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Abstract

Let H and G be two graphs on fixed number of vertices. An edge coloring of a
complete graph is called (H,G)-good if there is no monochromatic copy of G and no
rainbow (totally multicolored) copy of H in this coloring. As shown by Jamison and
West, an (H,G)-good coloring of an arbitrarily large complete graph exists unless
either G is a star or H is a forest. The largest number of colors in an (H,G)-good
coloring of Kn is denoted maxR(n,G,H). For graphs H which can not be vertex-
partitioned into at most two induced forests, maxR(n,G,H) has been determined
asymptotically. Determining maxR(n;G,H) is challenging for other graphs H, in
particular for bipartite graphs or even for cycles. This manuscript treats the case
when H is a cycle. The value of maxR(n,G,Ck) is determined for all graphs G

whose edges do not induce a star.

1 Introduction and main results

For two graphs G and H , an edge coloring of a complete graph is called (H, G)-good if
there is no monochromatic copy of G and no rainbow (totally multicolored) copy of H in
this coloring. The mixed anti-Ramsey numbers, maxR(n; G, H), minR(n; G, H) are the
maximum, minimum number of colors in an (H, G)-good coloring of Kn, respectively. The
number maxR(n; G, H) is closely related to the classical anti-Ramsey number AR(n, H),
the largest number of colors in an edge-coloring of Kn with no rainbow copy of H intro-
duced by Erdős, Simonovits and Sós [9]. The number minR(n; G, H) is closely related to
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the classical multicolor Ramsey number Rk(G), the largest n such that there is a color-
ing of edges of Kn with k colors and no monochromatic copy of G. The mixed Ramsey
number minR(n; G, H) has been investigated in [3, 13, 11].

This manuscript addresses maxR(n; G, H). As shown by Jamison and West [14], an
(H, G)-good coloring of an arbitrarily large complete graph exists unless either G is a star
or H is a forest. Let a(H) be the smallest number of induced forests vertex-partitioning
the graph H . This parameter is called a vertex arboricity. Axenovich and Iverson [3]
proved the following.

Theorem 1. Let G be a graph whose edges do not induce a star and H be a graph with

a(H) > 3. Then maxR(n; G, H) = n2

2

(

1 − 1
a(H)−1

)

(1 + o(1)).

When a(H) = 2, the problem is challenging and only few isolated results are known
[3]. Even in the case when H is a cycle, the problem is nontrivial. This manuscript
addresses this case. Since (Ck, G)-good colorings do not contain rainbow Ck, it follows
that

maxR(n; G, Ck) 6 AR(n, Ck) = n

(

k − 2

2
+

1

k − 1

)

+ O(1), (1)

where the equality is proven by Montellano-Ballesteros and Neumann-Lara [16]. We show
that maxR(n; G, Ck) = AR(n; Ck) when G is either bipartite with large enough parts, or
a graph with chromatic number at least 3. In case when G is bipartite with a “small” part,
maxR(n; G, Ck) depends mostly on G, namely, on the size of the “small” part. Below is
the exact formulation of the main result.

If a graph G is bipartite, we let s(G) = min{s : G ⊆ Ks,r, s 6 r for some r} and
t(G) = |V (G)|−s(G). I.e., s(G) is the sum of the sizes of smaller parts over all components
of G.

Theorem 2. Let k > 3 be an integer and G be a graph whose edges do not induce a

star. Let s = s(G) and t = t(G) if G is bipartite. There are constants n0 = n0(G, k) and

g = g(G, k) such that for all n > n0

maxR(n; G, Ck) =

{

n
(

k−2
2

+ 1
k−1

)

+ O(1), if
(

χ(G) = 2 and s > k
)

or
(

χ(G) > 3
)

n
(

s−2
2

+ 1
s−1

)

+ g, otherwise

Here g = g(G, k) = ER2
(

s+t, 3sk+t+1, k
)

, where the number ER denotes the Erdős-

Rado number stated in section 2. Note that it is sufficient to take g(G, k) = 2cℓ2 log ℓ, where
ℓ = 3sk + t + 1.

We give the definitions and some observations in section 2, the proof of the main
theorem in section 3 and some more accurate bounds for the case when H = C4 in the
last section of the manuscript.

2 Definitions and preliminary results

First we shall define a few special edge colorings of a complete graph: lexical, weakly
lexical, k-anticyclic, c∗ and c∗∗.
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Let c : E(Kn) → N be an edge coloring of a complete graph on n vertices for some
fixed n.

We say that c is a weakly lexical coloring if the vertices can be ordered v1, . . . , vn, and
the colors can be renamed such that there is a function λ : V (Kn) → N, and c(vivj) =
λ(vmin{i,j}), for 1 6 i, j 6 n. In particular, if λ is one to one, then c is called a lexical

coloring.

We say that c is a k-anticyclic coloring if there is no rainbow copy of Ck, and there
is a partition of V (Kn) into sets V0, V1, . . . , Vm with 0 6 |V0| < k − 1 and |V1| = · · · =
|Vm| = k − 1, where m = ⌊ n

k−1
⌋, such that for i, j with 0 6 i < j 6 m, all edges between

Vi and Vj have the same color, and the edges spanned by each Vi, i = 0, . . . , m have new
distinct colors using pairwise disjoint sets of colors.

We denote a fixed coloring from the set of k-anticyclic colorings of Kn such that the
color of any edges between Vi and Vj is min{i, j} by c∗.

Finally, we need one more coloring, c∗∗, of Kn. Let c∗∗ be a fixed coloring from the
set of the following colorings of E(Kn); let the vertex set V (Kn) be a disjoint union of
V0, V1, . . . , Vm with 0 6 |V0| < s− 1, |V1| = · · · = |Vm−1| = s− 1, and |Vm| = k − 1, where
m − 1 = ⌊n−k+1

s−1
⌋. Let the color of each edge between Vi and Vj for 0 6 i < j 6 m be i.

Color the edges spanned by each Vi, i = 0, . . . , m with new distinct colors using pairwise
disjoint sets of colors.

For a coloring c, let the number of colors used by c be denoted by |c|. Observe that c∗

is a blow-up of a lexical coloring with parts inducing rainbow complete subgraphs. Any
monochromatic bipartite subgraph in c∗ and c∗∗ is a subgraph of Kk−1,t and Ks−1,t for
some t, respectively. Also we easily see that if c is k-anticyclic, then

|c| 6 |c∗| = n

(

k − 2

2
+

1

k − 1

)

+ O(1), (2)

|c∗∗| = n

(

s − 2

2
+

1

s − 1

)

+ O(1). (3)

Let K = Kn. For disjoint sets X, Y ⊆ V , let K[X] be the subgraph of K induced by
X, and let K[X, Y ] be the bipartite subgraph of K induced by X and Y . Let c(X) and
c(X, Y ) denote the sets of colors used in K[X] and K[X, Y ], respectively by a coloring c.

Next, we state a canonical Ramsey theorem which is essential for our proofs.

Theorem 3 (Deuber [7], Erdős-Rado [8]). For any integers m, l, r, there is a smallest in-

teger n = ER(m, l, r), such that any edge-coloring of Kn contains either a monochromatic

copy of Km, a lexically colored copy of Kl, or a rainbow copy of Kr.

The number ER is typically referred to as Erdős-Rado number, with best bound in
the symmetric case provided by Lefmann and Rödl [15], in the following form: 2c1ℓ2 6

ER(ℓ, ℓ, ℓ) 6 2c2ℓ2 log ℓ, for some constants c1, c2.
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3 Proof of Theorem 2

If G is a graph with chromatic number at least 3, then maxR(n; G, Ck) = n
(

k−2
2

+ 1
k−1

)

+
O(1) as was proven in [3].

For the rest of the proof we shall assume that G is a bipartite graph, not a star, with
s = s(G), t = t(G), and G ⊆ Ks,t. Note that 2 6 s 6 t. Let K = Kn. If s > k, then the
lower bound on maxR(n; G, Ck) is given by c∗, a special k-anticyclic coloring. The upper
bound follows from (1).

Suppose s < k. The lower bound is provided by a coloring c∗∗. Since maxR(n; G, Ck) 6

maxR(n; Ks,t, Ck), in order to provide an upper bound on maxR(n; G, Ck), we shall be
giving an upper bound on maxR(n; Ks,t, Ck).

The idea of the proof is as follows. We consider an edge coloring c of K = (V, E)
with no monochromatic Ks,t and no rainbow Ck, and estimate the number of colors in
this coloring by analyzing specific vertex subsets: L, A, B, where L is the vertex set of the
largest weakly lexically colored complete subgraph, A is the set of vertices in V \L which
“disagrees” with coloring of L on some edges incident to the initial part of L, and B is
the set of vertices in V \ L which “disagrees” with coloring of L on some edges incident
to the terminal part of L. Let V ′ = V \ L. We are counting the colors in the following
order: first colors induced by V ′ which are not used on any edges incident to L or any
edges induced by L, then colors used on edges between V ′ and L which are not induced
by L, finally colors induced by L.

Now, we provide a formal proof. Assume that n is sufficiently large such that n >

ER(s + t, 3sk + t + 1, k). Let c be a coloring of E(K) with no monochromatic copy
of Ks,t and no rainbow copy of Ck, c : E(K) → N. Then there is a lexically colored
copy of K3sk+t+1 by the canonical Ramsey theorem. Let L be a vertex set of a largest
weakly lexically colored Kq, q > 3sk + t + 1, say L = {x1, . . . , xq} and c(xixj) = λ(xi)
for 1 6 i < j 6 q, for some function λ : L → N. If X = {xi1 , . . . , xiℓ} ⊆ L and
λ(xi1) = · · · = λ(xiℓ) = j for some j, then we denote λ(X) = j. We write, for i 6 j,
xiLxj := {xi, xi+1, . . . , xj}, and for i > j, xiLxj := {xi, xi−1, . . . , xj}. We say that xi

precedes xj if i < j.
Let Tt, Tsk+t, T2sk+t, and T3sk+t be the tails of L of size t, sk + t, 2sk + t, and 3sk + t

respectively, i.e.,

Tt := {xq−t+1, xq−t+2, . . . , xq},

Tsk+t := {xq−sk−t+1, xq−sk−t+2, . . . , xq},

T2sk+t := {xq−2sk−t+1, xq−2sk−t+2, . . . , xq},

T3sk+t := {xq−3sk−t+1, xq−3sk−t+2, . . . , xq},

see Figure 1.
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3sk + t

T
2sk + t

T
t

L sk + t
T

Figure 1: Tt, Tsk+t, T2sk+t, and T3sk+t

We shall use these tails to count the number of colors: the common difference, sk, of
sizes of tails is from observations below(Claims 0.1–0.3). The first tail Tt is used in Claims
0.1 – 0.3 and to find monochromatic copy of Ks,t. The third tail T2sk+t is the main tool
used in Part 1, 2 of the proof, it helps finding rainbow copy of Ck. The other tails Tsk+t

and T3sk+t are for technical reasons used in Claim 2.1 and Claim 1.3, respectively. Note
that the size of the fourth tail is used in the second parameter of Erdős-Rado number
bounding n.

We start by splitting the vertices in V \L according to “agreement” or “disagreement”
of a corresponding colors used in L \ T2sk+t and in edges between L and V \L. Formally,
let V ′ = V \ L, and

A := {v ∈ V ′ | there exists y ∈ L \ T2sk+t such that c(vy) 6= λ(y)},

B := {v ∈ V ′ | c(vx) = λ(x), x ∈ L \ T2sk+t,

and there exists y ∈ T2sk+t \ {xq} such that c(vy) 6= λ(y)}.

Note that V ′ − A − B = {v ∈ V ′ | c(vx) = λ(x), x ∈ L \ {xq}} = ∅ since otherwise L
is not the largest weakly colored complete subgraph. Thus

V = L ∪ A ∪ B.

Let c0 := c(L)∪ c(V ′, L). In the first part of the proof we bound
∣

∣

∣

(

c(B)∪ c(B, A)
)

\ c0

∣

∣

∣
+

|c(B, L) \ c(L)|, in the second part we bound |c(A) \ c0| + |c(A, L) \ c(L)| + |c(L)|.

Claim 0.1 Let x ∈ L \ Tt. Then |{y ∈ L \ Tt | λ(x) = λ(y)}| 6 s − 1 < s.
If this claim does not hold, the corresponding y’s and Tt induce a monochromatic Ks,t.

Claim 0.2 Let y, y′ ∈ L \ Tt such that |yLy′| > (s − 1)ℓ + 1 for some ℓ > 0. Then
|c(yLy′)| > ℓ + 1.

It follows from Claim 0.1.

Claim 0.3 Let v, v′ ∈ V ′ and y, y′ ∈ L\Tt such that y precedes y′. Let P be a rainbow
path from v to v′ in V ′ with 1 6 |V (P )| 6 k − 2 and colors not from c0. If c(vy) 6= λ(y),
c(v′y′) 6∈ {c(vy), λ(y)}, and |yLy′| > (s − 1)(k − |V (P )|) + 1, then there is a rainbow Ck

induced by V (P ) ∪ yLy′.

Indeed, by Claim 0.2, |c(yLy′)| > k − |V (P )| + 1. Hence |c(yLy′) \ {c(vy), c(v′y′)}| >

k−|V (P )|−1. So we can find a rainbow path on k−|V (P )| vertices in L with endpoints y
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3sk + t 2sk + t

Figure 2: A rainbow Ck in Claim 1.3

and y′ of colors from c(yLy′)\{c(vy), c(v′y′)}, which together with V (P ) induce a rainbow
Ck since colors of P are not from c0.

PART 1

We shall show that
∣

∣

∣

(

c(B) ∪ c(B, A)
)

\ c0

∣

∣

∣
+ |c(B, L) \ c(L)| 6 const = const(k, s, t).

Claim 1.1 |B| < ER(s + t, 2sk + t + 1, k).
Suppose |B| > ER(s + t, 2sk + t + 1, k). Then there is a lexically colored copy of a

complete subgraph on a vertex set Y ⊆ B of size 2sk + t + 1. Then (L ∪ Y ) \ T2sk+t is
weakly lexical, which contradicts the maximality of L.

Claim 1.2 |c(B, L) \ c(L)| 6 (2sk + t)|B|.
|c(B, L) \ c(L)| 6 |c(B, T2sk+t)| 6 (2sk + t)|B| by the definition of B.

Claim 1.3
∣

∣

∣

(

c(B) ∪ c(B, A)
)

\ c0

∣

∣

∣
<

(

ER(s+t,3sk+t+1,k)
2

)

.

Let A = A1∪A2, where A1 := {v ∈ A | there exists y ∈ L\T3sk+t with c(vy) 6= λ(y)},
and A2 := A \ A1.

First, we show that c(B, A1) ⊆ c0. Assume that c(v′v) 6∈ c0 for some v ∈ A1 and
v′ ∈ B with c(vy) 6= λ(y) for some y ∈ L\T3sk+t and c(v′x) = λ(x) for any x ∈ L\T2sk+t.
From Claim 0.1, we can find y′, one of the last 2s− 1 elements in T3sk+t \T2sk+t such that
λ(y′) is neither c(vy) nor λ(y). Since λ(y′) = c(v′y′), we have that c(v′y′) 6∈ {c(vy), λ(y)}.
Moreover we have |yLy′| > (s−1)(k−2)+1. By Claim 0.3, there is a rainbow Ck induced
by {v, v′} ∪ yLy′, see Figure 2.

Second, we shall observe that |A2 ∪ B| < ER(s + t, 3sk + t + 1, k) by the argument
similar to one used in Claim 1.1. We see that otherwise A2∪B contains a lexically colored
complete subgraph on 3sk + t + 1 vertices, which together with L − T3sk+t gives a larger
than L weakly lexically colored complete subgraph.

the electronic journal of combinatorics 17 (2010), #R31 6



4
G’

1 2 3 pAA     AA
1 3

G’
3

G"

2
G’ G’

5

1
G"

2
G"

L

G’

Figure 3: G1 and G2

PART 2

We shall show that |c(A) \ c0| + |c(A, L) \ c(L)| + |c(L)| 6 n
(

s−2
2

+ 1
s−1

)

.
In order to count the number of colors in A and (A, L), we consider a representing

graph of these colors as follows. First, consider a set E ′ of edges from K[A] having exactly
one edge of each color from c(A)\c0. Second, consider a set of edges E ′′ from the bipartite
graph K[A, L] having exactly one edge of each color from c(A, L)\c(L). Let G be a graph
with edge-set E ′ ∪ E ′′ spanning A. Then |c(A) \ c0| + |c(A, L) \ c(L)| = |E(G)|.

We need to estimate the number of edges in G. Let A1, . . . , Ap be sets of vertices of
the connected components of G[A]. Let L1, . . . , Lp be sets of the neighbors of A1, . . . , Ap

in L respectively, i.e., for 1 6 i 6 p, Li := {x ∈ L |{x, y} ∈ E(G) for some y ∈ Ai}. Let

G1 :=
⋃

i : |E(G[Ai,Li])|61

G[Ai],

G2 :=
⋃

i : |E(G[Ai,Li])|>2

G[Ai ∪ Li].

Let G′
1, . . . , G

′
p1

be the connected components of G1, and let G′′
1, . . . , G

′′
p2

be the connected
components of G2. See Figure 3 for an example of G1 and G2.

Claim 2.1 We may assume that V (G) ∩ L ⊆ L \ Tsk+t.
For a fixed v ∈ A, let ω be a color in c(v, L) \ c(L), if such exists. Let L(ω) :=

{x ∈ L | c(vx) = ω}. Suppose L(ω) ⊆ Tsk+t. Since v ∈ A, there exists y ∈ L \ T2sk+t

such that c(vy) 6= λ(y). Let y′ ∈ L(ω) ⊆ Tsk+t. Then c(vy′) 6∈ {c(vy), λ(y)}. Since
|yLy′| > (s − 1)k + 1 > (s − 1)(k − 1) + 1, there is a rainbow Ck induced by {v} ∪ yLy′

by Claim 0.3, see figure 4. Therefore L(ω) ∩ (L \ Tsk+t) 6= ∅. Hence we can choose edges
for the edge set E ′′ of G only from K[A, L \ Tsk+t].

Claim 2.2 For every i, 1 6 i 6 p, K[Ai, Tt] is monochromatic; for every j, 1 6 j 6 p2,
K[V (G′′

j ), Tt] is monochromatic. In particular, for every h, 1 6 h 6 p1, K[V (G′
i), Tt] is

monochromatic.

1. Fix i, 1 6 i 6 p. We show that K[Ai, Tt] is monochromatic. Let v ∈ Ai and
y ∈ L \ T2sk+t with c(vy) 6= λ(y).
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2sk + t sk + t

Figure 4: A rainbow Ck in Claim 2.1 and Claim 2.2-1.(1)

v

z x

T T

L
tsk + t

Figure 5: A rainbow Ck in Claim 2.2-1.(2)

(1) For any y′ ∈ Tsk+t, c(vy′) is either c(vy) or λ(y). Indeed if c(vy′) 6∈ {c(vy), λ(y)},
then there is a rainbow Ck induced by {v} ∪ yLy′ by Claim 0.3, see Figure 4.

(2) |c(v, Tt)| = 1. Indeed, let Ly = {x ∈ Tsk+t \ Tt | λ(x) 6= c(vy) and λ(x) 6= λ(y)}.
Then by Claim 0.1, |Ly| > |Tsk+t \ Tt| − 2(s − 1) + 1 > (s − 1)(k − 3) + 1. Hence
|c(Ly)| > k−2 by Claim 0.2. Let z be the vertex in Ly preceding every other vertex
in Ly. Suppose there is x ∈ Tt such that c(vx) 6= c(vz). Since c(Ly) ⊆ c(zLx),
there exists a rainbow path from z to x on k − 1 vertices in Tsk+t of colors disjoint
from {c(vy), λ(y)}. So there is a rainbow Ck induced by {v} ∪ zLx, see Figure 5.
Therefore for any x ∈ Tt, c(vx) = c(vz) ∈ {c(vy), λ(y)}.

(3) For any neighbor v′ of v in G[Ai], if such exists, c(v′, Tt) = c(v, Tt). Indeed, we
see that for any y′ ∈ Tsk+t, c(v′y′) ∈ {c(vy), λ(y)}, otherwise there is a rainbow
Ck induced by {v, v′} ∪ yLy′ by Claim 0.3. Also we see that for any x ∈ Tt,
c(v′x) = c(vz) ∈ {c(vy), λ(y)}, where z is defined above; otherwise there is a rainbow
Ck induced by {v, v′} ∪ zLx, see Figure 6. Therefore c(v′, Tt) = c(v, Tt).

(4) Since G[Ai] is connected, K[Ai, Tt] is monochromatic of color c(vz).

Note that to avoid a monochromatic Ks,t, we must have that |Ai| 6 s − 1 6 k − 2 for
1 6 i 6 p.

2. Fix j, 1 6 j 6 p2. We show that K[V (G′′
j ), Tt] is monochromatic.
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v v’

T

L
T sk + t t

Figure 6: Rainbow Ck’s in Claim 2.2-1.(3)

L
T’

P
v v’

x’x

Figure 7: Rainbow Ck’s in Claim 2.2-2.(1): red when |P | = k−2, green when |P | < k−2.

(1) K[V (G′′
j ) ∩ L, Tt] is monochromatic. Indeed, since G′′

j , a connected component of
G, is a union of G[Ai ∪ Li]’s satisfying |E(G[Ai, Li])| > 2, by the connectivity, it is
enough to show that λ(x) = λ(x′) for any x, x′ ∈ Li for Li in G′′

j , where x precedes
x′. From Claim 2.1, we may assume that x, x′ are in L\Tsk+t. Suppose λ(x) 6= λ(x′).
Let v, v′ ∈ Ai such that {v, x} and {v′, x′} are edges of G (possibly v = v′). Let P
denote a set of vertices on a path from v to v′ in G[Ai]. Then 1 6 |P | 6 k − 2 since
|Ai| 6 k − 2. If |P | = k − 2, then P ∪ {x, x′} induces a rainbow Ck, otherwise so
does P ∪ {x} ∪ x′Lxq from Claim 0.3, see Figure 7. Therefore λ(x) = λ(x′).

(2) K[V (G′′
j ), Tt] is monochromatic. To prove this, consider i such that G[Ai, Li] ⊆ G′′

j .
Observe first that K[Ai, Tt] and K[Li, Tt] are monochromatic by 1.(4) and 2.(1).
Next, we shall show that c(Ai, Tt) = λ(Li). Suppose c(Ai, Tt) 6= λ(Li) for some i
such that G[Ai∪Li] ⊆ G′′

j . Let v, v′ ∈ Ai and x, x′ ∈ Li such that {v, x} and {v′, x′}
are edges of G (possibly either v = v′ or x = x′). Since |E(G[Ai, Li])| > 2, we
can find such vertices. So c(vx) 6= c(v′x′) and {c(vx), c(v′x′)} ∩ c(L) = ∅. We may
assume that x, x′ ∈ L\Tsk+t by Claim 2.1. Since c(Ai, Tt) 6= λ(Li), c(vx) = c(v′x′) =
c(Ai, Tt), otherwise there is a rainbow Ck induced by {v} ∪ xLxq or {v′} ∪ x′Lxq by
Claim 0.3, see Figure 8. Then it contradicts the fact that c(vx) 6= c(v′x′).

We have that for any i such that G[Ai, Li] ⊆ G′′
j , c(Ai, Tt) = λ(Li). This implies that

K[Ai ∪ Li, Tt] is monochromatic of color λ(Li). Since G′′
j is connected and Ais are

disjoint, we have that for any i, i′ such that G[Ai, Li], G[Ai′ , Li′] ⊆ G′′
j , Li ∩Li′ 6= ∅,

so λ(Li) = λ(Li′) = λ, for some λ. Therefore K[V (G′′
j ), Tt] is monochromatic of

color λ.
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Figure 8: Rainbow Ck’s for Claim 2.2-2.(2).

Claim 2.3 For 1 6 i 6 p1 and 1 6 j 6 p2, 1 6 |V (G′
i)| 6 s−1 and 1 6 |V (G′′

j )| 6 s−1.

This claim now follows from the previous instantly.

The following claim deals with a small quadratic optimization problem we shall need.
Claim 2.4 Let n, s ∈ N. Suppose n is sufficiently large and s > 2. Let ξ1, . . . , ξm ∈ N,

1 6 ξi 6 s − 1 and
∑m

i=1 ξi 6 n. Then

m
∑

i=1

(

ξi − 1

2

)

6 n
(s − 4

2
+

1

s − 1

)

.

The equality holds if and only if m = n
s−1

and ξ1 = · · · = ξm = s − 1.
See the appendix A for the proof.

Claim 2.5 |c(A) \ c0| + |c(A, L) \ c(L)| + |c(L)| = |E(G)| + |c(L)| 6 n( s−2
2

+ 1
s−1

).
We have that

|E(G)| 6
(

|E(G1)| + p1

)

+ |E(G2)| =

p1
∑

i=1

|E(G′
i)| + p1 +

p2
∑

i=1

|E(G′′
i )|.

Moreover each component G′′
i of G2 contributes at most 1 to |c(L)| by Claim 2.2, and

G1 and G2 are vertex disjoint. So

|c(L)| 6 n − |V (G1)| − |V (G2)| + p2 = n −

p1
∑

i=1

|V (G′
i)| −

p2
∑

i=1

|V (G′′
i )| + p2
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Hence we have

|c(A)\c0| + |c(A, L) \ c(L)| + |c(L)| = |E(G)| + |c(L)|

6

p1
∑

i=1

|E(G′
i)| + p1 +

p2
∑

i=1

|E(G′′
i )| + n −

p1
∑

i=1

|V (G′
i)| −

p2
∑

i=1

|V (G′′
i )| + p2

=

p1
∑

i=1

|E(G′
i)| +

p2
∑

i=1

|E(G′′
i )| −

p1
∑

i=1

(

|V (G′
i)| − 1

)

−

p2
∑

i=1

(

|V (G′′
i )| − 1

)

+ n

6

p1
∑

i=1

(

|V (G′
i)|

2

)

+

p2
∑

i=1

(

|V (G′′
i )|

2

)

−

p1
∑

i=1

(

|V (G′
i)| − 1

)

−

p2
∑

i=1

(

|V (G′′
i )| − 1

)

+ n

=

p1
∑

i=1

(

|V (G′
i)| − 1

2

)

+

p2
∑

i=1

(

|V (G′′
i )| − 1

2

)

+ n

For 1 6 i 6 p1 + p2, let

ξi =

{

|V (G′
i)|, if 1 6 i 6 p1

|V (G′′
i−p1

)|, if p1 + 1 6 i 6 p1 + p2
.

Then
∑p1+p2

i=1 ξi 6 n and 1 6 ξi 6 s − 1 for 1 6 i 6 p1 + p2 by Claim 2.3.
From Claim 2.4, we get

|c(A) \ c0| + |c(A, L) \ c(L)| + |c(L)|

6

p1+p2
∑

i=1

(

ξi − 1

2

)

+ n 6 n

(

s − 2

2
+

1

s − 1

)

.

This concludes Part 2 of the proof.

Combining Parts 1 and 2, we see that the total number of colors is at most

∣

∣

∣

(

c(B) ∪ c(B, A)
)

\ c0

∣

∣

∣
+ |c(B, L) \ c(L)| + |c(A) \ c0| + |c(A, L) \ c(L)| + |c(L)|

<

(

ER(s + t, 3sk + t + 1, k)

2

)

+ (2sk + t)ER(s + t, 2sk + t + 1, k) + n

(

s − 2

2
+

1

s − 1

)

6 g + n

(

s − 2

2
+

1

s − 1

)

,

where g = g(s, t, k) = ER2
(

s + t, 3sk + t + 1, k
)

.
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4 More precise results for C4

For a coloring c of E(Kn) and a vertex v, let Nc(v) be the set of colors between v and
V (Kn) \ {v}, not used on edges spanned by V (Kn) \ {v}. Let nc(v) = |Nc(v)|. Note that
c(uv) ∈ Nc(u) ∩ Nc(v) if and only if the color c(uv) is used only on the edge uv in the
coloring c. We call this color a unique color in c. For a path P = v1v2 · · · vk, we say that
the path P is good if c(vivi+1) ∈ Nc(vi) for i = 1, . . . , k − 1.

Lemma 1. Let c be an edge-coloring of Kn with no rainbow Ck. If for all v ∈ V (Kn),
nc(v) > k − 2, then (k − 1) | n and c is k-anticyclic.

Proof. Let c be an edge-coloring of Kn with no rainbow Ck. Suppose for all v ∈ V (Kn),
nc(v) > k−2. Then for any v ∈ V , we can find a good path of length k−2 starting at v by
a greedy algorithm. Let this path be v1v2 · · · vk−1, and let c(vivi+1) = i for i = 1, . . . , k−2.
Let V0 = {v1, . . . , vk−1}.

Claim 1 For any u ∈ V \ V0, c(uv1) = 1 or c(uv1) 6∈ Nc(v1).
Assume that c(uv1) ∈ Nc(v1). If c(uv1) 6= 1 then c(uvk−1) must be the same as c(uv1),

otherwise v1 · · · vk−1uv1 is a rainbow Ck. Thus, if c(uv1) 6= 1 then c(uv1) 6∈ Nc(v1).

Claim 2 {c(v1vi) | i = 2, . . . , k−1} is a set of distinct colors from Nc(v1) and nc(v1) =
k − 2.

From Claim 1 we see that the colors from Nc(v1) not equal to 1 appear only on edges
v1vi for i = 2, . . . , k − 1. Since nc(v1) > k − 2, all these edges have distinct colors from
Nc(v1) and nc(v1) = k − 2.

Claim 3 For any u ∈ V \ V0, c(uvk−1) 6∈ Nc(vk−1).
Assume otherwise, then v2v3 · · · vk−1u is a good path. Then v1v3v4 · · · vk−1uv2v1 is a

rainbow Ck from Claim 2.

Claim 4 {c(vivk−1) | i = 1, . . . , k − 2} is a set of distinct colors from Nc(vk−1) and
nc(vk−1) = k − 2.

By Claim 3, we see that all edges of colors from Nc(vk−1) must occur on edges from
{vivk−1 : i = 1, . . . , k − 2}. Since nc(vk−1) > k − 2, edges vivk−1, i = 1, . . . , k − 2 have
distinct colors from Nc(vk−1) and nc(vk−1) = k − 2.

Claim 5 V0 induces a rainbow complete subgraph with all colors unique in c. Moreover,
for each vi and each u 6∈ V0, c(uvi) is not unique in c.

This follows from the above claims since for i = 1, . . . , k−1, vivi+1 · · · vk−1v1v2 · · · vi−1

is a good path, and nc(vi) = k − 2.

Consider u 6∈ V0 and a good path of length k − 2 starting at u. Let the vertex set
of this path be V1. If V0 and V1 share a vertex, say vi, then viu has a unique color, a
contradiction to Claim 5. Thus the graph is vertex-partitioned into copies of Kk−1 each
rainbow colored with unique colors. To avoid a rainbow Ck, any edges between two fixed
parts must have the same color. Therefore (k − 1) | n and c is k-anticyclic.
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By induction on n and the above lemma with k = 4, we have the following results.

Corollary 4. AR(n, C4) = |c∗| = 4/3n + O(1).

Proof. We need to show that for any edge-coloring c of Kn with no rainbow C4, |c| 6

|c∗| = 4/3n + O(1).
We use induction on n. The statement trivially holds for n = 3. Let c be a coloring

of E[Kn] with no rainbow C4, n > 4. If for all v ∈ V (Kn), nc(v) > 2, then by Lemma
1, c is 4-anticyclic. So |c| 6 |c∗|. Suppose there is a v ∈ V (Kn) with nc(v) 6 1. Let
G = Kn − v. Let c′ be the coloring of E(G) induced by c. Then by induction hypothesis,
|c′| 6 4/3(n − 1) + O(1). Hence |c| 6 |c′| + 1 6 4/3n + O(1).

Theorem 5. Let n > 3. Let G be a graph whose edges do not induce a star. Let s = s(G)
and t = t(G) if G is bipartite.

maxR(n; G, C4) =

{

4
3
n + O(1), if

(

χ(G) = 2 and s(G) > 4
)

or
(

χ(G) > 3
)

n, otherwise

Proof. Suppose
(

χ(G) = 2 and s(G) > 4
)

or
(

χ(G) > 3
)

. For the lower bound, consider
the 4-anticyclic coloring c∗. Each color class of c∗ is either K1,m, K2,m, or K3,m for some
m > 1, thus c∗ contains no monochromatic copy of G. The upper bound follows from
Corollary 4.

Suppose G is bipartite and s(G) 6 3. We use induction on n. The statement trivially
holds for n = 3. Let c be a coloring of E(Kn) with no monochromatic G and no rainbow
C4. If nc(v) > 2 for all v ∈ V , by Lemma 1 there is a color class of c that induces a K3,3m

for some m > 1, which contains G. Hence we can find a v ∈ V with nc(v) 6 1. Then
by the induction hypothesis, maxR(n; G, C4) 6 n. The lower bound is obtained from the
coloring c∗∗ with s = s(G) and k = 4. Each color class of c∗∗ is K1,m if s(G) = 2, either
K1,m or K2,m if s(G) = 3 for some m > 1, thus c∗∗ contains no monochromatic copy of G.
The total number of colors in either cases is n.

the electronic journal of combinatorics 17 (2010), #R31 13



A Proof of Claim 2.4

Claim 2.4 Let n, s ∈ N. Suppose n is sufficiently large and s > 2. Let ξ1, . . . , ξm ∈ N,
1 6 ξi 6 s − 1 and

∑m

i=1 ξi 6 n. Then

m
∑

i=1

(

ξi − 1

2

)

6 n
(s − 4

2
+

1

s − 1

)

.

The equality holds if and only if m = n
s−1

and ξ1 = · · · = ξm = s − 1.

We use induction on m. If m = 1, then

(ξ − 1)(ξ − 2)

2
6

(s − 2)(s − 3)

2
6 n

(s − 4

2
+

1

s − 1

)

, for any n > s − 1,

where the first inequality becomes equality iff ξ = s−1, and the second does iff n = s−1.
Suppose m > 2,

∑m

i=1 ξi 6 n, and 1 6 ξi 6 s− 1 for 1 6 i 6 m. Since
∑m−1

i=1 ξi 6 n− ξm,
by induction,

m−1
∑

i=1

(

ξi − 1

2

)

6 (n − ξm)
(s − 4

2
+

1

s − 1

)

, for any n > (m − 1)(s − 1) + ξm,

where the equality holds iff m − 1 = n−ξm

s−1
and ξ1 = · · · = ξm−1 = s − 1. Hence it

is enough to show that (n − ξm)
(

s−4
2

+ 1
s−1

)

+
(

ξm−1
2

)

6 n
(

s−4
2

+ 1
s−1

)

or equivalently

ξm

(

s−4
2

+ 1
s−1

)

−
(

ξm−1
2

)

> 0, and the equality holds iff ξm = s − 1. If ξm = 1, that is

obvious. Assume ξm > 1, then

ξm

(s − 4

2
+

1

s − 1

)

−

(

ξm − 1

2

)

= ξm

(s − 2)(s − 3)

2(s − 1)
−

(ξm − 1)(ξm − 2)

2

=
1

2

(

−ξ2
m +

(

s − 1 +
2

s − 1

)

ξm − 2

)

=
1

2

(

− ξm +
2

s − 1

)(

ξm − (s − 1)
)

> 0,

since 2 6 ξm 6 s − 1.
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