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Abstract

A cyclic polytope of dimension d with n vertices is a convex polytope combinato-
rially equivalent to the convex hull of n distinct points on a moment curve in R

d. In
this paper, we prove the cyclic sieving phenomenon, introduced by Reiner-Stanton-
White, for faces of an even-dimensional cyclic polytope, under a group action that
cyclically translates the vertices. For odd-dimensional cyclic polytopes, we enumer-
ate the faces that are invariant under an automorphism that reverses the order of
the vertices and an automorphism that interchanges the two end vertices, accord-
ing to the order on the curve. In particular, for n = d + 2, we give instances of
the phenomenon under the groups that cyclically translate the odd-positioned and
even-positioned vertices, respectively.
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1 Introduction

In [8], Reiner-Stanton-White introduced the following enumerative phenomenon for a set
of combinatorial structures under an action of a cyclic group.

Let X be a finite set, X(q) a polynomial in Z[q] with the property X(1) = |X|, and
C a finite cyclic group acting on X. The triple (X, X(q), C) is said to exhibit the cyclic
sieving phenomenon (CSP) if for every c ∈ C,

[X(q)]q=ω = |{x ∈ X : c(x) = x}|, (1)

where ω is a root of unity of the same multiplicative order as c. Such a polynomial X(q)
implicitly carries the information about the orbit-structure of X under C-action. Namely,
if X(q) is expanded as X(q) ≡ a0 + a1q + · · · + an−1q

n−1 (mod qn − 1), where n is the
order of C, then ak counts the number of orbits whose stabilizer-order divides k. See
[8, Theorem 7.1] for an instance of CSP on dissections of regular polygons and [1] on
generalized cluster complexes.

Consider the moment curve γ : R → R
d defined parametrically by γ(t) = (t, t2, . . . , td).

For any n real numbers t1 < t2 < · · · < tn, let

P = conv{γ(t1), γ(t2), . . . , γ(tn)}

be the convex hull of the n distinct points γ(ti) on γ. Such a polytope is called a cyclic
polytope of dimension d. It is known that the points γ(ti) are the vertices of P and the
combinatorial equivalence class (with isomorphic face lattices) of polytopes with P does
not depend on the specific choice of the parameters ti (see [9]).

Let CP(n, d) denote a d-dimensional cyclic polytope with n vertices. Among the d-
dimensional polytopes with n vertices, the cyclic polytope CP(n, d) is the one with the
greatest number of k-faces for all 0 6 k 6 d − 1 (by McMullen’s upper bound, see [9,
Theorem 8.23]). Let fk(CP(n, d)) be the number of k-faces of CP(n, d). These numbers
were first determined by Motzkin [5] but no proofs were given. For a proof using the
Dehn-Sommerville equations, see [3, Section 9.6]. A combinatorial proof was given by
Shephard [7].

Theorem 1.1. ([7, Corollary 2]) For 1 6 k 6 d, the number fk−1(CP(n, d)) of (k−1)-faces
of CP(n, d) is given by

fk−1(CP(n, d)) =






d

2∑

j=1

n

n − j

(
n − j

j

)(
j

k − j

)
if d is even

d+1

2∑

j=1

k + 1

j

(
n − j

j − 1

)(
j

k + 1 − j

)
if d is odd,

with the usual convention that
(

n

m

)
= 0 if n < m or m < 0.
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Since these formulas are essential ingredient in this paper, we shall include a (short-
ened) proof for completeness, making use of Shephard’s method. In fact, Shephard [7]
gave a simple characterization for the faces of CP(n, d), which generalizes Gale’s even-
ness condition [2] that determines the facets of CP(n, d). The characterization will be
described in the next section (Theorem 2.1). Moreover, Kaibel and Waßmer [4] derived
the automorphism group of CP(n, d).

Theorem 1.2. ([4]) The combinatorial automorphism group of CP(n, d) is isomorphic to
one of the following groups:

n = d + 1 n = d + 2 n > d + 3
d even Sn Sn

2
wr Z2 Dn

d odd Sn S⌈n

2
⌉ × S⌊n

2
⌋ Z2 × Z2

where Sn is the symmetric group of order n and Dn is the dihedral group of order n.

For the detail of wreath product Sn

2
wr Z2, we refer the readers to [4]. Consider the

cyclic group C = Zn, generated by c = (1, 2 . . . , n), acting on CP(n, d) by cyclic translation
of the vertices, according to the order on the curve γ. By Theorem 1.2 (or Gale’s evenness
condition), it turns out that the cyclic group C is an automorphism subgroup of CP(n, d)
if and only if either n = d + 1 or d is even. One of the main results in this paper is to
prove the CSP for faces of CP(n, d) for even d, under C-action. Along with a natural
q-analogue of face number, we are able to state this result. Here we use the notation

[
n

i

]

q

:=
[n]!q

[i]!q[n − i]!q
,

where [n]!q = [1]q[2]q · · · [n]q and [i]q = 1 + q + · · · + qi−1. For even d and 1 6 k 6 d, we
define

F (n, d, k; q) =

d

2∑

j=1

[n]q
[n − j]q

[
n − j

j

]

q

[
j

k − j

]

q

, (2)

with the usual convention that
[

n

m

]
q

= 0 if n < m or m < 0. Clearly, F (n, d, k; 1) =

fk−1(CP(n, d)).

Theorem 1.3. For even d and 1 6 k 6 d, let X be the set of (k − 1)-faces of CP(n, d),
let X(q) = F (n, d, k; q) be the polynomial defined in Eq. (2), and let C = Zn act on X by
cyclic translation of the vertices. Then the triple (X, X(q), C) exhibits the cyclic sieving
phenomenon.

For odd d, the cyclic group C is not an automorphism subgroup of CP(n, d) if n >

d + 2. Inspired by [4], we consider the automorphism subgroup C ′ (resp. C ′′) of order
2, generated by c′ = (1, n)(2, n − 1) · · · (resp. c′′ = (1, n)), which acts on CP(n, d) by
reversing the order of vertices (resp. by interchanging the first and the last vertices),
according to the order on γ. In an attempt on proving the CSP, we derive the numbers of
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k-faces of CP(n, d) that are invariant under C ′ and C ′′, respectively, which are expressible
in terms of the formulas in Theorem 1.1. However, so far it lacks a feasible option for
the q-polynomial X(q). We are interested in a q-polynomial that is reasonably neat and
serves the purpose of CSP, and we leave it as an open question. For n = d + 2, from
the automorphism group S⌈n

2
⌉×S⌊n

2
⌋ of CP(n, d), we present two instances of CSP, under

the group Z⌈n

2
⌉ (resp. Z⌊n

2
⌋) that cyclically translates the odd-positioned (resp. even-

positioned) vertices, along with feasible q-polynomials.
This paper is organized as follows. We review Shephard’s criterion and Gale’s evenness

condition for cyclic polytopes CP(n, d) in Section 2. For even d, we prove the CSP for
faces of CP(n, d) in Section 3. For odd d, we enumerate the faces of CP(n, d) that are
invariant under C ′ and C ′′ in Section 4 and Section 5, respectively. The special case
n = d + 2 is discussed in Section 6. A remark regarding the CSP on CP(n, d) for odd d is
given in Section 7.

2 Preliminaries

In this section, we shall review Shephard’s characterization for faces of CP(n, d) and Gale’s
evenness condition for facets. Based on these results, we include a proof of Theorem 1.1
for completeness.

2.1 A characterization for faces

For convenience, let [n] := {1, 2 . . . , n} be the set of vertices of CP(n, d), numbered ac-
cording to the order on the curve γ. For a nonempty subset U ⊆ [n], we associate U

with an (1 × n)-array having a star ‘*’ at the ith entry if i ∈ U and a dot ‘.’ otherwise.
In such an array, every maximal segment of consecutive stars is called a block. A block
containing the star at entry 1 or n is a border block, and the other ones are inner blocks.
For example, the array associated with the face U = {1, 3, 4, 7, 8, 9} of CP(9, 7) is shown
in Figure 1, with an inner block {3, 4} and border blocks {1} and {7, 8, 9}. A block will
be called even or odd according to the parity of its size.

123456789

*.**..***

Figure 1: The array associated with the face U = {1, 3, 4, 7, 8, 9} of CP(9, 7).

The following criterion for determining the faces of CP(n, d) was given by Shephard
[7].

Theorem 2.1. For 1 6 k 6 d, a subset U ⊆ [n] is the set of vertices of a (k − 1)-face of
CP(n, d) if and only if |U |=k and its associated array contains at most d − k odd inner
blocks.
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Note that the case k = d in Theorem 2.1 is Gale’s evenness condition for determining
the facets of CP(n, d). From this condition, it follows that the cyclic group C = Zn is an
automorphism subgroup of CP(n, d) only if n = d + 1 or d is even. Under C-action, the
face-orbit containing U can be obtained from the associated array simply by shifting the
elements cyclically. For example, take (n, d, k) = (8, 4, 4). As shown in Figure 2, there
are twenty facets in CP(8, 4). These facets are partitioned into three orbits, two of which
are free orbits and the other one has a stabilizer of order 2. By Theorem 1.3, note that
X(q) ≡ 3 + 2q + 3q2 + 2q3 + 3q4 + 2q5 + 3q6 + 2q7 (mod q8 − 1).

12345678 12345678 12345678

****.... **.**... **..**..

.****... .**.**.. .**..**.

..****.. ..**.**. ..**..**

...****. ...**.** *..**..*

....**** *...**.*

*....*** **...**.

**....** .**...**

***....* *.**...*

Figure 2: The orbits for the facets of CP(8, 4) under Z8-action.

2.2 The enumeration of faces

Let A(n, k, s) be the set of (1×n)-arrays with k stars and s odd inner blocks. By Theorem
2.1, we have

fk−1(CP(n, d)) =

d−k∑

s=0

|A(n, k, s)|. (3)

For enumerative purpose, each array is oriented to form an n-cycle, in numerical order
clockwise. The n-cycles can be viewed as graphs with vertex set [n] colored in black and
white such that a vertex is black (resp. white) if the corresponding element is a star (resp.
dot). Note that the border blocks of an array become consecutive in the cycle, so by a
block of a cycle we mean a maximal sector of black vertices that corresponds to an inner
block or the union of the border blocks of the array.

Let B(n, k, s) be the set of such n-cycles with k black vertices and s odd blocks, where
s and k have the same parity necessarily. Note that each cycle β ∈ B(n, k, s) associates
with a unique array α by cutting the edge between vertices 1 and n. It follows from s ≡ k

(mod 2) that
|B(n, k, s)| = |A(n, k, s)| + |A(n, k, s − 1)|. (4)

Note that if α ∈ A(n, k, s − 1) then the union of the border blocks of α is of odd size. In
this case, β has one more odd block than α.
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Proposition 2.2. For 1 6 k < n and 0 6 s 6 k, we have

(i) |B(n, 2i, 0)| =
n

n − i

(
n − i

i

)
, for 1 6 i < n

2
.

(ii) |B(n, k, s)| =
n

n − j

(
n − j

j

)(
j

s

)
, where j = k+s

2
.

Proof. (i) For each β ∈ B(n, 2i, 0), we partition the 2i black vertices of β into i adjacent
pairs. Each of these pairs is connected by a blue edge and the other n − i edges of β are
colored red. We count the number of ordered pairs (β, e) such that e is an edge of β and
β − e is a path of length n − 1 with no odd blocks, where β − e is obtained from β by
cutting e.

For each β ∈ B(n, 2i, 0), the edge e can be any one of the n−i red edges. On the other
hand, given a path π of length n−1 with i adjacent pairs p1, . . . , pi of black vertices, let yj

be the number of white vertices between pj−1 and pj , for 2 6 j 6 i, and let y1 (resp. yi+1)
be the number of white vertices before p1 (resp. after pi). Then the possibilities of π is
the number of nonnegative solutions of the equation y1+ · · ·+yi+1 = n−2i, which is given
by

(
n−i

i

)
. Moreover, there are n ways to label the vertices of π cyclically by [n]. After

adding an edge e that connects both ends, we turn π into an n-cycle π + e ∈ B(n, 2i, 0).
Hence

|B(n, 2i, 0)| · (n − i) = n ·

(
n − i

i

)
.

The assertion (i) follows.
Given a β ∈ B(n, k, s), each block of β is followed by a unique immediate white vertex,

called successor, in numerical order. We enumerate the ordered pairs (β, S) such that the
set S consists of the successors of the s odd blocks of β. Coloring in black the vertices in
S leads to a cycle in B(n, k + s, 0). On the other hand, for any β ′ ∈ B(n, k + s, 0), there
are k+s

2
pairs of adjacent black vertices. Let S be the set consisting of the second vertex

in any s of these pairs. Coloring in white the vertices in S recovers a cycle in B(n, k, s).
Hence we have

|B(n, k, s)| =

(
k+s
2

s

)
|B(n, k + s, 0)|.

The assertion (ii) follows from (i).

Now, we are able to prove Theorem 1.1.

Proof of Theorem 1.1. For even d and 1 6 k 6 d, it follows from Eq. (3), (4) and
Proposition 2.2(ii) that the number of (k − 1)-faces is

d−k∑

s=0

|A(n, k, s)| =

d−k∑

s=0
s≡k(mod2)

|B(n, k, s)| =

d

2∑

j=1

n

n − j

(
n − j

j

)(
j

k − j

)
,

as required. (Note that the terms corresponding to 1 6 j < ⌈k
2
⌉ in the summation are

zero.)
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For odd d and 1 6 k 6 d, each array α that corresponds to a face in CP(n, d) is oriented
to form an (n+1)-cycle β by adding a black vertex, labeled by n+1, between vertices 1 and
n. We observe that β ∈ B(n+1, k+1, s) if and only if α ∈ A(n, k, s−1)∪A(n, k, s), where
s ≡ k+1 (mod 2). We count the number of ordered pairs (β, e), where β ∈ B(n+1, k+1, s)
and e is an edge of β such that β − e is a path of length n with a black vertex at the end.

Given a β ∈ B(n + 1, k + 1, s), the edge e can be any one of the k + 1 edges in β the
second vertex of which is black. On the other hand, for any π ∈ A(n, k, s−1)∪A(n, k, s),
we add a black vertex at the end of π and label these vertices cyclically by [n + 1]. After
adding an edge that connects both ends, we turn the new path into an (n + 1)-cycle in
B(n + 1, k + 1, s). Hence

|B(n + 1, k + 1, s)| · (k + 1) = (|A(n, k, s − 1)| + |A(n, k, s)|) · (n + 1).

By Proposition 2.2(ii), the number of (k − 1)-faces is

d−k∑

s=0

|A(n, k, s)| =

d−k∑

s=0
s≡k+1(mod2)

k + 1

n + 1
· |B(n + 1, k + 1, s)| =

d+1

2∑

j=1

k + 1

j

(
n − j

j − 1

)(
j

k + 1 − j

)
.

This completes the proof of Theorem 1.1.

3 The CSP for faces of CP(n, d) for even d

In this section, we shall prove Theorem 1.3 by verifying the condition (1) mentioned in the
introduction. The following q-Lucas theorem is helpful in evaluating X(q) at primitive
roots of unity (see [6, Theorem 2.2]).

Lemma 3.1. (q-Lucas Theorem) Let ω be a primitive rth root of unity. If n = ar + b

and k = cr + d, where 0 6 b, d 6 r − 1, then
[
n

k

]

q=ω

=

(
a

c

)[
b

d

]

q=ω

.

Proof of Theorem 1.3. For r > 2 a divisor of n, let ω be a primitive rth root of unity and
let Cr be the subgroup of order r of C. Let d = 2t. First, we claim that

[F (n, 2t, k; q)]q=ω =






⌊ t

r
⌋∑

i=1

n

n − ir

(
n
r
− i

i

)(
i

k
r
− i

)
if r|k

0 otherwise.

(5)

Since r|n, it is straightforward to prove that

lim
q→ω

[n]q
[n − j]q

=

{
n

n−j
if r|j

0 otherwise.
(6)
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By q-Lucas Theorem, for r|n and r|j, we have

[
n − j

j

]

q=ω

=

(n−j

r
j

r

)
and

[
j

k − j

]

q=ω

=






( j

r
k−j

r

)
if r|k

0 otherwise.

(7)

Then evaluate Eq. (2) at q = ω and take Eq. (6), (7) into account. This proves Eq. (5).
Next, we enumerate the (k − 1)-faces of CP(n, 2t) that are invariant under Cr. Let

V (n, k, s, r) ⊆ A(n, k, s) (resp. W (n, k, s, r) ⊆ B(n, k, s)) be the subset of arrays (resp.
cycles) that are Cr-invariant. It is clear that r|k and r|s if W (n, k, s, r) is nonempty.
Moreover, it follows from a set version of Eq. (4) that

|W (n, k, s, r)| = |V (n, k, s, r)|+ |V (n, k, s − 1, r)|.

Given a β ∈ W (n, k, s, r), we partition β into r identical sectors µ1, . . . , µr, where µi

consists of the vertices {n(i−1)
r

+ 1, . . . , ni
r
}. Let µ̂1 be the cycle obtained from µ1 by

adding an edge that connects vertices 1 and n
r
. We observe that µ̂1 ∈ B(n

r
, k

r
, s

r
). On

the other hand, given an µ̂′ ∈ B(n
r
, k

r
, s

r
), let µ′ be the path obtained from µ̂′ by cutting

the edge between vertices 1 and n
r
. One can recover an n-cycle β ′ ∈ W (n, k, s, r) from

the path µ′ · · ·µ′ formed by a concatenation of r copies of µ′. This establishes a bijection
between W (n, k, s, r) and B(n

r
, k

r
, s

r
). Hence the number of (k − 1)-faces of CP(n, d) that

are Cr-invariant is given by

2t−k∑

s=0

|V (n, k, s, r)| =

2t−k∑

s=0
s≡k(mod2)

|W (n, k, s, r)|

=
2t−k∑

s=0
s≡k(mod2)

r|k,r|s

|B(n
r
, k

r
, s

r
)|

=

⌊ t

r
⌋∑

i=1

n

n − ir

(
n
r
− i

i

)(
i

k
r
− i

)

if r|k and 0 otherwise, which agrees with Eq. (5). This completes the proof of Theorem
1.3.

4 The C ′-invariant faces of CP(n, d)

In this section, we consider the cyclic group C ′ of order 2, generated by c′ = (1, n)(2, n−
1) · · · , acting on CP(n, d) by carrying vertex i to vertex n + 1 − i (1 6 i 6 n). Under
C ′-action, each array that corresponds to a face is carried to another array by flipping
about the central line of the array. We shall enumerate the faces of CP(n, d) that are
invariant under C ′-action. We treat the cases of odd d and even d separately.
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The counting formulas in Theorem 1.1 for the face number of CP(n, d) are helpful in
enumerating the set A(n, k, s) of (1 × n)-arrays with k stars and s odd inner blocks. For
1 6 k 6 d, we define

f(n, d, k) =

d

2∑

j=1

n

n − j

(
n − j

j

)(
j

k − j

)
for even d,

g(n, d, k) =

d+1

2∑

j=1

k + 1

j

(
n − j

j − 1

)(
j

k + 1 − j

)
for odd d.

Proposition 4.1. For m > 0, the following equations hold.

(i) We have
m∑

s=0

|A(n, k, s)| =

{
f(n, k + m, k) if k + m is even

g(n, k + m, k) if k + m is odd.

(ii) We have

|A(n, k, m)| =

{
f(n, k + m, k) − g(n, k + m − 1, k) if k + m is even

g(n, k + m, k) − f(n, k + m − 1, k) if k + m is odd,

with the assumption that f(n, i, j) = g(n, i, j) = 0 for i < j.

Proof. The assertion (i) follows immediately from Theorem 1.1 and Eq. (3). The assertion
(ii) is obtained from (i) by computing

∑m

s=0 |A(n, k, s)| −
∑m−1

s=0 |A(n, k, s)|.

For the faces of CP(n, d) under C ′-action, we have the following enumerative results.

Theorem 4.2. For odd d and 1 6 k 6 d, the number h(n,d,k−1) of (k−1)-faces of CP(n, d)
that are C ′-invariant is given as follows.

(i) If n is even, then

h(n,d,k−1) =






0 if k is odd

f(n
2
, d−1

2
, k

2
) if k is even, d ≡ 1 (mod 4)

g(n
2
, d−1

2
, k

2
) if k is even, d ≡ 3 (mod 4).

(ii) If n is odd, then

h(n,d,k−1) =






g(n−1
2

, d−3
2

, k−1
2

) if k is odd, d ≡ 1 (mod 4)

f(n−1
2

, d−3
2

, k−1
2

) if k is odd, d ≡ 3 (mod 4)

f(n+1
2

, d−1
2

, k
2
) − g(n−1

2
, d−3

2
, k

2
− 1) if k is even, d ≡ 1 (mod 4)

g(n+1
2

, d−1
2

, k
2
) − f(n−1

2
, d−3

2
, k

2
− 1) if k is even, d ≡ 3 (mod 4),

with the assumption that f(n, i, j) = g(n, i, j) = 0 for i < j and f(n, m, 0) =
g(n, m, 0) = 1 for all m > 0.
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Proof. Let U(n, k, s) ⊆ A(n, k, s) be the set of arrays that are invariant under C ′-action.
(i) For even n, given an α ∈ A(n, k, s), the central line L of α lies between vertices n

2

and n
2

+ 1. Let α = (α1, α2) be cut in half, where α1 is on the set {1, . . . , n
2
} and α2 is

on the set {n
2

+ 1, . . . , n}. Note that α ∈ U(n, k, s) (i.e., C ′-invariant) if and only if α is
symmetric with respect to L, in which case α1, α2 ∈ A(n

2
, k

2
, s

2
), where s ≡ k ≡ 0 (mod 2)

necessarily. Hence by Proposition 4.1, the number of (k−1)-faces that are C ′-invariant is

d−1−k∑

s=0
s≡k≡0(mod2)

|U(n, k, s)| =

d−1−k∑

s=0
s≡k≡0(mod2)

|A(n
2
, k

2
, s

2
)|

=

d−1−k

2∑

s′=0

|A(n
2
, k

2
, s′)|

=

{
f(n

2
, d−1

2
, k

2
) if d ≡ 1 (mod 4)

g(n
2
, d−1

2
, k

2
) if d ≡ 3 (mod 4).

(ii) For odd n, given an α ∈ A(n, k, s), the central line L passes through vertex n+1
2

.
Let α = (α1,

n+1
2

, α2), where α1 is on the set {1, . . . , n−1
2
} and α2 is on the set {n+3

2
, . . . , n}.

There are two cases.
Case I. k is odd. Then α ∈ U(n, k, s) if and only if there is a star at the middle entry

n+1
2

and α1 ∪ α2 is symmetric with respect to L, in which case α1, α2 ∈ A(n−1
2

, k−1
2

, s−1
2

),
where k ≡ s ≡ 1 (mod 2) necessarily. Hence the number of (k − 1)-faces that are C ′-
invariant is

d−1−k∑

s=1
s≡k≡1(mod2)

|U(n, k, s)| =

d−1−k∑

s=1
s≡k≡1(mod2)

|A(n−1
2

, k−1
2

, s−1
2

)|

=

d−2−k

2∑

s′=0

|A(n−1
2

, k−1
2

, s′)|

=

{
g(n−1

2
, d−3

2
, k−1

2
) if d ≡ 1 (mod 4)

f(n−1
2

, d−3
2

, k−1
2

) if d ≡ 3 (mod 4).

Case II. k is even. Then α ∈ U(n, k, s) if and only if there is a dot at the middle
entry n+1

2
and α1 ∪ α2 is symmetric with respect to L. To compute |U(n, k, s)|, let

α′
1 = α1 ∪ {.} be the array on the set {1, . . . , n+1

2
} obtained from α by adding a dot

at n+1
2

. Then α′
1 is a member of A(n+1

2
, k

2
, s

2
) such that there is a dot at the end. Note

that there are |A(n−1
2

, k
2
− 1, s

2
)| members in A(n+1

2
, k

2
, s

2
) with a star at the end since

π ∈ A(n−1
2

, k
2
− 1, s

2
) if and only if π ∪ {*} is a member of A(n+1

2
, k

2
, s

2
) such that there is
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a star at the end. Hence the number of (k − 1)-faces that are C ′-invariant is

d−1−k∑

s=0
s≡k≡0(mod2)

|U(n, k, s)| =

d−1−k∑

s=0
s≡k≡0(mod2)

|A(n+1
2

, k
2
, s

2
)| − |A(n−1

2
, k

2
− 1, s

2
)|

=

d−1−k

2∑

s′=0

|A(n+1
2

, k
2
, s′)| − |A(n+1

2
, k

2
− 1, s′)|

=

{
f(n+1

2
, d−1

2
, k

2
) − g(n−1

2
, d−3

2
, k

2
− 1) if d ≡ 1 (mod 4)

g(n+1
2

, d−1
2

, k
2
) − f(n−1

2
, d−3

2
, k

2
− 1) if d ≡ 3 (mod 4).

The proof is completed.

For example, take (n, d, k) = (9, 5, 4). There are g(9, 5, 4) = 75 faces of dimension 3 in
CP(9, 5), whose arrays contain 4 stars and at most 1 odd inner block. By Theorem 4.2(ii),
the number of 3-faces that are C ′-invariant is f(5, 2, 2) − g(4, 1, 1) = 3, which are shown
in Figure 3(a). Moreover, take (n, d, k) = (9, 7, 4). There are g(9, 7, 4) = 125 faces of
dimension 3 in CP(9, 7), whose arrays contain 4 stars and at most 3 odd inner blocks. By
Theorem 4.2(ii), the number of 3-faces that are C ′-invariant is g(5, 3, 2) − f(4, 2, 1) = 5,
which are shown in Figure 3(b).

123456789 123456789

**.....** **.....**

.**...**. .**...**.

..**.**.. ..**.**..

*..*.*..*

*.*...*.*

(a) (b)

Figure 3: The C ′-invariant 3-faces of CP(9, 5) and CP(9, 7), respectively.

By the same argument as in the proof of Theorem 4.2, we obtain the following enu-
merative results for even d.

Theorem 4.3. For even d and 1 6 k 6 d, the number h(n,d,k−1) of (k − 1)-faces of
CP(n, d) that are C ′-invariant is given as follows.

(i) If n is even, then

h(n,d,k−1) =






0 if k is odd

f(n
2
, d

2
, k

2
) if k is even, d ≡ 0 (mod 4)

g(n
2
, d

2
, k

2
) if k is even, d ≡ 2 (mod 4).
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(ii) If n is odd, then

h(n,d,k−1) =






g(n−1
2

, d−2
2

, k−1
2

) if k is odd, d ≡ 0 (mod 4)

f(n−1
2

, d−2
2

, k−1
2

) if k is odd, d ≡ 2 (mod 4)

f(n+1
2

, d
2
, k

2
) − g(n−1

2
, d−2

2
, k

2
− 1) if k is even, d ≡ 0 (mod 4)

g(n+1
2

, d
2
, k

2
) − f(n−1

2
, d−2

2
, k

2
− 1) if k is even, d ≡ 2 (mod 4),

with the assumption that f(n, i, j) = g(n, i, j) = 0 for i < j and f(n, m, 0) =
g(n, m, 0) = 1 for all m > 0.

5 The C ′′-invariant faces of CP(n, d)

In this section, we enumerate the faces of CP(n, d) that are invariant under the automor-
phism c′′ = (1, n) that interchanges vertices 1 and n.

Theorem 5.1. For odd d and 1 6 k 6 d, the number z(n,d,k−1) of (k−1)-faces of CP(n, d)
that are C ′′-invariant is given by

z(n,d,k−1) = g(n, d, k) − 2f(n − 1, d − 1, k − 1) + 2g(n − 2, d − 2, k − 2),

with the assumption that f(n, m, 0) = g(n, m, 0) = 1 for all m > 0, and f(n, m,−1) =
g(n, m,−1) = 0 for all m > −1.

Proof. Given an α ∈ A(n, k, s), let α = v1 · · · vn, where vi is the element at the ith
entry of α. Note that α is C ′′-invariant if and only if v1 and vn are identical (i.e., both
are either stars or dots). Let Y (n, k, s) and Z(n, k, s) be subsets of A(n, k, s) such that
α ∈ Y (n, k, s) if (v1, vn) = (star, dot), and α ∈ Z(n, k, s) if (v1, vn) = (dot, star). Clearly,
|Y (n, k, s)| = |Z(n, k, s)| (by a reverse vertex-order). To compute |Y (n, k, s)|, we observe
that α ∈ Y (n, k, s) if and only if the segment v2 · · · vn is a member of A(n − 1, k − 1, s)
such that there is a dot at the end. Moreover, there are |A(n − 2, k − 2, s)| members in
A(n−1, k−1, s) with a star at the end since the segment π = v2 · · · vn−1 ∈ A(n−2, k−2, s)
if and only if π ∪ {*} is a member of A(n − 1, k − 1, s) such that there is a star at the
end. Then we have

|Y (n, k, s)| = |A(n − 1, k − 1, s)| − |A(n − 2, k − 2, s)|.

Hence the number of (k − 1)-faces that are C ′′-invariant is

z(n,d,k−1) =
d−k∑

s=0

|A(n, k, s) − Y (n, k, s) − Z(n, k, s)|

=

d−k∑

s=0

|A(n, k, s)| − 2|A(n − 1, k − 1, s)| + 2|A(n − 2, k − 2, s)|.

By Proposition 4.1(i), the assertion follows.
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We remark that the cyclic group C ′′ is not an automorphism subgroup of CP(n, d) if
d is even. To see this, for example, a facet U = {1, 2, 3, 4} of CP(7, 4) is carried to the
vertex set {2, 3, 4, 7} by c′′, which is not a face of CP(7, 4).

6 The cyclic polytopes CP(n, d) for n = d + 1 and n =

d + 2

In this section, we show instances of CSP on CP(n, d) for the cases n = d+1 and n = d+2.

6.1 The case n = d + 1.

For n = d + 1, the cyclic polytope CP(d + 1, d) is combinatorially equivalent to a regular
simplex, whose (k − 1)-face number is given by

fk−1(CP(d + 1, d)) =

(
d + 1

k

)
, for 1 6 k 6 d.

For even d, Theorem 1.3 gives the CSP for faces of CP(d + 1, d), under the cyclic group
C = Zd+1 action. In fact, it is straightforward to prove that this also holds for odd d.

Theorem 6.1. For 1 6 k 6 d, let X be the set of (k − 1)-faces of CP(d + 1, d), let
X(q) =

[
d+1
k

]
q
, and let C = Zd+1 act on X by cyclic translation of the vertices. Then the

triple (X, X(q), C) exhibits the cyclic sieving phenomenon.

6.2 The case n = d + 2.

For n = d + 2, the arrays associated with the facets of CP(d + 2, d) contain d stars
and 2 dots. By Gale’s evenness condition, these two dots, say at entries i, j, define
an even inner block in the array, which implies that i and j have different parity. Let
[n]odd := [n] ∩ (2Z + 1) and [n]even := [n] ∩ (2Z). According to [4, Proposition 8.5], the
cyclic polytope CP(d + 2, d) can be realized as the free sum of two simplices P and Q,
where P (resp. Q) is on the vertex set [d + 2]odd (resp. [d + 2]even). By Shephard’s
characterization for faces, we have the following observation.

Proposition 6.2. For 1 6 k 6 d, a subset U ⊆ [d+2] is the set of vertices of a (k−1)-face
of CP(d + 2, d) if and only if |U | = k and k − ⌊d

2
⌋ 6 |U ∩ [d + 2]odd| 6 ⌈d

2
⌉.

Proof. By Theorem 2.1, U is the vertex set of a (k−1)-face if and only if |U | = k, and the
array associated with U contains at most d − k odd inner blocks. It follows that such an
array contains d + 2− k dots, at most d + 1− k of which are at odd (resp. even) entries,
and hence at least one of which is at even (resp. odd) entry. If j = |U ∩ [d + 2]odd|, then
counting the number of dots in [d + 2]odd leads to 1 6 ⌈d+2

2
⌉ − j 6 d + 1 − k. Hence

k − ⌊d
2
⌋ 6 j 6 ⌈d

2
⌉, as required.
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By Proposition 6.2, we have a simplified expression for the face number of CP(d+2, d).

Corollary 6.3. For odd d and 1 6 k 6 d, the number fk−1(CP(d + 2, d)) of (k − 1)-faces
of CP(d + 2, d) is given by

fk−1(CP(d + 2, d)) =

d+1−k∑

j=1

(
d+3
2

j

)(
d+1
2

d + 2 − k − j

)
,

with the usual convention that
(

n

m

)
= 0 if n < m or m < 0.

Proof. For odd d, |[d+2]odd| = d+3
2

and |[d+2]even| = d+1
2

. Note that the arrays associated
with (k − 1)-face contain d + 2− k dots. We enumerate the (k − 1)-faces with respect to
the number j of dots contained in [d + 2]odd, where 1 6 j 6 d + 1 − k (by Proposition
6.2), and the assertion follows.

According to the automorphism group of CP(d + 2, d), shown in Theorem 1.2, we
present instances of CSP for faces of CP(d + 2, d) for odd d, with ‘artificial’ q-analogues
of face number defined by

P (d, k; q) =
d+1−k∑

j=1

[
d+3
2

j

]

q

(
d+1
2

d + 2 − k − j

)
(8)

Q(d, k; q) =
d+1−k∑

j=1

(
d+3
2

d + 2 − k − j

)[
d+1
2

j

]

q

. (9)

Theorem 6.4. For odd d and 1 6 k 6 d, let X be the set of (k−1)-faces of CP(d+2, d).
Then the following results hold.

(i) Let X1(q) = P (d, k; q) and let C1 = Zd+3

2

act on X by cyclic translation of the vertex

subset [d + 2]odd of CP(d + 2, d). Then the triple (X, X1(q), C1) exhibits the cyclic
sieving phenomenon.

(ii) Let X2(q) = Q(d, k; q) and let C2 = Zd+1

2

act on X by cyclic translation of the vertex

subset [d + 2]even of CP(d + 2, d). Then the triple (X, X2(q), C2) exhibits the cyclic
sieving phenomenon.

Proof. For r > 2 a divisor of d+3
2

, let ω be a primitive rth root of unity,. By Lemma 3.1,
we have

lim
q→ω

[
d+3
2

j

]

q

=






(d+3
2r
j

r

)
if r|j

0 otherwise.

Hence

[X1(q)]q=ω =

⌊ d+1−k

r
⌋∑

i=1

(
d+3
2r

i

)(
d+1
2

d + 2 − k − ir

)
. (10)
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Given a π ∈ X with j dots at odd entries. We observe that π is invariant under the
subgroup C(1,r) of order r of C1 if and only if the subarray induced on [d + 2]odd can
be partitioned into r identical segments of size d+3

2r
, in which case r divides j since each

segment contains exactly j

r
dots. Hence the number of (k−1)-faces that are C(1,r)-invariant

is given by
⌊ d+1−k

r
⌋∑

i=1

(
d+3
2r

i

)(
d+1
2

d + 2 − k − ir

)
,

which agrees with Eq. (10). The proves the assertion (i).
The assertion (ii) can be proved by a similar argument.

For example, take (d, k) = (5, 3) and let Z4 act on CP(7, 5) by cyclic translation of the
vertices {1, 3, 5, 7}. By Corollary 6.3, there are thirty-four 2-faces, whose arrays contain 3
stars and at most 2 odd inner blocks. These faces are partitioned into ten orbits, seven of
which are free orbits and the other three have a stabilizer of order 2, as shown in Figure
4. Note that X1(q) ≡ 10 + 7q + 10q2 + 7q3 (mod q4 − 1).

1234567 1234567 1234567 1234567 1234567

***.... **.*... **..*.. **...*. *.**...

.**.*.. .***... .**...* .**..*. ..***..

.*..*.* .*.**.. .*..**. ...**.*

**....* .*.*..* .*...** *..*..*

*.*.*.. *.*..*. *..**.. *..*.*. *...**.

..*.*.* ..*.**. ..**..* ..**.*. ..*..**

*...*.* ....*** ...***.

*.*...* *....** ...*.**

Figure 4: The orbits of the 2-faces of CP(7, 5) under Z4-action.

7 Concluding remarks

In this paper, we prove the CSP for faces of CP(n, d) for even d, along with a natural
q-analogue F (n, d, k; q) of the face number f(n, d, k), under an action of the cyclic group
C = Zn. For odd d, C is no longer an automorphism group of CP(n, d) for n > d + 2.
Inspired by the work of Kaibel and Waßmer [4], we consider automorphism groups C ′ and
C ′′ of order 2 of CP(n, d), which are generated by c′ = (1, n)(2, n− 1) · · · and c′′ = (1, n),
respectively. In an attempt on proving the CSP, we derive the number of (k − 1)-faces
that are C ′-invariant (or C ′′-invariant). However, so far it lacks a feasible option for
the q-polynomial, i.e., a relatively natural polynomial X(q) that satisfies the conditions
X(1) = g(n, d, k) and X(−1) = h(n,d,k−1) (or X(−1) = z(n,d,k−1)), as given in Theorem 4.2
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(or Theorem 5.1). It is worth mentioning that the natural q-analogue of g(n, d, k) does
not work in this situation. For instance, let

X(q) =

d+1

2∑

j=1

[k + 1]q
[j]q

[
n − j

j − 1

]

q

[
j

k + 1 − j

]

q

.

It is clear that X(1) = g(n, d, k). In particular, take k = d. Note that h(n,d,d−1) = 0 (i.e.,
there are no facets of CP(n, d) that are C ′-invariant). However, one can check that in this
case

X(q) = (q
d+1

2 + 1)

[
n − d+1

2
d−1
2

]

q

, and X(−1) =





2

(
⌊2n−d−1

4
⌋

⌊d−1
4
⌋

)
if n is odd, d ≡ 3 (mod 4)

0 otherwise.

which does not agree with h(n,d,d−1).
For the C ′′-case, one may come up with an artificial polynomial X(q) with the prop-

erties X(1) = g(n, d, k) and X(−1) = z(n,d,k−1), based on Theorem 5.1, which is defined
by

X(q) = g(n, d, k) − (1 − q) · f(n − 1, d − 1, k − 1) + (1 − q) · g(n − 2, d − 2, k − 2). (11)

However, the downside is that the polynomial X(q) is always of degree 1 and has no good
connection with the group C ′′.

Problem 7.1. For odd d and 1 6 k 6 d, let X be the set of (k−1)-faces of CP(n, d). Find
a polynomial X(q) with the property X(1) = g(n, d, k) such that the triples (X, X(q), C ′)
or (X, X(q), C ′′) exhibit the cyclic sieving phenomenon.

For the special case n = d + 2 and d is odd, we present two instances of CSP on
CP(d+2, d) with artificial q-polynomials P (d, k; q) and Q(d, k; q), under the cyclic groups
Zd+3

2

and Zd+1

2

.

We hope that our proof of the CSP by verifying condition (1) could shed some light
on an algebraic proof from the point of view of representation theory.
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