theorem 1.1 states that the probability that the resulting hypergraph will be trivially
intersecting (i.e. all of its edges will share a common element) with probability tending
to 1 (in other words, with high probablity, w.h.p.) provided r = o(n1/3). In this paper we
will be interested in two processes that generate non-trivially intersecting hypergraphs for
this range of r. Before introducing the actual processes, let us state the theorem of Hilton
and Milner that determines the size of the largest non-trivially intersecting hypergraph.

Theorem 1.2 (Hilton, Milner [6]) Let F ⊂
(

[n]
r

)

be a non-trivially intersecting hy-

pergraph with r > 3, 2r + 1 6 n. Then |F| 6
(

n−1
r−1

)

−
(

n−r−1
r−1

)

+ 1. The hypergraphs

achieving that size are

(i) for any r-subset F and x ∈ [n] \ F the hypergraph FHM = {F} ∪ {G ∈
(

[n]
r

)

: x ∈
G, F ∩ G 6= ∅},

(ii) if r = 3, then for any 3-subset S the hypergraph F∆ = {F ∈
(

[n]
3

)

: |F ∩ S| > 2}.

We will call the hypergraphs described in (i) HM-type hypergraphs, while hypergraphs
F for which there exists a 3-subset S of [n] such that F consists of all r-subsets of [n]
with |F ∩ S| > 2 will be called 2-3 hypergraphs even if r > 3 (the natural generalizations
of hypergraphs of the form of (ii)).

We now introduce the two processes we will be interested in. In some sense they are
the opposite of each other as the first process assures as early as possible (i.e. when
picking the third edge e3) that it produces a non-trivially intersecting hypergraph while
the second one is the same as the original process of Bohman et al. as long as it is
possible that the process results a non-trivially intersecting hypergraph. The main value
of the first model is that the results concerning this model allows us to calculate the
probability that the original model of Bohman et al. produces an HM-type hypergraph
when r = Θ(n1/3), while the second model seems to be the model that can be obtained
with the least modification to the original such that it results a non-trivially intersecting
hypergraph for all values of r and n.

Here are the formal definitions.

The Third Round Process

Choose e1 ∈
(

[n]
r

)

uniformly at random. Given Fi = {e1, ..., ei} if i 6= 2 let A(Fi) =

{e ∈
(

[n]
r

)

: e /∈ Fi, ∀1 6 j 6 i : e ∩ ej 6= ∅} while for i = 2 let A(F2) = {e ∈
(

[n]
r

)

: e /∈
F2, e ∩ ej 6= ∅(j = 1, 2), e ∩ e1 ∩ e2 = ∅}. Choose ei+1 uniformly at random from A(Fi).
The procedure halts when A(Fi) = ∅ and F = Fi is then output by the procedure.

Note that by Lemma 7 in [3] if O(n2/3) = r = ω(n1/3), then w.h.p. F3 of the original
process of Bohman et al. is non-trivially intersecting and thus the two processes are the
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same w.h.p. The probability of an event E in the Third Round Process will be denoted
by P3R(E).

The Put-Off Process

Choose e1 ∈
(

[n]
r

)

uniformly at random. Given Fi = {e1, ..., ei} let

A(Fi) =

{

e ∈

(

[n]

r

)

: e /∈ Fi; ∃G non-trivially intersecting with {e} ∪ Fi ⊆ G

}

,

i.e. A(Fi) is the set of all edges that can be added to Fi such that {e}∪Fi can be extended
to a non-trivially intersecting hypergraph. Choose ei+1 uniformly at random from A(Fi).
The procedure halts when A(Fi) = ∅ and F = Fi is then output by the procedure.

Note again that by Lemmas 7 and 8 in [3] if r = ω(n1/3), then w.h.p already F2 log2 n

of the original process of Bohman et al. is non-trivially intersecting and thus the two
processes are the same. The probability of an event E in the Put-Off Process will be
denoted by PPO(E). If the probability of an event E is the same in the two models or
the same bound applies for it in both models, then we will denote this probability by
P3R,PO(E). The probability of an event E in the original process will be denoted by
PINT (E).

To formulate the main results of the paper we need to introduce the following events:
EHM stands for the event that the process outputs an HM-type hypergraph while E∆

denotes the event that the output is a 2-3 hypergraph.

Theorem 1.3 If ω(1) = r = cnn1/3, then

lim
n→∞

P3R(EHM) =







1 if cn → 0
1

1+c3/3
if cn → c

0 if cn → ∞.

Theorem 1.4 If 3 6 r is a fixed constant, then

lim
n→∞

P3R(EHM) = 1 −

(

1

r − 1

)3

, lim
n→∞

P3R(E∆) =

(

1

r − 1

)3

.

Theorem 1.5 If r = cnn1/3, then

lim
n→∞

PPO(EHM) =







1 if cn → 0
1

1+c3
+ c3

1+c3
· 1

1+c3/3
if cn → c

0 if cn → ∞.

Corollary 1.6 If r = cnn1/3 with cn → c, then

PINT (EHM) =
c3

1 + c3
·

1

1 + c3/3
.

The rest of the paper is organized as follows: in the next section we introduce some
events that will be useful in the proofs and restate some of the lemmas of [3]. In Section
3, we prove Theorem 1.3 and Corollary 1.6, Section 4 contains the proof of Theorem 1.4
and Section 5 contains the proof of Theorem 1.5.
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2 Definitions and Lemmas from [3]

We will write g(n) = o(f(n)) (g(n) = ω(f(n))) to denote the fact that limn
g(n)
f(n)

= 0

(limn
g(n)
f(n)

= ∞), while g(n) = O(f(n)) (g(n) = Ω(f(n))) will mean that there exists a

positive number K such that g(n)
f(n)

< K ( g(n)
f(n)

> K) for all integers n and g(n) = Θ(f(n))

denotes the fact that both g(n) = O(f(n)) and g(n) = Ω(f(n)) hold. Throughout the
paper log stands for the logarithm in the natural base e.

We will use the following well-known inequalities: for any x we have 1 + x 6 ex and
if x tends to 0, then 1 + x = exp(x + O(x2)). Binomial coefficients will be bounded by
(a

b
)b 6

(

a
b

)

6 ( ea
b
)b. Finally, for binomial random variables we have the following fact (see

e.g. [1]).

Fact 2.1 If X is a random variable with X ∼ Bi(n, p), then we have P(|X−np| > δnp) 6

2e−δ2np/3. In particular, for any constant c with 0 < c < 1 we have P(|X − np| > cnp) =
exp(−Ω(np)).

We call a hypergraph with i edges an i-star if the pairwise intersections of the edges
are the same and have one element which we will call the kernel of the i-star.

A hypergraph of 3 edges e1, e2, e3 is a triangle if ∩3
i=1ei = ∅ and |ei ∩ ej | = 1 for all

1 6 i < j 6 3. The base of a triangle is the 3-set {ei ∩ ej : 1 6 i < j 6 3}. A hypergraph
is a sunflower if the intersection of any two of its edges are the same which is the kernel

of the sunflower. A hypergraph H of 3r edges is an r-triangle if H can be partitioned into
3 sunflowers each of r edges with kernel size 2 such that any 3 edges taken from different
sunflowers form a triangle with the same base.

A hypergraph of 2r edges e1
1, e

2
1, ..., e

1
r, e

2
r is an r-double-broom if | ∩r

i=1 ∩
2
j=1e

j
i | = 1,

|e1
i ∩ e2

i | = 2 for all 1 6 i 6 r and |ej
i ∩ ej′

i′ | = 1 for any i 6= i′. We call ∩r
i=1 ∩

2
j=1 ej

i

the kernel of the double-broom. The subhypergraph of an r-double-broom consisting of
the d + r edges e1

1, e
2
1, ..., e

1
d, e

2
d, e

1
d+1, ..., e

1
r is a d-partial r-double-broom. The elements not

identical to the kernel that belong to e1
i ∩ e2

i are called the semi-kernels of the d-partial
r-double-broom and the sets e1

j without the kernel (d + 1 6 j 6 r) are called the lonely

fingers of the d-partial r-double-broom.
The following two trivial propositions show what intersecting subhypergraphs of Fj

assure that the output of the process will be 2-3-hypergraph or an HM-type hypergraph.

Proposition 2.2 If an intersecting hypergraph H contains an r-triangle, then there is
only one maximal intersecting hypergraph H∗ containing H and H∗ is a 2-3-hypergraph.
�

Proposition 2.3 If an r-set f does not contain the kernel x of a d-partial r-double-
broom B, but meets all sets in B, then f must contain all semi-kernels of B and meet
each lonely finger of B in exactly one element. In particular, the only r-set meeting all
sets of an r-double-broom not containing the kernel is the set of all semi-kernels and thus
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Figure 1: An r-triangle with r = 3.

if an intersecting hypergraph H contains an r-double broom, then there is only one non-
trivially intersecting hypergraph H∗ that contains H and H∗ is an HM-type hypergraph.
�

• Let Ai be the event that Fi is an i-star.

• Let A′
j,r denote the event that Fj contains an r-star and there exists at most 1 edge

e ∈ Fj not containing the kernel of the r-star. In particular, A′
r,r = Ar.

• Let A′′
j,r denote the event that Fj contains an r-double broom and there exists at

most 1 edge e ∈ Fj not containing the kernel of the r-double broom.

• Let H denote the event that e3 contains all of e1 ∩ e2 as well as at least one vertex
from (e1 \ e2) ∪ (e2 \ e1).

• Let ∆ denote the event that F3 is a triangle.

• Let ∆j,l denote the event that Fj contains an l-triangle and all edges in Fj meet
the base of this l-triangle in at least 2 elements.

• Let Bj denote the event that
⋂

e∈Fj
e 6= ∅.

• Let Cj,1 denote the event that Fj+1 is a j-star with a transversal, a set meeting all
sets of the star in 1 element which is different from the kernel of the star.
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Figure 2: An r-double broom with r = 4.

• Let C′
l,j,1 denote the event that Fl contains a j-star T and there is exactly one edge

e ∈ Fl not containing the kernel of T and e is a transversal of T . In particular,
C′

j+1,j,1 = Cj,1.

• Let C′′
l,j,1 denote the event that Fl contains a subhypergraph H of an r-double broom

B with |E(H)| = j and there is only one edge e ∈ Fl not containing the kernel of
H and e is the set of semi-kernels of B.

• Let Dj denote the event that there exists an x ∈ [n] such that there is at most one
edge e ∈ Fj that does not contain x.

• For any event E , the complement of the event is denoted by E .

We finish this section by stating some of the lemmas from [3] that we will use in the
proofs of Theorem 1.3 and Theorem 1.5.

Lemma 2.4 (Lemma 1 in [3]) If r = o(n1/2), then w.h.p. A2 holds.

Lemma 2.5 (Lemma 2 in [3]) If r = o(n1/2), then

PINT (A3) =
1 − o(1)

1 + (r−1)3

n
(1 + o(1))

.
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Lemma 2.6 (Lemma 3 in [3]) If r = o(n2/5) and m = O(n1/2/r), then

P(Am|A3) = exp

(

−m2r2

4n
+ o(1)

)

.

Lemma 2.7 (Lemma 4 in [3]) If r = (o1/2), then

P(H|A2) = o(1).

Lemma 2.8 (Lemma 7 in [3]) If ω(n1/3) = r = o(n2/3), then

P(B3) = o(1).

3 The Third Round Model I. (r → ∞)

In this section we prove Theorem 1.3 and Corollary 1.6. First we give an outline of the
proof, then we proceed with lemmas corresponding to the different cases of Theorem 1.3
and at the end of the section we show how to deduce Theorem 1.3 from these lemmas and
how Corollary 1.6 follows from Theorem 1.3 and Theorem 1.1.

Outline of the proof : We will use Proposition 2.2 and Proposition 2.3 to calculate the
probability of the events E∆ and EHM , while to prove that EHM does not hold w.h.p. if
r = ω(n1/3) we will show that for every vertex x there exist at least 2 edges in Fi none
of them containing x, i.e. Di does not hold. The latter will be done by Lemma 3.4 and
Lemma 3.5. To show the emergence of an r-double broom we will prove in Lemma 3.3
that it follows from the early appearance of a 3-star of which the probability is calculated
in Lemma 3.2.

Our first lemma states that if r = o(n1/2), then F3 is a triangle w.h.p.

Lemma 3.1 In the Third Round Model, if r = o(n1/2), then ∆ holds w.h.p.

Proof.

P3R(∆|A2) 6

(

2r−1
3

)(

n−3
r−3

)

(r − 1)2
(

n−2r+1
r−2

) = O

(

r2

n

r−4
∏

j=0

n − 3 − j

n − 2r + 1 − j

)

= O

(

r2

n
exp

(

2r − 4

n − 3r + 5
(r − 3)

))

= o(1).

Together with Lemma 2.4, this proves the statement. �

Lemma 3.2, for the Third Round Model, is the equivalent of Lemma 2.5 in [3] for the
Intersection Model. It gives the probability that F4 contains a 3-star.

Lemma 3.2 In the Third Round Model, if r = o(n1/2), then

P3R(C3,1|∆) =
1 − o(1)

1 + 1
r−2

+ (r−2)3

3n

.
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Proof. If S is the base of F3, then the kernel of the 3-star in F4 can only be an element
of S. Thus the number of sets that can extend F3 to F4 in such a way that C3,1 should
hold is 3(r − 2)

(

n−3r+3
r−2

)

. Let Ni denote the number of sets f in A(F3) with |f ∩ S| = i
(i = 0, 1, 2, 3). Every set f with |f∩S| > 2 belongs to A(F3), sets belonging to A(F3) with
|f ∩S| = 1 must meet one edge of F3 outside S, while sets disjoint from S that belong to
A(F3) must meet all three edges in F3 outside S. Therefore we have the following bounds
on Ni:

N2 = 3

(

n − 3

r − 2

)

− 3, N3 =

(

n − 3

r − 3

)

,

3(r − 2)

(

n − r − 1

r − 2

)

6 N1 6 3(r − 2)

(

n − 4

r − 2

)

,

(r − 2)3

(

n − 3r + 3

r − 3

)

6 N0 6 (r − 2)3

(

n − 6

r − 3

)

.

By the assumption r = o(n1/2) we have ( n−c1
n−c2r

)r 6 exp(O( r2

n
)) → 1 for any constants c1, c2,

and thus the lower and upper bounds on N0 and N1 are of the same order of magnitude.
Hence we obtain

P3R(C3,1|∆) =
3(r − 2)

(

n−3r+3
r−2

)

∑3
i=0 Ni

=
3(r − 2)

(

n−3r+3
r−2

)

3
(

n−3
r−2

)

− 3 +
(

n−3
r−3

)

+
(

3(r − 2)
(

n−4
r−2

)

+ (r − 2)3
(

n−6
r−3

))

(1 + o(1))

=
1

(

1
r−2

+ o(1) + 1 + (r−2)3

3n

)

(1 + o(1))
.

�

Lemma 3.3 states that if Fj contains a 3-star for some small enough j, then Fn2 will
contain an r-double broom w.h.p. which by Proposition 2.3 assures that the process
outputs an HM-type hypergraph.

Lemma 3.3 If r = O(n1/3) and j 6 log n, then

P3R((∃l 6 n2 : A′′

l,r)|C
′

j,3,1) = 1 − o(1).

Proof. Suppose C′

j′,3,1 holds for some j′ with j 6 j′ 6 log n. Then the number of sets in
A(Fj′) containing the kernel of a 3-star S in Fj′ is

M =

(

n − 1

r − 1

)

−

(

n − r − 1

r − 1

)

− j′ + 1

as they all must meet the transversal t of S already in Fj′. Clearly, we have

r

(

n − r − 1

r − 2

)

− j + 1 6 M 6 r

(

n − 2

r − 2

)

,
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as for the lower bound we enumerated the r-sets containing the kernel and exactly one
element of t, while for he upper bound we counted r times the number of r-sets containing
the kernel and one fixed element of t. The number of sets in A(Fj′) not containing the
kernel of S is at most

(r − 2)3(r − 3)

(

n − 5

r − 4

)

+ 3(r − 1)2

(

n − 4

r − 3

)

, (1)

where the first term of the sum stands for the sets in A(Fj′) that meet all elements of S
outside t (and thus we have to make sure that they meet t as well), while the second term
stands for the other sets. Thus the probability that the random process picks an edge not
containing the kernel is at most

(r − 2)3(r − 3)
(

n−5
r−4

)

+ 3(r − 1)2
(

n−4
r−3

)

r
(

n−r−1
r−2

)

− j + 1
6

4r5

n2

(

1 −
r

n − 2r

)r−2

+
6r2

n

(

1 −
r

n − 2r

)r−2

= O

(

4r5

n2
+

6r2

n

)

.

Remember that Dk denotes the event that there is a vertex x which is contained in all but
at most one edge of Fk, thus as r = O(n1/3), we obtain that PPO,3R(Dn1/7|C′

j,3,1) = 1−o(1).
For i > j let αi denote the maximum number k such that there exist k edges in Fi

that form a subhypergraph of an r-double broom of which the semi-kernels are elements
of t, in particular αi = 2r implies the existence of an r-double broom. Let us introduce
the following random variables:

Zi =

{

1 if αi 6= αi+1 or αi = 2r
0 otherwise .

The number of edges that would make αi grow (if αi < 2r) is at least 2r−αi

2

(

n−αi(r−2)−r−1
r−2

)

.

The total number of edges in A(Fi) is at most r
(

n−r−1
r−2

)

+ (r− 1)3
(

n−4
r−3

)

= O(r
(

n−r−1
r−2

)

) as

r = O(n1/3). Thus for j 6 i 6 n1/7 we have

P3R,PO(Zi = 1|Dn1/7, C′

j,3,1) = Ω

(

(2r − αi)
(

n−αi(r−2)−r−1
r−2

)

r
(

n−r−1
r−2

)

)

= Ω

(

2r − αi

r

(

1 −
3r2

n

)r)

= Ω

(

2r − αi

r

)

(2)

as r = O(n1/3). Note that if αi = 2r, then by definition P(Zi = 1) = 1, thus any lower
bound obtained in the αi < 2r case is valid in this case, too.

Let us consider 2 cases:

Case I r = o(n1/15)

By (2), we have P3R(Zi = 1|Dn1/7, C′
j,3) > Ω(1/r), thus

P3R





n1/7

∑

i=j

Zi < 2r|Dn1/7, C′

j,3,1



 < P(Bi(n1/7, Ω(1/r)) < 2r) → 0
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as n1/7

r
= ω(r) by the assumption r = o(n1/15).

Case II r = ω(n1/16)
By (2), we obtain

P3R(Zi = 1|Dn1/7, C′

j,3,1, αi 6 r/2) = Θ(1),

thus

P3R





n1/7

∑

i=j

Zi < 2n1/20|Dn1/7 , C′

j,3,1



 < P(Bi(n1/7, Θ(1)) < 2n1/20) → 0

as 2n1/20 < r/2 by the assumption r = ω(n1/16).
For any subhypergraph of an r-double broom there exists a set of at least half the edges

that are pairwise disjoint apart from the kernel, thus if αi > 2n1/20, then the number of r-

sets that do not contain the kernel but meet all edges of Fi is at most (r−1)n1/20
(

n−n1/20

r−n1/20

)

.
As before, if there is only one edge in Fi not containing x, then the number of r-sets in
A(Fi) containing x is

(

n − 1

r − 1

)

−

(

n − r − 1

r − 1

)

− j + 1 > r

(

n − r − 1

r − 2

)

.

Hence, we have

P3R(Dn2|C′′

n1/7,2n1/20,1) 6 n2
(r − 1)n1/20

(

n−n1/20

r−n1/20

)

r
(

n−r−1
r−2

) 6 n2

(

2r2

n

)n1/20

→ 0

as r = o(n1/2−ǫ). On the other hand, just as in (2) we have

P3R(Zi = 1|Dn2, C′

j,3,1) = Ω

(

2r − αi

r

)

= Ω(1/r)

and thus

P3R

(

n2

∑

i=j

Zi < 2r|Dn2, C′

j,3,1

)

6 P(Bi(n2, Ω(1/r)) < 2r) → 0

as n2/r = ω(r) since r = O(n1/3). �

Lemma 3.4 asserts that if ω(n1/3) = r = o(n1/2 log1/10 n), then all vertices are contained
in at most 2 edges of F4 and therefore the resulting hypergraph of the process cannot be
HM-type.

Lemma 3.4 If ω(n1/3) = r = o(n1/2 log1/10 n), then

P3R,PO(D4) = o(1).
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Proof. We consider 2 cases:

Case I ω(n1/3) = r = o(n1/2)

In this case, Lemma 3.1 states that ∆ holds w.h.p., and the computation in Lemma 3.2
shows that e4 is disjoint from the base of the triangle of F3 w.h.p.

Case II ω(n1/2 log−1 n) = r = o(n1/2 log1/10 n)

First note that
(

n−r1/2

r−r1/2

)

(

n−3r
r−3

) 6

(

(2r)

n

)r1/2

exp

(

O

(

r2

n

))

. (3)

Using (3) and writing E2 for the event |e1 ∩ e2| > r1/2 we have

P3R(E2) 6

(

r
r1/2

)(

n−r1/2

r−r1/2

)

(

n−r
r−1

) = (er1/2)r1/2

(

(2r)

n

)r1/2

exp

(

O

(

r2

n

))

,

as the denominator bounds from below the number of r-sets meeting e1 in exactly 1
element, while the enumerator is an upper bound on the number of r-sets meeting e1 in
at least r1/2 elements. This bound tends to 0 as r3/2/n tends to 0.

Furthermore, still using (3) and writing E3 for the event |(e1 ∪e2)∩e3| > r1/2, we have

P3R(E3|E2) 6

(

2r
r1/2

)(

n−r1/2

r−r1/2

)

(r − r1/2)2
(

n−2r
r−2

) = (2er1/2)r1/2

(

(2r)

n

)r1/2

exp

(

O

(

r2

n

))

,

which tends to 0 for the same reason as the previous bound.
Now note that by the definition of the Third Round process e1 ∩ e2 ∩ e3 = ∅ and thus

D4 is equivalent to e4 ∩
⋃

16i<j63 ei ∩ ej 6= ∅. As E2, E3 imply |e1 \ (e2 ∪ e3)|, |e2 \ (e1 ∪

e3)|, |e3 \ (e1 ∪ e2)| > r − 2r1/2, we have

P3R(D4|E2, E3) 6
2r1/2r

(

n−2
r−2

)

(r − 2r1/2)3
(

n−3r
r−3

) =
n

r5/2
exp

(

O

(

r2

n

))

= O(n6/5−5/4 log3 n) → 0,

where for the last equality we used the assumption ω(n1/2 log−1 n) = r = o(n1/2 log1/10 n)

to obtain exp
(

O
(

r2

n

))

= O(n1/5) and r5/2 = Ω(n5/4 log−5/2 n). �

Lemma 3.5 is the equivalent of Lemma 8 in [4] and the 2 proofs are almost identical.

Lemma 3.5 If r = ω(n1/2) and 2 log n 6 m 6 exp( r2

3n
), then

P3R,PO(Dm) = o(1).

Proof. Pick the first 3 edges e1, e2, e3 according to any of the 2 processes and then
consider m elements of

(

[n]
r

)

\ {e1, e2, e3} being chosen at random without replacement.
The probability that these m + 3 edges fail to form an intersecting family is at most

(

3m +

(

m

2

))

(

n−r
r

)

(

n
r

) 6
m2

2
exp

(

−
r2

n

)

6
1

2
exp

(

−
r2

3n

)

,
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which tends to 0 as r = ω(n1/2). We know that the Put-Off process and the Random
Intersecting Hypergraph process is w.h.p. the same if r = ω(n1/3) and the Third Round
process is the same as the Random Intersecting Hypergraph process from the fourth round
by definition. Thus conditioning on e1, e2, e3, the distribution of Fm+3 will be the same
as picking m distinct r-sets uniformly at random if we further condition on the event of
probability 1− o(1) that the randomly picked sets together with the first 3 edges form an
intersecting hypergraph. Thus we obtain that

P3R,PO(Dm) 6
1

2
exp

(

−
r2

3n

)

+ o(1) + nm

(
(

n−1
r−1

)

(

n
r

)

)m−1

= O

(

exp

(

−
r2

3n

))

+ o(1) + mrm−1n−m 6 O

(

exp

(

−
r2

3n

))

+ o(1) + mn2−m.

�

Proof of Theorem 1.3. We consider several cases.
Let ω(1) = r = cnn1/3. If cn tends to 0, then from Lemma 3.1 and Lemma 3.2 it

follows that C3,1 holds w.h.p and then Lemma 3.3 together with Proposition 2.3 finishes
the proof of this case.

If cn → c, then Lemma 3.1 states that ∆ holds almost surely. According to Lemma 3.2
the probability that C3,1 holds is 1

1+c3
(1 + o(1)) and the proof of Lemma 3.2 shows that

if C3,1 does not hold, then nor does D4 thus EHM cannot happen. Again, Lemma 3.3
together with Proposition 2.3 finishes the proof of this case.

Finally, if cn tends to infinity then for ω(n1/3) = r = o(n1/2 log1/10 n) Lemma 3.4 while
for ω(n1/2) = r 6 n/2 Lemma 3.5 proves that the probability of EHM is o(1). �

Proof of Corollary 1.6: Bohman et al. in [3] prove that conditioned on the event A3,
a trivially intersecting family is the output of the original process w.h.p. Lemma 2.4 and
Lemma 2.7 give that conditioned on the event that A3 does not hold, we have

⋂

e∈F3
e = ∅

with probability tending to 1, that is, e3 is chosen according to the rule of the Third Round
Process. Thus the following equality holds:

lim
n→∞

PINT (EHM) =
(

1 − lim
n→∞

PINT (A3)
)

· lim
n→∞

P3R(EHM).

Lemma 2.5 and Theorem 1.3 complete the proof. �

4 The Third Round Model II. (r constant)

In this section we consider the Third Round Model when r is a fixed constant and we
prove Theorem 1.4. We will use one of the lemmas proved in the previous section and we
will also need 2 new ones.

Lemma 4.1 states that Flog n contains either a 3-star or a 2-triangle w.h.p. but not
both.
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Lemma 4.1 If 3 6 r is a constant, then

P3R(∆log n,2|∆) =

(

1

r − 1

)3

(1 + o(1)),

P3R(C′

log n,3,1|∆) = 1 −

(

1

r − 1

)3

(1 + o(1)),

P3R(∆log n,2 ∧ C′

log n,3,1|∆) = o(1).

Proof. Let S be the base of F3 if ∆ holds and for any 3 6 j 6 log n and i = 0, 1, 2, 3
let A(Fj,i) denote the r-sets in A(Fj) that meet S in i elements and let Mj,i = |A(Fj,i)|.
We will prove that for any 3 6 j 6 log n the process picks an edge either from A(Fj,1)
or from A(Fj,2) w.h.p. Furthermore, if for some 3 6 j 6 log n the process picks an edge
from A(Fj,1), then C′

log n,3,1 holds w.h.p., while if this is not the case (i.e. the process picks
an edge from A(Fj,2) for all 3 6 j 6 log n), then ∆log n,2 holds w.h.p. We will need some
bounds on Mj,i. Clearly, we have

Mj,3 6

(

n − 3

r − 3

)

, Mj,0 6 (r − 2)3

(

n − 6

r − 3

)

.

For the first inequality we counted all r-sets containing S, while for the second inequality
we used that if an r-set f ∈ A(Fj) is disjoint from S, then f must meet e1, e2, e3 outside
S. Thus as r is constant we have Mj,0, Mj,3 = O(nr−3).

Let ∆′
j denote the event that for all edges e of Fj we have |e ∩ S| > 2. Clearly ∆′

3

holds. If ∆′
j holds, then every edge f with |f ∩ S| = 2 belongs to A(Fj), therefore we

have Mj,2 > 3
(

n−3
r−2

)

− j = Θ(nr−2). By comparing this to the bounds on Mj,0 and Mj,3

we obtain that if there is a j 6 log n such that ej+1 /∈ A(Fj,2), then ej+1 ∈ A(Fj,1) w.h.p.
We claim that if ∆′

j holds, then all edges of Fj are pairwise disjoint outside S w.h.p.
Indeed, for any 3 6 j′ 6 j the number of r-sets f ∈ A(Fj′) that meet ∪e∈Fj′

e \ S and

|f ∩ S| = 2 is at most 3(r − 2)
(

n−4
r−3

)

log n = O(nr−3 log n) as we can choose in 3 ways
which 2 elements of S belong to f , which other element of ∪e∈Fj′

e \ S belongs to f and
|∪e∈Fj′

e\S| 6 (r−2) log n as j′ 6 log n. Thus the probability that ej′+1 meets ∪e∈Fj′
e\S

for some j′ 6 log n is O(log2 n/n). Thus if ∆′′
j denotes the event that ∆′

j holds and the
edges in Fj are pairwise disjoint outside ∪e∈Fj

e\S, then we have just seen that ∆′
j implies

∆′′
j w.h.p.

To calculate the probability that there is a j 6 log n for which ej+1 ∈ A(Fj,1) and
to have more insight on the process we introduce some more notations. Let Sj = {s ∈
S : dj(s) = j − 1} and hj = |Sj |, i.e. Sj is the set of elements which are contained in all
but at most one edge of Fj and therefore they still might become the kernel of a possible
HM-type extension of Fj. As ∆ holds, we have S3 = S and h3 = 3. Note that if for some
j 6 log n the event ∆′′

j holds and we have hj = 0, then ∆j,2 holds.
Let us suppose that ∆′′

j holds and let us consider ej+1. We distinguish several possi-
bilities (as we already ruled out the occurrence of an edge from A(Fj,0) ∪A(Fj,3) w.h.p.,
we omit these possibilities):
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1. ej+1 ∈ A(Fj,1), ej+1∩S /∈ Sj , that is, the only common element x of ej+1 and S is not
contained in at least 2 edges of Fj. There are at most (3−hj)(r−2)2

(

n−5
r−3

)

= Θ(nr−3)
possibilities for such an ej+1, as we can pick ej+1 ∩ S in 3 − hj ways and ej+1 must
meet all the edges not containing x (there are at least 2 of them) outside S where
those edges are pairwise disjoint. Thus the probability of picking such an edge is
O(1/n).

2. ej+1 ∈ A(Fj,1), ej+1∩S ∈ Sj and ej+1 does not create a 3-star. We can pick the only
element x of ej+1∩Sj in hj ways. We know that ej+1 must meet the edge of F3 that
does not contain x outside S and to not create a 3-star ej+1 must meet at least one
of the edges of F3 containing x outside S as well. These sets are pairwise disjoint
outside S, thus there are at most hj(r − 2)(2r − 4)

(

n−5
r−3

)

= Θ(nr−3) possibilities
again, thus the probability of this to happen is O(1/n).

3. ej+1 ∈ A(Fj,1), ej+1∩S ∈ Sj and ej+1 creates a 3-star, i.e. C′
j+1,3,1 holds. Number of

possibilities: again, we can pick the only element x of ej+1 ∩ Sj in hj ways and ej+1

must meet the edge of F3 that does not contain x outside S. Thus there are at most
hj(r−2)

(

n−4
r−2

)

possibilities and if ej+1 does not meet any of the edges of F3 containing

x outside S, then a 3-star is created, thus there are at least hj(r − 2)
(

n−3r+3
r−2

)

to

choose ej+1. Therefore the number of possibilities is hj(r − 2)
(

n
r

)

(1 + Θ(1/n)).

4. ej+1 ∈ A(Fj,2), hj+1 = hj, that is, the only element x of S which is not in ej+1 does
not belong to Sj . To pick x we have 3− hj possibilities and the fact that the other
2 elements of S do belong to ej+1 assures that ej+1 intersects all edges in Fj , thus
the number of possible ej+1’s is (3 − hj)

(

n
r−2

)

(1 + Θ(1/n)).

5. ej+1 ∈ A(Fj,2), hj+1 = hj−1. The only difference to the previous case is that now we
have to pick x from Sj and thus the number of possible ej+1’s is hj

(

n−3
r−2

)

(1+Θ(1/n)).

The probability that the first two possibilities happen at least once for some j 6 log n
is O( log n

n
) thus either (3) happens or the process always picks an edge according to (4)

or (5). The probability that possibility (4) happens with hj < 3 at least log n
2

times while
(3) does not occur at all is O(3− log n). Thus we obtain that for some j 6 log n either
possibility (3) happens or we will have hj = 0 which is equivalent to ∆j,2. The probability
that if hj > 0, then possibility (5) happens before possibility (3) is

hj

(

n−3
r−2

)

hj

(

n−3
r−2

)

+ hj(r − 2)
(

n
r−2

)(1 + O(1/n))log n =
1

r − 1
(1 + o(1)).

Thus the probability that ∆j,2 holds for some j 6 log n is

(

1

r − 1

)3

(1 + o(1)),
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while the probability that C′
j,3,1 holds for some j 6 log n is

1 −

(

1

r − 1

)3

(1 + o(1)).

Note that Lemma 3.3 implies P(C′

log n,3,1|C
′
j,3,1) = 1 − o(1) (in fact, it states that C′

j,3,1

implies the appearance of an r-double broom, which is much more than C′
log n,3,1). Also,

P3R(∆j′+1,2|∆j′,2) = O(1/n) for any j 6 j′ 6 log n as the number of r-sets f meeting all
edges of Fj′ and intersecting S in one element is at most 3(r − 2)2

(

n−5
r−3

)

= Θ(n3) (pick
{x} = S ∩ f in 3 ways and f must meet the 2 edges of the 2-triangle, assured by ∆j′,2,
that do not contain x) thus P3R(∆log n,2|∆j,2) = O( log n

n
). �

Lemma 4.1 asserts that, in the case of constant r, Flog n contains either a 3-star or
a 2-triangle w.h.p. By Lemma 3.3, in the former case Fj contains an r-double broom
w.h.p. for sufficiently large j and thus by Proposition 2.3 assures that the process results
an HM-type hypergraph. The next lemma states that in the latter case F2 log n contains
an r-triangle w.h.p. and thus by Proposition 2.2 assures that the process outputs a 2-3
hypergraph.

Lemma 4.2 If 3 6 r is a constant, then

P3R(∆2 log n,r|∆log n,2) = 1 − o(1).

Proof. With the notation of Lemma 4.1, the event ∆log n,2 implies that for any j > log n
we have

Mj,0 6 (r − 2)6

(

n − 9

r − 6

)

Mj,1 6

(

n − 5

r − 3

)

Mj,3 6

(

n − 3

r − 3

)

.

Furthermore, if all edges in Fj intersect the base S of the 2-triangle contained in Flog n in
at least 2 elements, then

3

(

n − 3

r − 2

)

− j 6 Mj,2 6 3

(

n − 3

r − 2

)

.

Thus the probability, that F2 log n will contain an edge e with |e ∩ S| 6= 2 is O( log n
n

).
Let βj denote the largest integer k such that Fj contains a subhypergraph of an r-

triangle with k edges, in particular βj = 3r if and only if Fj contains an r-triangle. Let
us introduce the following random variable

Wj =

{

1 if βj 6= αj+1 or βj = 3r
0 otherwise .

If βj < 3r and if all edges in Fj intersect the base S of the 2-triangle contained in Flog n

in at least 2 elements, then

P3R(Wj = 1) >

(

n−βj(r−2)−3
r−2

)

∑3
i=0 Mj,i

> 1/3 − o(1).
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Therefore

P3R(β2 log n < 3n|∆log n,2) = P3R

(

2 log n
∑

j=log n

Wj < 3r|∆log n,2

)

6 P(Bi(log n, 1/3 − o(1)) < 3r) + O

(

log n

n

)

.

�

Proof of Theorem 1.4. Lemma 3.1 assures that ∆ holds w.h.p. Lemma 4.1 and
Lemma 4.2 together with Proposition 2.2 and Proposition 2.3 proves Theorem 1.4. �

5 The Put-Off Model

In this section, we prove Theorem 1.5. The proof is similar to that of Theorem 1.3 as
again for a large enough j we will prove the existence of an r-double broom in Fj to assure
that EHM happens. The main difference between the 2 models is that while in the Third
Round Model the set of semi-kernels of the r-double broom is already determined after e4

is picked in the Put-Off Model there might be lots of possibilities for this set even later.

Let us define j1 = min{
(

n−r−1
r−2

)1/4
, n2} and j2 = min{

(

n−r−1
r−2

)1/2
, n3}. Our first lemma

states that if F3 is a 3-star, then w.h.p. the kernel of this 3-star is contained in all edges
of Fj2 .

Lemma 5.1 If r = O(n1/3), then

PPO(Bj2|A3) = 1 − o(1).

Proof. Observe that if Bj holds, then the number of sets in A(Fj) containing an element
of
⋂

e∈Fj
e is at least r

(

n−r−1
r−2

)

− j. The number of r-sets containing a fixed element x and

meeting a fixed r-set f ∈ A(Fj) in exactly one element with x /∈ f is r
(

n−r−1
r−2

)

and even
if all of them belong to Fj then the others are in A(Fj).

Suppose first that r = o(n1/4). Then by Lemma 2.6 we may assume that Ar holds
and thus for any j > r the number of sets in A(Fj) not containing the kernel of Fj is at
most (r − 1)r. Thus we have

PPO(Bj+1|Bj ,A3) 6
(r − 1)r

r
(

n−r−1
r−2

)

− j
6

(r − 1)r

(r − 1)
(

n−r−1
r−2

) .

If r is constant, then multiplying the last ratio by j2 6
(

n−r−1
r−2

)1/2
still gives a bound that

tends to 0. If r tends to infinity, then n3 (r−1)r

(r−1)(n−r−1

r−2
)
→ 0 holds as r = o(n1/2−ǫ).

Suppose now that r = ω(n1/5) and thus j2 = n3. Then by Lemma 2.6 we know that
An1/5 holds w.h.p. In this case for any j with n1/5 6 j 6 n3 = j2 the number of sets in
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A(Fj) not containing the kernel of Fn1/5 is at most (r−1)n1/5
(

n−n1/5−1
r−n1/5

)

and thus we have

PPO(Bj+1|Bj,A3) 6
(r − 1)n1/5

(

n−n1/5−1
r−n1/5

)

r
(

n−r−1
r−2

)

− j
6

(r − 1)n1/5
(

n−n1/5−1
r−n1/5

)

(r − 1)
(

n−r−1
r−2

)

6

(

2r2

n

)n1/5

·
r−n1/5−1
∏

j=0

n − n1/5 − 1 − j

n − r − 1 − j
=

(

2r2

n

)n1/5

exp

(

O

(

r2

n

))

.

Therefore

PPO(Bn3 |A3) 6 n3

(

2r2

n

)n1/5

exp

(

O

(

r2

n

))

+ PPO(An1/5 |A3) → 0.

�

Lemma 5.2 asserts that if the edges of F3 form a 3-star, then Fj1 contains an r-star
and its kernel belongs to all but at most one edge of Fj1.

Lemma 5.2 If r = O(n1/3), then

PPO(A′

j1,r|A3) = 1 − o(1).

Proof. We consider two cases.

Case I r = o(n1/4)

In this case Lemma 2.6 shows that PPO(Ar|A3) = 1−o(1) and we are done as Ar = A′
r,r

and A′
r,r ∧ Bn3 implies A′

j,r for any n3 > j > r.

Case II ω(n1/5) = r = O(n1/3)

In this case j1 = n2. Using Lemma 2.6 and Lemma 5.1 we can assume that An1/5 and
Bn3 hold. Let x denote the kernel of Fn1/5. Let us define T = {t ∈

(

[n]
r

)

: x /∈ t, t ∩ ei 6=

∅∀i, 1 6 i 6 n1/5}. Clearly, we have

|T | 6 (r − 1)n1/5

(

n − n1/5 − 1

r − n1/5

)

.

For any t ∈ T and j > n1/5 let νt,j denote the maximum number k such that there
exists a k-star in Fj such that t is a transversal of the sets of the k-star. Clearly, the
event A′

j,r holds if and only if there is a t ∈ T with νj,t = r.
Let us introduce the following random variables:

Xj,t =

{

1 if νj,t 6= νj+1,t or νj,t = r or t /∈ A(Fj) ∪ Fj

0 otherwise .

Let us write furthermore Xt =
∑n2

j=n1/5 Xj,t. Observe that if Xt > r for all t ∈ T , then
A′

n2,r holds. Indeed, by the definition of the Put-Off Process there must always be a
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t∗ ∈ T which belongs A(Fj) ∪ Fj and for this t∗ the fact Xt∗ > r shows that there exists
an r-star in Fn1/3 of which t∗ is a transversal.

Let us bound from below the probability PPO(Xj,t = 1) for any t and j > n1/5. If
t /∈ A(Fj) ∪ Fj and νj,t < r (as otherwise Xj,t = 1 for sure), then let us fix a νj,t-star
B showing this. The kernel of B must be x. The number of r-sets containing x but
otherwise disjoint from

⋃

b∈B b that meet t in exactly one element is

(r − νj,t)

(

n − νj,t(r − 1) − 2

r − 2

)

>

(

n − (r − 1)2 − 2

r − 2

)

.

On the other hand, for any j > n1/5 we have A(Fj) ⊆ {e ∈
(

[n]
r

)

: x ∈ e} ∪ T . Since

|T | 6 (r − 1)n1/5
(

n−n1/5−1
r−n1/5

)

6
(

n−1
r−1

)

, we have |A(Fj)| 6 2
(

n−1
r−1

)

and thus

PPO(Xj,t = 1) >

(

n−(r−1)2−2
r−2

)

2
(

n−1
r−1

) >
r − 1

2(n − r − 1)

(

n−r2

r−2

)

(

n−1
r−2

) >
r

3n

(

n − r2 − r + 3

n − r2

)r−2

= Ω

(

r

n

(

1 −
r2

n

)r)

= Ω

(

r

n

(

1 −
1

r

)r)

= Ω
( r

n

)

.

Therefore we have

PPO(∃t ∈ T : Xt 6 r) 6 |T |P
(

Bi
(

n2, Ω
( r

n

))

6 r
)

6 exp(O(r log n)) exp(−Ω(rn)) → 0.

�

Lemma 5.3 states that if Fj1 contains an r-star, then Fj2 contains an r-double broom
w.h.p. and thus with Proposition 2.3 assures that the process outputs an HM-type hy-
pergraph.

Lemma 5.3 If r = O(n1/3), then we have

PPO(A′′

j2,r|Bn3 ,A′

n2,r) = 1 − o(1).

Proof. The proof is similar to that of Case II in the proof of Lemma 5.2. For any j > j1

let µj denote the largest integer d such that Fj contains a d-partial r-double broom. Since
an r-star is a 0-partial r-double broom, µj is well-defined. Let us introduce the following
random variables:

Yj =

{

1 if µj 6= µj+1 or µj = r
0 otherwise .

Let us write furthermore Y =
∑j2

j=j1
Yj. Let us sharpen the upper bound on |A(Fj)| from

Lemma 5.2 by considering a µj-partial r-double broom B with kernel x. Every set f in
A(Fj) must meet

⋃

b∈B b\{x} as otherwise {f}∪Fj would contain an (r+1)-star which is
impossible to extend to a non-trivially intersecting hypergraph. Thus the number of sets
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in A(Fj) containing x is at most 2r2
(

n−2
r−2

)

. The number of sets in A(Fj) not containing
x is at most (r − 1)r as A′

j,r holds. Thus

|A(Fj)| 6 2r2

(

n − 2

r − 2

)

+ (r − 1)r 6 3r2

(

n − 2

r − 2

)

.

On the other hand, by Proposition 2.3 every t ∈ A(Fj) with x /∈ t contains all the semi-
kernels of B and meets all the lonely fingers of B. Note that there is at least one such
set by the definition of the Put-Off Process, say tj . Observe that any r-set e containing x
with |tj ∩ e| = 1, |e∩

⋃

b∈B b| = 2 and tj ∩ e belonging to a lonely finger of B is in A(Fj),
furthermore if such a set is chosen to be ej+1 by the Put-Off process, then µj+1 = µj + 1.

Thus we obtain

PPO(Yj = 1) >
(r − µj)

(

n−r(r−1)−1
r−2

)

3r2
(

n−2
r−2

) >
1

3r2

(

n−r2

r−2

)

(

n−1
r−2

) > Ω

(

1

r2

)(

1 −
r2

n − 2r

)r

= Ω

(

1

r2

)

,

as r = O(n1/3).
Now we have

PPO(A′′
j2,r|Bj2 ,A

′

j1,r) 6 PPO(Y < r|Bj2,A
′

j1,r) 6 P

(

Bi

(

j2 − j1, Ω

(

1

r2

))

< r

)

→ 0,

as if r is constant, then 1/r2 is constant and j2 − j1 → ∞, while if r = ω(1), then
j2 − j1 = n3 − n2. �

Proof of Theorem 1.5. Let cnn = r < n/2. If cn tends to 0, then Lemma 2.5,
Lemma 5.1, Lemma 5.2 and Lemma 5.3 assures that for a suitably chosen j Fj contains
an r-double-broom w.h.p. and thus, by Proposition 2.3, EHM holds w.h.p.

If cn tends to c, then Lemma 2.5 states that the probability that A3 holds tends to
1

1+c3
in which case, just as for r = ω(n1/3), EHM holds. Lemma 2.7 assures that B3 holds

with probability tending to 1 − 1
1+c3

. As if B3 holds, then the Third Round Model and
the Put-Off Model coincide and thus by Theorem 1.3 we obtain that PPO(EHM |B3) =
P3R(EHM)(1 + o(1)) tends to 1

1+c3/3
. Hence PPO(EHM) tends to 1

1+c3
+ (1− 1

1+c3
) 1

1+c3/3
as

claimed in the theorem.
If cn tends to infinity, then note that for ω(n1/3) = r = o(n2/3) a consequence of

Lemma 2.8 is that w.h.p the Third Round Model and the Put-Off Model are the same,
while Lemma 3.5 proves Theorem 1.5 for ω(n1/2) = r < n/2. �
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