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Abstract

Biggs conjectured that the resistance between any two points on a distance-
regular graph of valency greater than 2 is bounded by twice the resistance between
adjacent points. We prove this conjecture, give the sharp constant for the inequality,
and display the graphs for which the conjecture most nearly fails. Some necessary
background material is included, as well as some consequences.

1 Introduction

The main goal of this paper is to prove the following conjecture of Biggs:

Theorem 1 Let G be a distance-regular graph with degree larger than 2 and diameter D.
If dj is the electric resistance between any two vertices of distance j, then

max
j
dj = dD 6 Kd1(1)

where K = 1 + 94
101

≈ 1.931. Equality holds only in the case of the Biggs-Smith graph.

We remark that for degree 2 the theorem is trivially false. This theorem implies several
statements concerning random walks on distance-regular graphs, which will be given at
the end of the paper. General background material on the concept of electric resistance,
as well as its connection to random walks, can be found in the excellent references [6]
and [2]. Biggs’ conjecture originally appeared in [1], which discusses electric resistance
on distance-regular graphs only. To understand the proof of the conjecture, one must
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understand much of the material in [1]. We have therefore decided to include the material
from [1] which is key to Theorem 1. This appears in Section 3, following the relevant
graph-theoretic definitions in Section 2. Section 4 gives our proof of the theorem, and
Section 5 gives some consequences, including several in the field of random walks.

2 Distance-regular graphs

All the graphs considered in this paper are finite, undirected and simple (for unexplained
terminology and more details, see for example [4]). Let G be a connected graph and let
V = V (G) be the vertex set of G. The distance d(x, y) between any two vertices x, y of G
is the length of a shortest path between x and y in G. The diameter of G is the maximal
distance occurring in G and we will denote this by D = D(G). For a vertex x ∈ V (G),
define Ki(x) to be the set of vertices which are at distance i from x (0 6 i 6 D) where
D := max{d(x, y) | x, y ∈ V (G)} is the diameter of G. In addition, define K−1(x) := ∅
and KD+1(x) := ∅. We write x ∼G y or simply x ∼ y if two vertices x and y are adjacent
in G. A connected graph G with diameter D is called distance-regular if there are integers
bi, ci (0 6 i 6 D) such that for any two vertices x, y ∈ V (G) with d(x, y) = i, there are
precisely ci neighbors of y in Ki−1(x) and bi neighbors of y in Ki+1(x) (cf. [4, p.126]).
In particular, distance-regular graph G is regular with valency k := b0 and we define
ai := k − bi − ci for notational convenience. The numbers ai, bi and ci (0 6 i 6 D) are
called the intersection numbers of G. Note that bD = c0 = a0 = 0, b0 = k and c1 = 1.
The intersection numbers of a distance-regular graph G with diameter D and valency k
satisfy (cf. [4, Proposition 4.1.6])

(i) k = b0 > b1 > · · · > bD−1;
(ii) 1 = c1 6 c2 6 · · · 6 cD;
(iii) bi > cj if i+ j 6 D.

Moreover, if we fix a vertex x of G, then |Ki| does not depend on the choice of x as
ci+1|Ki+1| = bi|Ki| holds for i = 1, 2, . . . D − 1. In the next section, it will be shown that
the resistance between any two vertices of G can be calculated explicitly using only the
intersection array, so that the proof can be conducted using only the known properties of
the array.

3 Electric resistance on distance-regular graphs

Henceforth let G be a distance-regular graph with n vertices, degree k > 3, and diameter
D. Let V = V (G) and E = E(G) be the vertex and edge sets, respectively, of G. To
calculate the resistance between any two vertices we use Ohm’s Law, which states that

V = IR(2)
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where V represents a difference in voltage(or potential), I represents current, and R
represents resistance. That is, we imagine that our graph is a circuit where each edge
is a wire with resistance 1. We attach a battery of voltage V to two distinct vertices u
and v, producing a current through the graph. The resistance between the u and v is
then V divided by the current produced. The current flowing through the circuit can
be determined by calculating the voltage at each point on the graph, then summing the
currents flowing from u, say, to all vertices adjacent to u. Calculating the voltage at each
point is thereby seen to be an important problem. A function f on V is harmonic at a
point z ∈ V if f(z) is the average of neighboring values of f , that is∑

x∼z

(f(x) − f(z)) = 0(3)

The voltage function on V can be characterized as the unique function which is harmonic
on V −{u, v} having the prescribed values on u and v. For our purposes, on the distance-
regular graph G, we will first suppose that u and v are adjacent. It is easy to see that,
for any vertex z, |d(u, z) − d(v, z)| 6 1, where d denotes the ordinary graph-theoretic
distance. Thus, any z must be contained in a unique set of one of the following forms:

Ki
i = {x : d(u, x) = i and d(v, x) = i}(4)

Ki+1
i = {x : d(u, x) = i+ 1 and d(v, x) = i}

Ki
i+1 = {x : d(u, x) = i and d(v, x) = i+ 1}

Suppose that (b0, b1, . . . , bD−1; c1, c2, . . . , cD) is the intersection array of G. For 0 6 i 6
D − 1 define the numbers φi recursively by

φ0 = n− 1(5)

φi =
ciφi−1 − k

bi

We then have the following fundamental proposition.

Proposition 1 The function f defined on V by

f(u) = −f(v) = φ0(6)

f(z) = 0 for x ∈ Ki
i

f(z) = φi for x ∈ Ki
i+1

f(z) = −φi for x ∈ Ki+1
i

is harmonic on V − {u, v}.

In the following intersection diagram, the value of f on each set is given directly outside
the set.
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Figure 1

To prove Proposition 1 we need the following lemma, which may be of interest in its own
right.

Lemma 1 Let z ∈ G, and let Ki = {x : d(z, x) = i} as in Section 2. Let ei be the number
of edges of G with one endpoint in Ki and the other in Ki+1. Then

φi =
k

∑
j>i |Kj|
ei

(7)

Proof: Since φ0 = n− 1 =
∑

j>0 |Kj| and e0 = k, it is clear that (7) holds for i = 0. We

need therefore only verify that the numbers ψi =
k

P
j>i |Kj |
ei

satisfy the recursive relation
given in (5). This is immediate from the facts that ei = bi|Ki| and ei−1 = ci|Ki|, for we
see that

ciψi−1 − k

bi
=
ci(

k|Ki|+k
P

j>i |Kj |
ei−1

) − k

bi
(8)

=
cik

∑
j>i |Kj|

biei−1

=
k

∑
j>i |Kj|
biKi

=
k

∑
j>i |Kj|
ei

= ψi
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Proof of Proposition 1: Suppose first that z ∈ Ki
i for some i. The points adjacent to z

must lie within Ki
i

⋃
Ki−1

i−1

⋃
Ki+1

i+1

⋃
Ki+1

i

⋃
Ki−1

i

⋃
Ki

i−1

⋃
Ki

i+1. Since bi is equal to the
number of adjacent points in Ki+1

i+1

⋃
Ki+1

i , and also in the set Ki+1
i+1

⋃
Ki

i+1, we see that

|{x : z ∼ x and x ∈ Ki
i+1}| = |{x : z ∼ x and x ∈ Ki+1

i }|(9)

A similar argument shows

|{x : z ∼ x and x ∈ Ki
i−1}| = |{x : z ∼ x and x ∈ Ki−1

i }|(10)

It follows from this that ∑
x∼z

f(x) = 0 = f(z)(11)

and f is harmonic at z. Now suppose that z ∈ Ki
i+1 with 1 6 i 6 D− 2. Here the points

adjacent to z must lie within Ki
i+1

⋃
Ki−1

i

⋃
Ki+1

i+2

⋃
Ki

i

⋃
Ki+1

i+1

⋃
Ki+1

i . The number of
edges from z to points in Ki−1

i is ci and to points in Ki+1
i+2 is bi+1. Let the number of edges

from z to points in Ki+1
i be α. Then the number of edges from z to other points in Ki

i+1

is given by k + α− ci+1 − bi. We therefore have∑
x∼z

f(x) = bi+1φi+1 + ciφi−1 + (k + α− ci+1 − bi)φi + α(−φi)(12)

= kφi = kf(z)

where we have used the following equations equivalent to the recursive relation in (5).

ciφi−1 = biφi + k(13)

bi+1φi+1 = ci+1φi − k

We see that f is harmonic at z. The same argument works for z ∈ KD−1
D , except that there

is some difficulty in using the last equation in (13), as bD = 0, and φi was only defined
for i 6 D − 1. Happily, Lemma 1 solves our dilemma, for as an immediate consequence
we obtain φD−1 = k

cD
. Thus, defining φD = 0 is consistent with (13), and f is harmonic

on KD−1
D . By symmetry, f is harmonic at all points lying in sets of the form Ki

i+1, and
the proof is complete.

Corollary 1. φi > φi+1 for 0 6 i 6 D − 2

Proof: Suppose φi 6 φi+1 for some i. Due to the monotonicity of the sequences bi, ci, we
would have

φi+2 =
ci+2φi+1 − k

bi+2

>
ci+1φi − k

bi+1

= φi+1(14)

Continuing in this way we would have φD−1 > φD−2. On the other hand, by harmonicity
φD−1 is the weighted average of the values φD−2, 0, and −φD−1, so that φD−1 < φD−2.
This is a contradiction.
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It may interest the reader to note that the subtracted constant k in the numerator of the
recursive relation of (5) can be replaced by any constant without affecting harmonicity
outside of the sets KD−1

D and KD
D−1. However, k is the only constant which gives φD = 0,

and therefore is the constant dictated by the requirement that f be harmonic and attain
the boundary values of (n− 1) and −(n− 1) at u and v. The resistance between u and v
can now easily be computed as the voltage difference between the points, 2φ0 = 2(n− 1),
divided by the current I flowing through the circuit. This current is the sum of the voltage
differences between u and vertices adjacent to u, and is readily computable as I = nk.
We see that the resistance between u and v is

Ruv =
2(n− 1)

nk
=
n− 1

m
(15)

where m = nk/2 is the number of edges in G. This result is in fact an immediate conse-
quence of Foster’s Network Theorem(see [2] or [7]), and was derived, among other things,
by other methods in [10]. In the remainder of this section, however, it will be more con-
ceptually convenient to keep I and the φ’s in the formulas rather than their explicit values,
as this reminds us that they represent the current and voltages, respectively. Calculating
the resistances between nonadjacent vertices might now seem to be a formidable task, but
in fact there is virtually no more to be done. We have the following proposition.

Proposition 2 The resistance between two vertices of distance j in a graph is given by

2
∑

06i<j φi

I
(16)

Proof: Suppose d(u, v) = j. We can choose points x0 = u, x1, . . . , xj = v such that
xi ∼ xi+1. For any pair of adjacent points y, z we let fyz be the unique function on V given
in Proposition 1 which is harmonic on V −{y, z} and which satisfies f(w) = −f(z) = φ0.
The key claim is that for any three points w, y, z with y ∼ w ∼ z the function fyw + fwz

is harmonic on V − {y, z}. This is clear for all points in V − {y, z} except w. To show
harmonicity at w, note that a current of I flows into w due to fyw, whereas a current of I
flows out of w due to fwz. The net current flow into w is therefore 0, which is equivalent to
harmonicity(see [6]). Thus, the voltage function g =

∑
06i6j−1 fxixi+1

, which is harmonic
on V −{u, v}, gives rise to a current of I flowing from u to v. We must therefore calculate
the values of the function g at the points u and v. It is straightforward to verify that
fxixi+1

(u) = φi(since u lies in the set Ki
i+1 formed with respect to the pair xi, xi+1), and

likewise fxixi+1
(v) = −φD−(i+1). Thus, g(u) =

∑
06i<j φi and g(v) = −

∑
06i<j φi. The

result follows.

4 Proof of Theorem

In fact, we will prove a statement stronger than Theorem 1. Let E be the set of the
following four graphs, with corresponding properties listed:
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Name1 Vertices Intersection array φ1+...+φD−1

φ0

Biggs-Smith Graph 102 (3,2,2,2,1,1,1;1,1,1,1,1,1,3) 0.930693
Foster Graph 90 (3,2,2,2,2,1,1,1;1,1,1,1,2,2,2,3) 0.896067
Flag graph of GH(2,2) 189 (4,2,2,2,2,2;1,1,1,1,1,2) 0.882979
Tutte’s 12-Cage 126 (3,2,2,2,2,2;1,1,1,1,1,3) 0.872

Theorem 2 Other than graphs in E, for any distance regular graph with degree at least
3 we have

φ1 + . . .+ φD−1 < .87φ0(17)

This clearly implies Theorem 1 and shows that the graphs in E are the extremal cases.

Proof of Theorem 2: The proof proceeds by considering a number of separate cases,
and leans heavily on the standard reference [4]. Without access to this book, the proof
will likely be incomprehensible to the reader. In the estimates used in the proof, the −k
in the numerator of the recurrence relation is largely ignored, but the reader should be
warned that this term is by no means unnecessary. That is because it is crucial that the
φi’s form a monotone decreasing sequence, and without the −k this would not be the case.
Nevertheless, we will from this point forth mainly use the facts φi <

ciφi−1

bi
and φi < φi−1.

We are required to show
φ1 + . . .+ φD−1

φ0

6 .87(18)

for all graphs not in E .

Case 1 : D = 2.
We need only show φ1 < .87φ0. This is clear if b1 > 1, since c1 = 1 and φi <

ciφi−1

bi
. The

case b1 = 1 is known to occur only in the case of the Cocktail party graphs, and it is
simple to verify the relation in this case.

Case 2 : k = 3.
It is known(see [4], Theorem 7.5.1) that the only distance-regular graphs of degree 3 with
diameter greater than 2 are given by the intersection arrays below, and which give rise to
the resistances given:

1The referee has pointed out that Tutte’s 12-Cage may be more accurately referred to as Benson’s
graph, and indeed the literature is mixed on this point. The referee further remarked that the Flag graph
of GH(2,2) can also be realized as the line graph of Tutte’s 12-Cage, or Benson’s graph. In this table,
we are employing the names given in [4].
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Name Vertices Intersection array φ1+...φD−1

φ0

Cube 8 (3,2,1;1,2,3) 0.428571
Heawood graph 14 (3,2,2;1,1,3) 0.461538
Pappus graph 18 (3,2,2,1;1,1,2,3) 0.588235
Coxeter graph 28 (3,2,2,1;1,1,1,2) 0.666667
Tutte’s 8-cage 30 (3,2,2,2;1,1,1,3) 0.655172
Dodecahedron 20 (3,2,1,1,1;1,1,1,2,3) 0.842105
Desargues graph 20 (3,2,2,1,1;1,1,2,2,3) 0.710526
Tutte’s 12-cage 126 (3,2,2,2,2,2;1,1,1,1,1,3) 0.872
Biggs-Smith graph 102 (3,2,2,2,1,1,1;1,1,1,1,1,1,3) 0.930693
Foster graph 90 (3,2,2,2,2,1,1,1;1,1,1,1,2,2,2,3) 0.896067

Case 3 : k = 4.
It is known(see [3]) that the only distance-regular graphs of degree 4 with diameter greater
than 2 are given by the intersection arrays below, and which give rise to the resistances
given:
Name Vertices Intersection array φ1+...φD−1

φ0

K5,5 minus a matching 10 (4,3,1;1,3,4) 0.296296
Nonincidence graph of PG(2, 2) 14 (4,3,2;1,2,4) 0.307692
Line graph of Petersen graph 15 (4,2,1;1,1,4) 0.428571
4-cube 16 (4,3,2,1;1,2,3,4) 0.422222
Flag graph of PG(2, 2) 21 (4,2,2;1,1,2) 0.5
Incidence graph of PG(2, 3) 26 (4,3,3;1,1,4) 0.32
Incidence graph of AG(2, 4)-p.c. 32 (4,3,3,1;1,1,3,4) 0.376344
Odd graph O4 35 (4,3,3;1,1,2) 0.352941
Flag graph of GQ(2, 2) 45 (4,2,2,2;1,1,1,2) 0.681818
Doubled odd graph 70 (4,3,3,2,2,1,1;1,1,2,2,3,3,4) 0.521739
Incidence graph of GQ(3, 3) 80 (4,3,3,3;1,1,1,4) 0.417722
Flag graph of GH(2, 2) 189 (4,2,2,2,2,2;1,1,1,1,1,2) 0.882979
Incidence graph of GH(3, 3) 728 (4,3,3,3,3,3;1,1,1,1,1,4) 0.485557

Case 4 : D 6 5, b1 > 5.
This case was done initially by Biggs in [1], without the restriction on b1 but with the
constant 1 in place of .87. Nevertheless, when we restrict b1 as above this is trivial, because
φ1

φ0
< 1

b1
and φi 6 φ1 for all i > 0. Therefore,

φ1 + . . .+ φD−1

φ0

6
(D − 1)φ1

φ0

6
4

b1
6 .8(19)

Henceforth, in all cases for which b1 > 5 we can assume D > 6. In what follows, let j
denote the smallest value such that cj > bj. If cj > bj, then, since cD−j 6 bj and the ci’s
are nondecreasing, we see that D − j < j, hence D 6 2j − 1. If cj = bj, then it follows

the electronic journal of combinatorics 17 (2010), #R78 8



from Corollary 5.9.6 of [4] that c2j > b2j. For this to occur, either c2j > bj or cj > b2j.
By the same argument as before, we obtain D 6 3j − 1. This will be of fundamental
importance in our proof. To begin with, we see that when D > 6 we must have j > 3.

Case 5 : G is a line graph.
The distance-regular line graphs have been classified, and appear in Theorem 4.2.16 of
[4]. All such graphs with k > 3 have D 6 2 and are therefore covered by Case 1, with two
exceptions. First of all, G may be a generalized 2D-gon of order (1, s). The intersection
array of G is then of the form (2(a1 +1), a1 +1, . . . , a1 +1; 1, 1, . . . , 1, 2), with a1 > 1. The
other possibility is that G could be the line graph of a Moore graph, and in this case the
intersection array of G is of the form (2κ− 2, κ− 1, κ− 2; 1, 1, 4), for some κ > 3. In both
of these cases it is straightforward to verify that the conclusion of the theorem holds.

Case 6 : b1 > 5, j = 3, c2 = 1.
Since j = 3, b2 > 2 and D 6 8. We have

φ1 + . . .+ φD−1

φ0

6
φ1 + 6φ2

φ0

6
1

b1
+

6

2b1
=

4

b1
6 .8(20)

Case 7 : b1 > 5, j = 3, c2 > 1.
By Theorem 5.4.1 in [4], c2 6 2

3
c3. If c3 > b3 then D 6 2j − 1 = 5, which was covered in

Case 4. If c3 = b3 6 b2, then if we assume c2
b2

6 1
2

we have

φ1 + . . .+ φD−1

φ0

6
φ1 + 6φ2

φ0

6
1

b1
+

3

b1
=

4

b1
6 .8(21)

On the other hand, if it is not the case that c2
b2

6 1
2
, then the proof of Theorem 5.4.1 of

[4] implies that G contains a quadrangle. By Corollary 5.2.2 in [4], D 6 2k
k+1−b1

. It is
straightforward to verify that the fact that k > b1 + 1 implies that

2k

k + 1 − b1
6 b1 + 1(22)

We therefore see that the fact that G contains a quadrangle implies D 6 b1 + 1. Further-
more, we still have c2

b2
6 2

3
by Theorem 5.4.1 of [4]. We therefore have

φ1 + . . .+ φD−1

φ0

6
φ1 + (b1 − 1)φ2

φ0

6
1

b1
+

2(b1 − 1)

3b1
=

2b1 + 1

3b1
6 .7(23)

Case 8 : b1 > 5, j > 4, c2 = 1.
If j > 4 and b2 = 2 then we must have b3 = 2, c3 = 1, so that b2b3

c2c3
= 4. On the other

hand, if this does not occur than b2
c2

> 3. We will consider these cases separately.
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Subcase 1: b2
c2

> 3.
For i < j we have b1 > bi > ci, and for any i with ci > 1 we must have bi < b1, by
Proposition 5.4.4 in [4]. Thus, ci

bi
6 b1−2

b1−1
. Define α = b1−2

b1−1
. We have

φ1 + . . .+ φD−1

φ0

6
1

b1
+

1

3b1
+

α

3b1
+ . . .+

αj−3

3b1
+

(2j − 1)αj−3

3b1
(24)

Replace the second through (j − 1)th term by a geometric series to obtain

φ1 + . . .+ φD−1

φ0

<
1

b1
+

1

3b1

( 1

1 − b1−2
b1−1

)
+

(2j − 1)αj−3

3b1
(25)

<
1

b1
+
b1 − 1

3b1
+

2(j − 1/2)αj−1/2

3b1α5/2

Simple calculus shows that the maximum of the function uαu is −1
e ln α

. We therefore obtain

φ1 + . . .+ φD−1

φ0

<
b1 + 2

3b1
+

−2

3b1(
b1−2
b1−1

)5/2e ln( b1−2
b1−1

)
(26)

It is straightforward to verify that the function (b−2) ln( b−2
b−1

) is increasing in b, so that the
right hand side of (26) achieves its maximum on the allowed range when b1 = 5. Plugging
in b1 = 5 gives approximately .851 as a bound for (26).

Subcase 2: b2b3
c2c3

> 4.
This follows much as in the previous case, except that we may simplify by using the
slightly weaker bound ci

bi
6 b1−1

b1
for i < j. Let α = b1−1

b1
. Since b2 > b3 and c2 6 c3 we

must have b2
c2

> 2. We then have

φ1 + . . .+ φD−1

φ0

6
1

b1
+

1

2b1
+

1

4b1
+
α

4b1
+. . .+

αj−3

4b1
+

(2j − 1)αj−3

4b1
(27)

Following the steps in (31) above, we obtain

φ1 + . . .+ φD−1

φ0

<
3

2b1
+

1

4
+

−1

2b1(
b1−1

b1
)5/2e ln( b1−1

b1
)

(28)

Again this is decreasing in b1, and plugging in b1 = 5 gives a bound for (28) of about .84.

Case 9 : b1 > 3, j > 4, c2 > 1, G contains a quadrangle.
As in the argument given in Case 7, we see that G containing a quadrangle implies
D 6 b1 +1. Furthermore, Theorem 5.4.1 of [4] implies that c3 > (3/2)c2. Since j > 4 and
thus b2 > b3 > c3 we must have c2

b2
6 2

3
. This gives

φ1 + . . .+ φD−1

φ0

6
1

b1
+ (b1 − 1)

2

3b1
=

2b1 + 1

3b1
(29)

the electronic journal of combinatorics 17 (2010), #R78 10



When b1 > 3 this is bounded by .8.

Case 10 : b1 > 3, j > 4, c2 > 1, G does not contain a quadrangle.
In this case G is a Terwilliger graph. By Corollary 1.16.6 of [4], if k < 50(c2 − 1) then
D 6 4 and b1 > 5, which was covered in Case 4. Thus, we can assume k > 50(c2 − 1),
which implies b1 > 10c2. If b2 > 3c2 then we can follow the proof of Subcase 1 of Case 8
to obtain our result, so we may assume b2 6 3c2, which implies b2 <

b
2
. It follows from

this that for i < j c2
b2

6 (b1/2)−1
b1/2

= b1−2
b1

. We set α = b1−2
b1

. By the proof of Theorem 5.4.1

in [4] we have c3 > 2c2. Since b2 > b3 > c3 > 2c2 we have b2
c2

> 2. We compute

φ1 + . . .+ φD−1

φ0

6
1

b1
+

1

2b1
+

α

2b1
+ . . .+

αj−3

2b1
+

(2j − 1)αj−3

2b1
(30)

Replace the second through (j − 1)th term by a geometric series to obtain

φ1 + . . . φD−1

φ0

<
1

b1
+

1

2b1

( 1

1 − b1−2
b1

)
+

(2j − 1)αj−3

2b1
(31)

<
1

b1
+

1

4
+

(j − 1/2)αj−1/2

b1α5/2

The maximum of the function uαu is −1
e ln α

. We therefore obtain

φ1 + . . . φD−1

φ0

<
1

b1
+

1

4
+

−1

b1(
b1−2

b1
)5/2e ln( b1−2

b1
)

(32)

As before, the function (b− 2) ln( b−2
b

) is increasing in b, so the right hand side of (32) is
decreasing in b1. Plugging in b1 = 10(recall that b1 > 10c2 > 10) gives approximately .64
as a bound.

Case 11 b1 = 3 or 4, k > 5, c2 = 1.
This will be broken down into cases by degree k. Proposition 1.2.1 in [4] implies that
(a1 + 1)|k, so since b1 = k − a1 − 1 and b1 > 0 we see that b1 > k/2. This implies k 6 8.

Subcase k = 8: b1 = 3 is ruled out because (a1 + 1)|k. Suppose b1 = 4. By Proposition
4.3.4 of [4], G is a line graph, and is therefore covered by Case 5.

Subcase k = 7: Since (a1 + 1)|k, we must have a1 = 0 and thus b1 = 6, which is a
contradiction.

Subcase k = 6: Since (a1 + 1)|k, we have a1 ∈ {0, 1, 2}. If a1 = 0, then b1 = 5, a
contradiction. If a1 = 1, then as was shown in [9] G is one of the following graphs.

Name Vertices Intersection array φ1+...φD−1

φ0

Colinearity graph of GQ(2, 2) 15 (6,4;1,3) 0.142857
Colinearity graph of GH(2, 2) 27 (6,4,2;1,2,3) 0.269231
Hamming graph H(3, 3) 63 (6,4,4;1,1,3) 0.258065
Halved Foster graph 45 (6,4,2,1;1,1,4,6) 0.278409
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If a1 = 2, then by Proposition 4.3.4 of [4], G is a line graph, and is therefore covered by
Case 5.

Subcase k = 5: Since (a1 + 1)|k, we must have a1 = 0 and b1 = 4. Suppose first that
b2 = 3 or 4. Note that, for i < j, ci

bi
6 2

3
, since ci + bi 6 5. Using the same technique as

in many of the previous cases we have

φ1 + . . . φD−1

φ0

<
1

4
+

1

12
+

1

12
(
2

3
+ . . .+ (

2

3
)j−2) +

1

12
(
2

3
)j−2(2j − 1)(33)

<
1

4
+

1

12
+

3

12
+

1

16
(
2

3
)j−2(2j − 1)

It is straightforward to verify that the last expression in (33) is decreasing in j for j > 3.
Plugging in j = 3 gives a bound of 31/36 < .87. It remains only to consider b2 6 2.
Suppose b2 = 2. If c3 = 1, it would follow from Corollary 4.3.12(ii) that 3 divides 20.
Thus, we can assume c3 > 2, and therefore j = 3 and D 6 8. We will first show that
n 6 140. Fix a point u in G and let ki = |{v : d(u, v) = i}|. The numbers ki are easily

computable through the intersection arrays by ki =
Qi−1

l=0 biQi
l=1 ci

. The ki’s are nonincreasing for

i > j, so since k3 = 20, if D 6 7 we have n 6 1 + 5 + 6(20) < 140. Suppose D = 8. Then
c6 6 b2 = 2, so c6 = 2 and this implies b6 = 1. In this case, k7 = 10, and thus k8 6 10 as
well. We get n 6 1 + 5 + 5(20) + 2(10) < 140 again. Since k = 5, we get k > (n− 1)/28.
Let θ = |{i : bi = ci = 2}|. If θ = 3, the maximal allowed value, we have the following
calculations:

φ0 = n− 1, φ1 <
n− 1

4
, φ2 <

n− 1

8
,

φ3 <
2((n− 1)/8) − (n− 1)/28

2
=

6(n− 1)

56
,

φ4 <
2(6(n− 1)/56) − (n− 1)/28

2
=

5(n− 1)

56
,

φ5 <
2(5(n− 1)/56) − (n− 1)/28

2
=

4(n− 1)

56

Since φ6, φ7 < φ5 we get

φ1 + . . . φD−1

φ0

<
1

4
+

1

8
+

6

56
+

5

56
+ 3

( 4

56

)
=

44

56
< .87(34)

Similar but easier calculations handle the cases θ = 2, 1, 0. The case b2 = 1 can also be
handled in a similar way. Note that in this case j = 2, so D 6 5. If D 6 4, then

φ1 + . . . φD−1

φ0

6
3φ1

φ0

<
3

4
(35)

If D = 5, then k1 = 5, k2 = 20, and ki 6 20 for i > j(since the ki’s are nonincreasing
for i > j). It follows that n 6 86, and therefore k > n−1

20
. Furthermore, c3 6 b2 = 1, so
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c3 = 1. Thus,

φ0 = n− 1, φ1 <
(n− 1) − k

4
6

19(n− 1)

80
,

φ2 <
c2φ1 − k

1
<

15(n− 1)

80
,

φ3, φ4 <
c2φ2 − k

1
<

11(n− 1)

80

And so
φ1 + . . . φ4

φ0

<
19

80
+

15

80
+ 2

(
11

80

)
= 56/80 = .7(36)

5 Consequences

As indicated in [1], there are some immediate consequences for random walks. Let u be
a vertex of G, and and suppose we start a random walk at u. For any other point v,
we let the expected number of steps needed to hit v be denoted Huv. This is referred to
as the hitting time. The commute time Cuv is the expected number of steps necessary
for the random walk to travel from u to v and back to v, and in the case of distance
regular graphs is equal to 2Huv. By Theorem 1 in [5], the expected commute time of
a random walk between two points u and v is equal to 2mRuv. Thus, from Theorem 1
in this paper, and the calculation of resistance given in Section 2, in a distance-regular
graph with valency greater than 2 we have

Proposition 3

Huv 6 2m
(n− 1

m

)
= 2(n− 1)(37)

Cuv 6 4m
(n− 1

m

)
= 4(n− 1)(38)

The cover time Co(G) is the expected number of steps that our random walk requires
before it has visited every site on G. Applying Theorem 3 in [5], we have

Proposition 4 For n large,

Co(G) 6 (4 + o(1))(n− 1) lnn(39)

In fact, in [8] it was shown that for all graphs, distance-regular or otherwise, we have

Co(G) > (1 + o(1))n lnn(40)

so that the bound in Proposition 4 is the best possible, up to the multiplicative constant.
Let σ be the smallest nonzero eigenvalue of the Laplacian matrix. Note that k − σ is the
second largest eigenvalue of the adjacency matrix. Let Rmax denote the largest resistance
between points in G, which we have seen necessarily occurs when the points are at distance
D. Combining Theorem 1 in this paper with Theorem 7 in [5], we have
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Proposition 5

σ >
1

nRmax

>
m

2n(n− 1)
=

k

4(n− 1)
(41)

There have been discussions between the two authors as to whether Theorem 1 really
gives new information on the structure of distance-regular graphs. It can be shown that
any sequence of non-increasing bi’s and non-decreasing ci’s give rise to a sequence of
potentials φi, and that the φi’s are decreasing and remain positive. In that sense, a graph
doesn’t need to actually exist for a given intersection array in order for the potentials to
be defined and behave correctly. Furthermore, any intersection arrays which can be ruled
out as corresponding to actual graphs by this theorem could in theory be ruled out by the
many facts from which we deduced the theorem. Nevertheless, this theorem does perhaps
capture a large number of disparate and complicated results on distance-regular graphs
in a simple statement. As an example, Theorem 2 shows that the following intersection
arrays cannot be realized.

Intersection array Vertices φ1+...φD−1

φ0

(3,2,2,1,1,1,1;1,1,1,1,1,1,3) 62 1.04918
(5,2,2,1,1,1,1;1,1,1,1,1,1,4) 101 1.0375
(8,3,3,3,3,3,3,3,2,2,1;1,2,2,3,3,3,3,3,3,3,8) 150 0.938852

This can be shown by other methods, but the methods may differ between the examples,
and may have much in common with the given proof of Theorem 2 in certain cases. Note
that these intersection arrays satisfy a number of basic feasibility requirements, such as
being monotone and having ci 6 bD−i for all i. Note further that none of these arrays can
be ruled out by Ivanov’s bound(Corollary 5.9.6 of [4]). We therefore have hopes that this
theorem can be found useful in the study of distance-regular graphs, both for disallowing
certain intersection arrays and as a tool for proving other statements.
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