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Abstract

A dumbbell graph, denoted by Da,b,c, is a bicyclic graph consisting of two vertex-
disjoint cycles Ca, Cb and a path Pc+3 (c > −1) joining them having only its
end-vertices in common with the two cycles. In this paper, we study the spectral
characterization w.r.t. the adjacency spectrum of Da,b,0 (without cycles C4) with
gcd(a, b) > 3, and we complete the research started in [J.F. Wang et al., A note on
the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009)
1707–1714]. In particular we show that Da,b,0 with 3 6 gcd(a, b) < a or gcd(a, b) = a

and b 6= 3a is determined by the spectrum. For b = 3a, we determine the unique
graph cospectral with Da,3a,0. Furthermore we give the spectral characterization
w.r.t. the signless Laplacian spectrum of all dumbbell graphs.

1 Introduction

Let G = (V (G), E(G)) be a graph with order |V (G)| = n(G) = n and size|E(G)| =
m(G) = m. Let A(G) be the (0,1)-adjacency matrix of G and dG(v) = d(v) the degree of
the vertex v. The polynomial φ(G, λ) = det(λI − A(G)) or simply φ(G), where I is the
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identity matrix, is defined as the characteristic polynomial of G, which can be written as
φ(G) = λn + a1(G)λn−1 + a2(G)λn−2 + · · · + an(G). Since A(G) is real and symmetric,
its eigenvalues are all real numbers. Assume that λ1(G) > λ2(G) > · · · > λn(G) are the
adjacency eigenvalues of the graph G. The adjacency spectrum of G, denoted by Spec(G),
is the multiset of its adjancency eigenvalues.

Together with the adjacency spectrum, shortly denoted by A-spectrum, we will con-
sider the Q-spectrum, defined similarly but with respect to the signless Laplacian matrix
Q(G) = A(G) + D(G), where D(G) is the diagonal matrix of vertex degrees (of G). The
same applies for eigenvalues, characteristic polynomial, and the corresponding notation
differs by a prefix (A- or Q-, respectively). The characteristic polynomials of the matrices
A(G) and Q(G) will be denoted by φ(G, λ) and ϕ(G, λ), respectively; we will omit the
variable if it is clear from the context. According to [3, 4, 5], all these approaches (with
different matrices M) fit into the so called M-theory of graph spectra, and moreover there
are some very helpful analogies between them.

In this paper, let M be the adjacency matrix A or the signless Laplacian matrix Q.
Two graphs are said to be M-cospectral (or that they are M-cospectral mates) if they
have equal M-spectrum, i.e. equal M-characteristic polynomial. A graph is said to be
determined by its M-spectrum, or shortly DMS, if there is no other non-isomorphic graph
with the same M-spectrum. Numerous examples of M-cospectral but non-isomorphic
graphs, known as M-PINGS, are reported in the literature (see Chapter 6 in [2] for
example). On the other hand, only a few graphs with very special structure have been
proved to be determined by their M-spectra. For the background and some known results
about this problem and related topics, we refer the readers to the excellent surveys [6, 7]
and the references therein.

As usual, let Cn and Pn be, respectively, the cycle, and the path of order n. For two
graphs G and H , G∪H denotes the disjoint union of G and H . Let Ta,b,c denote the tree
with exactly one vertex v having maximum degree 3 such that Ta,b,c − v = Pa ∪ Pb ∪ Pc.
The lollipop graph, denoted by Lg,p (note, in [10] Lg,p is denoted by Hg+p,g), is obtained by
appending a cycle Cg to a pendant vertex of a path Pp+1. The θ-graph, denoted by θa1,b1,c1

(a1 6 b1 6 c1 and (a1, b1) 6= (0, 0)), is a graph consisting of two given vertices joined by
three vertex disjoint paths whose orders are a1, b1 and c1, respectively. The dumbbell
graph Da,b,c consists of two vertex-disjoint cycles Ca, Cb and a path Pc+3 (c > −1) joining
them having only its end-vertices in common with the cycles (see Fig. 1). A graph G is
said to be almost regular if | d(vi)−d(vj) |6 1 for any vi, vj ∈ V (G). Clearly, there are two
types of such graphs: one is the regular graph and the other one is called (r, r +1)-almost
regular graph, i.e., its vertex set can be partitioned into two subsets V1 and V2 such that
d(vi) = r for vi ∈ V1 and d(vj) = r + 1 for vj ∈ V2. Note, there are exactly two kinds
of (2,3)-almost regular graphs such that m = n + 1, and such graphs are the dumbbell
graphs or the θ-graphs with eventually cycles as connected components.

In [10] and [1], the authors shown that all lollipop graphs are DAS. In [11] the authors
shown that all θ-graphs with no unique cycle C4 are DAS. In [12], we investigated the
A-spectral characterization of dumbbell graphs without cycles C4 and we left the special
case Da,b,0 with δ = gcd(a, b) > 3.
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In this paper, we will show that Da,b,0 with δ = gcd(a, b) > 3 is DAS if and only
if δ 6= a or δ = a and b 6= 3a. For b = 3a (a 6= 4) we determine the unique graph
A-cospectral with Da,3a,0, that is θ1,a−1,2a−1 ∪ Ca.

Furthermore we deduce from our main result the Q-spectral characterization of dumb-
bell graphs. In particular we prove that all dumbbell graphs Da,b,c 6= Da,3a,−1 are DQS,
while Da,3a,−1 is Q-cospectral just with θ0,a−1,2a−1 ∪ Ca.

The paper is organized as follows. In Section 2 we give a few basic results that will
be used later. In Section 3 we restrict the structure of tentative A-cospectral mates with
Da,b,0. In Section 4 we give the A-spectral characterization of Da,b,0 and we give the
general result on the A-spectral characterization of Da,b,c without cycle C4 as subgraph.
Finally in Section 5, we give the Q-spectral characterization of Da,b,c. Note that in order
to keep the notation easier to read, we will omit the prefix A- in Sections 2, 3 and 4 since
the latter sections are concerning just with the A-theory of graph spectra, while we again
make use of the prefixes A- and Q- in Section 5.
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Fig. 1: The graphs Lg,p, θa1,b1,c1 and Da,b,c.

Remark 1. Due to the symmetry, let 0 6 a1 6 b1 6 c1 in the graph θa1,b1,c1 and 3 6 a 6 b
and c > −1 in the graph Da,b,c.

2 Basic results

Some useful established results about the (A-)spectrum are presented in this section,
which will play an important role throughout this paper. Recall that the prefix A- is
omitted in this section.

Lemma 2.1 (Interlacing Theorem). Let the eigenvalues of graphs G and G − v be, re-
spectively, λ1 > λ2 > · · · > λn and µ1 > µ2 > · · · > µn−1, then λ1 > µ1 > λ2 > µ2 >

· · · > µn−1 > λn.

Lemma 2.2 (Schwenk’s formulas). [2] Let G be a (simple) graph. Denote by C (v) (C (e))
the set of all cycles in G containing a vertex v (resp. an edge e = uv). Then we have:

(i) φ(G, x) = xφ(G − v, x) −
∑

w∼v

φ(G − v − w, x) − 2
∑

C ∈ C (v)

φ(G − V (C), x)

(ii) φ(G, x) = φ(G − e, x) − φ(G − v − u, x) − 2
∑

C ∈ C (e)

φ(G − V (C), x).
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We assume that φ(G, x) = 1 if G is the empty graph (i.e. with no vertices).

Lemma 2.3. [2] Let Cn and Pn be the cycle and the path on n vertices, respectively. Then

(i) φ(Cn) =
∏n

j=1

(

λ − 2 cos 2πj

n

)

and λ1(Cn) = 2,

(ii) φ(Pn) =
∏n

j=1

(

λ − 2 cos πj

n+1

)

and λ1(Pn) < 2.

Lemma 2.4. [6] Let G and H be two graphs with the same spectrum w.r.t. A or Q. Then

(i) n(G) = n(H);

(ii) m(G) = m(H).

Lemma 2.5. [8] φ(Pn, 2) = n + 1 and φ(Ta,b,c, 2) = a + b + c + 2 − abc.

From the above lemma, in [12] we got the following result.

Lemma 2.6. 2 ∈ Spec(Da,b,c) if and only if c = 0. Moveover, the multiplicity of 2’s is
one.

The following result describes the structure of tentative cospectral mates of almost
regular graphs non containing cycles C4 as subgraphs.

Theorem 2.7. [12] Let two graphs H and G such that Spec(H) = Spec(G), where G
contains no the cycle C4 as its subgraph. If G is a (r, r + 1)-almost regular graph, then

(i) H contains no the cycle C4 as its subgraph;

(ii) H is a (r, r + 1)-almost regular graph with the same degree sequence as G.

3 Preliminary results

In this section we will restrict the structure of H , the tentative (A-)cospectral mate of
Da,b,0. Recall that the prefix A- is omitted in this section. Note that from Theorem
2.7, H can be a dumbbell graph, a θ-graph, a disjoint union of a dumbbell graph and
cycles, a disjoint union of a θ-graph and cycles. Since Da,b,0 has 2 as an eigenvalue of
multiplicity 1 (cf. Lemma 2.6) then H contains at most one cycle as connected component.
Furthermore, the tentative connected cospectral mates are immediately discarded by the
two following lemmas (see, for example, [12]).

Lemma 3.1. [11] There is no θ-graph cospectral with a dumbbell graph.

Lemma 3.2. [12] No two non-isomorphic dumbbell graphs are cospectral.

In [12] we considered the spectral characterization of dumbbell graphs. Our main
result reads:
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Theorem 3.3. The graphs Da,b,c, without cycles C4, with c 6= 0 or c = 0 and gcd(a, b) 6 2
are determined by their adjacency spectrum.

Our aim in this paper is to study the spectral characterization of the remaining cases of
Theorem 3.3, i.e. Da,b,0 with gcd(a, b) > 3. So in the rest of the paper we set δ = gcd(a, b)
and δ > 3.

To prove the next lemmas we will rely on the Schwenk’s formulas and the Interlacing
Theorem. The main idea is the following: if a graph has some eigenvalues of multiplicity
greater than 2, then these eigenvalues must appear at least once in all subgraphs obtained
by deleting a vertex (from Interlacing Theorem). Hence, we can check the multiplicity of
these eigenvalues of vertex deleted subgraphs by substituting them into the characteristic
polynomial of the parent graph (by using the Schwenk’s formulas). The following lemma
characterizes the spectrum of Da,b,0 (with δ > 3).

Lemma 3.4. The spectrum of Da,b,0 with δ = gcd(a, b) > 3 consists of the eigenvalues
of Cδ (except 2 and −2) with multiplicity 3, the eigenvalues of Ca and Cb not in Cδ

with multiplicity 1 and all the other eigenvalues must strictly interlace the eigenvalues of
Ca ∪ Cb and have multiplicity 1 as well.

Proof. If we consider the Interlacing Theorem (Lemma 2.1) applied to the unique cut-
vertex u of degree 2 in Da,b,0 we get that if λ is of multiplicity > 2 then λ ∈ Spec(Ca) ∪
Spec(Cb). Consider now the Lemma 2.2(i) applied to u. We get:

φ(Da,b,0) = xφ(Ca)φ(Cb) − φ(Ca)φ(Pb−1) − φ(Pa−1)φ(Cb). (1)

Now take λ ∈ Spec(Cδ) and λ 6= ±2, it is easy to check that such a λ is 4 times solution
of φ(Ca)φ(Cb), 3 times solution of φ(Ca)φ(Pb−1) and 3 times solution of φ(Pa−1)φ(Cb).
Consequently λ ∈ Spec(Cδ) (λ 6= ±2) implies that λ is of multiplicity 3 for Da,b,0. If
λ = 2, then 2 is a simple root of (1) (see also Lemma 2.6); note also that λ2(Da,b,0) = 2
(by Interlacing Theorem). If λ = −2 ∈ Spec(Cδ), then −2 is a simple root of (1) as well.

Take now λ ∈ Spec(Ca) ∪ Spec(Cb) \ Spec(Cδ), note that Spec(Ca) ∩ Spec(Cb) =
Spec(Cδ) (see Lemma 2.3(i)). Similarly to above we can say that such a λ is an eigenvalue
of multiplicity 1 for Da,b,0.

Since all multiple eigenvalues of Da,b,0 must come from Spec(Ca)∪ Spec(Cb), then, by
Interlacing Theorem, all remaining eigenvalues must interlace the eigenvalues of Ca ∪ Cb

and be of multiplicity 1.
This ends the proof.

From the above lemma we know to some extent the spectrum of Da,b,0. If H is a
tentative cospectral mate of Da,b,0, then H cannot be connected (by Theorem 2.7 and
Lemmas 3.1 and 3.2). Furthermore by Lemma 2.6 (cf. also Lemma 3.4), we know that 2
is simple and the second largest eigenvalue of Da,b,0. The latter implies that H can be of
two kinds: a θ-graph with a cycle or a dumbbell graph with a cycle. The eigenvalues of
multiplicity 3 of Da,b,0 (recall that they belong to Cδ, by Lemma 3.4) will force the latter
mentioned cycles to be Cδ. This fact will be proved in the following lemmas.
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Lemma 3.5. If H = Da′,b′,c′ ∪ Cp′ is cospectral with Da,b,0, then c′ = −1 and p′ = δ.

Proof. Recall that, by Lemma 2.6, 2 is a simple eigenvalue of Da,b,0. Assume that
φ(Da,b,0) = φ(H). Since H contains a cycle then 2 appears already as an eigenvalue
and, consequently, Da′,b′,c′ cannot have 2 as its eigenvalue. By Lemma 2.6 we get c′ 6= 0.

Assume that c′ > 0. Considering Lemma 2.1 applied to the cut-vertex of degree 2 of
Da,b,0, we get that λ1(Da,b,0) > λ1(Cb) > λ2(Da,b,0) > λ1(Ca). Consider now H , it is easy
to see, by using the above argument, that its second largest eigenvalue is (strictly) greater
than 2 whenever c′ > 0, which is a contradiction.

Take now c′ = −1. So H = Da′,b′,−1∪Cp′ . Recall that by Lemma 3.4, we know that the
spectrum of Da,b,0 contains the eigenvalues of Cδ (except ±2) with multiplicity 3 and the
remaining eigenvalues are simple. It is easy to see that p′ divides δ, otherwise H has some
eigenvalues of multiplicity at least 2 not appearing in Da,b,0. Assume, for a contradiction,
that p′ < δ. If so, H \ Cp′ = Da′,b′,−1 has at least an eigenvalue λ of multiplicity 3. By
Lemma 2.2(ii) applied at the (unique) bridge of Da′,b′,−1, we have

φ(Da′,b′,−1) = φ(Ca′)φ(Cb′) − φ(Pa′−1)φ(Pb′−1). (2)

By Lemma 2.1 applied at the vertex of degree 3 in Cb′, we have that λ ∈ Spec(Ca′), and
by the same lemma applied at the other vertex of degree 3 we have that λ ∈ Spec(Cb′).
Hence from (2), λ is exactly of multiplicity 2 in Da′,b′,−1, that is a contradiction. So the
eigenvalues of H \ Cp′ = Da′,b′,−1 are simple and, consequently, it must be δ = p′.

Lemma 3.6. Let Lg,p be a lollipop. If λ ∈ Spec(Lg,p) is of multiplicity greater than 1,
then its multiplicity is exactly 2 and λ ∈ Spec(Cg) ∩ Spec(Pp−1).

Proof. Recall that from Lemma 2.3 we have the following facts: if λ ∈ Spec(Cn) then
λ ∈ Spec(Pn−1); if λ ∈ Spec(Pn) then λ 6∈ Spec(Pn−1); if λ ∈ Spec(Pn) then λ is of
multiplicity 1.

Assume that λ is of multiplicity at least 2 for Lg,p. By the Interlacing Theorem applied
at the vertex of degree 2 in the path adjacent to the vertex of degree 3, λ must be an
eigenvalue of Cg or of Pp−1. Consider now the Schwenk formula for edges (Lemma 2.2(ii))
at the bridge between the path and the cycle in Lg,p. We have

φ(Lg,p) = φ(Cg)φ(Pp) − φ(Pg−1)φ(Pp−1). (3)

It easy to see that if λ is an eigenvalue of Cg in (3) then such an eigenvalue is an eigenvalue
of Pp−1 (recall that λ is of multiplicity at least 2) as well, while if λ is an eigenvalue of
Pp−1 then (3) holds if and only if such an eigenvalue belongs to Spec(Cg) as well. So we
can conclude that λ ∈ Spec(Cg) ∩ Spec(Pp−1). Finally, it is easy to observe that such a
λ ∈ Spec(Cg) ∩ Spec(Pp−1) is a solution of (3) exactly twice.

This ends the proof.

Lemma 3.7. Let λ be an eigenvalue of multiplicity at least 3 for θa1,b1,c1. Then the
multiplicity of λ is exactly 3, a1, b1 and c1 are odd integers and λ = 0.
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Proof. Let λ be an eigenvalue of multiplicity at least 3 for θa1,b1,c1, then, by the Interlacing
theorem (Lemma 2.1), λ is an eigenvalue of multiplicity (at least) 2 in all vertex deleted
subgraphs of θa1,b1,c1. Assume that the multiplicity of λ is strictly greater than 3, then λ
is of multiplicity at least 3 in all vertex deleted subgraphs, including the lollipop graphs
and cycles, but by Lemmas 3.6 and 2.3 we have that this is impossible. So in the rest we
assume that λ is of multiplicity exactly 3.

Assume first that a1 > 2 and consider the three lollipops coming from θa1,b1,c1 by
deleting a vertex. It is easy to see that these three lollipops are indeed La1+b1+2,c1−1,
La1+c1+2,b1−1 and Lb1+c1+2,a1−1.

From Lemma 3.6, if Lg,m−1 has an eigenvalue of multiplicity 2 then such an eigenvalue
belongs to Spec(Cg) ∩ Spec(Pm−2), and in particular λ ∈ Spec(Pm−2). If we look to λ as
an eigenvalue of multiplicity 3 in θa1,b1,c1 we get the following condition:

λ ∈ Spec(Pa1−2) ∩ Spec(Pb1−2) ∩ Spec(Pc1−2) (4)

Consider now the vertex deleted subgraph of θa1,b1,c1, i.e. Ta1,b1,c1. By reasoning in
a similar way as above we get that λ is an eigenvalue of multiplicity 2 of Ta1,b1,c1 and,
consequently, λ is an eigenvalue of any vertex deleted subgraph of Ta1,b1,c1, including
Pa1

∪ Pb1 ∪ Pc1. So we get:

λ ∈ Spec(Pa1
) ∪ Spec(Pb1) ∪ Spec(Pc1). (5)

By combining (4) and (5), we get that the only possibility is that a1, b1 and c1 are odd
integers and λ = 0. In fact, if λ ∈ Spec(Pa1

) (if λ ∈ Spec(Pb1) or λ ∈ Spec(Pc1) the proof
is analogous) then λ ∈ Spec(Pa1−2) if and only if a1 is odd and λ = 0, but this implies
that 0 ∈ Spec(Pb1−2) ∩ Spec(Pc1−2) which means that b1 and c1 are odd numbers as well.

Assume now that a1 = 0, then λ cannot be an eigenvalue of multiplicity 2 for Ta1,b1,c1 =
Pb1+c1+1, so we must consider only the cases a1 = 1 and a1 = 2. Suppose first that
a1 = 1. If λ ∈ Spec(Pa1

) then λ = 0 and b1, c1 are odd integers. Otherwise, if λ ∈
Spec(Pb1) ∪ Spec(Pc1), then we can procede as above. Finally, let us consider the case
a1 = 2. By applying (3) at this situation we obtain that Lb1+c1+2,1 cannot have any
eigenvalue λ of multiplicity 2.

Lemma 3.8. If H = θa1,b1,c1 ∪ Cd1
is cospectral with Da,b,0, then d1 = δ.

Proof. Since Cd1
contributes to Spec(H) with eigenvalues of multiplicity 2, we have that

d1 divides δ. Note that if δ 6 5 then d1 = δ (otherwise d1 = 1 or d1 = 2, impossible).
If δ = 6 and d1 = 3, then H = θa1,b1,c1 ∪ C3 has 1 as an eigenvalue of multiplicity
3, with 1 ∈ Spec(θa1,b1,c1), impossible by Lemma 3.7. So let δ > 7, if so any λ ∈
Spec(H) ∩ Spec(Cδ)\{±2} is of multiplicity three and all other eigenvalues of H are
simple. If d1 < δ, then θa1,b1,c1 must have at least two eigenvalues of multiplicity 3. The
latter fact is a contradiction, since from Lemma 3.7 we have that at most one eigenvalue
(i.e. 0) can be of multiplicity 3 in θa1,b1,c1. This means that all eigenvalues of multiplicity
3 in H must be eigenvalues of Cd1

, which implies d1 = δ.
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4 A-spectral characterization of dumbbell graphs

Recall that the prefix A- is omitted in this section. By Lemmas 3.5 and 3.8 and we
have that a tentative (A-)cospectral mate with Da,b,0 reduces to H = Da′,b′,−1 ∪ Cδ or
H = θa1,b1,c1 ∪ Cδ. Furthermore φ(Cδ) divides both φ(Da,b,0) and φ(H), then we can just
compare φ(Da,b,0)/φ(Cδ) with φ(Da′,b′,−1) and φ(θa1,b1,c1). To make such comparisons, we
will follow the idea of Ramezani et al. (see [11]), that is to express the latter mentioned
polynomials through the characteristic polynomials of paths. Let us pose a = δa and
b = δb.

By Lemma 2.2, we obtain

φ(Ca) = φ(Pa) − φ(Pa−2) − 2;

φ(Dδa,δb,0)

φ(Cδ)
= λ

φ(Cδa)

φ(Cδ)
φ(Cδb) −

φ(Cδa)

φ(Cδ)
φ(Pδb−1) −

φ(Cδb)

φ(Cδ)
φ(Pδa−1);

φ(Da′,b′,−1) = φ(Ca′)φ(Cb′) − φ(Pa′−1)φ(Pb′−1);

φ(θa1,b1,c1) = λ2φ(Pa1
)φ(Pb1)φ(Pc1) − 2λ(φ(Pa1−1)φ(Pb1)φ(Pc1) + φ(Pa1

)φ(Pb1−1)φ(Pc1)

+ φ(Pa1
)φ(Pb1)φ(Pc1−1)) + 2(φ(Pa1−1)φ(Pb1−1)φ(Pc1) + φ(Pa1−1)φ(Pb1)φ(Pc1−1)

+ φ(Pa1
)φ(Pb1−1)φ(Pc1−1)) + φ(Pa1−2)φ(Pb1)φ(Pc1) + φ(Pa1

)φ(Pb1−2)φ(Pc1)

+ φ(Pa1
)φ(Pb1)φ(Pc1−2) − 2(φ(Pa1

) + φ(Pb1) + φ(Pc1)).

From φ(Pm) = λφ(Pm−1)− φ(Pm−2), we get, by solving the latter recurrence equation
(see [11]), that for m > −2,

φ(Pm) =
x2m+2 − 1

xm+2 − xm
,

where x satisfies x2 −λx + 1 = 0. So we can express the above characteristic polynomials
in terms of x. Note also that n(θa1,b1,c1) = n(Da,b,0)−n(Cδ) = n(Da′,b′,−1) = a+ b+1− δ.
After some computations, we have (we used Derive to make such computations):

φ(Ca) = xa + x−a − 2

D1(a, b, 0; x) = (x2 − 1)3xm+2 φ(Da,b,0)

φ(Cδ)
, (6)

where m = a + b − 1 − δ and

D1(a, b, 0; x) = (x2 − 1)2(xδa − 1)(xδb − 1)[(xδa(xδb(x4 − 2x2 − 1) − x4 + 1) + xδb(1 − x4)

+ x4 + 2x2 − 1)](xδ − 1)−2.
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Note that,

xδt − 1

xδ − 1
=

t−1
∑

i=0

xiδ

Then, if a = 1 (so δ = δa = a and b = δb = ka, for some integer k), D1(a, ka, 0; x)
becomes

(x2 − 1)2[

k−1
∑

i=0

xia][xa(xka(x4 − 2x2 − 1) − x4 + 1) + xka(1 − x4) + x4 + 2x2 − 1], (7)

specially if k = 1 (so b = a) (7) reduces to

x2(a+4) −4x2(a+3) +4x2(a+2) −x2a −2xa+8 +4xa+6 −4xa+2 +2xa +x8 −4x4 +4x2 −1; (8)

otherwise if a > 1 (so δ < a) we have that D1(δa, δb, 0; x) becomes

(x2 −1)2[

a−1
∑

i=0

xiδ][

b−1
∑

i=0

xiδ][xδa(xδb(x4 −2x2 −1)−x4 +1)+xδb(1−x4)+x4 +2x2 −1)] (9)

D2(a
′, b′,−1; x) = (x2 − 1)3xm+2φ(Da′,b′,−1), (10)

where m = a′ + b′ − 2 = a + b − 1 − δ and

D2(a
′, b′,−1; x) = x2(a′+b′)+6(x2 − 2)2 − x2a′+2b′ − 2x2a′+b′+6 + 6x2a′+b′+4 − 6x2a′+b′+2

+ 2x2a′+b′ + x2(a′+3) − 2x2(a′+2) + 2x2(a′+1) − x2a′ − 2xa′+2b′+6

+ 6xa′+2b′+4 − 6xa′+2b′+2 + 2xa′+2b′ + 4xa′+b′+6 − 12xa′+b′+4 + 12xa′+b′+2

− 4xa′+b′ − 2xa′+6 + 6xa′+4 − 6xa′+2 + x2(b′+3) − 2x2(b′+2) + 2x2(b′+1)

− x2b′ − 2xb′+6 + 6xb′+4 − 6xb′+2 + 2xa′

+ 2xb′ + x6 − 4x4 + 4x2 − 1.

T (a1, b1, c1; x) = (x2 − 1)3xm+2φ(θa1,b1,c1), (11)

where m = a1 + b1 + c1 = a + b − 1 − δ and

T (a1, b1, c1; x) = x2(a1+b1+c1)+6(x2 − 2)2 − 4xa1+b1+4 − 4xa1+c1+4 − 4xb1+c1+4 + 2xa1+b1+6

+ 2xa1+c1+6 + 2xb1+c1+6 − x2a1+2b1+4 − x2a1+2c1+4 − x2b1+2c1+4

+ 4x2a1+b1+c1+6 + 4xa1+2b1+c1+6 + 4xa1+b1+2c1+6 − 2x2a1+b1+c1+4

− 2xa1+2b1+c1+4 − 2xa1+b1+2c1+4 − 2x2a1+b1+c1+8 − 2xa1+2b1+c1+8

− 2xa1+b1+2c1+8 + x2a1+6 + x2b1+6 + x2c1+6 + 2xa1+b1+2 + 2xa1+c1+2

+ 2xb1+c1+2 − 4x4 + 4x2 − 1.
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If Da,b,0 is cospectral with Da′,b′,−1 ∪Cδ or θa1,b1,c1 ∪Cδ, then the polynomials (6) and
(10) or (6) and (11) must be the same, respectively. Next, we compare the monomials with
lowest exponent of the above polynomials. Unfortunately in some particular cases, from
the lowest exponent monomial we cannot distinguish whether the graphs are cospectral or
not, so we will compare the rest of the polynomial. Note that −(1−4x2 +4x4) is common
to all of them, so we will not consider the latter polynomial during the comparisons.

If we look to the lowest exponent monomial (other than −4x4 + 4x2 − 1) of the above
polynomials, we get for D1(a, b, 0; x):

• (δ < a) the monomial with minimum exponent is either −2xδ if 3 6 δ < 8, or −x8

if δ = 8, or x8 if δ > 8;

• (δ = a and k = 1) the monomial with minimum exponent is either 2xa if 3 6 a < 8,
or 3x8 if a = 8, or x8 if a > 8;

• (δ = a and k > 2) the monomial with minimum exponent is either 2xa+2 if
3 6 a < 6, or 3x8 if a = 6, or x8 if a > 6.

For D2(a
′, b′,−1; x), the monomial with minimum exponent can be deduced from x6 +

2xa′

+ 2xb′ . Then we have that it is either x6 if a′ > 6, or 3x6 if a′ = 6 < b′, or 5x6 if
a′ = b′ = 6, or 2xa′

if b′ 6= a′ 6 5, or 4xa′

if a′ = b′ 6 5.

For T (a1, b1, c1; x), we can deduce, similarly to above, the monomial with minimum ex-
ponent from x2a1+6 + x2b1+6 + x2c1+6 + 2xa1+b1+2 + 2xa1+c1+2 + 2xb1+c1+2.

Lemma 4.1. Da,b,0 is not cospectral with H = Da′,b′,−1 ∪ Cδ.

Proof. We will consider three cases depending on δ and k. Recall that a′ 6 b′ and
a′ + b′ + δ = a + b + 1.

Case 1: δ < a

It is easy to see that if 3 6 δ 6 8, then the lowest exponent monomial for D1(a, b, 0; x)
has a negative coefficient, while the lowest exponent monomial for D2(a

′, b′,−1; x) (which
comes from x6 + 2xa′

+ 2xb′) has a positive coefficient. If δ > 8, then x8 is the lowest
exponent monomial for D1(a, b, 0; x), while for D2(a

′, b′ − 1; x) it is rxt with t 6 6.

Case 2: δ = a and k = 1

It is easy to observe that for a > 7 the two polynomials are different, indeed in
D1(a, a, 0) we have that the minimum exponent is greater than or equal to 7, while in
D2(a

′, b′,−1) the minimum exponent is less than or equal to 6. If a = 6, then the
coefficient related to x6 in D1(a, a, 0) is 2, while in D2(a

′, b′,−1) the coefficient related to
x6 is either 1, or 3 or 5. If 3 6 a 6 5, then a′ = a < b′. Since a′ + b′ = a + 1, we obtain
that b′ = 1, impossible.

Case 3: δ = a and k > 2

The lowest exponent monomial for D1(a, ka, 0; x) is either x8 (when a > 6) or 3x8

(when a = 6) or 2xa+2 (when a < 6), while for D2(a
′, b′,−1; x) the lowest exponent

monomial is either x6 (for a′ > 6) or rxa′

(for a′ 6 6), with r = 2, 3, 4, 5.
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If a > 5, clearly the two polynomials are different and this implies that Da,ka,0 can not
be cospectral with Da′,b′,−1 ∪ Ca.

Assume a = 4, then the lowest exponent monomial for D1(4, 4k, 0; x) is 2x6, but for
D2(a

′, b′,−1; x) we have either x6 (when a′ > 6) or 3x6 (when a′ = 6 < b′) or 5x6 (when
a′ = b′ = 6), a contradiction.

Finally assume a = 3, then the lowest exponent monomial for D1(3, 3k, 0; x) is 2x5.
Then it must be a′ = 5 and a′ < b′. Consequently from a′ + b′ = 5 + b′ = 3k + 1 we
have b′ = 3k − 4 (so k > 4, otherwise b′ 6 a′). If so, by comparing D1(3, 3k, 0) and
D2(5, 3k − 4,−1; x), we have that the two polynomials are different for any k > 4.

This completes the proof.

Now we will compare the lower exponent monomials of D1(a, b, 0; x) and T (a1, b1, c1; x).
In Lemma 4.2 we will consider that δ < a, while in Lemma 4.3 we will consider that δ = a
and, consequently, b = ka for some k.

Lemma 4.2. For δ < a, Da,b,0 is not cospectral with H = θa1,b1,c1 ∪ Cδ.

Proof. If 3 6 δ 6 8, then the lowest exponent monomial in D1(a, b, 0; x) has a negative
coefficient, while in T (a1, b1, c1; x) it has a positive coefficient.

If δ > 8 then the lowest exponent monomial in D1(a, b, 0; x) is x8, then in T (a1, b1, c1; x)
it must be x2a1+6 with a1 = 1 < b1. If we look to the second lowest exponent monomial in
D1(a, b, 0; x), i.e. −2xδ, we have that it has a negative coefficient while in T (a1, b1, c1; x)
it is positive.

Lemma 4.3. Let k > 1 be an integer. Then

i) for k = 1 or k = 2, Da,ka,0 is determined by the spectrum;

ii) for k > 3, if Da,ka,0 is cospectral with H = θa1,b1,c1 ∪Ca then a1 = 1, b1 = a− 1 and
c1 = (k − 1)a − 1.

Proof. The proof is based on two cases according to k. Recall that a1 6 b1 6 c1 and
a1 + b1 + c1 = ka − 1.

Case 1: k = 1

If a > 8, then x8 is the lowest exponent monomial in D1(a, a, 0). The lowest exponent
monomial of T (a1, b1, c1; x) must be x2a1+6. So we have a1 = 1 and b1 > a1. If we look to
the second lowest exponent monomial we have for D1(a, a, 0; x) that it is 2xa. If we assume
that 2b1 + 6 = 2c1 + 6 = a we get that a1 + b1 + c1 = a− 5 6= a− 1, a contradiction. So it
must be a1 + b1 + 2 = a, and b1 = a − 3. The latter is a contradiction since c1 = 1 < b1.

If a = 8, then 3x8 is the lowest exponent monomial in D1(a, a, 0). It is easy to
check that 2a1 + 6 = 2b1 + 6 = 2c1 + 6 = 8 leads to a contradiction. So it must be
2a1 + 6 = a1 + b1 + 2 = 8, which implies a1 = 1 and b1 = 5, then c1 = 1, a contradiction.

Considering (8), if a = 7, from a1 + b1 +2 = 7, 2a1 +6 = 8, a1 + b1 + c1 = 6, we obtain
a1 = 1, b1 = 4 and c1 = 1, that is a contradiction.
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Consider a = 6, then the lowest exponent monomial in D1(a, a, 0) is 2x6. So we have
that either 2a1 + 6 = 2b1 + 6 = 6 or a1 + b1 + 2 = 6 with c1 > b1. From the former
we get a1 = b1 = 0, impossible (it is a multigraph), from the latter, by considering that
a1 + b1 + c1 = 5, we get a contradiction. The cases a = 3, 4, 5 can be done similarly.

Case 2: k > 2

Take a > 6. Then the lowest exponent monomial for D1(a, ka, 0; x) is x8. The lowest
exponent monomial of T (a1, b1, c1; x) must be x2a1+6. So we have a1 = 1 and b1 > a1.
If we look to the second lowest exponent monomial we have for D1(a, ka, 0; x) that it is
2xa+2. Suppose first that 2b1 + 6 = 2c1 + 6 = a + 2, since a1 + b1 + c1 = ka − 1, we get
(k − 1)a = −2, impossible. So the unique possibility is that a + 2 = a1 + b1 + 2 and it
must be b1 = a− 1 and c1 > b1. Since a1 + b1 + c1 = ka− 1, a1 = 1 and b1 = a− 1, we get
c1 = (k − 1)a − 1. Clearly we have that k 6= 2 (otherwise c1 = b1 and the second lowest
exponent monomial is different from 2xa+2).

Take a = 6. Then the lowest exponent monomial for D1(6, 6k, 0; x) is 3x8. Similarly
to above we get that a1 = 1, b1 = 5 = a − 1 and c1 > b1. So again it is c1 = (k − 1)a − 1,
with k 6= 2.

Take a = 5. Then the lowest exponent monomial for D1(5, 5k, 0; x) is 2x7. Similarly
to above we get that it must be a1 + b1 + 2 = 7, c1 > b1. The second lowest exponent
monomial for D1(5, 5k, 0; x) is x8 so it must be a1 = 1 and b1 > a1. So we again get
b1 = 4 = a − 1 and c1 = (k − 1)5 − 1 = (k − 1)a − 1, with k 6= 2.

Take a = 4. Then the lowest exponent monomial for D1(4, 4k, 0; x) is 2x6. Suppose
that 2a1 + 6 = 2b1 + 6 = 6, then we get a1 = b1 = 0, impossible (it is a multigraph).
So it must be a1 + b1 + 2 = 6 and b1 < c1. If k = 2, then c1 = 3 > b1 and the unique
possibility is that H = θ2,2,3 ∪ C4, but this graph is not cospectral with D4,8,0. So k 6= 2.
If k > 3, then the second lowest exponent monomial is −3x8. From the latter we have
that the unique possibility (note the coefficient is odd) is that 2a1 + 6 = a1 + b1 + 4 = 8,
and consequently a1 = 1, b1 = 3 = a − 1 and c1 = (k − 1)4 − 1 = (k − 1)a − 1.

Finally take a = 3. Then the lowest exponent monomial for D1(3, 3k, 0; x) is 2x5. The
unique possibility is that a1 + b1 + 2 = 5, so a1 + b1 = 3. If k = 2, then c1 = 2 > b1,
impossible. So k 6= 2. If k > 3, the second lowest exponent monomial is −4x7 which
comes from −4xa1+b1+4 (cf. Formula (11)). The third lowest exponent monomial is 3x8.
Similarly to above we get that 2a1 + 6 = 8 (in order to get an odd coefficient) and the
unique possibility is a1 = 1, b1 = 2 and c1 = 3(k − 1) − 1.

The following lemma establishes which are the unique graphs for a 6= 4 cospectral
with Da,ka,0 (note, the result holds also for a = 4). See also Fig 2.

Lemma 4.4. The graph Da,ka,0 (k > 3) is cospectral with H = θ1,a−1,(k−1)a ∪ Ca if and
only if k = 3.

Proof. We will directly compare their characteristic polynomials through the Schwenk’s
formulas.

φ(Da,ka,0) = φ(Ca)φ(Cka) − φ(Ca)φ(Pka−1) − φ(Cka)φ(Pa−1);

φ(Ca) · φ(θ1,a−1,(k−1)a−1) = φ(Ca)[λφ(Cka) − 2φ(Pka−1) − 2φ(P(k−1)a−1) − 2φ(Pa−1)]
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If we substitute λ =
x2 + 1

x
, φ(Pm, λ) =

x2m+2 − 1

xm+2 − xm
and φ(Cm) = xm + x−m − 2, and

by equating the above polynomials we get that:

xa(x2k+1 − x2k − xk+4 + xk+3 − xk+1 + xk + x4 − x3) = 0 (12)

If Da,ka,0 and H = θ1,a−1,(k−1)a ∪ Ca are cospectral then the above polynomial must
reduce to the zero polynomial. It is easy to check that (12) is zero for any x if and only
if k = 3. This completes the proof.

By collecting the above results we finally get our main result:

Theorem 4.5. The dumbbell graph Da,b,0 (without cycle C4) with δ = gcd(a, b) > 3 and
δ 6= a is DAS. For δ = a (then b = ka), the graph Da,ka,0 (a 6= 4) is DAS if and only if
k 6= 3. For k = 3, the graph Da,3a,0 (a 6= 4) is A-cospectral only with θ1,a−1,2a−1 ∪ Ca.
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Fig. 2: The A-cospectral graphs described in Lemma 4.4.

By combining the above result and the main result from [12], we obtain:

Theorem 4.6. All dumbbell graphs Da,b,c, without cycle C4, different from Da,3a,0 are
determined by the spectrum of the adjacency matrix.

Remark 2. In [12] we proved that most dumbbell graphs are DAS, but it was left to
consider dumbbell graphs Da,b,0 with 3 6 gcd(a, b) 6 a and Da,b,c with a or b equal to 4.
There is a question: are all dumbbell graphs DAS? Now we have from Theorem 4.5 that
the answer is negative. However it remains to consider the case when Da,b,c contains cycle
C4, i.e. a or b are equal to 4. Note that D4,12,0 is A-cospectral with θ1,3,7 ∪ C4 but the
latter graph could possibly be not the unique A-cospectral graph with D4,12,0.

Remark 3. In [9] the authors proved that all dumbbell graphs not containing cycle C4

are DAS, clearly their result is not correct since in this paper we detected an exception for
Da,3a,0. Furthermore the authors of [9] proved that all ∞-graphs (denoted in their paper
by b(r, s)) not containing C4 are DAS, but we got an exception for b(2r, 2r +2) (cf. Proof
of Lemma 6.12 in [13]).
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5 Q-spectral characterization of dumbbell graphs

In [13] we showed that from the A-spectral characterization of a graph, we can deduce
its Q-spectral characterization. Since in our papers we got that, for a > 6 all dumbbell
graphs Da,b,c with c 6= 0 or c = 0 and b 6= 3a, are DAS, then we are able to easily extend
such results to the Q-theory of graph spectra.

The following results can be found in [13] (cf. also [3, 4]). However in order to make
this paper self-contained we report them here. Recall, we will say that two graphs G and
H are A-cospectral if and only if their A-spectra are the same. Similarly, G and H are Q-
cospectral if and only if their Q-spectra are the same. A graph G that is determined by the
adjacency (signless Laplacian) spectrum will said to be a DAS (resp. DQS) graph. ϕ(G)
denotes the Q-characteristic polynomial of G, while φ(G) denotes the A-characteristic
polynomial of A(G). Finally if G is a graph, then S(G) denotes the subdivision graph of
G, obtained from G by inserting a vertex of degree 2 in each edge of G.

The following lemma can be found in many references, see [3, 14] for example.

Lemma 5.1. Let G be a graph of order n and size m, and S(G) be the subdivision graph
of G. Then

φ(S(G), λ) = λm−nϕ(G, λ2).

Theorem 5.2. Let G be a graph of order n and size m, and S(G) be the subdivision graph
of G.

(i) Graphs G and H are Q-cospectral if and only if S(G) and S(H) are A-cospectral;

(ii) Let G be a graph and S(G) a DAS-graph. Then G is a DQS-graph;

(iii) Let G be a DQS-graph. If any graph A-cospectral with S(G) is a subdividion of some
graph, then S(G) is a DAS-graph.

Proof. (i) Since G and H are Q-cospectral, then ϕ(G, λ) = ϕ(H, λ). By Lemma 2.4, G
and H have the same order and size, which implies that m(G) − n(G) = m(H) − n(H).
Thus,

λm(G)−n(G)ϕ(G, λ2) = λm(H)−n(H)ϕ(H, λ2),

which shows by Lemma 5.1 that φ(S(G), λ) = φ(S(H), λ). This ends the necessity.

Conversely, assume that S(G) and S(H) are A-cospectral, then

φ(S(G), λ) = φ(S(H), λ), n(S(G)) = n(S(H)), m(S(G)) = m(S(H)).

Note that for any graph G we have

m(S(G)) = 2m(G), n(S(G)) = m(G) + n(G).

Hence, from n(S(G)) = n(S(H)) and m(S(G)) = m(S(H)), we obtain that m(G) = m(H)
and n(G) = n(H). So we get that

(
√

λ)n(G)−m(G)φ(S(G),
√

λ) = (
√

λ)n(H)−m(H)φ(S(G),
√

λ),

the electronic journal of combinatorics 17 (2010), #R42 14



which shows from Lemma 5.1 that ϕ(G, λ) = ϕ(H, λ).

(ii) Set ϕ(H, λ) = ϕ(G, λ). Then by (i) we get φ(S(H), λ) = φ(S(G), λ). Since S(G)
is a DAS-graph, then S(H) ∼= S(G) which shows that H ∼= G.

(iii) Without loss of generality, let H and H ′ be two graphs such that H = S(H ′)
and φ(H, λ) = φ(S(H ′), λ) = φ(S(G), λ), which implies from (i) that ϕ(H ′, λ) = ϕ(G, λ).
Since G is a DQS-graph, then H ′ ∼= G, and so H = S(H ′) ∼= S(G) which shows that S(G)
is a DAS-graph.

Since the subdivision of a dumbbell graph Da,b,c is the dumbbell graph D2a,2b,2(c+1),
by combining Theorems 4.6 and 5.2, we are able to state the following theorem:

Theorem 5.3. All dumbbell graphs Da,b,c different from Da,3a,−1, are determined by the
spectrum of the signless Laplacian matrix. The graph Da,3a,−1 is Q-cospectral only with
θ0,a−1,2a−1 ∪ Ca.

Proof. Any dumbbell graph Da,b,c with c > 0 is surely DQS. Indeed S(Da,b,c) = D2a,2b,2(c+1)

and from a > 3 and c > 0 we have that, by Theorem 4.6, D2a,2b,2(c+1) is DAS. Hence by
Theorem 5.2, Da,b,c (c 6= −1) is determined by the signless Laplacian spectrum.

Take c = −1, then S(Da,b,−1) = D2a,2b,0. By Theorem 4.6 we have that if 2b 6= 3(2a),
hence b 6= 3a, then, similarly to above, we get that also Da,b,−1 is DQS. Finally, if c = −1
and b = 3a, then φ(S(Da,3a,−1)) = φ(D2a,6a,0) = φ(θ1,2a−1,4a−1)φ(C2a) = φ(S(θ0,a−1,2a−1 ∪
Ca). The latter implies ϕ(Da,3a,−1) = ϕ(θ0,a−1,2a−1 ∪ Ca) (cf. Fig. 3).

This completes the proof.
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Fig. 3: A pair of non-isomorphic Q-cospectral graphs.

Remark 4. Similarly to above, since the subdivision of a θ-graph is still a θ-graph but
without cycle C4, we have from the main result of [11] that all θ-graphs are DQS-graphs.
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