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Abstract

The main purpose of this paper is to show that many inequalities in functional
analysis, probability theory and combinatorics are immediate corollaries of the best
approximation theorem in inner product spaces. Besides, as applications of the
de Caen-Selberg inequality, the finite field Kakeya and Nikodym problems are also
studied.
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1 Brief Introduction

Let (H, < ·, · >) be an inner product space over R throughout. Given x ∈ H and a finite
dimensional subspace M , denote by xM the orthogonal projection of x onto M . It is
geometrically evident that (we always assume 0

0
= 0 in this paper)

‖x‖2
> ‖xM‖2 = max

y∈M

< xM , y >2

‖y‖2
= max

y∈M

< x, y >2

‖y‖2
. (1)

Particularly, if M = span{yi}
n
i=1 for some given set of elements y1, . . . , yn, then

‖x‖2
> max

(α1,...,αn)∈Rn

< x,
∑n

i=1 αiyi >2

‖
∑n

i=1 αiyi‖2
. (2)
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The main purpose of this paper is to show that many inequalities in functional analysis,
probability theory and combinatorics are immediate corollaries of (2). For the sake of
completeness we determine the unique orthogonal projection xM (many authors of text-
books on functional analysis only dealt the case when {yi}

n
i=1 are linear independent).

Write xM =
∑n

i=1 βiyi for some (β1, . . . , βn) ∈ R
n. Since the smooth function

Ψ(α1, . . . , αn)
.
= ‖x −

n
∑

i=1

αiyi‖
2 = ‖x‖2 − 2

n
∑

i=1

αi < x, yi > +
n
∑

i=1

n
∑

j=1

αiαj < yi, yj >

attains its minimum d(x, M)2 at (β1, . . . , βn),

∂Ψ

∂αi
(β1, . . . , βn) = 0 (i = 1, 2, . . . , n).

Equivalently,











< y1, y1 > < y1, y2 > · · · < y1, yn >
< y2, y1 > < y2, y2 > · · · < y2, yn >

...
...

. . .
...

< yn, y1 > < yn, y2 > · · · < yn, yn >





















β1

β2
...

βn











=











< x, y1 >
< x, y2 >

...
< x, yn >











. (3)

If (γ1, . . . , γn) ∈ R
n is another solution to (3), then

∥

∥

n
∑

i=1

(βi − γi)yi

∥

∥

2
= (β1 − γ1, · · · , βn − γn)(< yi, yj >)n×n







β1 − γ1
...

βn − γn







= (β1 − γ1, · · · , βn − γn)







0
...
0






= 0.

Consequently xM =
∑n

i=1 βiyi =
∑n

i=1 γiyi.
Among many inequalities will be discussed later, we show particular interest in the de

Caen-Selberg inequality [1, 2]:

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣
>

n
∑

i=1

|Ai|
2

n
∑

j=1

|Ai ∩ Aj |

, (4)

where {Ai}
n
i=1 are finite sets. In Section 5 we will present some applications of the de

Caen-Selberg inequality to the study of the finite field Kakeya and Nikodym problems in
classical analysis.
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2 Inequalities in Functional Analysis

2.1 Known inequalities

For any (α1, . . . , αn) ∈ R
n, by (2) and the Cauchy-Schwarz inequality (|αiαj | 6

α2

i +α2

j

2
)

one obtains the Pec̆arić inequality [13]

‖x‖2
>

(

n
∑

i=1

αi < x, yi >
)2

n
∑

i=1

n
∑

j=1

α2
i | < yi, yj > |

. (5)

(The following arguments are standard [13]) Substituting αi = <x,yi>
Pn

k=1
|<yi,yk>|

into (5) yields

the Selberg inequality [1]

‖x‖2
>

n
∑

i=1

< x, yi >2

n
∑

j=1

| < yi, yj > |

. (6)

Substituting αi = sgn(< x, yi >) into (5) or applying the Cauchy-Schwarz inequality from
(6) yields the Heilbronn inequality [10]

‖x‖2
>

(

n
∑

i=1

| < x, yi > |
)2

n
∑

i=1

n
∑

j=1

| < yi, yj > |

. (7)

The Selberg inequality (6) is certainly stronger than the Bombieri inequality [1]

‖x‖2
>

n
∑

i=1

< x, yi >2

max
16i6n

n
∑

j=1

| < yi, yj > |

. (8)

If {yi}
n
i=1 are orthogonal, then the Selberg inequality (6) turns out to be the classical

Bessel inequality

‖x‖2
>

n
∑

i=1

< x, yi >2

< yi, yi >
. (9)

Substituting αi = 1 into (2) yields the Chung-Erdős inequality [3]

‖x‖2
>

(

n
∑

i=1

< x, yi >
)2

n
∑

i=1

n
∑

j=1

< yi, yj >

. (10)

the electronic journal of combinatorics 17 (2010), #R58 3



In a partial summary,
(2) ≻ (5) ≻ (6) ≻ (7),

where (•) ≻ (••) means Estimate (•) is stronger than Estimate (••).

3 From Functional Analysis to Combinatorics

3.1 Immediate corollaries

In this section we always choose H = l2. Let A, B be finite subsets of N and χA, χB be
the corresponding indictor functions. Then

< χA, χB >= |A ∩ B|,

and χA, χB are orthogonal means A, B are disjoint sets. Given finite subsets {Ai}
n
i=1 of

N, define yi = χAi
(i ∈ [n]) and x = χ∪iAi

. Then < x, yi >= |(∪jAj) ∩ Ai| = |Ai|. By (2)
and (3), we obtain

Theorem 3.1.

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣
> max

(α1,...,αn)∈Rn

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj|Ai ∩ Aj|

=

n
∑

i=1

n
∑

j=1

βiβj|Ai ∩ Aj |, (11)

where (β1, . . . , βn) ∈ R
n is any solution to











|A1 ∩ A1| |A1 ∩ A2| · · · |A1 ∩ An|
|A2 ∩ A1| |A2 ∩ A2| · · · |A2 ∩ An|

...
...

. . .
...

|An ∩ A1| |An ∩ A2| · · · |An ∩ An|





















β1

β2
...

βn











=











|A1|
|A2|
...

|An|











. (12)

Note in this context the Selberg inequality (6) turns out to be the de Caen inequality
(4) and the Bessel inequality (9) turns out to be a trivial equality. Also note that

sup
αi>0

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj |Ai ∩ Aj|

= sup
αi>0

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

α2
i |Ai ∩ Aj |

= sup
αi>0

n
∑

i=1

αi |Ai|
2

n
∑

j=1

αj |Ai ∩ Aj |

.
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3.2 A slightly different variant

In this subsection, we provide a slightly different variant of (12).

Theorem 3.2. The following matrix equation always has a solution

( |Ai ∩ Aj |

|Ai||Aj|

)

n×n











q1

q2
...
qn











=











1
1
...
1











; (13)

any solution to (13) satisfies

n
∑

i=1

qi = max
(α1,...,αn)∈Rn

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj |Ai ∩ Aj |

. (14)

Proof. Write P =
( |Ai∩Aj |

|Ai||Aj|

)

n×n
, Q =

(

|Ai ∩ Aj |
)

n×n
and R = diag(1/|A1|, . . . , 1/|An|).

Obviously, P = RQR, Q = R−1PR−1. Let (β1, . . . , βn) ∈ R
n be a solution to (12). Then

P











β1|A1|
β2|A2|

...
βn|An|











= RR−1PR−1











β1

β2
...

βn











= RQ











β1

β2
...

βn











= R











|A1|
|A2|

...
|An|











=











1
1
...
1











.

This solves the existence. Suppose (q1, q2, · · · , qn)T is a solution to (13), that is,

RQR











q1

q2
...
qn











=











1
1
...
1











⇔ Q











q1/|A1|
q2/|A2|

...
qn/|An|











=











|A1|
|A2|

...
|An|











.

By (11), (12) and (13),

max
(α1,...,αn)∈Rn

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj |Ai ∩ Aj |

=
n
∑

i=1

n
∑

j=1

qi

|Ai|
·

qj

|Aj |
· |Ai ∩ Aj |

= (q1, q2, · · · , qn)P











q1

q2
...
qn











= (q1, q2, · · · , qn)











1
1
...
1











=

n
∑

i=1

qi.

So we get (14). This concludes the whole proof.
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3.3 A combinatorial proof

In this subsection, we provide a combinatorial proof for the inequality in (11) to help
understand the equality case. To achieve the goal we need only prove

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣
>

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj |Ai ∩ Aj|

.

holds for all integral weights αi ∈ Z such that
∑n

i=1 αi|Ai| > 0. Suppose this is the case.
Let U = ∪n

i=1Ai and χi be the indicator function of Ai. Define f(x) =
∑n

i=1 αiχi(x) and
for all k ∈ Z,

Uk .
= {x ∈ U : f(x) = k}, Ak

i
.
= Ai ∩ Uk.

Obviously, f =
∑

k∈Z
kχUk . Note

n
∑

i=1

αi|A
k
i | =

n
∑

i=1

αi

∫

U

χAi∩Uk =

n
∑

i=1

αi

∫

U

χi · χUk =

∫

U

f · χUk = k · |Uk|, (15)

and

∑

k∈Z

k|Ak
i | =

∑

k∈Z

k

∫

U

χi · χUk =

∫

Ai

∑

k∈Z

kχUk =

∫

Ai

n
∑

j=1

αjχj =

n
∑

j=1

αj |Ai ∩ Aj|, (16)

here the integration means
∫

U
g =

∑

x∈U g(x). By (15),

|U | =
∑

k∈Z

|Uk| >
∑

k 6=0

∑n
i=1 αi|X

k
i |

k
.

Now we need an inequality: for all r, s > 0 one has

1

s
>

2

r
−

s

r2

(

⇔ (
1

s
−

1

r
)2

> 0
)

.

By (15) again,
∑n

i=1 αi|A
k
i | and k have the same sign, and consequently for r > 0,

∑n
i=1 αi|A

k
i |

k
>

{

2
r

∑n
i=1 αi|A

k
i | −

k
r2

∑n
i=1 αi|A

k
i | if k > 0

− 2
r

∑n
i=1 αi|A

k
i | −

k
r2

∑n
i=1 αi|A

k
i | if k < 0

>
2

r

n
∑

i=1

αi|A
k
i | −

k

r2

n
∑

i=1

αi|A
k
i | if k 6= 0.

Recall that 2
r

∑n
i=1 αi|A

k
i | −

k
r2

∑n
i=1 αi|A

k
i | = 0 when k = 0. By (16),

|U | >
∑

k∈Z

(

2

r

n
∑

i=1

αi|A
k
i | −

k

r2

n
∑

i=1

αi|A
k
i |

)

=
2

r

n
∑

i=1

αi|Ai| −
1

r2

n
∑

i=1

n
∑

j=1

αiαj|Ai ∩ Aj |
.
= W (r).
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Finally,

|U | > max
r>0

W (r) = W (r∗) =

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj|Ai ∩ Aj |

,

where r∗ = (
∑n

i=1 αi|Ai|)/(
∑n

i=1

∑n
j=1 αiαj |Ai ∩ Aj|). This concludes the whole proof. A

byproduct of this proof is the following characterization of the equality case:

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣
=

(

n
∑

i=1

αi|Ai|
)2

n
∑

i=1

n
∑

j=1

αiαj |Ai ∩ Aj |

⇔

n
∑

i=1

αiχi(x)
∣

∣

∣

Sn
i=1

Ai

is a non-zero constant function.

4 From Functional Analysis to Probability Theory

4.1 Finitely many events

In this section we choose H to be the L2 space of the given probability space (Ω,F , P ). Let
E, F be two events and χE , χF be the corresponding indicator functions. It is well-known
that Hilbert space theory and probability theory are intimately connected by

< χE, χF >= P (E ∩ F ).

Note χE , χF are orthogonal means E, F are disjoint. Given events {Ei}
n
i=1, define yi =

χEi
(i ∈ [n]) and x = χ∪iEi

. By (2) and (3), we extend the Gallot-Kounias inequality
[9, 11] to its full generality in the following form.

Theorem 4.1 (Gallot-Kounias).

P (
n
⋃

i=1

Ei) > max
(α1,...,αn)∈Rn

(

n
∑

i=1

αiP (Ei)
)2

n
∑

i=1

n
∑

j=1

αiαjP (Ei ∩ Ej)

=
n
∑

i=1

n
∑

j=1

γiγjP (Ei ∩ Ej), (17)

where (γ1, . . . , γn) ∈ R
n is any solution to











P (E1 ∩ E1) P (E1 ∩ E2) · · · P (E1 ∩ En)
P (E2 ∩ E1) P (E2 ∩ E2) · · · P (E2 ∩ En)

...
...

. . .
...

P (En ∩ E1) P (En ∩ E2) · · · P (En ∩ En)





















γ1

γ2
...

γn











=











P (E1)
P (E2)

...
P (En)











. (18)
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To the authors’ knowledge, it seems that the Gallot-Kounias inequality, being discov-
ered 40 years ago, was almost forgotten by Mathematicians. Gallot and Kounias originally
expressed their results in terms of generalized inverse of matrices, and this may prevent
their results from being appreciated by others. So we restate their results in a more natural
way in Theorem 4.1. Note in this context (10) turns out to be the original Chung-Erdős
inequality [3]

P (

n
⋃

i=1

Ei) >

(

n
∑

i=1

P (Ei)
)2

n
∑

i=1

n
∑

j=1

P (Ei ∩ Ej)

, (19)

and the Bessel inequality (9) turns out to be a trivial equality. Also note that

sup
αi>0

(

n
∑

i=1

αiP (Ei)
)2

n
∑

i=1

n
∑

j=1

αiαjP (Ei ∩ Ej)

= sup
αi>0

(

n
∑

i=1

αiP (Ei)
)2

n
∑

i=1

n
∑

j=1

α2
i P (Ei ∩ Ej)

= sup
αi>0

n
∑

i=1

αiP (Ei)
2

n
∑

j=1

αjP (Ei ∩ Ej)

.

Similar to Theorem 3.2 one can establish the following theorem.

Theorem 4.2. The following matrix equation always has a solution

( P (Ei ∩ Ej)

P (Ei)P (Ej)

)

n×n











q1

q2
...
qn











=











1
1
...
1











; (20)

any solution to (20) satisfies

n
∑

i=1

qi = max
(α1,...,αn)∈Rn

(

n
∑

i=1

αiP (Ei)
)2

n
∑

i=1

n
∑

j=1

αiαjP (Ei ∩ Ej)

. (21)

4.2 Borel-Cantelli lemma

Let {Ei}
∞
i=1 be infinitely many events on the probability space (Ω,F , P ). The Borel-

Cantelli lemma states that: (a) if
∑∞

i=1 P (Ei) < ∞, then P (lim sup Ei) = 0; (b) if
∑∞

i=1 P (Ei) = ∞ and {Ei}
∞
i=1 are mutually independent, then P (lim sup Ei) = 1. Here

lim sup Ei = ∩∞
i=1 ∪

∞
k=i Ek. The Borel-Cantelli lemma played an exceptionally important

role in probability theory, and many investigations were devoted to the second part of the
Borel-Cantelli lemma in the attempt to weaken the independence condition on {Ei}

∞
i=1.
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Towards this question, Erdős and Rényi [6, 14] obtained a nice result closely related to
(19): if

∑∞
i=1 P (Ei) = ∞, then

P (lim sup Ei) > lim sup
n→∞

(

n
∑

k=1

P (Ek)
)2

n
∑

i=1

n
∑

j=1

P (Ei ∩ Ej)

. (22)

Recently, by carefully studying the effect of the denominator in the right hand of (22),
the authors [8] established a weighted version of the Erdős-Rényi theorem which states:

Theorem 4.3 (Feng-Li-Shen). If
∑∞

i=1 αiP (Ei) = ∞, then

P (lim sup Ei) > lim sup
n→∞

(

n
∑

k=1

αkP (Ek)
)2

n
∑

i=1

n
∑

j=1

αiαjP (Ei ∩ Ej)

. (23)

5 Applications of the de Caen-Selberg Inequality

5.1 The finite field Kakeya set

Let Fq denote a finite field of q elements. Define a set K ⊂ F
n
q to be Kakeya if it contains

a translate of any given line. The finite field Kakeya problem, posed by Wolff in his
influential survey [17], conjectured that |K| > Cnq

n holds for some constant Cn. Recently,
using the polynomial method in algebraic extremal combinatorics, Dvir [4] completely
confirmed this conjecture by proving

|K| >

(

n + q − 1

n

)

. (24)

If n = 2, it is well-known that (24) is sharp [7] and can be established by a simple counting
argument [15]. For n > 3, see [16] for further improvement.

Similarly, we say a subset E ⊂ F
n
q is an (n, k)-set if it contains a translate of any given

k-plane. Ellenberg, Oberlin and Tao [5] proved that if 2 6 k < n, then

|E| > qn −

(

n

2

)

qn−k+1 + o(qn−k+1) (q → ∞). (25)

Using the de Caen-Selberg inequality we can slightly improve (25) when k = n − 1 > 2.

Theorem 5.1. Any (n, n − 1)-set E ⊂ F
n
q (n > 3) satisfies

|E| > qn − q2 + o(q2) (q → ∞),

where Fq denotes a finite field of q elements.
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Proof. Since the total number s of (n − 1)-dimensional hyperplanes passing through the
origin equals the total number of lines passing through the origin,

s =
qn − 1

q − 1
.

Let {Pi}
s
i=1 be such hyperplanes. By the de Caen-Selberg inequality (4),

|E| >

s
∑

i=1

|Pi|
2

s
∑

j=1

|Pi ∩ Pj |

>
s · q2n−2

qn−1 + (s − 1)qn−2

=
s · q2n−2 + qn(qn−1 − qn−2) − qn(qn−1 − qn−2)

(qn−1 − qn−2) + s · qn−2

= qn −
qn(qn−1 − qn−2)

qn−1 + (s − 1)qn−2

= qn − q2 + o(q2) (q → ∞).

5.2 The finite field Nikodym set

Define a set B ⊂ F
n
q to be Nikodym if for each z ∈ Bc there exists a line Lz passing

through z such that Lz\{z} ⊂ B. Obviously, all such lines {Lz}z∈Bc are different from
each other. Similar to (24) Li [12] proved (i)

|B| >

(

n + q − 2

n

)

; (26)

(ii) any two-dimensional Nikodym set B ⊂ F
2
q satisfies

|B| >
2q2

3
+ O(q) (q → ∞). (27)

Using the de Caen-Selberg inequality we can improve (27) substantially as follows, which
shows some difference between the two-dimensional Kakeya sets and Nikodym sets.

Theorem 5.2. Any Nikodym set B ⊂ F
2
q satisfies

|B| > q2 − q3/2 − q,

where Fq denotes a finite field of q elements.

Proof. Let s = |Bc|. By the de Caen-Selberg inequality (4),

q2 − s = |B| >

∣

∣

∣

⋃

z∈Bc

Lz\{z}
∣

∣

∣
>

s
∑

i=1

(q − 1)2

(q − 1) + s − 1
=

s(q − 1)2

s + q − 2
.
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Equivalently,
s2 − (q + 1)s − q2(q − 2) 6 0.

Hence

|B| = q2 − s > q2 −
q + 1 +

√

(q + 1)2 + 4q2(q − 2)

2
> q2 − q3/2 − q.

We thank a referee for many valuable suggestions leading to the clear presentation of
the paper.
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