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Abstract

A large number of generating functions for permutation statistics can be ob-
tained by applying homomorphisms to simple symmetric function identities. In
particular, a large number of generating functions involving the number of descents
of a permutation σ, des(σ), arise in this way. For any given finite set S of positive
integers, we develop a method to produce similar generating functions for the set of
permutations of the symmetric group Sn whose descent set contains S. Our method
will be to apply certain homomorphisms to symmetric function identities involving
ribbon Schur functions.
Keywords: ribbon Schur functions, descent sets, generating functions, permutation
statistics

1 Introduction

There has been a long line of research, [2], [3], [1], [8], [9], [12], [13], [14], [16], [11],
which shows that a large number of generating functions for permutation statistics can
be obtained by applying homomorphisms defined on the ring of symmetric functions Λ to
simple symmetric function identities. For example, the n-th elementary symmetric func-
tion, en and the n-th homogeneous symmetric function, hn, are defined by the generating
functions

E(t) =
∑

n>0

entn =
∏

i

(1 + xit)

and

H(t) =
∑

n>0

hntn =
∏

i

1

1 − xit
.
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We let P (t) =
∑

n>0 pntn where pn =
∑

i x
n
i is the n-th power symmetric function. For

any partition, µ = (µ1, . . . , µℓ), we let hµ =
∏ℓ

i=1 hµi
, eµ =

∏ℓ
i=1 eµi

, and pµ =
∏ℓ

i=1 pµi
.

Now it is well known that
H(t) = 1/E(−t) (1.1)

and

P (t) =

∑

n>1(−1)n−1nentn

E(−t)
. (1.2)

A surprisingly large number of results on generating functions for various permutation
statistics that have appeared in the literature as well as a large number of new generating
functions for permutation statistics can be derived by applying ring homomorphisms
defined on Λ to simple symmetric function identities such as (1.1) and (1.2).

Let Sn denote the symmetric group and write σ ∈ Sn in one line notation as σ =
σ1 . . . σn. In this section, we shall consider the following statistics on Sn.

Des(σ) = {i : σi > σi+1} Rise(σ) = {i : σi < σi+1}
des(σ) = |Des(σ)| rise(σ) = |Rise(σ)|
inv(σ) =

∑

i<j χ(σi > σj) coinv(σ) =
∑

i<j χ(σi < σj)

where for any statement A, χ(A) = 1 if A is true and χ(A) = 0 if A is false. Also if
α1, . . . , αk ∈ Sn, then we shall write comdes(α1, . . . , αk) = |

⋂k
i=1 Des(αi)|. We should

also note that these definitions make sense for any sequence σ = σ1 · · ·σn of natural
numbers. We shall also use standard notation for q-analogues. That is, we let

[n]q = 1 + q + · · · + qn−1 =
1 − qn

1 − q
,

[n]q! = [n]q[n − 1]q · · · [1]q,
[

n

k

]

q

=
[n]q!

[k]q![n − k]q!
, and

[

n

λ1, . . . , λℓ

]

q

=
[n]q!

[λ1]q! · · · [λℓ]q!
.

Similarly, we can define (p, q)-analogues of these formulas by replacing [n]q by

[n]p,q = pn−1 + pn−2q + · · ·+ p1qn−2 + qn−1 =
pn − qn

p − q
.

Then the following results can be proved by applying a suitable homomorphism to the
identity (1.1).

1)
∑∞

n=0
un

n!

∑

σ∈Sn
xdes(σ) = 1−x

−x+eu(x−1) .

2) (Carlitz 1970) [4]
∑∞

n=0
un

(n!)2

∑

(σ,τ)∈Sn×Sn
xcomdes(σ,τ) = 1−x

−x+J(u(x−1))
.

the electronic journal of combinatorics 17 (2010), #R27 2



3) (Stanley 1979) [15]
∑∞

n=0
un

[n]!

∑

σ∈Sn
xdes(σ)qinv(σ) = 1−x

−x+eq(u(x−1))
.

4) (Stanley 1979) [15]
∑∞

n=0
un

[n]!

∑

σ∈Sn
xdes(σ)qcoinv(σ) = 1−x

−x+Eq(u(x−1))
.

5) (Fedou and Rawlings 1995) [7]
∑∞

n=0
un

[n]q![n]p!

∑

(σ,τ)∈Sn×Sn
xcomdes(σ,τ)qinv(σ)pinv(τ) = 1−x

−x+Jq,p(u(x−1))
.

Here J(u) =
∑

n>0
un

n!n!
, eq(u) =

∞
∑

n=0

un

[n]q!
q(

n
2), Eq(u) =

∞
∑

n=0

un

[n]q!
, and

Jq,p(u) =
∞
∑

n=0

un

[n]q![n]p!
q(

n
2)p(n

2).

Langley and Remmel [9] proved a common generalization of all these results. To
state the Langley-Remmel result, we first need to establish some notation. If Σ =
(σ(1), . . . , σ(L)) is a sequence of permutations in Sn, then we define

Comdes(Σ) =

(

L
⋂

i=1

Des(σ(i))

)

and
comdes(Σ) = |Comdes(Σ)|.

If Q = (q1, . . . , qL) and P = (p1, . . . , pL), then, for any m > 1, we let

Qm = qm
1 · · · qm

L , Pm = pm
1 · · ·pm

L ,

[n]Q =

L
∏

i=1

[n]qi
, [n]P,Q =

L
∏

i=1

[n]pi,qi
,

[n]Q! =

L
∏

i=1

[n]qi
!, [n]P,Q! =

L
∏

i=1

[n]pi,qi
!,

[

n

λ1, . . . , λk

]

Q

=
L
∏

i=1

[

n

λ1, . . . , λk

]

qi

,

[

n

λ1, . . . , λk

]

P,Q

=

L
∏

i=1

[

n

λ1, . . . , λk

]

pi,qi

,

Qinv(Σ) =
L
∏

i=1

q
inv(σ(i))
i , and

Pcoinv(Σ) =
L
∏

i=1

p
coinv(σ(i))
i .
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Generalizing Jq,p(u), we define

exp(t,Q,P) =
∑

n>0

tnQ(n
2)

[n]P,Q!
. (1.3)

Then Langley and Remmel [9] proved that for all L > 1,

∞
∑

n=0

tn

[n]P,Q!

∑

Σ=(σ(1),...,σ(L))∈SL
n

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ) =
1 − x

−x + exp(t,Q,P)
(1.4)

The main goal of this paper is to find a uniform way to compute similar generating
functions where we sum over σ that S ⊆ Des(σ) where S is any finite subset of {1, 2, . . .}.
That is, for any finite set S ⊆ {1, 2, . . .}, we shall show how to compute the following
generating function:

F L
S (x,Q,P) = F L

S (x, q1, . . . , qL, p1, . . . , pL) (1.5)

=
∑

n>0

tn

[n]P,Q!

∑

Σ∈SL
n ,S⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

The outline of this paper is as follows. In section 2, we shall supply the necessary
background on symmetric functions and the combinatorics of the entries of the transition
matrices between various bases of symmetric functions that we need for our developments.
In section 3, we shall derive our key identity involving ribbon Schur functions which will
be used to derive our expression for F L

S (x,Q,P). In section 4, we shall give our method
for finding the generating function for F L

S (x,Q,P) and give some examples. Finally in
section 5, we shall discuss some extensions of our results for F L

S (x,Q,P) where instead
of considering generating functions where we sum over Σ such that S ⊆ Comdes(Σ),
we consider generating functions where we sum over Σ such that S ⊆ Comdes(Σ) and
T 6⊆ Comdes(Σ) where S and T are a pair finite disjoint sets.

2 Symmetric functions and transition matrices

In this section, we shall present the background on symmetric functions and the combi-
natorics of the transition matrices between various bases of symmetric functions that will
be needed for our methods.

Let Λn denote the space of homogeneous symmetric functions of degree n over infinitely
many variables x1, x2, . . .. We say that λ = (0 < λ1 6 · · · 6 λk) is a partition of n, written
λ ⊢ n, if λ1 + · · ·+ λk = n = |λ|. We let ℓ(λ) = k be the number of parts of λ. It is well
known that {hλ : λ ⊢ n}, {eλ : λ ⊢ n}, and {pλ : λ ⊢ n} are all bases of Λn, see [10].

We let Fλ denote the Ferrers diagram of λ. If µ = (µ1, . . . , µm) is a partition where
m 6 k and λi > µi for all i 6 m, we let Fλ/µ denote the skew shape that results
by removing the cells of Fµ from Fλ. For example, Figure 1 pictures the skew diagram
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(1, 2, 3, 3)/(1, 2) on the left. We let |λ/µ| denote the number of squares in λ/µ. A column-
strict tableau T of shape λ/µ is any filling of Fλ/µ with natural numbers such that entries
in each row are weakly increasing from left to right, and entries in each column are strictly
increasing from bottom to top. We define the weight of T to be w(T ) = xα1

1 xα2
2 · · · where

αi is the number of times that i occurs in T . For example, on the right of Figure 1,
we have pictured a column strict tableau of shape (1, 2, 3, 3)/(1, 2) and weight x2

1x2x3x
2
4.

Then the skew Schur function indexed by λ/µ is given by sλ/µ =
∑

T w(T ), where the
sum runs over all column strict tableaux of shape λ/µ. We define a ribbon (or zigzag)

1

2 3

1 4

4

Figure 1: The skew Ferrers diagram and column strict tableau of shape (1, 2, 3, 3)/(1, 2).

shape to be a connected skew shape that contains no 2 x 2 array of boxes. Ribbon
(or zigzag) Schur functions are the skew Schur functions with a ribbon shape and are
indexed by compositions. A composition β = (β1, . . . , βk) of n, denoted β |= n, is a
sequence of positive integers such that β1 + β2 + · · · + βk = n. Given a composition
β = (β1, . . . , βk), we let Zβ denote the skew Schur function corresponding to the zigzag
shape whose row lengths are β1, . . . , βk reading from top to bottom. For example, Figure
2 shows the zigzag shape corresponding to the composition (2, 3, 1, 4). We let λ(β) denote
the partition that arises from β by arranging its parts in weakly increasing order and ℓ(β)
denote the number of parts of β. For example, if β = (2, 3, 1, 2), then λ(β) = (1, 2, 2, 3).
We also define shape(β) = λ/ν such that Fβ = Fλ/ν .

Figure 2: The ribbon shape corresponding to the composition (2, 3, 1, 4), so that
s(2,4,4,7)/(1,3,3) = Z(2,3,1,4).

A rim hook of λ is a connected sequence of cells, h, along the northeast boundary of
Fλ which has a ribbon shape and is such that if we remove h from Fλ, we are left with
the Ferrers diagram of another partition. More generally, h is a rim hook of a skew shape
λ/µ if h is a rim hook of λ which does not intersect µ. We say that h is a special rim
hook of λ/µ if h starts in the cell which occupies the north-west corner of λ/µ. We say
that h is a transposed special rim hook of λ/µ if h ends in the cell which occupies the
south-east corner of λ/µ.

A special rim hook tabloid (transposed special rim hook tabloid) of shape λ/µ and
type ν, T , is a sequence of partitions T = (µ = λ(0) ⊂ λ(1) ⊂ · · ·λ(k) = λ), such that
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for each 1 6 i 6 k, λ(i)/λ(i−1) is a special rim hook (transposed special rim hook) of λ(i)

such that the weakly increasing rearrangement of (|λ(1)/λ(0)|, · · · , |λ(k)/λ(k−1)|) is equal
to ν. We show an example of a special rim hook tabloid and a transposed special rim
hook tabloid of shape (4, 5, 6, 6)/(1, 3, 3) in Figure 3. We define the sign of a special rim

A Special Rim Hook Tableau
of shape (4,5,6,6)/(1,3,3) and 
type (2,2,4,6)

A Transposed Special Rim Hook Tableau
of shape (4,5,6,6)/(1,3,3) and 
type (2,3,4,5)

Figure 3: A special rim hook tabloid and a transposed special rim hook tabloid.

hook hi = λ(i)/λ(i−1) to be sgn(hi) = (−1)r(hi)−1, where r(hi) is the number of rows
that hi occupies. Likewise, we define the sign of a transposed special rim hook to be
t-sgn(hi) = (−1)c(hi)−1, where c(hi) is the number of columns that hi occupies. Let
SRHT (ν, λ/µ) (t-SRHT (ν, λ/µ)) equal the set of special rim hook tabloids (transposed
special rim hook tabloids) of type ν and shape λ/µ. If T ∈ SRHT (ν, λ/µ), we let
sgn(T ) =

∏

H∈T sgn(H). If T ∈ t-SRHT (ν, λ/µ), then t-sgn(T ) =
∏

H∈T t-sgn(H). For
|λ/µ| = |ν|, we let

K−1
ν,λ/µ =

∑

T∈SRHT (ν,λ/µ)

sgn(T ) and

TK−1
ν,λ/µ =

∑

T∈t-SRHT (ν,λ/µ)

sgn(T ).

Then Eğecioğlu and Remmel [5] proved that

sλ/µ =
∑

ν

K−1
ν,λ/µhν and sλ/µ =

∑

ν

TK−1
ν,λ/µeν . (2.1)

Eğecioğlu and Remmel [6] also proved that

hµ =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,µeλ (2.2)

where Bλ,µ is the number of λ-brick tabloids of shape µ. Here a λ-brick tabloid T of
shape µ is a filling of Fµ with bricks of sizes corresponding to the parts of λ such that
(i) no two bricks overlap and (ii) each brick lies within a single row. For example, the
(1, 1, 2, 2)-brick tabloids of shape (2, 4) are pictured in Figure 4. More generally, let Bλ,µ

denote the set of λ-brick tabloids of shape µ = (µ1, . . . , µk).
Next we introduce a class of symmetric functions p~u

λ that were first introduced in [9]
and [12]. Suppose that R is a ring and we are given any sequence ~u = (u1, u2, . . .) of
elements of R. Then for any brick tabloid T ∈ Bλ,µ, we let (b1, . . . , bk) denote the lengths
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T  =T  =

w(T ) = w(T ) =

T  = T  =

1 2

3 4

1 2

w(T ) =w(T ) =3 4

−bricks

2 2

24

λ

Figure 4: Bλ,µ and w(Bλ,µ) for λ = (1, 1, 2, 2) and µ = (2, 4).

of the bricks which lie at the right end of the rows of T reading from top to bottom
and we set w~u(T ) = ub1 · · ·ubk

. We then set w~u(Bλ,µ) =
∑

T∈Bλ,µ
w~u(T ). For example if

u = (1, 2, 3, . . .), then w~u(T ) = w(T ) is just the product of the lengths of the bricks that
lie at the end of the rows of T . We have given w(T ) for each of the brick tabloids in
Figure 4. We can now define the family of symmetric functions p~u

λ as follows. First, we
let p~u

0 = 1 and

p~u
n =

∑

λ⊢n

(−1)n−ℓ(λ)w~u(Bλ,(n))eλ

for n > 1. Finally, if µ = (µ1, . . . , µk) is a partition of n, we set p~u
µ = p~u

µ1
· · · p~u

µk
. We

note that it follows from results of Eğecioğlu and Remmel [6] that if u = (1, 2, 3, . . .), then
p~u

n is just the usual power symmetric function pn. Thus we call p~u
n a generalized power

symmetric function.
Mendes and Remmel [13, 12] proved the following:

∑

n>1

p~u
ntn =

∑

n>1(−1)n−1unentn

E(−t)
and (2.3)

1 +
∑

n>1

p~u
ntn =

1 +
∑

n>1(−1)n(en − unen)tn

E(−t)
(2.4)

Note if we take ~u = (1, 1, . . .), then (2.3) becomes

1 +
∑

n>1

p~u
ntn = 1 +

∑

n>1(−1)n−1entn
∑

n>0(−1)nentn
=

1
∑

n>0(−1)nentn
= 1 +

∑

n>1

hntn

which implies p
(1,1,...)
n = hn.

Other special cases for ~u give well-known generating functions. By taking un =
(−1)kχ(n > k+1) for some k > 1, p~u

n is the Schur function corresponding to the partition
(1k, n).
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3 An identity for ribbon Schur functions

Let α = (αk, αk−1, . . . , α1) be a composition. Then we let α(0) = α, α(k) = ∅ and
α(j) = (αk, . . . , αj+1) for j = 1, . . . , k − 1. For example, if α = (3, 2, 1, 3), then α(0) =
(3, 2, 1, 3), α(1) = (3, 2, 1), α(2) = (3, 2), α(3) = (3), and α(4) = ∅. We let (α, n) denote
the composition that results by adding an extra part of size n at the end of α, i.e.
(α, n) = (αk, αk−1, . . . , α1, n). Let Z∅ = 1.

The main goal of this section is to prove the following identity for ribbon Schur func-
tions.

Theorem 3.1.

∑

n>1

Z(α,n)t
n+|α| =

∑k
j=0(−1)jZα(j)t|α

(j)|

E(−t)
+ (3.1)

(−1)k−1 +

k
∑

j=1

(−1)j−1

αj−1
∑

r=1

Z(α(j),r)t
r+|α(j)|.

For example, suppose α = (3, 2, 1, 3). Then Theorem 3.1 becomes

∑

n>1

Z(α,n)t
n+|α| =

Z(3,2,1,3)t
9 − Z(3,2,1)t

6 + Z(3,2)t
5 − Z(3)t

3 + 1

E(−t)

−1 + (Z(3,2,1,2)t
8 + Z(3,2,1,1)t

7) + (Z(3,1)t
4) − (Z(2)t

2 + Z(1)t).

This example helps explain how to think of the right-hand side of (3.1). The numerator

of the term
Pk

j=0(−1)jZ
α(j) t|α

(j)|

E(−t)
is just the alternating sum of the Zα(j)t|α

(j)|’s where the first

term Zαt|α| = Zα(0)t|α
(0)| starts with a plus sign. For each 1 6 j 6 k−1, the ribbon shapes

that appear in
∑αj−1

r=1 Z(α(j),r)t
r+|α(j)| consist of the ribbon shapes that one can obtain from

the ribbon shape corresponding to (αk, . . . , αj+1, αj) by removing at least one, but not
all, of the squares at the end of the last row. We call these the auxiliary ribbon shapes
derived from α(j−1). In our example, if we start with the ribbon shape α(0) = (3, 2, 1, 3)
as pictured in the top of Figure 5, then the auxiliary ribbon shapes derived from α(0) are
the two ribbon shapes pictured at the bottom of Figure 5. Note that if αj = 1, then
there are no auxiliary shapes derived from α(j−1). Thus the second term in (3.1) consists
of alternating signs of the generating functions of ribbon Schur functions indexed by the
auxiliary shapes derived from the α(j−1)’s for j = 1, . . . , k. Moreover, the term (−1)k−1

which appears at the start of the second term can be thought of as the term which would
be derived from the ribbon shape α(k−1), which is just a single row (αk), by removing all
the squares, leaving Z∅ = 1.

We should also note that in the special case where α = (1k), there are no auxiliary
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Figure 5: The auxiliary ribbon shapes derived from the ribbon shape (3, 2, 1, 3).

shapes, so we obtain

∑

n>1

s(1k ,n)t
k+n =

∑k
j=0(−1)jZ(1k−j)t

k−j

E(−t)
+ (−1)k−1

=
(−1)k

∑k
j=0(−1)jejt

j

E(−t)
−

(−1)kE(−t)

E(−t)

=
−(−1)k

∑

j>k+1(−1)jejt
j

E(−t)

=

∑

j>k+1(−1)j−1(−1)kejt
j

E(−t)
.

This is just the special case of (2.3) when un = (−1)kχ(n > k +1), since p
(−1)kχ(n>k+1)
n

is the Schur function corresponding to the partition (1k, n).

Proof of Theorem 3.1.

Proof. We start with the expansion sλ/µ =
∑

ν K−1
ν,λ/µhν . If λ/µ corresponds to the

ribbon shape α = (αk, . . . , α1), then we can classify the special rim hook tabloids by
the length of the last special rim hook. For example, a typical special rim hook in the
case where α = (3, 2, 4, 5, 3) is pictured in Figure 6. Since in a special rim hook tabloid
each of the rim hooks must start on the left hand border, it follows that the rim hook
which ends in the lower-most square must cover the last j rows for some j ∈ {1, . . . , k}.
Now suppose that H is the last rim hook pictured in Figure 6. We consider the sum
∑

µ

∑

T∈F (µ,H) sgn(T )hµ where F (µ, H) is the set of special rim hook tabloids of type µ

and ribbon shape α = (3, 2, 4, 5, 3) such that the last special rim hook of T is H . Since
the filling of the rim hooks in the first three rows of ribbon shape α = (3, 2, 4, 5, 3) is
arbitrary, this sum will equal

sgn(H)h|H|

∑

ν⊢9

∑

T∈SRHT (ν,γ/δ)

sgn(T )hν
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where γ/δ is just the skew shape corresponding to the ribbon shape (3, 2, 4). So this sum
is just sgn(H)h|H|Z(3,2,4).

H

Figure 6: A special rim hook tabloid of the ribbon shape (3, 2, 4, 5, 3).

It follows that if we classify the special rim hook tabloids T of the ribbon shape (α, n)
by the number j of rows in the ribbon shape corresponding to α that the last rim hook
of T covers, then we obtain

Z(α,n) =
k
∑

j=0

(−1)jZα(j)hn+α1+···+αj
.

Thus

∑

n>1

Z(α,n)t
n+|α| =

k
∑

j=0

(−1)jZα(j)t|α
(j)|
∑

n>1

hn+α1+···+αj
tn+α1+···+αj

=
k
∑

j=0

(−1)jZα(j)t|α
(j)|

(

H(t) −

α1+···+αj
∑

r=0

hrt
r

)

=
k
∑

j=0

(−1)jZα(j)t|α
(j)|

(

1

E(−t)
−

α1+···+αj
∑

r=0

hrt
r

)

=

∑k
j=0(−1)jZα(j)t|α|

E(−t)
−

(Zαt|α| +

k
∑

j=1

(−1)jZα(j)t|α
(j)|

α1+···+αj
∑

r=0

hrt
r). (3.2)

Now consider the sum

Zαt|α| +

k
∑

j=1

(−1)jZα(j)t|α
(j)|

α1+···+αj
∑

r=0

hrt
r. (3.3)

Combining the r = 0 term in the sum with Zαt|α|, we obtain

k
∑

j=0

(−1)jZα(j)t|α
(j)| +

k
∑

j=1

(−1)jZα(j)t|α
(j)|

α1+···+αj
∑

r=1

hrt
r.

the electronic journal of combinatorics 17 (2010), #R27 10



It is a consequence of the Littlewood-Richardson rule that for any composition β =
(βt, . . . , β1),

Zβhr = Z(β,r) + Z(βt,...,β2,β1+r).

Thus we see that (3.3) is equal to

k
∑

j=0

(−1)jZα(j)t|α
(j)| +

k
∑

j=1

α1+···+αj
∑

r=1

(−1)jt|α
(j)|+r(Z(αk ,...,αj+1,r) + Z(αk,...,αj+2,αj+1+r)). (3.4)

We can organize the Zβ’s that appear in (3.4) by the number of parts, s, of β.

For s = 0, there is one term: (−1)kZα(k) = (−1)k.

For 1 6 s < k, we obtain the terms

(−1)k−sZ(αk ,...,αk−s+1)t
|α(k−s)| +

(−1)k−s+1

α1+···+αk−s+1
∑

r=1

Z(αk ,...,αk−s+2,r)t
αk+···+αk−s+2+r +

(−1)k−s

α1+···+αk−s
∑

r=1

Z(αk ,...,αk−s+2,αk−s+1+r)t
αk+···+αk−s+1+r

= (−1)k−s+1

αk−s+1−1
∑

r=1

Z(αk,...,αk−s+2,r)t
αk+···+αk−s+2+r.

For s = k, we have the terms

Z(αk ,...,α1)t
|α| −

α1
∑

r=1

Zαk ,...,α2,rt
αk+...α2+r = −

α1−1
∑

r=1

Zαk,...,α2,rt
αk+...α2+r.

Combining these cases together, we see that (3.3) is

(−1)k +
∑

j=1

(−1)j

αj−1
∑

r=1

Z(α(j),r)t
|α(j)|+r. (3.5)

Combining (3.5) with (3.2) yields (3.1).

4 Methods for Computing Generating Functions

In this section, we shall describe how we can use ribbon Schur functions to compute
various generating functions over sets of permutations which contain a given descent set.
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In particular, we shall give methods to compute

F L
S (x,Q,P) = F L

S (x, q1, . . . , qL, p1, . . . , pL)

=
∑

n>0

tn

[n]P,Q!

∑

Σ∈SL
n

S⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

The method proceeds in three steps. First, for any composition α = (α1, . . . , αk), of
n, define hα = hα1 · · ·hαk

and

Set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1}.

Then for σ ∈ Sn, we define

Desα(σ) = Des(σ) − Set(α),

desα(σ) = |Desα(σ)|,

Riseα(σ) = Rise(σ) ∪ Set(α), and

riseα(σ) = |Riseα(σ)|.

If Σ = (σ1, . . . , σL) ∈ SL
n , then we let

Comdesα(Σ) =
L
⋂

i=1

Desα(σi),

comdesα(Σ) = |Comdesα(Σ)|,

oneRiseα(Σ) = {1, . . . , n} − Comdesα(Σ), and

oneriseα(Σ) = |oneRiseα(Σ)|.

Define a ring homomorphism ξ from the ring of symmetric functions Λ to the polyno-
mial ring Q(q1, . . . , qL, p1, . . . , pL)[x] by setting

ξ(en) =
(1 − x)n−1Q(n

2)

[n]P,Q!
.

This ring homomorphism was used by Langley and Remmel [9] to prove (1.4).
Then our first step is to prove the following result which is a simple modification of the

proof that Langley and Remmel [9] used to prove (1.4) that results by using the method
of Beck and Remmel [1] to determine the image of hλ under ring homomorphisms.

Theorem 4.1. For any composition α = (α1, . . . , αk) of n,

[n]P,Q!ξ(hα) =
∑

Σ=(σ1,...,σL)∈SL
n

xcomdesα(Σ)Qinv(Σ)Pcoinv(Σ).
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6 3

7 10 8 5 12

11 4 2 1 913

Figure 7: The brick tabloid T = (2, 1, 3, 1, 4, 2) in B(12,22,3,4),(2,5,6).

Proof. First we consider the case where α is a partition of n. Given a brick tabloid
T ∈ Bµ,α, let b1, . . . , bℓ(µ) be the sequence which records the lengths of the bricks in T
where we read the rows from top to bottom and bricks in the rows from left to right
in each row. In such a situation, we shall write T = (b1, . . . , bℓ(µ)). For example, for
the brick tabloid T ∈ B(12,22,3,4),(2,5,6) pictured at the top of Figure 7, we would write
T = (2, 1, 3, 1, 4, 2).

Then we know that

[n]P,Q!ξ(hα) = [n]P,Q!
∑

µ⊢n

(−1)n−ℓ(µ)Bµ,αξ(eµ)

= [n]P,Q!
∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bℓ(µ))∈Bµ,α

ℓ(µ)
∏

i=1

(1 − x)bi−1Q(bi
2 )

[bi]P,Q!

=
∑

µ⊢n

∑

T=(b1,...,bℓ(µ))∈Bµ,α

[

n

b1, . . . , bℓ(µ)

]

P,Q

Q
Pℓ(µ)

i=1 (bi
2 )(x − 1)n−ℓ(µ).

Fix a brick tabloid T = (b1, . . . , bℓ(µ)) ∈ Bµ,n. We want to give a combinatorial
interpretation to

[

n
b1,...,bℓ(µ)

]

P,Q
. Let DF (T ) denote the set of all fillings of the cells of T

with the numbers 1, . . . , n so that the numbers decrease within each brick reading from
left to right. We think of each such filling as a permutation of Sn by reading the numbers
in rows from top to bottom and the numbers from left to right in each row. For example,
the filled brick tabloid at the bottom of Figure 7 is an element of DF ((2, 1, 3, 1, 4, 2)),
with corresponding permutation 6 3 7 10 8 5 12 11 4 2 1 13 9. Then we have the following
lemma.

Lemma 4.2. Let T = (b1, . . . , bℓ(µ)) be a brick tabloid in Bµ,α. Then

q
P

i (
bi
2 )
[

n

b1, . . . , bℓ(µ)

]

p,q

=
∑

σ∈DF (T )

qinv(σ)pcoinv(σ).
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Proof. It follows from a result of Carlitz [4] that for positive integers b1, . . . , bℓ which sum
to n,

[

n

b1, . . . , bℓ

]

p,q

=
∑

r∈R(1b1 ,...,ℓbℓ)

qinv(r)pcoinv(r)

where R(1b1 , . . . , ℓbℓ) is the set of rearrangements of b1 1’s, b2 2’s, etc. Consider a rear-
rangement r of 1b1 , . . . , ℓbℓ and construct a permutation σr by labeling the 1’s from right
to left with 1, 2, . . . , b1, the 2’s from right to left with b1 + 1, . . . , b1 + b2, and in general
the i’s from right to left with 1 +

∑i−1
j=1 bj , . . . , bi +

∑i−1
j=1 bj . In this way, σ−1

r starts with
the positions of the 1’s in decreasing order, followed by the positions of the 2’s in r in
decreasing order, etc. For example, if T = (2, 1, 3, 1, 4, 2) ∈ B(12,22,3,4),(2,5,6) is the brick
tabloid pictured at the top of Figure 7, then one possible rearrangement to consider is
r = 5 5 1 5 3 1 2 3 6 3 5 4 6. Below we display σr and σ−1

r .

1 2 3 4 5 6 7 8 9 10 11 12 13
r = 5 5 1 5 3 1 2 3 6 3 5 4 6
σr = 11 10 2 9 6 1 3 5 13 4 8 7 12
σ−1

r = 6 3 7 10 8 5 12 11 4 2 1 13 9.

It is then easy to see that
(

2

2

)

+

(

1

2

)

+

(

2

2

)

+

(

1

2

)

+

(

4

2

)

+

(

2

2

)

+ inv(r) = inv(σr) = inv(σ−1
r ) and

coinv(r) = coinv(σr) = coinv(σ−1
r ).

We can think of σ−1
r as a filling of the cells of the brick tabloid T = (2, 1, 3, 4, 2) with the

numbers 1, . . . , 13 such that the numbers within each brick are decreasing, reading from
left to right. In fact, this filling is precisely the filling pictured at the bottom of Figure 7.

Thus in general, for any T = (b1, . . . , bℓ(µ)) ∈ Bµ,α, the correspondence which takes
r ∈ R(1b1 , . . . , ℓbℓ) to σ−1

r shows that

q
P

(bi
2 )
[

n

b1, . . . , bℓ(µ)

]

p,q

=
∑

σ∈DF (T )

qinv(σ)pcoinv(σ),

as desired.

It follows that for any T = (b1, . . . , bℓ(µ)) ∈ Bµ,α,

Q
Pℓ(µ)

i=1 (bi
2 )
[

n

b1, . . . , bℓ(µ)

]

P,Q

=

L
∏

i=1

q
P

(bi
2 )

i

[

n

b1, . . . , bℓ(µ)

]

pi,qi

=
L
∏

i=1

∑

σ(i)∈DF (T )

q
inv(σ(i))
i p

coinv(σ(i))
i . (4.1)

Thus we can interpret Q
Pℓ(µ)

i=1 (bi
2 )
[

n
b1,...,bℓ(µ)

]

P,Q
as the set of fillings of T of L-tuples of

permutations Σ = (σ(1), . . . , σ(L)) such that for each i, the elements of σ(i) are decreasing
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within each brick of T , and we weight such a filling with Qinv(Σ)Pcoinv(Σ). For example,
if T = (2, 2, 3, 2, 4, 3) ∈ B(23,32,4),(4,5,7) and L = 3, then such a filling of T is pictured in
Figure 8. We can then interpret the term (x−1)n−ℓ(µ) as taking such a filling and labeling
each cell which is not at the end of a brick with either x or −1, and labeling each cell
at the end of a brick with 1. Again, we have pictured such a labeling of the cells of T
in Figure 8. We shall call such an object O a labeled filled brick tabloid. We define the
weight of O, W (O), to be product over all the labels of the cells times Qinv(Σ)Pcoinv(Σ) if
T is filled with permutations Σ = (σ(1), . . . σ(L)). Thus for the object pictured in Figure
8,

W (O) = (−1)4x6q
inv(σ(1))
1 q

inv(σ(2))
2 q

inv(σ(3))
3 p

coinv(σ(1))
1 p

coinv(σ(2))
2 p

coinv(σ(3))
3 .

σ   = 6 2 16 10 14 12 7 13 4 15 5 3 1 11 9 8  
(1)

σ   = 10 6 12 4 16 13 3 7 2 9 8 5 1 15 14 11
(2)

(3)
σ   = 16 4 8 2 15 9 7 14 11 13 10 5 3 12 6 1  

2

5

16 10

12 7 4

3 1 11

6 12 4

13 3 7
13

2

8 5 1 15 14 11

4 8 2

14 11

10 5 3 12 6 1

10
16

6

14
16
15

15
9
13

1

x 1 x

−1x

x

x −1 1−1 x−1 1
9 8

9 7

1

Figure 8: A labeled filled brick tabloid of shape (4, 5, 7).

We let LF (α) denote the set of all objects that can be created in this way from brick
tabloids T of shape α. It follows that

[n]P,Q!ξ(hα) =
∑

O∈LF (α)

W (O).

Next we define an involution I : LF (α) → LF (α). Given O ∈ LF (α), read the cells
of O in the same order that we read the underlying permutations and look for the first
cell c such that either:

(i) c is labeled with −1 or
(ii) c is at the end of end of brick b, the cell c + 1 is immediately to the right of c and
starts another brick b′, and each permutation σ(i) decreases from c to c + 1.

If we are in case (i), then I(O) is the labeled filled brick tabloid which is obtained from
O by splitting the brick b that contains c into two bricks b1 and b2, where b1 contains
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the cells of b up to and including the cell c and b2 contains the remaining cells of b, and
changing the label on c from −1 to 1. In case (ii), I(O) is the labeled filled brick tabloid
which is obtained from O by combining the two brick b and b′ into a single brick and
changing the label on cell c from 1 to −1. Finally, if neither case (i) or case (ii) applies,
then we let I(O) = O. For example, if O is the labeled filled brick tabloid pictured in
Figure 8, then I(O) is pictured in Figure 9.

σ   = 6 2 16 10 14 12 7 13 4 15 5 3 1 11 9 8  
(1)

σ   = 10 6 12 4 16 13 3 7 2 9 8 5 1 15 14 11
(2)

(3)
σ   = 16 4 8 2 15 9 7 14 11 13 10 5 3 12 6 1  

2

5

16 10

12 7 4

3 1 11

6 12 4

13 3 7
13

2

8 5 1 15 14 11

4 8 2

14 11

10 5 3 12 6 1

10
16

6

14
16
15

15
9
13

1

x 1 x

−1x

x

x −1 1 x−1 1
9 8

9 7

1

1

Figure 9: I(O).

It is easy to see that if I(O) 6= O, the W (I(O)) = −W (O) since we change the label
on cell c from 1 to −1 or vice versa. Moreover, it is easy to check that I2 is the identity.
Thus I shows that

[n]P,Q!ξ(hα) =
∑

O∈LF (α)

W (O)

=
∑

O∈LF (α),I(O)=O

W (O).

Thus we must examine the fixed points of I. Clearly if I(O) = O, then O can have no cells
which are labeled with −1. Also it must be the case that between any two consecutive
bricks in the same row of O, at least one of the underlying permutations σ(i) must increase.
It follows that each cell c which is not at the end of the brick in O is labeled with x and
each of the permutations σ(i) has a descent at c so that c ∈ Comdes(Σ). All the other
cells of O are either at the end of a brick which has another brick to its right in which
case c 6∈ Comdes(Σ) or c is at the end of a row in which case c ∈ Set(α). All such cells
have label 1, so that W (O) = xcomdesα(Σ)Qinv(Σ)Pcoinv(Σ).

Now, if we are given Σ = (σ(1), . . . , σ(L)) ∈ SL
n , we can construct a fixed point of I

from Σ by using (σ(1), . . . , σ(L)) to fill a tabloid of shape α, then drawing the bricks so
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that the cells c which end bricks are precisely the elements of oneRise(Σ)∪Set(α). This
shows that

∑

O∈LF (α),I(O)=O

W (O) =
∑

Σ∈SL
n

xcomdesα(σ)Qinv(Σ)Pcoinv(Σ),

as desired.
Now suppose β is an arbitrary composition which can be rearranged to the partition α.

Observe that the order in which we read the rows of the brick tabloid T ∈ Bµ,α determined
how we read the bricks and how we associated a sequence of permutations with a filled
brick tabloid. That is, we ordered the rows R1, . . . , Rℓ(α) of T by reading the rows from
top to bottom. This, in turn, determined how we ordered the bricks so that we could write
T = (b1, . . . , bℓ(µ)) and determined how we associated a permutation with each labeled
filled brick tabloid based on T . That is, we ordered the bricks by reading the bricks from
left to right in each row and reading the rows in the order R1, . . . , Rℓ(α). Similarly, we
read the cells in rows from left to right and we read the rows in order R1, . . . , Rℓ(α) to
determine how we associated a permutation with a filled brick tabloid. Now suppose that
we decide to order the rows as Rτ1 , . . . , Rτℓ(α)

for some permutation τ ∈ Sℓ(α) such that
(|Rτ1 |, . . . , |Rτℓ(α)

|) = β, where |Ri| denotes the length of row Ri. Then we would have
a new way to order the bricks by reading the bricks from left to right in each row and
reading the rows in order Rτ1 , . . . , Rτℓ(α)

. Similarly, we would have a new way to associate
a permutation with each labeled filled brick tabloid T of shape α by reading the cells in
rows from left to right and reading the rows in order Rτ1 , . . . , Rτℓ(α)

. Everything in the
proof will be exactly as before, except that cells at the end of the rows Rτ1 , . . . , Rτℓ(α)

would correspond to the positions in Set(β) rather than Set(α). In this way, we could
show that

[n]P,Q!ξ(hα) =
∑

Σ=(σ1,...,σL)∈SL
n

xcomdesβ(σ)Qinv(Σ)Pcoinv(Σ)

for any composition β that rearranges to α. Since hβ = hα in this case, it follows that
(4.1) holds for any composition α.

Next, given a composition of n, α = (α1, . . . , αk), let Fα denote the ribbon shape
corresponding to α and Zα denote the ribbon Schur function corresponding to α. Then
we have the following.

Theorem 4.3.

[n]P,Q!ξ(Zα) =
(1 − x)k−1

xk−1

∑

Σ=(σ(1),...,σ(L))∈SL
n

Set(α)⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

Proof. We can expand the Zα using using (2.1) as

Zα = Sλ/ν =
∑

µ⊢|λ/ν|

hµ

∑

T∈SRHT (µ,λ/ν)

sgn(T ). (4.2)
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Applying ξ to both sides of (4.2), we obtain

[n]P,Q!ξ(Zα) = [n]P,Q!
∑

µ⊢n

ξ(hµ)
∑

T∈SRHT (µ,λ/ν)

sgn(T )

=
∑

T∈SRHT (shape(α))

sgn(T )[n]P,Q!ξ(hβ(T ))

=
∑

T∈SRHT (shape(α))

sgn(T )
∑

Σ∈SL
n

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ).

where β(T ) is the composition induced by reading the rim hooks in T from top to bottom.
Thus we can identify [n]P,Q!ξ(Zα) with a sum over filled special rim hook tabloids F (T ),
where each cell of the underlying special rim hook tabloid is filled with an L-tuple of
numbers in such a way that when we read the numbers in cells starting from the top, we
get a sequence of permutations ΣF (T ) = (σ

(1)
F (T ), . . . , σ

(L)
F (T )) ∈ SL

n . For example, consider

the filled special rim tabloid F (T1) pictured in the top left of Figure 10. Then L = 2,
α = (3, 1, 3, 2), β(T ) = (4, 5), and the underlying pair of permutations Σ = (σ(1), σ(2)) is

σ(1) = 5 9 3 7 6 8 4 2 1

σ(2) = 6 4 1 2 8 5 3 7 9.

In this case Comdes(Σ) = {2, 6} so we have put x’s on top of each of the cells. The
weight of this configuration is then

sgn(T )xcomdes(Σ)Qinv(Σ)Pcoinv(Σ) = x2q26
1 q12

2 p10
1 p24

2 .

6 4 2

1

8 5 3

7 9

95 7

3

6 8 4

2 1

XX

X

6 4 2

1

8 5 3

7 9

95 7

3

6 8 4

2 1

X

X

6 4

8 5 3

7 9

95

6 8 4

2 1

X

X

3
1

2
7

6 4

8 5 3

7 9

95

6 8 4

2 1

X

X

7

3
1

2

Figure 10: Pairing of special rim hook tabloids of shape F(3,1,3,2).

Let first us examine the fillings in pairs with identical integer fillings and identical
special rim hooks, except that one has a break in the special rim hooks at the first row
and the other does not. For example, if F (T2) is the filled special rim hook tabloid at the
top right of Figure 10, then (F (T1), F (T2)) is such a pair. Similarly, if F (T3) is the filled
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special rim hook tabloid at the bottom left of Figure 10 and F (T4) is the filled special
rim hook tabloid at the bottom right of Figure 10, then (F (T3), F (T4)) is such a pair.

Now suppose that (F (T ), F (S)) is any such pair of special rim hook tabloids where the
first rim hook of S ends in the first row and the first rim hook of T does not end the first
row. It is easy to see that the sign of the underlying special rim hook tabloid T is −1 raised
to number of vertical segments that are part of rim hooks, so that sgn(T ) = −sgn(S).
Let c = α1 be the cell at the end of the first row Fα. If c 6∈ Comdes(Σ), then c is in
neither Comdesβ(S) nor Comdesβ(T ) so that

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ) = xcomdesβ(S)(Σ)Qinv(Σ)Pcoinv(Σ)

Hence any two such filled special rim hook tabloids will contribute 0 to

∑

T∈SRHT (shape(α))

sgn(T )
∑

Σ∈SL
n

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ).

For example, the pair (F (T1), F (T2)) pictured at the top of Figure 10 is such a pair.
However if c ∈ Comdes(Σ), then c ∈ Comdesβ(T ), but c 6∈ Comdesβ(S). In this case, it
follows that

sgn(T )xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ) = (−x)sgn(S)xcomdesβ(S)(Σ)Qinv(Σ)Pcoinv(Σ). (4.3)

For example, the pair (F (T3), F (T4)) pictured at the bottom of Figure 10 is such a pair.
In this situation, the pair (F (T ), F (S)) will contribute

(1 − x)sgn(S)xcomdesβ(S)(Σ)Qinv(Σ)Pcoinv(Σ)

to the sum
∑

T∈SRHT (shape(α))

sgn(T )
∑

Σ∈SL
n

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ).

It follows that we can replace the sum

∑

T∈SRHT (shape(α))

sgn(T )
∑

Σ∈SL
n

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ)

by the sum

(1 − x)
∑

T∈H1(α)

sgn(T )
∑

Σ∈SL
n,{α1}

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ) (4.4)

where H1(α) is the set of special rim hook tabloids of shape α whose first special rim
hook is horizontal and SL

n,{α1}
is the set of all L-tuples of permutations Σ such that

α1 ∈ Comdes(Σ). Then we can repeat the same argument on this class of special rim
hook tabloids by examining such fillings in pairs with identical integer fillings and identical
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special rim hooks except that one has a break in the special rim hooks at the second row
and the other does not. It will follow that we can replace the sum in (4.4) by

(1 − x)2
∑

T∈H2(α)

sgn(T )
∑

Σ∈SL
n,{α1,α1+α2}

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ)

where H2 is the set of special rim hook tabloids of shape α whose first two special rim
hook are horizontal and SL

n,{α1,α1+α2}
is the set of all L-tuples of permutations Σ such that

α1, α1 + α2 ∈ Comdes(Σ).
Continuing in this way, we can show that if α has k parts, then [n]P,Q!ξ(Zα) is equal

to the sum

(1 − x)k−1
∑

T∈Hk(α)

sgn(T )
∑

Σ∈Sn,Set(α)

xcomdesβ(T )(Σ)Qinv(Σ)Pcoinv(Σ)

where Hk is the set of special rim hook tabloids of shape α whose first k special rim
hook are horizontal and SL

n,Set(α) is the set of all L-tuples of permutations Σ such that

Set(α) ⊆ Comdes(Σ). However there is only one special rim hook tabloid T whose first
k special rim hooks are horizontal and, clearly, sgn(T ) = 1 and β(T ) = α. Note that if
Σ is such that Set(α) ⊆ Comdes(Σ), then xcomdes(Σ) = xk−1xcomdesα(Σ). Thus, it follows
that

[n]P,Q!ξ(Zα) = (1 − x)k−1
∑

Σ∈SL
n ,Set(α)⊆Comdes(Σ)

xcomdesα(Σ)Qinv(Σ)Pcoinv(Σ)

=
(1 − x)k−1

xk−1

∑

Σ∈SL
n ,Set(α)⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ),

as desired.

We can then combine Theorem 3.1 with Theorem 4.3 to obtain the following.

Theorem 4.4. Let α = (α1, . . . , αk) be a composition of n and let

Set(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk}.

Then

∑

n>1

tn+|α|

[n + |α|]P,Q!

∑

Σ=(σ(1),...,σ(L))∈SL
n

Set(α)⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ) (4.5)

=
xk

(1 − x)k
ξ

(

∑k
j=0 Zα(j)t|α

(j)|(−1)j

E(−t)
+

(−1)k−1 +

k
∑

j=1

(−1)j−1

αj−1
∑

r=1

Z(α(j),r)t
r+|α(j)|

)

.
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Proof. It follows from Theorems 3.1 and 4.3 that (4.5) arises by applying ξ to

∑

n>1

Z(α,n)t
n+|α|.

For example, suppose that we want to compute

∑

n>1

tn+|α|

[n + |α|]P,Q!

∑

Σ=(σ(1),...,σ(L))∈SL
n

{2,4}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ). (4.6)

To have the left-hand side of (4.5) equal (4.6), we must chose α = (2, 2). Thus we must
compute

x2

(1 − x)2
ξ

(

Z(2,2)t
4 − Z(2)t

2 + 1

E(−t)
+ (Z(2,1)t

3 − (Z(1)t + 1))

)

.

This necessitates computing the expansion of Z(2,2), Z(2,1), and Z(2) in terms of the ele-
mentary symmetric functions. One can easily list the transposed special rim hook tabloids
by hand in each case. These are pictured in Figure 11.

Figure 11: Transposed special rim hook tabloids for Z(2,2), Z(2,1), and Z2.

Thus it follows from (2.1) that

Z(2,2) = e2
1e2 − 2e1e3 + e4,

Z(2,1) = e1e2 − e3, and

Z2 = e2
1 − e2.
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Hence,

x2

(1 − x)2
ξ

(

Z(2,2)t
4 − Z(2)t

2 + 1

E(−t)
+ (Z(2,1)t

3 − (Z(1)t + 1)

)

(4.7)

=
x2

(1 − x)2ξ(E(−t))
ξ

(

(e2
1e2 − 2e1e3 + e4)t

4 − (e2
1 − e2)t

2 + 1

+ ((e1e2 − e3)t
3 − e1t − 1)E(−t)

)

=
x2

(1 − x)2ξ(E(−t))
ξ

(

(e2
1e2 − 2e1e3 + e4)t

4 − (e2
1 − e2)t

2 + 1

+ ((e1e2 − e3)t
3 − e1t − 1)(1 − e1t + e2t

2 − e3t
3)

+ ((e1e2 − e3)t
3 − e1t − 1)

∑

n>4

en(−t)n

)

=
x2

(1 − x)2ξ(E(−t))
ξ

(

e4t
4 + (e1e

2
2 − e2e3)t

5 + (e2
3 − e1e2e3)t

6

+
∑

n>4

(−t)n+3(e3en − e1e2en) +
∑

n>4

(−t)n+1e1en −
∑

n>4

en(−t)n

)

.

Collecting terms, one can show that (4.7) is equal to

x2

(1 − x)2ξ(E(−t))
ξ

(

(−t)5(e2e3 − e1e
2
2 + e1e4 − e5)+

t6(e2
3 − e1e2e3 + e1e5 − e6) +

∑

n>7

(−t)n(e3en−3 − e1e2en−3 + e1en−1 − en)

)

=
x2

(1 − x)2ξ(E(−t))
ξ

(

∑

n>5

(−t)n(e3en−3 − e1e2en−3 + e1en−1 − en)

)

.

Now

1

ξ(E(−t))
=

1

1 +
∑

n>1
(1−x)n−1Q

(n
2)

[n]P,Q!
(−t)n

=
1 − x

1 − x +
∑

n>1
(1−x)nQ

(n
2)

[n]P,Q!
(−t)n

=
1 − x

−x + exp(t(x − 1),P,Q)
.
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Thus it follows that

∑

n>1

tn+4

[n + 4]P,Q!

∑

Σ=(σ(1),...,σ(L))∈SL
n

{2,4}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

=
x2

(1 − x)(−x + exp(t(x − 1),P,Q))

(

∑

n>5

(−t)n

[

(1 − x)n−2Q3+(n−3
2 )

[3]P,Q![n − 3]P,Q!

−
(1 − x)n−3Q1+(n−3

2 )

[2]P,Q![n − 3]P,Q!
+

(1 − x)n−2Q(n−1
2 )

[n − 1]P,Q!
−

(1 − x)n−1Q(n
2)

[n]P,Q!

])

=
x2

(−x + exp(t(x − 1),P,Q))

(

∑

n>5

(−t)n(1 − x)n−2Q(n−3
2 )

[n]P,Q!

×

[

−
Q
[

n
1,2,n−3

]

P,Q

(1 − x)2
+

Q3
[

n
3

]

P,Q
+ Q2n−5[n]P,Q

(1 − x)
−Q3n−6

])

.

5 Extensions

In this section, we shall make a few remarks about possible extensions of Theorem 4.4. If
Σ ∈ SL

n , we let oneRise(Σ) = {1, . . . , n−1}−Comdes(Σ). Now suppose we given a pair
of disjoint sets of finite positive integers (S, T ). Then we would like to find the generating
functions over sets of L-tuples of permutations Σ ∈ SL

n such that S ⊆ Comdes(Σ) and
T ⊆ oneRise(Σ). We can easily obtain such generating functions by inclusion-exclusion.
That is, consider

φ(S,T )(x,P,Q)

=
∑

S⊆U⊆S∪T

(−1)|U−S|
∑

n>0

tn

[n]P,Q!

∑

Σ∈SL
n

U⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

where we interpret the sum
∑

Σ∈SL
n

U⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

to be 0 if there are no L-tuples Σ ∈ SL
n such that U ⊆ Comdes(Σ). That is, if n is too

small, it may be the case that there are no L-tuples Σ ∈ SL
n such that U ⊆ Comdes(Σ).

Then it is easy to see that

φ(S,T )(x,P,Q) =
∑

n>0

tn

[n]P,Q!

∑

Σ∈SL
n

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

×
∑

S⊆U⊆S∪T

(−1)|U−S|χ(U ⊆ Comdes(Σ)).
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It then easily follows from inclusion-exclusion that

∑

S⊆U⊆S∪T

(−1)|U−S|χ(U ⊆ Comdes(Σ))

is equal to 1 if S ⊆ Comdes(Σ) and T ∩ Comdes(Σ) = ∅ and is equal to 0 otherwise.
Thus

φ(S,T )(x,P,Q) =
∑

Σ∈SL
n

S⊆Comdes(Σ),T∩Comdes(Σ)=∅

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

When n > 1 + max(S ∪ T ), the condition S ⊆ Comdes(Σ) and T ∩ Comdes(Σ) = ∅ is
equivalent to the condition that S ⊆ Comdes(Σ) and T ⊆ oneRise(Σ).

For example, suppose that we wish to find the generating function for L-tuples of
permutations Σ such that {1, 3} ⊆ Comdes(Σ) and {2} ⊆ oneRise(Σ). Then

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,3}⊆Comdes(Σ)

{2}∩Comdes(Σ)=∅

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

=
∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,3}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

−
∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,2,3}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

We can apply Theorem 4.4 with α = (1, 2) to conclude that

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,3}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

=
x2

(1 − x)2
ξ

(

Z(1,2)t
3 − Z(1) + 1

E(−t)
+ Z(1,1)t

2 − 1

)

=
x2

(1 − x)2ξ(E(−t))
ξ

(

Z(1,2)t
3 − Z(1)t + 1 + [Z(1,1)t

2 − 1]E(−t)

)

=
x2

(1 − x)(−x + exp(t(x − 1),P,Q))
ξ

(

(e1e2 − e3)t
3 − e1t + 1

+ [e2t
2 − 1](1 − e1t + e2t

2 − e3t
3) + [e2t

2 − 1]
∑

n>4

(−t)nen

)
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∑

n>1

t3+n

[3 + n]P,Q!
=

x2

(1 − x)(−x + exp(t(x − 1),P,Q))

× ξ

(

e2
2t

4 − e2e3t
5 + [e2t

2 − 1]
∑

n>4

(−t)nen

)

=
x2

(1 − x)(−x + exp(t(x − 1),P,Q))

(

(1 − x)2Q2

([2]P,Q!)2
t4

−
(1 − x)3Q4

[2]P,Q![3]P,Q!
t5 + [

(1 − x)Q

[2]P,Q!
t2 − 1]

∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!

)

. (5.1)

Here we have used that Z(2,1) = e1e2−e3 and Z(1,1) = e2. Similarly, we can apply Theorem
4.4 with α = (1, 1, 1) to conclude that

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,2,3}⊆Comdes(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ)

=
x3

(1 − x)3
ξ

(

Z(1,1,1)t
3 − Z(1,1)t

2 + Z(1)t − 1

E(−t)
+ 1

)

=
x3

(1 − x)3ξ(E(−t))
ξ

(

Z(1,1,1)t
3 − Z(1,1)t

2 + Z(1)t − 1 + E(−t)

)

=
x3

(1 − x)2(−x + exp(t(x − 1),P,Q))
ξ

(

∑

n>4

(−t)nen

)

=
x3

(1 − x)2(−x + exp(t(x − 1),P,Q))

(

∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!

)

. (5.2)

Subtracting (5.2) from (5.1) and putting the terms over a common denominator, we see
that

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,3}⊆Comdes(Σ)

{2}∩Comdes(Σ)=∅

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ) (5.3)

=
x2

(1 − x)2(−x + exp(t(x − 1),P,Q))
R,
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where

R =
(1 − x)3Q2

([2]P,Q!)2
t4 −

(1 − x)4Q4

[2]P,Q![3]P,Q!
t5

+
(1 − x)2Q

[2]P,Q!
t2
∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!

−(1 − x)
∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!
− x

∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!

=
(1 − x)3Q2

([2]P,Q!)2
t4 −

(1 − x)4Q4

[2]P,Q![3]P,Q!
t5

+
∑

n>4

(−t)n+2 (1 − x)n+1Q1+(n
2)

[2]P,Q![n]P,Q!
−
∑

n>4

(−t)n (1 − x)n−1Q(n
2)

[n]P,Q!

=

(

(1 − x)3Q2

([2]P,Q!)2
−

(1 − x)3Q6

[4]P,Q!

)

t4

−

(

(1 − x)4Q4

[2]P,Q![3]P,Q!
−

(1 − x)4Q10

[5]P,Q!

)

t5

+
∑

n>6

(−t)n(1 − x)n−1

(

Q1+(n−2
2 )

[2]P,Q![n − 2]P,Q!
−

Q(n
2)

[n]P,Q!

)

=
∑

n>4

(−t)n (1 − x)n−1Q1+(n−2
2 )

[n]P,Q!

(

[

n

2

]

P,Q

−Q2n−4

)

.

Thus we have proved the following.

Theorem 5.1.

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
n

{1,3}⊆Comdes(Σ)

{2}∩Comdes(Σ)=∅

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ) (5.4)

=
x2

(−x + exp(t(x − 1),P,Q)

∑

n>4

(−t)n (1 − x)n−3Q1+(n−2
2 )

[n]P,Q!

(

[

n

2

]

P,Q

−Q2n−4

)

.

We end this section by showing that we can use a different method to compute the gen-
erating functions of L-tuples of Σ = (σ(1), . . . , σ(L)) ∈ SL

n such that {1, 3} ⊆ Comdes(Σ)
and {2} ⊆ Comris(Σ) where Comris(Σ) =

⋂L
i=1 Rise(σ(i)). Note that if L > 2, then the

condition that {2} ⊆ Comris(Σ) is different than the condition that {2}∩Comdes(Σ) = ∅
because the latter condition only asserts the {2} ∈ Rise(σ(i)) for some i rather than all i.

The basic idea is the following. We can apply the reasoning from Theorem 4.1 to

[n]P,Q!ξ(hn) =
∑

O∈LF ((n))

W (O) (5.5)
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where LF (n) denotes the set of all labeled filled brick tabloids T = (b1, . . . , bk) of shape
(n) such that the permutations are decreasing within each brick. Now we would like to
modify things so that the following conditions are met.

1. the first brick b1 is of length 4 or greater,

2. each permutation σ(i) has the property that σ(i)(1) > σ(i)(2) < σ(i)(3) > σ(i)(4) >
· · · > σ(i)(b1) and σ(i) decreases in the remaining bricks, and

3. the labels on cells 1 and 3 are x, the label on cell 2 is 1, and the remaining labels
are as before.

We can accomplish this by replacing hn in (5.5) by p~u
n for an appropriate ~u. To this end,

assume n > 4 and let Tn be the set of permutations σ ∈ Sn such that σ(1) > σ(2) <
σ(3) > σ(4) > σ(5) > · · · > σ(n). That is, Tn is the set of permutations such that
Rise(σ) = {2}. We want to compute

∑

σ∈Tn

qinv(σ)pcoinv(σ). (5.6)

Now if σ ∈ Tn, then either (i) σ(3) = n, or (ii) σ(3) = n − 1, in which case σ(1) is forced
to be n. In case (i), n gives rise to n − 3 inversions and 2 coinversions. The rest of the
permutation consists of two decreasing sequences, one of length 2 and one of length n− 3

so that by (4.1), these give rise to a factor of q(
2
2)+(n−3

2 )[n−1
2

]

p,q
. Thus the total contribution

from case (i) to (5.6) is q1+(n−2
2 )p2

[

n−1
2

]

p,q
. In case (ii) n gives rise to n− 1 inversions and

no coinversions and n − 1 gives rise to n − 3 inversions and 1 coinversion. The result of
the permutation consists of two decreasing sequences, one of length 1 and one of length

n − 3 so that by (4.1), these give rise to a factor of q(
1
2)+(n−3

2 )[n−2
1

]

p,q
= q(

n−3
2 )[n − 2]p,q.

Thus the total contribution from case (i) to (5.6) is qn−1+(n−2
2 )p[n − 2]. Thus

∑

σ∈Tn

qinv(σ)pcoinv(σ) = q1+(n−2
2 )p2

[

n − 1

2

]

p,q

+ qn−1+(n−2
2 )p[n − 2]p,q.

It follows that

∑

Σ=(σ(1) ,...,σ(L))∈T L
n

Qinv(Σ)Pcoinv(Σ) (5.7)

=
L
∏

i=1

(

q
1+(n−2

2 )
i p2

i

[

n − 1

2

]

pi,qi

+ q
n−1+(n−2

2 )
i pi[n − 2]pi,qi

)

= Q1+(n−2
2 )
( L
∏

i=1

p2
i

[

n − 1

2

]

pi,qi

+ qn−2
i pi[n − 2]pi,qi

)

.
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This given, consider the sequence ~u = (u1, u2, . . .) where

un =
x2Q−(n

2)

(1 − x)3
Q1+(n−2

2 )
( L
∏

i=1

p2
i

[

n − 1

2

]

pi,qi

+ qn−2
i pi[n − 2]pi,qi

)

.

if n > 4 and u1 = u2 = u3 = 0. Then we have the following theorem.

Theorem 5.2. For n > 4,

[n]P,Q!ξ(p~u
n) =

∑

Σ=(σ(1),...,σ(L))∈SL
n

∀i(σ(i)(1)>σ(i)(2)<σ(i)(3)>σ(i)(4))

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

Proof. In this case, we shall consider only brick tabloids of shape (n) so we shall write
T = (b1, . . . , bℓ(µ)) if the size of the bricks in T are b1, . . . , bℓ(µ), reading from left to right.
We interpreted p~u

n as the sum over weighted brick tabloids T = (b1, . . . , bℓ) where the
weight of T is given by W (T ) = ubℓ

∏

i ebi
. That is, we weighted the last brick by ubℓ

.
However, by the simple process of reversing the order of the bricks in each brick tabloid,
we can also interpret p~u

n as the sum over weighted brick tabloids T = (b1, . . . , bℓ) where
the weight of T is W (T ) = ub1

∏

i ebi
. That is, we can decide to weight the first brick by

ub1 rather than weight the last brick by ubℓ
. It follows that

[n]P,Q!ξ(p~u
n) = [n]P,Q!

∑

µ⊢n

(−1)n−ℓ(µ)W (Bµ,(n))ξ(eµ)

= [n]P,Q!
∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bℓ(µ))∈Bµ,(n)

ub1

ℓ(µ)
∏

i=1

(1 − x)bi−1

[bi]P,Q!

=
∑

µ⊢n

∑

T=(b1,...,bℓ(µ))∈Bµ,(n)

b1>4

[

n

b1, . . . , bℓ(µ)

]

P,Q

Q
Pℓ(µ)

i=1 (bi
2 )(x − 1)n−ℓ(µ)

×
x2Q−(b1

2 )

(1 − x)3
Q1+(b1−2

2 )
( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)

.

As in the proof of Theorem 4.1, for any T = (b1, . . . , bℓ(µ)) ∈ Bµ,(n), we can interpret

Q
Pℓ(µ)

i=1 (bi
2 )
[

n
b1,...,bℓ(µ)

]

P,Q
as the set of fillings of T with L-tuples of permutations Σ =

(σ(1), . . . , σ(L)) such that for each i, the elements of σ(i) are decreasing within each brick of
T , and we weight such a filling with Qinv(Σ)Pcoinv(Σ). There is a factor of x2(x−1)n−ℓ(µ)−3

in (5.8) arising from T , which we interpret as taking such a filling and labeling cells 1 and
3 with x, labeling cell 2 with 1, and labeling each remaining cell which is not at the end
of a brick with either x or −1, and labeling each cell at the end of a brick with 1. Finally,
given (5.7), we can interpret the extra factor,

Q−(b1
2 )Q1+(b1−2

2 )
( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)
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as allowing us to replace the decreasing fillings of the first brick by all fillings where in
each row σ(i)(1) > σ(i)(2) < σ(i)(3) > σ(i)(4). That is, by rearranging the elements in the
first brick, we do not change the number of inversions and coinversions between elements
that lie in the first brick and the rest of elements in any given row. Thus, we need only
account for the difference between the inversions and coinversions for elements that lie in
the first brick caused by going from a decreasing sequence in each row to a sequence such
that

σ(i)(1) > σ(i)(2) < σ(i)(3) > σ(i)(4) > σ(i)(5) > · · · > σ(i)(b1).

Clearly, when all the elements that lie in the first brick form a decreasing sequence in each

row, they contribute a factor of Q(b1
2 ) to Qinv(Σ)Pcoinv(Σ). After we arrange the sequences,

the elements in the first brick contribute

Q1+(b1−2
2 )
( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)

to Qinv(Σ)Pcoinv(Σ). Thus the factor

Q−(b1
2 )Q1+(b1−2

2 )
( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)

is exactly what we need to account for replacing the decreasing sequences in each row of
the first brick by sequences such that

σ(i)(1) > σ(i)(2) < σ(i)(3) > σ(i)(4) > σ(i)(5) > · · · > σ(i)(b1).

We shall call an object O created in this way a did-labeled filled brick tabloid where
did is short for decrease-increase-decrease. An example of a did-labeled filled brick tabloid
for L = 3 and n = 12 is given in Figure 12. Then we define the weight of O, W (O),
to be the product over all the labels of the cells times Qinv(Σ)Pcoinv(Σ) if T is filled with
permutations Σ = (σ(1), . . . σ(L)). Thus for the object pictured in Figure 12,

W (O) = (−1)4x4q
inv(σ(1))
1 q

inv(σ(2))
2 q

inv(σ(3))
3 p

coinv(σ(1))
1 p

coinv(σ(2))
2 p

coinv(σ(3))
3 .

We let DIDLF (n) denote the set of all objects that can be created in this way from
brick tabloid T of shape (n). Then it follows that

[n]P,Q!ξ(p~u
n) =

∑

O∈DIDLF (n)

W (O).

Then we define an involution I : DIDLF (n) → DIDLF (n) exactly as before. That
is, given O ∈ DIDLF (n), read the cells of O from left to right and look for the first cell
c such that either

(i) c is labeled with −1 or
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10 6 9 4 1 11 7 3 12 8 5 2
9 1 6 3 2 10 7 5 12 11 8 4
12 5 10 6 4 9 3 1 11 8 7 2

10 6 9 4 1 11 7 3 12 8 5 2

9 1 6 3 2 10 7 5 12 11 8 4

12 5 10 6 4 9 3 1 11 8 7 2

x x x x1 1 1 1−1 −1 −1 −1

(1)

(2)

(3)

σ      =

σ      =

σ      =

Figure 12: A did-labeled filled brick tabloid of shape (12).

(ii) c is at the end of end of brick b, the cell c + 1 is immediately to the right of c and
starts another brick b′, and each permutation σ(i) decreases as we go from c to c + 1.

If we are in case (i), then I(O) is the did-labeled filled brick tabloid which is obtained
from O by taking the brick b that contains c and splitting b into two bricks b1 and b2 where
b1 contains the cells of b up to and including the cell c and b2 contains the remaining cells
of b, and changing the label on c from −1 to 1. In case (ii), I(O) is the did-labeled filled
brick tabloid which is obtained from O by combining the two bricks b and b′ into a single
brick and changing the label on cell c from 1 to −1. Finally, if neither case (i) nor case
(ii) applies, then we let I(O) = O. For example, for the labeled filled brick tabloid O
pictured in Figure 12, I(O) is pictured in Figure 13.

10 6 9 4 1 11 7 3 12 8 5 2
9 1 6 3 2 10 7 5 12 11 8 4
12 5 10 6 4 9 3 1 11 8 7 2

x x x x1 1 1 1−1 −1 −11

Figure 13: I(O).

As before, I is a weight-preserving sign-reversing involution, so that

[n]P,Q!ξ(p~u
n) =

∑

O∈DIDLF (n)

W (O)

=
∑

O∈DIDLF (n),I(O)=O

W (O).

Thus we must examine the fixed points of I. Clearly if I(O) = O, then O can have no cells
which are labeled with −1. Also it must be the case that between any two consecutive
bricks of O, at least one of the underlying permutations σ(i) must increase. It follows
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that each cell c which is not among the first three cells and which is not at the end of the
brick in O is labeled with x and each of the permutation σ(i) has a descent at c so that
c ∈ Comdes(Σ). All other cells of O are either at the end of brick which has another
brick to its right, in which case c 6∈ Comdes(Σ). All such cells have label 1 so that
W (O) = xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

Now, if we are given Σ = (σ(1), . . . , σ(L)) ∈ SL
n such that for each i, σ(i)(1) > σ(i)(2) <

σ(i)(3) > σ(i)(4), then we can construct of fixed point of I from Σ by using (σ(1), . . . , σ(L))
to fill a tabloid of shape (n) and drawing the bricks so that the cells c which end bricks
are precisely the elements of oneRise(Σ) which are greater than 3. This shows that

∑

O∈DIDLF (n),I(O)=O

W (O) =
∑

Σ∈SL
n

σ(i)(1)>σ(i)(2)<σ(i)(3)>σ(i)(4) ∀ i

xcomdesα(σ)Qinv(Σ)Pcoinv(Σ)

as desired.

Using Theorem 5.2, we can apply ξ to both sides of the identity

∑

n>1

p~u
ntn =

∑

n>1(−1)n−1unentn

E(−t)

to prove the following:

∑

n>1

t3+n

[3 + n]P,Q!

∑

Σ∈SL
3+n

∀i(σ(i)(1)>σ(i)(2)<σ(i)(3)>σ(i)(4))

xcomdesα(Σ)Qinv(Σ)Pcoinv(Σ)

=
x2

(1 − x)2(−x + exp(t(x − 1),P,Q))

×
∑

n>4

(−1)n−1 (1 − x)n−1Q(n
2)

[n]P,Q!
Q−(n

2)Q1+(n−2
2 )

×

( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)

=
x2

(−x + exp(t(x − 1),P,Q))
(5.8)

×
∑

n>4

(−1)n−1 (1 − x)n−3

[n]P,Q!
Q1+(n−2

2 )
( L
∏

i=1

p2
i

[

b1 − 1

2

]

pi,qi

+ qb1−2
i pi[b1 − 2]pi,qi

)

.

We note that it should be the case that (5.4) and (5.8) are equal when L = 1 since the
condition that 2 /∈ Comdes(Σ) and 2 ∈ ComRise(Σ) is the same in that case. Indeed,
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the two expressions are the same as

p2
1

[

n − 1

2

]

p1,q1

+ qn−2
1 p1[n − 2]p1,q1 =

[n − 1]p1,q1![n − 2]p1,q1!

[2]p1,q1!
+ qn−2

1

(

[n − 1]p1,q1 − qn−2
1

)

=
[n − 1]p1,q1!

[2]p1,q1!

(

p2
1[n − 2]p1,q1 + qn−2

1 [2]p1,q1

)

− q2n−4
1

=
[n − 1]p1,q1!

[2]p1,q1!
[n]p1,q1 − q2n−4

1 − q2n−4
1

=

[

n

2

]

p1,q1

− q2n−4
1 .

We note that our second method can be applied to obtain generating functions for any
L-tuple of permutations Σ which are to contain a given set S of common descents and a
given set T of common rises where S ∪ T = {1, . . . , n}. That is, let DS,T

n+k equal the set of
permutations σ ∈ Sn+k such that S ∪ {n + 1, . . . , n + k − 1} ⊆ Des(σ) and T ⊆ Rise(σ)
and suppose that we can compute

DS,T
n+k(p, q) =

∑

σ∈DS,T
n+k

qinv(σ)pcoinv(σ).

Then we can define our sequence ~u = (u1, u2, . . .) so that
(1) ui = 0 if i 6 n and

(2) ui = x|S|

(1−x)n

∏L
i=1 DS,T

n+k(pi, qi).

Then the same type of argument that was used to prove (5.8) will prove that

[n + k]P,Q!ξ(p~u
n+k) =

∑

Σ∈SL
n+k

S⊆Comdes(Σ)

T⊆ComRise(Σ)

xcomdes(Σ)Qinv(Σ)Pcoinv(Σ).

Finally, we should note that in a forthcoming paper, we shall show how we can combine
the two methods described in this paper. The key idea is to define an analogue of the
ribbon Schur function Zα in terms of special rim hook tabloids in such that way that T is
a special rim hook tabloid of shape F(α,n) whose special rim hooks have length a1, . . . , ak,
reading from top to bottom. Then we will weight T by sgn(T )p~u

a1
ha2 · · ·hak

instead of
sgn(T )ha1ha2 · · ·hak

.

The authors would like to thank the anonymous referee for a very careful reading of
the paper and suggestions that improved the presentation of the paper.
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