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Nándor SiebenDepartment of Mathematis and StatistisNorthern Arizona UniversityFlagsta�, Arizona, USAnandor.sieben�nau.eduSubmitted: Apr 21, 2008; Aepted: Apr 15, 2010; Published: Apr 30, 2010Mathematis Subjet Classi�ation: 05B50, 91A46AbstratAn animal is an edge onneted set of �nitely many ells of a regular tiling of theplane. The site-perimeter of an animal is the number of empty ells onneted tothe animal by an edge. The minimum site-perimeter with a given ell size is foundfor animals on the triangular and hexagonal grid. The formulas are used to showthe e�etiveness of a simple random strategy in full set animal ahievement games.1 IntrodutionA plane polyform is a �gure onstruted by joining �nitely many ongruent basi polygonsalong their edges. If the basi polygons are ells of a regular tiling of the plane bysquares, equilateral triangles or regular hexagons, then the polyform is alled a polyomino,polyiamond or polyhex respetively. An animal is a polyomino, polyiamond or polyhex.We only onsider animals up to ongruene and we allow holes in our animals. Thenumber of ells s(A) of an animal A is alled the size of A. The standard referene forpolyominoes is [5℄.Two ells of a regular tiling are adjaent if they share a ommon edge. The exteriorboundary E(A) of the animal A is the set of ells outside of A but adjaent to a ell of A.The site-perimeter of A is the number of ells p(A) := |E(A)| in the exterior boundary. Inthis paper we �nd formulas for the minimum site-perimeter of polyiamonds and polyhexeswith given size. The formula for polyominoes was found in [9℄.The motivation partly omes from the importane of the site-perimeter in perolationtheory. Similar questions were answered in [7, 8, 10, 11℄. The site-perimeter is also used in[3℄ as �xed parameter when ounting the number of animals. The motivation also omesfrom ombinatorial game theory.
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Figure 2.1: The hexagonal animal T 5
3,2,1 ut from an equilateral triangle with edge size 5.In a weak animal set (a, b)-ahievement game two players alternately mark a and bpreviously unmarked ells using their own olors. The �rst player (the maker) tries tomark any animal in a given set of target animals. The seond player (the breaker) tries toprevent the maker from ahieving his goal. Ahievement games are studied for examplein [1, 2, 4, 6℄.If the set of target animals is the set Fs of all animals with size s, then the gameis alled full set ahievement game. In this game the maker an follow the strategy ofmarking random ells adjaent to his earlier marks. We investigate when this strategyan be e�etive. The answer depends on how small the site-perimeter of animals in Fsan be.Finding the minimum site-perimeter of an animal with given size is di�ult diretly.It is easier to �nd the maximum size of an animal with given site-perimeter beause theseanimals are saturated. A ell x ∈ E(A) is admissible to A if p(A∪ x) 6 p(A). An animalis saturated if it has no admissible ells.We haraterize the saturated polyiamonds in Setion 2. This allows us to �nd themaximum size of polyiamonds with given site-perimeter in Setion 3. We �nd the min-imum site-perimeter of polyiamonds with given size in Setion 4. The duality betweenthe triangular and hexagonal tilings allows us to quikly translate all these results topolyhexes in Setion 5. Finally, we study the random neighbor strategy in Setion 6.2 Hexagonal polyiamondsIn this setion we haraterize the saturated polyiamonds.De�nition 2.1. The polyiamond T d
a,b,c gotten from the equilateral triangle polyiamondwith edge size d by utting the orners with edge sizes a, b and c respetively as seen inFigure 2.1 is alled a hexagonal polyiamond. We require that a, b and c are nonnegativeintegers and d is a positive integer. We also require that a + b, a + c, b + c 6 d.A hexagonal polyiamond may have sides with zero length. Sine ongruent animals areonsidered to be the same, the parametrization is not unique. For example T 1

0,0,0 = T 2
1,1,1.The site-perimeter of a hexagonal polyiamond is equal to its perimeter.It is easy to see that adding a ell to a hexagonal polyiamond inreases the site-perimeter of the animal and so hexagonal polyiamonds are saturated. Our goal is to showthat these are the only saturated polyiamonds.

the electronic journal of combinatorics 17 (2010), #R65 2



a. b.Figure 2.2: The empty ell is admissible to any animal ontaining the full ells.
xi

Figure 2.3: An example of the saturation proess after adding ell xi to Ai−1 = T 6
4,1,2. Theempty ells must be inluded in any saturated animal ontaining Ai−1 and xi. Addingthese ells to Ai−1 results in Ai = T 6

3,1,2.Lemma 2.2. If a polyiamond ontains the two full ells but not the empty ell of one ofthe on�gurations depited in Figure 2.2, then the empty ell is admissible.Proof. In eah ase, adding the empty ell to the animal dereases the site perimeter by1 and may inrease it by at most 1.Roughly speaking, an empty ell at a onave orner of a polyiamond is admissible.Proposition 2.3. All saturated polyiamonds are hexagonal.Proof. Let A be a saturated polyiamond. We de�ne an inreasing family A1 ⊆ A2 ⊆ · · · ⊆
Ak of hexagonal subsets of A suh that Ak = A. Let x1 be an arbitrary ell of A and de�ne
A1 := {x1}. If Ai−1 = A then we are done. Otherwise there is a ell xi ∈ A ∩ E(Ai−1)sine Ai−1 ⊂ A. By symmetry, we an assume that with the parametrization Ai−1 = T d

a,b,cthe ell xi is onneted to the top edge of Ai−1 as shown in Figure 2.3. By Lemma 2.2,the set Xi of empty ells adjaent to the top edge of Ai−1 must be a subset of A. So thehexagonal polyiamond Ai := Ai−1 ∪ Xi = T d
a−1,b,c is a subset of A. The proess ends in�nitely many steps sine A is �nite and s(Ai−1) < s(Ai).3 Polyiamonds with �xed site-perimeter and maximumsizeIn this setion all animals are polyiamonds. Our purpose is to �nd a formula for σT (p) :=

max{s(A) | p(A) = p}.Lemma 3.1. For eah polyiamond A there is a polyiamond Ã suh that A ⊆ Ã and
p(Ã) = p(A) + 1.
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ℓa. ℓ ontains a ell edge b. ℓ ontains no ell edgesFigure 3.1: The site-perimeter of a polyiamond A an be inremented by adding eitherell x or the ells in {x, y} to A. The site-perimeter of A does not inrease if the full ellis removed from A.Proof. Let ℓ be the horizontal line that touhes A but has no ells of A above it. Suh ℓexists sine A is �nite. If ℓ ontains the edge of a ell of A as shown in Figure 3.1.a, thenadding ell x to A inreases the site-perimeter of A by 1.If ℓ ontains none of the ell edges of A as shown in Figure 3.1.b, then ell x does notbelong to A. If z 6∈ E(A) then p(A ∪ {x}) = p(A) + 1. If z ∈ E(A) then p(A ∪ {x, y}) =

p(A) + 1.Proposition 3.2. If p(A) = p and s(A) = σT (p), then A is saturated.Proof. Suppose that A is not saturated. Let Ã := A ∪ {x} where x is a ell admissibleto A. Then p(Ã) 6 p. If p(Ã) < p then by Lemma 3.1, we an add ells to Ã untilits site-perimeter reahes p. This is a ontradition sine then A annot have maximumsize.The following onvenient formula is the onsequene of the hoie of the parametersin De�nition 2.1.Lemma 3.3. For eah hexagonal polyiamond T d
a,b,c we have

p(T d
a,b,c)

2 − 6s(T d
a,b,c) = 3(d − a − b − c)2 + 2((a − b)2 + (a − c)2 + (b − c)2).Proof. It is easy to see that p(T d

a,b,c) = 3d − a − b − c and s(T d
a,b,c) = d2 − a2 − b2 − c2.The result follows from these fats after a short alulation.Proposition 3.4. Let p = 6k + r where 0 6 r < 6. Then
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.Proof. We know that σT (p) = s(T d
a,b,c) for some saturated animal T d

a,b,c with p(T d
a,b,c) = p.Then d = (p + a + b + c)/3. We see from Lemma 3.3 that the maximum of s(T d

a,b,c) isreahed when
M := p2 − 6s(T d

a,b,c) = 3(d − a − b − c)2 + 2((a − b)2 + (a − c)2 + (b − c)2)
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is as small as possible. Note that M ≡6 p2 and M is nonnegative sine it is the sum ofsquares. We need to onsider several ases.If r = 0 then let a = b = c = k. Then d = 3k and so M = 0. This is learly theminimum.If r = 1 then let a = k − 1 and b = c = k. Then d = 3k and so M = 7. Sine M ≡6 1,the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has no nonnegativeinteger solution so the minimum of M is 7.If r = 2 then let a = b = k and c = k + 1. Then d = 3k + 1 and so M = 4. Sine
M ≡6 4, the minimum of M is 4.If r = 3 then let a = b = c = k. Then d = 3k + 1 and so M = 3. Sine M ≡6 3, theminimum of M is 3.If r = 4 then let a = k and b = c = k + 1. Then d = 3k + 2 and so M = 4. Sine
M ≡6 4, the minimum of M is 4.If r = 5 then let a = b = k and c = k + 1. Then d = 3k + 2 and so M = 7. Sine
M ≡6 1, the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has nononnegative integer solution so the minimum of M is 7.Figure 3.2 shows the polyiamond families hosen in the previous theorem.Proposition 3.5. For p > 3 we have σT (p) = 2⌊p2/12 − p/2⌋ + p.Proof. Let p = 6k + r > 3 where 0 6 r < 6. Then Proposition 3.4 and the formula
s(T d

a,b,c) = d2 − a2 − b2 − c2 imply that σT (p) = 6k2 + 2rk + |r − 1| − 1. Substituting
p = 6k + r into this formula gives

σT (p) − (2⌊p2/12 − p/2⌋ + p) = |r − 1| − r − 1 − 2⌊r2/12 − r/2⌋.It is easy to hek that this expression is 0 for all r ∈ {0, . . . , 5}.Proposition 3.6. The funtion σT is stritly inreasing on its domain {3, 4, . . .}.Proof. First, suppose that p = 6k + r where 0 6 r < 5. Then σT (p + 1) − σT (p) =
2k + |r| − |r − 1|. If k = 0 then r > 3 and so 2k + |r| − |r − 1| = 1. If k > 1 then
2k + (|r| − |r − 1|) > 2k − 1 > 1.Now suppose that p = 6k +5. Then σT (p+1)−σT (p) = 6(k +1)2 − (6k2 +10k +3) =
2k + 3 > 1.4 Polyiamonds with �xed size and minimum site-perimeterIn this setion all animals are polyiamonds. Our purpose is to �nd a formula for πT (s) :=
min{p(A) | s(A) = s}.Lemma 4.1. For all s > 1 we have σT (πT (s)) > s.
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k 0 1 2 · · ·

r = 0 T 3k
k,k,k · · ·

r = 1 T 3k
k−1,k,k · · ·

r = 2 T 3k+1

k,k,k+1
· · ·

r = 3 T 3k+1

k,k,k · · ·

r = 4 T 3k+2

k,k+1,k+1
· · ·

r = 5 T 3k+2

k,k,k+1
· · ·Figure 3.2: Maximum size animals with �xed site-perimeter p = 6k+r. Note that addingan extra layer of ells around an animal reates the next animal in the row.
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Proof. Let p := πT (s). Then there is a polyiamond A with s(A) = s and p(A) = p. Hene
σT (p) > s.Lemma 4.2. For all p > 3 we have πT (σT (p)) = p.Proof. Let s := σT (p). Then there is a polyiamond A with p(A) = p and s(A) = s. Hene
πT (s) 6 p. If q < p then σT (q) < σT (p) = s by Proposition 3.6, and so no polyiamondwith site-perimeter q an have size s. Thus πT (s) > p.Lemma 4.3. For all polyiamond A with s(A) > 2 there is a subset Â ⊂ A suh that
s(Â) = s(A) − 1 and p(Â) 6 p(A).Proof. We show that if s(A) > 2 then we an remove a ell from A without inreasing itssite-perimeter. Let ℓ be the horizontal line that touhes A but has no ells of A above it,as in the proof of Lemma 3.1. Let w be the leftmost ell of A that touhes ℓ. The fullell in Figure 3.1 represents the two possible positions of w with respet to ℓ. It is easyto see that, in both ases, ell x is adjaent to w but it is not adjaent to any other ellof A. So removing w from A dereases the site-perimeter by at least 1 sine x falls outof the exterior boundary. Sine A is onneted, A must have a ell adjaent to w. So theremoval also inreases the site-perimeter by exatly 1 sine w beomes a member of thesite perimeter. So Â = A \ {w} satis�es the requirements.Proposition 4.4. The funtion πT is inreasing.Proof. For all s > 2 there is a polyiamond A with s(A) = s and p(A) = πT (s). Let
Â be the subset of A guaranteed by the previous Lemma. Then s(Â) = s − 1 and so
πT (s − 1) 6 p(Â) 6 p(A) = πT (s).Proposition 4.5. For all s > 1 we have πT (s) = min{p | σT (p) > s}.Proof. Sine s 6 σT (πT (s)), q := min{p | σT (p) > s} exists. If q = 3 then learly s = 1and the statement is true, so we an assume that q > 3. Then σT (q− 1) < s 6 σT (q) andso by Lemma 4.2 and Proposition 4.4 we have

q − 1 = πT (σT (q − 1)) 6 πT (s) 6 πT (σT (q)) = q.Equality on the �rst inequality is impossible sine q − 1 = πT (s) and Lemma 4.1 implythe ontradition s > σT (q − 1) = σT (πT (s)) > s. So we must have πT (s) = q.If p is a statement, then we de�ne [

p
] to be 1 if p is true and 0 if p is false. Forexample, [

i = j
] is the Kroneker delta δi,j. The next result is one of our main theorems.Theorem 4.6. For all s > 1 we have

πT (s) = ⌈
√
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[
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√
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·
[
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√
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⌉ ]

.
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)♭ (

B♭
)♯Figure 5.1: A polyhex and its various duals.Proof. We know that σT (p) = 2⌊p2/12 − p/2⌋ + p. It is easy to see that σT (p) = ⌊p2/6 −

p− 1⌋+ p if the remainder of p is 1 or 5 modulo 6, and σT (p) = ⌊p2/6− p⌋+ p otherwise.Let X := {n ∈ N | n ≡6 ±1} and Y := N \ X. Then
πT (s) = min{p | σT (p) > s}

= min({p ∈ X | ⌊p2/6 − p − 1⌋ + p > s} ∪ {p ∈ Y | ⌊p2/6 − p⌋ + p > s})
= min({p ∈ X | p2/6 − 1 > s} ∪ {p ∈ Y | p2/6 > s})
= min({p ∈ X | p >
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⌉. Otherwise πT (s) =
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+ 1 sine it is easy to see that ⌈√
6s + 6

⌉

−
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⌉

6 1 for all
s > 1.5 PolyhexesThe dual of a regular tiling is onstruted by drawing line segments onneting the enterpoints of all pairs of adjaent ells. The dual of a tiling by regular hexagons is a tiling byequilateral triangles.De�nition 5.1. Let B be an animal. The outer dual of B is the animal B♯ built fromthose ells of the dual tiling that interset B. The inner dual of B is the animal B♭ builtfrom those ells of the dual tiling that are inside B.It is easy to see that the duals of an animal are onneted through edges so they arein fat animals. The duals of a polyhex are polyiamond and the duals of a polyiamondare polyhexes. Figure 5.1 shows a polyhex and its duals. Note that (

B♯
)♭ and (

B♭
)♯ arenot B in general.We an �nd the answer to our question about polyhexes from our results about polyia-monds using this dual onnetion. The following is an easy onsequene of the de�nitions.De�nition 5.2. A polyhex B is alled hexagonal if B♯ is a hexagonal polyiamond. If

B♯ = T d
a,b,c then B is denoted by Hd

a,b,c.
the electronic journal of combinatorics 17 (2010), #R65 8



Figure 5.2: The empty ell is admissible to any animal ontaining the full ells.
xi xi xi

Bi = H8
3,2,3 Bi = H9

4,3,3 Bi = H9
4,2,4Figure 5.3: The three possible saturation proesses after adding ell xi to Bi−1 = H8

4,2,3.The empty ells must be inluded in any saturated animal ontaining Bi−1 and xi. Addingthese ells to Bi−1 results in Bi.The reader an easily verify the following result.Lemma 5.3. If B is a hexagonal polyhex, then p(B) = p(B♯).It is easy to see that adding a ell to a hexagonal animal inreases the site-perimeterof the animal and so hexagonal animals are saturated.Lemma 5.4. If a polyhex ontains the two full ells but not the empty ell of the on�g-uration depited in Figure 5.2, then the empty ell is admissible.Proof. Adding the empty ell to the animal dereases the site perimeter by 1 and mayinrease it by at most 1.Proposition 5.5. All saturated polyhexes are hexagonal.Proof. The argument uses Lemma 5.4 and is similar to the proof of Proposition 2.3.Figure 5.3 shows the saturation proess after adding ell xi to the hexagonal polyhex
Bi−1.Lemma 5.6. For eah polyhex B with size at least 2 there is a polyhex B̃ suh that B ⊆ B̃and p(B̃) = p(B) + 1.Proof. Let U be the horizontal row of ells that ontains the highest ells of B. We needto onsider several ases shown in Figure 5.4. If there are two adjaent ells x, y ∈ B∪U ,then B̃ = B ∪ {u} as shown in ase 1.If there are no suh ells, then let x be an arbitrary ell in U . Sine B has at least 2ells, B must have a ell w adjaent to x. Let y ∈ U be the ell adjaent to both x and
w. So we are in the situation shown on the left piture of Figure 5.4. Now we have three
the electronic journal of combinatorics 17 (2010), #R65 9



B

u y

u u v

y

y z

u v

w

B̃

x, y, z ∈ U
ase 1.
y ∈ B

ase 2.a
y 6∈ B

z ∈ E(B)

ase 2.b
y 6∈ B
z ∈ B

ase 2.
y 6∈ B

z 6∈ E(B) ∪ BFigure 5.4: Inrementing the site-perimeter of the polyhex B. The piture on the leftshows the ell x and the notation for its neighbors. The pitures on the right show B and
B̃. The known exterior boundary ells are shown as empty ells. The ells on the top rowwith letters in them are in B̃ \ B. They beome the smaller full ells on the bottom row.ases depending on ell z. If z ∈ E(B) then B̃ = B∪{u, y} as shown in ase 2.a. If z ∈ Bthen B̃ = B ∪ {u, v} as shown in ase 2.b. Finally, if z 6∈ E(B) ∪B then B̃ = B ∪ {y} asshown in ase 2..Proposition 5.7. If p(B) = p and s(B) = σT (p), then B is saturated.Proof. The proof uses Lemma 5.6. It is essentially the same as that of Proposition 3.2.Proposition 5.8. If B is a hexagonal polyhex, then s(B♯) = 2s(B) + p(B) − 2.Proof. We use Euler's formula for the planar graph built from the verties and edgesof the ells of B♯. The number of verties is v(B♯) = s(B) + p(B). The number offaes is f(B♯) = s(B♯) + 1. The number of edges e(B♯) satisfy the equation e(B♯) =
3s(B♯)− (e(B♯)−p(B♯)) whih gives 2e(B♯) = 3s(B♯)+p(B♯). From here Euler's formula
v(B♯) + f(B♯) = e(B♯) + 2 gives

2s(B) + 2p(B) + 2s(B♯) + 2 = 3s(B♯) + p(B♯) + 4whih simpli�es to the desired equality.Proposition 5.9. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σT (p) = 2σH(p) + p − 2.Proof. Let B be a hexagonal polyhex suh that p(B) = p and s(B) = σH(p). Sine B ishexagonal, B♯ is also hexagonal and so p(B♯) = p. Then
σT (p) > s(B♯) = 2s(B) + p(B) − 2 = 2σH(p) + p − 2.
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k 1 2 3 · · ·

r = 0 H3k
k,k,k · · ·

r = 1 H3k
k−1,k,k · · ·

r = 2 H3k+1

k,k,k+1
· · ·

r = 3 H3k+1

k,k,k · · ·

r = 4 H3k+2

k,k+1,k+1
· · ·

r = 5 H3k+2

k,k,k+1
· · ·Figure 5.5: Maximum size polyhexes with �xed site-perimeter p = 6k + r. Note thatadding an extra layer of ells around an animal reates the next animal in the row.
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For the other diretion let A be the hexagonal polyiamond hosen in Proposition 3.4suh that p(A) = p and s(A) = σT (p). It is easy to see that beause of the hoie of p thedual B := A♭ satis�es B♯ = A. Hene p(B) = p and so
σH(p) > s(B) = (s(A) − p(B) + 2)/2 = (σT (p) − p + 2)/2.Figure 5.5 shows the polyhex families that realize the σH values.Proposition 5.10. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σH(p) = ⌊p2/12 − p/2⌋ + 1.Proof. The proof follows from the alulation

σH(p) = (σT (p) − p + 2)/2 = (2⌊p2/12 − p/2⌋ + p − p + 2)/2 = ⌊p2/12 − p/2⌋ + 1.The proof of the following proposition is essentially the same as that of Proposition 4.5.Proposition 5.11. For all s > 1 we have πH(s) = min{p | σH(p) > s}.The following is one of our main theorems. The proof is an easier version of the theproof of Theorem 4.6.Theorem 5.12. For all s > 1 we have πH(s) =
⌈√

12s − 3
⌉

+ 3.Proof. The result follows form the alulation
πH(s) = min{p | σH(p) > s} = min{p | ⌊p2/12 − p/2⌋ + 1 > s}

= min{p | p2/12 − p/2 + 1 > s} = min{p | (p − 3)2
> 12s − 3}

= min{p | p >
√

12s − 3 + 3} =
⌈√

12s − 3
⌉

+ 3.

6 The random neighbor strategyNow we return to ahievement games desribed in the Introdution. In a full set (a, b)-ahievement game , the maker an follow the very simple strategy of randomly markingells adjaent to any of his earlier marks. We all this the random neighbor strategy. Ifthe maker is able to follow this strategy for s turns, then he an mark an animal of size
sa and win the Fsa-ahievement game.Of ourse it is possible that this strategy fails after r < s turns beause the wholeexterior boundary E(Pra) of the animal Pra ∈ Fra built from the maker's ra marks isalready marked by the breaker. This will not happen though if the total number rb ofmarks by the breaker is smaller than the smallest possible site-perimeter of Pra.In this setion we use π to denote either πT or πH .
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ST (a, b) b = 1 b = 2 b = 3 b = 4
a = 1 6 2 1 1
a = 2 12 3 2 1
a = 3 18 5 2 2
a = 4 24 6 3 2 SH(a, b) b = 1 b = 2 b = 3 b = 4

a = 1 18 6 3 2
a = 2 30 9 5 3
a = 3 42 12 6 4
a = 4 54 15 8 5a. polyiamonds b. polyhexesTable 1: The maximum number of turns for whih the random neighbor strategy issuessful in the (a, b)-ahievement game. The values are alulated using the formula ofProposition 6.2 and Table 2.Proposition 6.1. The random neighbor strategy is suessful in the (a, b)-ahievementgame for s turns if rb < π(ra) for all r < s.Proof. Let At ∈ Ft be the animal marked by the maker after t of his marks. The strategylearly works in the �rst turn. Suppose that the strategy works for r < s terms. Afterthe r-th turn the breaker marked rb ells. During the next turn, the exterior perimeterof At satis�es the inequality p(At) > π(t) > π(ra). Sine the exterior perimeter is largerthan the total number of ells marked by the breaker, the maker an always �nd a ell inthe exterior boundary of At for his next mark.Note that this result also holds for polyominoes. Let SH(a, b) := max{s | (∀r < s) rb <

πH(ra)}.Proposition 6.2. Let a and b be positive integers. If a < b(1/
√

3−1/2) then SH(a, b) = 1otherwise SH(a, b) = ⌈(6a + 3b +
√

36a2 + 36ab − 3b2)/b2⌉.Proof. For a, b, r ∈ N we have
rb < πH(ra) ⇔ rb < ⌈

√
12ra − 3 ⌉ + 3

⇔ rb <
√

12ra − 3 + 3

⇔ rb < 3 or b2r2 − (6b + 12a)r + 12 < 0.The roots of b2r2 − (6b+12a)r +12 = 0 for r are (6a+3b±
√

36a2 + 36ab − 3b2)/b2. It iseasy to see that for a > b(1/
√

3 − 1/2) these roots are real, the smaller root is less than
1, and the larger root is greater than 3/b.It is possible to develop a formula for the similarly de�ned ST (a, b) in the polyiamondase. Sine the formula for πT is fairly ompliated, the result is not worth the e�ort.Table 1 lists some values for ST and SH .
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s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
πT (s) 3 4 5 6 6 6 7 8 8 8 9 9 9 10 10 10 11 11
πH(s) 6 8 9 10 11 12 12 13 14 14 15 15 16 16 17 17 18 18Table 2: Some values for πT and πH . The itali numbers orrespond to the hexagonalanimals in Figure 3.2 and Figure 5.5.Referenes[1℄ Jens-P. Bode and Heiko Harborth. Hexagonal polyomino ahievement. DisreteMath., 212(1-2):5�18, 2000. Graph theory (Dörnfeld, 1997).[2℄ Jens-P. Bode and Heiko Harborth. Triangle polyomino set ahievement. In Proeed-ings of the Thirty-seond Southeastern International Conferene on Combinatoris,Graph Theory and Computing (Baton Rouge, LA, 2001), volume 148, pages 97�101,2001.[3℄ M.P. Delest, D. Gouyou-Beauhamps, and B. Vauquelin. Enumeriation of parallel-ogram polyominoes with given bond and site perimeter. Graphs Comb., 3:325�339,1987.[4℄ Martin Gardner. Mathematial games. Si. Amer., 240:18�26, 1979.[5℄ Solomon G. Golomb. Polyominoes: Puzzles, Patterns, Problem and Pakings. Prine-ton University Press, 1965.[6℄ Frank Harary. Ahievement and avoidane games for graphs. In Graph theory (Cam-bridge, 1981), volume 13 of Ann. Disrete Math., pages 111�119. North-Holland,Amsterdam, 1982.[7℄ Frank Harary and Heiko Harborth. Extremal animals. J. Combinatoris InformationSyst. Si., 1(1):1�8, 1976.[8℄ T. Prellberg and A.L. Owzarek. On the asymptotis of the �nite-perimeter partitionfuntion of two-dimensional lattie vesiles. Commun. Math. Phys., 201(3):493�505,1999.[9℄ Nándor Sieben. Polyominoes with minimum site-perimeter and full set ahievementgames. European Journal of Combinatoris, 29:108�117, 2008.[10℄ L.M. Stratyhuk and C.E. Soteros. Statistis of ollapsed lattie animals: Rigorousresults and Monte Carlo simulations. J. Phys. A, Math. Gen., 29(22):7067�7087,1996.[11℄ Winston C. Yang. Adding layers to bumped-body polyforms with minimum perimeterpreserves minimum perimeter. Eletron. J. Comb., 13(1):R6, 11p, 2006.
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