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Abstract

We consider a random system of equations xi + xj = b(i,j)(mod 2), (xu ∈
{0, 1}, b(u,v) = b(v,u) ∈ {0, 1}), with the pairs (i, j) from E, a symmetric subset
of [n]× [n]. E is chosen uniformly at random among all such subsets of a given car-
dinality m; alternatively (i, j) ∈ E with a given probability p, independently of all
other pairs. Also, given E, Pr{be = 0} = Pr{be = 1} for each e ∈ E, independently
of all other be′ . It is well known that, as m passes through n/2 (p passes through
1/n, resp.), the underlying random graph G(n,#edges = m), (G(n, Pr(edge) = p),
resp.) undergoes a rapid transition, from essentially a forest of many small trees to
a graph with one large, multicyclic, component in a sea of small tree components.
We should expect then that the solvability probability decreases precipitously in the
vicinity of m ∼ n/2 (p ∼ 1/n), and indeed this probability is of order (1−2m/n)1/4,
for m < n/2 ((1− pn)1/4, for p < 1/n, resp.). We show that in a near-critical phase
m = (n/2)(1+λn−1/3) (p = (1+λn−1/3)/n, resp.), λ = o(n1/12), the system is solv-
able with probability asymptotic to c(λ)n−1/12, for some explicit function c(λ) > 0.
Mike Molloy noticed that the Boolean system with be ≡ 1 is solvable iff the un-
derlying graph is 2-colorable, and asked whether this connection might be used to
determine an order of probability of 2-colorability in the near-critical case. We an-
swer Molloy’s question affirmatively and show that, for λ = o(n1/12), the probability
of 2-colorability is . 2−1/4e1/8c(λ)n−1/12, and asymptotic to 2−1/4e1/8c(λ)n−1/12 at
a critical phase λ = O(1), and for λ → −∞.

1 Introduction

A system of 2-linear equations over GF (2) with n Boolean variables x1, . . . , xn ∈ {0, 1} is

xi + xj = bi,j (mod 2), bi,j = bj,i ∈ {0, 1}; (i 6= j). (1.0.1)
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Here the unordered pairs (i, j) correspond to the edge set of a given graph G on the
vertex set [n]. The system (1.1) certainly has a solution when G is a tree. It can be
obtained by picking an arbitrary xi ∈ {0, 1} at a root i and determining the other xj

recursively along the paths leading away from the root. There is, of course, a twin
solution x̄j = 1 − xj , j ∈ [n] . Suppose G is not a tree, i.e. ℓ(G) := e(G) − v(G) > 0. If
T is a tree spanning G, then each of additional edges e1, . . . , eℓ(G)+1 forms, together with
the edges of T , a single cycle Ct, t 6 ℓ(G) + 1. Obviously, a solution xj(T ) of a subsystem
of (1.0.1) induced by the edges of T is a solution of (1.0.1) provided that

bi,j = xi(T ) + xj(T ), (i, j) = e1, ..., eℓ(G)+1; (1.0.2)

equivalently
∑

e∈E(Ct)

be = 0 (mod 2), t = 1, ..., ℓ(G) + 1. (1.0.3)

So, intuitively, the more edges G has the less likely it is that the system (1.0.1) has a
solution. We will denote the number of solutions by S(G).

In this paper we consider solvability of a random system (1.0.1). Namely G is either
the Bernoulli random graph G(n, p) = G(n, Pr(edge) = p), or the Erdős-Rényi random
graph G(n, m) = G(n, # of edges = m). Further, conditioned on the edge set E(G(n, p))
(E(G(n, m) resp.), be’s are independent, and Pr(be = 1) = p̂, for all e. We focus on
p̂ = 1/2 and p̂ = 1. p̂ = 1/2 is the case when be’s are “absolutely random”. For p̂ = 1, be’s
are all ones. Mike Molloy [19], who brought this case to our attention, noticed that here
(1.0.1) has a solution iff the underlying graph is bipartite, 2-colorable in other words.

It is well known that, as m passes through n/2 (p passes through 1/n, resp.), the
underlying random graph G(n, m), (G(n, p), resp.) undergoes a rapid transition, from
essentially a forest of many small trees to a graph with one large, multicyclic, component
in a sea of small tree components. Bollobás [4], [5] discovered that, for G(n, m), the
phase transition window is within [m1, m2] , where

m1,2 = n/2 ± λn2/3, λ = Θ(ln1/2 n).

 Luczak [15] was able to show that the window is precisely [m1, m2] with λ → ∞ how-
ever slowly. (See  Luczak et al [17] for the distributional results on the critical graphs
G(n, m) and G(n, p).) We should expect then that the solvability probability decreases
precipitously for m close to n/2 (p close to 1/n resp.). Indeed, for a multigraph version
of G(n, m), Kolchin [14] proved that this probability is asymptotic to

(1 − γ)1/4

(1 − (1 − 2p̂)γ)1/4
, γ :=

2m

n
, (1.0.4)

if lim sup γ < 1. See Creignon and Daudé [9] for a similar result. Using the results
from Pittel [21], we show (see Appendix) that for the random graphs G(n, γn/2) and
G(n, p = γ/n), with lim sup γ < 1, the corresponding probability is asymptotic to

(1 − γ)1/4

(1 − (1 − 2p̂)γ)1/4
exp

[

γ

2
p̂ +

γ2

2
p̂(1 − p̂)

]

. (1.0.5)
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The relations (1.0.4), (1.0.5) make it plausible that, in the nearcritical phase |m−n/2| =
O(n2/3), the solvability probability is of order n−1/12. Our goal is to confirm, rigorously,
this conjecture.

To formulate our main result, we need some notations. Let {fr}r>0 be a sequence
defined by an implicit recurrence

f0 = 1,

r
∑

k=0

fkfr−k = εr, εr :=
(6r)!

25r32r(3r)!(2r)!
. (1.0.6)

Equivalently, the formal series
∑

r xrfr,
∑

r xrεr (divergent for all x 6= 0) satisfy
(

∑

r

xrfr

)2

=
∑

r

xrεr. (1.0.7)

It is not difficult to show that

εr

2

(

1 − 1

r

)

6 fr 6
εr

2
, r > 0. (1.0.8)

For y, λ ∈ R, let A(y, λ) denote the sum of a convergent series,

A(y, λ) =
e−λ3/6

3(y+1)/3

∑

k>0

(

1
2
32/3λ

)k

k!Γ[(y + 1 − 2k)/3]
. (1.0.9)

We will write Bn ∼ Cn if limn→∞ Bn/Cn = 1, and Bn . Cn if lim supn Bn/Cn 6 1. Let
Sn denote the random number of solutions (1.0.1) with the underlying graph being either
G(n, m) or G(n, p), i. e. Sn = S(G(n, m)) or Sn = S(G(n, p)), and the (conditional)
probability of be = 1 for e ∈ E(G(n, m)) (e ∈ E(G(n, p)) resp.) being equal p̂.

Theorem 1.1. (i) Let p̂ = 1/2. Suppose that

m =
n

2
(1 + λn−1/3), p =

1 + λn−1/3

n
, |λ| = o(n1/12). (1.0.10)

Then, for both G(n, m) and G(n, p),

Pr(Sn > 0) ∼ n−1/12c(λ), (1.0.11)

where

c(λ) :=



























e3/8(2π)1/2
∑

r>0

fr

2r
A(1/4 + 3r, λ), λ ∈ (−∞,∞);

e3/8|λ|1/4, λ → −∞;

e3/8

2 · 33/4
λ1/4 exp(−4λ3/27), λ → ∞.

(1.0.12)

(ii) Let p̂ = 1. Then, with c(λ) replaced by c1(λ) := 2−1/4e1/8c(λ), (1.0.11) holds for
both G(n, m) and G(n, p) if either λ = O(1), or λ → −∞, |λ| = o(n1/12). For λ → ∞,
λ = o(n1/12),

Pr(Sn > 0) . n−1/12c1(λ).
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Notes. 1. For G(n, m) with λ → −∞, and p̂ = 1/2, our result blends, qualitatively,
with the estimate (1.0.4) from [14] and [9] for a subcritical multigraph, and becomes the
estimate (1.0.5) for the subcritical graphs G(n, m) and G(n, p).

2. The part (ii) answers Molloy’s question: the critical graph G(n, m) (G(n, p) resp.) is
bichromatic (bipartite) with probability ∼ c1(λ)n−1/12.

Very interestingly, the largest bipartite subgraph of the critical G(n, p) can be found in
expected time O(n), see Coppersmith et al [8], Scott and Sorkin [23] and references therein.
The case λ → ∞ of (ii) strongly suggests that the supercritical graph G(n, p = c/n),
(G(n, m = cn/2) resp.), i. e. with lim inf c > 1, is bichromatic with exponentially
small probability. In [8] this exponential smallness was established for the conditional
probability, given that the random graph has a giant component.

Here is a technical reason why, for λ = O(1) at least, the asymptotic probability
of 2-colorability is the asymptotic solvability probability for (1.0.1) with p̂ = 1/2 times
2−1/4e1/8. Let Cℓ(x) (Ce

ℓ (x) resp.) denote the exponential generating functions of con-
nected graphs G (graphs G without odd cycles resp.) with excess e(G) − v(G) = ℓ > 0.
It turns out that, for |x| < e−1 (convergence radius of Cℓ(x), Ce

ℓ (x)), and x → e−1,

Ce
ℓ (x)











∼ 1

2ℓ+1
Cℓ(x), ℓ > 0,

=
1

2
C0(x) + ln

(

2−1/4e1/8
)

+ o(1), ℓ = 0.

Asymptotically, within the factor eln
(

2−1/4e1/8

)

, this reduces the problem to that for p̂ =
1/2. Based on (1.0.5), we conjecture that generally, for p̂ ∈ (0, 1], and the critical p,
Pr(Sn > 0) is that probability for p̂ = 1/2 times

(2p̂)−1/4 exp

[

−(1 − p̂)2

2
+

1

8

]

.

(For p̂ = 0, Pr(Sn > 0) = 1 obviously.)

3. While working on this project, we became aware of a recent paper [10] by Daudé and
Ravelomanana. They studied a close but different case, when a system of m equations
is chosen uniformly at random among all n(n − 1) equations of the form (1.0.1). In
particular, it is possible to have pairs of clearly contradictory equations, xi + xj = 0 and
xi + xj = 1. For m = O(n) the probability that none of these simplest contradictions
occurs is bounded away from zero. So, intuitively, the system they studied is close to
ours with G = G(n, m) and p̂ = 1/2. Our asymptotic formula (1.0.11), with two first
equations in (1.0.12), in this case is similar to Daudé-Ravelomanana’s main theorem, but
there are some puzzling differences. The exponent series in their equation (2) is certainly
misplaced; their claim does not contain our sequence {fr}.

As far as we can judge by a proof outline in [10], our argument is quite different. Still,
like [10], our analysis is based on the generating functions of sparse graphs discovered, to
a great extent, by Wright [25], [26]. We gratefully credit Daudé and Ravelomanana for
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stressing importance of Wright’s bounds for the generating function Cℓ(x). These bounds
play a substantial role in our argument as well.

4. We should mention a large body of work on a related, better known, 2 − SAT
problem, see for instance Bollobás et al [6], and references therein. It is a problem of
existence of a truth-satisfying assignment for the variables in the conjunction of m random
disjunctive clauses of a form xi ∨ xj , (i, j ∈ [n]). It is well known, Chvátal and Reed [7],
that the existence threshold is m/n = 1. It was proved in [6] that the phase transition
window is [m1, m2], with

m1,2 ± λ n2/3, |λ| → ∞ however slowly,

and that the solvability probability is bounded away from both 0 and 1 iff m + O(n2/3).

5. A natural extension of the system (1.0.1) is a system of k-linear equations

∑

i∈e

xi = be (mod 2), (1.0.13)

where e runs over a set E of (hyper)edges of a k-uniform hypergraph G, k > 2, on the
vertex set [n], Kolchin [14]. Suppose G is chosen uniformly at random among all k-
uniform graphs with a given number m of edges, and, given G, the be’s are independent
Bernoullis. Dubois and Mandler [11] showed that, for k = 3, m/n = 0.91793... is a sharp
threshold for the limiting solvability probability.

The paper is organized as follows.
In the section 2 we work on the G(n, p) and p̂ = 1/2 case. Specifically in the

(sub)section 2.1 we express the solvability probability, Pr(Sn > 0), and its truncated
version, as a coefficient by xn in a power series based on the generating functions of the
sparsely edged (connected) graphs. We also establish positive correlation between solv-
ability and boundedness of a maximal “excess”, and determine a proper truncation of
the latter dependent upon the behavior of λ. In the section (2.2) we provide a necessary
information about the generating functions and their truncated versions involved in the
formula and the bounds for Pr(Sn > 0). In the section 2.3 we apply complex analysis
techniques to the “coefficient by xn ” formulas and obtain a sharp asymptotic estimate
for Pr(Sn > 0) for |λ| = o(n1/12).

In the section 3 we transfer the results of the section 2 to the G(n, m) and p̂ = 1/2
case .

In the section 4 we establish the counterparts of the results from the sections 2,3 for
G(n, p), G(n, m) with p̂ = 1. An enumerative ingredient of the argument is an analogue
of Wright’s formulas for the generating functions of the connected graphs without odd
cycles.

In Appendix we prove some auxilliary technical results, and an asymptotic formula
for Pr(Sn > 0) in the subcritical case, i. e. when the average vertex degree is less than,
and bounded away from 1.
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2 Solvability probability: G(n, p) and p̂ = 1/2.

2.1 Representing bounds for Pr(Sn > 0) as a coefficient of xn in
a power series.

Our first step is to compute the probability of the event {Sn > 0}, conditioned on G(n, p).
Given a graph G = (V (G), E(G)), we denote v(G) = |V (G)|, e(G) = |E(G)|.
Lemma 2.1. Given a graph G on [n], let c(G) denote the total number of its components
Hi. Then

Pr(Sn > 0 |G(n, p) = G) =

c(G)
∏

i=1

(

1

2

)e(Hi)−(v(Hi)−1)

=

(

1

2

)X(G)

, X(G) := e(G) − n + c(G).

Consequently

Pr(Sn > 0) = E

[

(

1

2

)X(G(n,p))
]

.

Proof of Lemma 2.1. Recall that, conditioned on G(n, p), the edge variables be’s
are mutually independent. So it is suffices to show that a system (1.0.1) for a connected
graph H , with independent be, e ∈ E(H), such that Pr(be = 1) = 1/2, is solvable with
probability (1/2)ℓ+1, where ℓ = e(H) − v(H).

Let T be a tree spanning H . Let x(T ) := {xi(T )}i∈V (H) be the solution of the sub-
system of (1.0.1) corresponding to v(H) − 1 edges of T , with xi0 = 1 say, for a specified
“root” i0. x(T ) is a solution of the whole system (1.0.1) iff

be = xi(T ) + xj(T ), ((i, j) = e), (2.1.1)

for each of e(H) − (v(H) − 1) = ℓ + 1 edges e ∈ E(H) \ E(T ). By independence of be’s,
the probability that, conditioned on {be}e∈E(T ), the constraints (2.1.1) are met is (1/2)ℓ+1.
(It is crucial that Pr(be = 0) = Pr(be = 1) = 1/2.) Hence the unconditional solvability
probability for the system (1.0.1) with the underlying graph H is (1/2)ℓ+1 as well.

Note. For a cycle C ⊆ H , let bC =
∑

e∈E(C) be. The conditions (2.1.1) are equivalent

to bC being even for the ℓ+1 cycles, each formed by adding to T an edge in E(H)\E(T ).
Adding the equations (1.0.1) over the edges of any cycle C ⊆ H , we see that necessarily
bC is even too. Thus our proof effectively shows that

Pr

{

⋂

C⊆H

{bC is even}
}

=

(

1

2

)ℓ(H)+1

.

Using Lemma 2.1, we express P (S(n, p) > 0) as the coefficient by xn in a formal power
series. To formulate the result, introduce Cℓ(x), the exponential generating function of a
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sequence {C(k, k + ℓ)}k>1, where C(k, k + ℓ) is the total number of connected graphs H
on [k] with excess e(H) − v(H) = ℓ. Of course, C(k, k + ℓ) = 0 unless −1 6 ℓ 6

(

k
2

)

− k.

Lemma 2.2.

Pr(Sn > 0) = N(n, p) [xn] exp

[

1

2

∑

ℓ>−1

(

p

2q

)ℓ

Cℓ(x)

]

, (2.1.2)

N(n, p) := n! qn2/2

(

p

q3/2

)n

. (2.1.3)

Proof of Lemma 2.2. The proof mimicks derivation of the “coefficient-of xn- ex-
pression” for the largest component size distribution in [22].

Given α = {αk,ℓ}, such that
∑

k,ℓ kαk,ℓ, let Pn(α) denote the probability that G(n, p) has
αk,ℓ components H with v(H) = k and e(H)− v(H) = ℓ. To compute Pn(α), we observe
that there are

n!
∏

k,ℓ

(k!)αk,ℓαk,ℓ!

ways to partition [n] into
∑

k,ℓ αk,ℓ subsets, with αk,ℓ subsets of cardinality k and “type”
ℓ. For each such partition, there are

∏

k,ℓ

[C(k, k + ℓ)]αk,ℓ

ways to build αk,ℓ connected graphs H on the corresponding αk,ℓ subsets, with v(H) = k,
e(H) − v(H) = ℓ. The probability that these graphs are induced subgraphs of G(n, p) is

∏

k,ℓ

[

pk+ℓq(k
2)−(k+ℓ)

]αk,ℓ

=

(

p

q3/2

)n
∏

k,ℓ

[

(

p

q

)ℓ

qk2/2

]αk,ℓ

,

as
∑

k,ℓ k αk,ℓ. The probability that no two vertices from two different subsets are joined
by an edge in G(n, p) is qr, where r is the total number of all such pairs, i. e.

r =
∑

k,ℓ

k2

(

αk,ℓ

2

)

+
1

2

∑

(k1,ℓ1)6=(k2,ℓ2)

k1k2αk1,ℓ1αk2,ℓ2

= − 1

2

∑

k,ℓ

k2αk,ℓ +
1

2

(

∑

k,ℓ

k αk,ℓ

)2

= − 1

2

∑

k,ℓ

k2αk,ℓ +
n2

2
.

Multiplying the pieces,

Pn(α) = N(n, p)
∏

k,ℓ

1

αk,ℓ!

[

(p/q)ℓC(k, k + ℓ)

k!

]αk,ℓ

.
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So, using Lemma 2.1,

Pr(Sn > 0) = N(n, p)
∑

α

∏

k,ℓ

1

αk,ℓ!

[

(1/2)ℓ+1(p/q)ℓC(k, k + ℓ)

k!

]αk,ℓ

. (2.1.4)

Notice that dropping factors (1/2)ℓ+1 on the right, we get 1 instead of Pr(Sn > 0) on
the left, i.e.

1 = N(n, p)
∑

α

∏

k,ℓ

1

αk,ℓ!

[

(p/q)ℓC(k, k + ℓ)

k!

]αk,ℓ

. (2.1.5)

So, multiplying both sides of (2.1.4) by xn

N(n,p)
and summing over n > 0,

∑

n

xn Pr(Sn > 0)

N(n, p)
=

∑

P

k,ℓ
kαk,ℓ<∞

∏

k,ℓ

xkαk,ℓ

αk,ℓ!

[

(1/2)ℓ+1(p/q)ℓC(k, k + ℓ)

k!

]αk,ℓ

= exp

[

1

2

∑

ℓ

(p/2q)ℓ
∑

k

C(k, k + ℓ)xk

k!

]

= exp

[

1

2

∑

ℓ

(p/2q)ℓCℓ(x)

]

.

(2.1.6)

We hasten to add that the series on the right, whence the one on the left, converges for
x = 0 only. Indeed, using (2.1.5) instead of (2.1.4),

exp

[

∑

ℓ

(p/q)ℓCℓ(x)

]

=
∑

n

xn 1

N(n, p)
=
∑

n

(

xq3/2

p

)n

n! qn2/2
= ∞, (2.1.7)

for each x > 0. Therefore, setting p/2q = p1/q1, (q1 = 1 − p1),
∑

ℓ

(p/2q)ℓCℓ(x) =
∑

ℓ

(p1/q1)
ℓCℓ(x) = ∞, ∀x > 0,

as well.

Note. Setting p/q = w, x = yw, in (2.1.7), so that p = w/(w + 1), q = 1/(w + 1), we
obtain a well known (exponential) identity, e. g. Janson et al [13],

exp

[

∑

ℓ>−1

wℓCℓ(yw)

]

=
∑

n>0

yn

n!
(w + 1)(

n
2);

the right expression (the left exponent resp.) is a bivariate generating function for graphs
(connected graphs resp.) G enumerated by v(G) and e(G). Here is a similar identity
involving generating functions of connected graphs G with a fixed positive excess,

exp

[

∑

ℓ>1

wℓCℓ(x)

]

=
∑

r>0

wrEr(x), (2.1.8)
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where E0(x) ≡ 1, and, for ℓ > 1, Eℓ(x) is the exponential generating function of graphs
G without tree components and unicyclic components, that have excess ℓ(G) = e(G) −
v(G) = ℓ, see [13]. In the light of Lemma (2.2), we will need an expansion

exp

[

1

2

∑

ℓ>1

wℓCℓ(x)

]

=
∑

r>0

wrFr(x). (2.1.9)

Like Er(x), each power series Fr(x) has nonnegative coefficients, and converges for |x| <
e−1.

By Lemma 2.2 and (2.1.8),

Pr(Sn > 0) =N(n, p)
∑

r>0

(

p

2q

)r

[xn]
{

eH(x)Fr(x)
}

;

H(x) :=
q

p
C−1(x) +

1

2
C0(x).

(2.1.10)

Interchange of [xn] and the summation is justifiable as each of the functions on the right
has a power series expansion with only nonnegative coefficients. That is, divergence of
∑

ℓ(p/2q)ℓCℓ(x) in (2.1.6) does not impede evaluation of Pr(Sn > 0). Indirectly though
this divergence does make it difficult, if possible at all, to obtain a sufficiently sharp
estimate of the terms in the above sum for r going to ∞ with n, needed to derive an
asymptotic formula for that probability. Thus we need to truncate, one way or another,
the divergent series on the right in (2.1.6). One of the properties of Cℓ(x) discovered by
Wright [25] is that each of these series converges (diverges) for |x| < e−1 (for |x| > e−1

resp.). So, picking L > 0, and restricting summation range to ℓ ∈ [−1, L], we definitely
get a series convergent for |x| < e−1. What is then a counterpart of Pr(Sn > 0)? Perusing
the proof of Lemma 2.2, we easily see the answer.

Let G be a graph with components H1, H2, . . . . Define E(G), a maximum excess of G,
by

E(G) = max
i

[e(Hi) − v(Hi)].

Clearly, E(G) is monotone increasing, i.e. E(G′) 6 E(G′′) if G′ ⊆ G′′. Let En = E(G(n, p)).

Lemma 2.3.

Pr(Sn > 0, En 6 L) = N(n, p) [xn] exp

[

1

2

L
∑

ℓ=−1

(

p

2q

)ℓ

Cℓ(x)

]

, (2.1.11)

The proof of (2.1.11) is an obvious modification of that for (2.1.2).

If, using (2.1.11), we are able to estimate Pr(Sn > 0, En 6 L), then evidently we will
get a lower bound of Pr(Sn > 0), via

Pr(Sn > 0) > Pr(Sn > 0, En 6 L). (2.1.12)

Crucially, the events {Sn > 0} and {En 6 L} are positively correlated.
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Lemma 2.4.

Pr(Sn > 0) 6
Pr(Sn > 0, En 6 L)

Pr(En 6 L)
. (2.1.13)

Note. The upshot of (2.1.12)-(2.1.13) is that

Pr(Sn > 0) ∼ Pr(Sn > 0, En 6 L),

provided that L = L(n) is just large enough to guarantee that Pr(En 6 L) → 1.

Proof of Lemma 2.4. By Lemma 2.1,

Pr(Sn > 0, En 6 L) = E

[

(

1

2

)X(G(n,p))

1{E(G(n,p))6L}

]

,

where X(G) = e(G) − n + c(G). Notice that (1/2)X(G) is monotone decreasing. Indeed,
if a graph G2 is obtained by adding one edge to a graph G1, then

e(G2) = e(G1) + 1, c(G2) ∈ {c(G1) − 1, c(G1)},

so that X(G2) > X(G1). Hence, using induction on e(G2) − e(G1),

G1 ⊆ G2 =⇒ X(G2) > X(G1).

Furthermore 1{E(G)6L} is also monotone decreasing. (For e /∈ E(G), if e joins two vertices
from the same component of G then E(G+e) > E(G) obviously. If e joins two components,
H1 and H2 of G, then the resulting component has an excess more than or equal to
max{E(H1), E(H2)}, with equality when one of two components is a tree.)

Now notice that each G on [n] is essentially a
(

n
2

)

-long tuple δ of {0, 1}-valued vari-
ables δ(i,j), δ(i,j) = 1 meaning that (i, j) ∈ E(G). So, a graph function f(G) can be
unambigiously written as f(δ). Importantly, a monotone decreasing (increasing) graph
function is a monotone decreasing (increasing) function of the code δ. For the random
graph G(n, p), the components of δ are independent random variables. According to an
FKG-type inequality, see Grimmett and Stirzaker [12] for instance, for any two decreasing
(two increasing) functions f(Y ), g(Y ) of a vector Y with independent components,

E[f(Y )g(Y )] > E[f(Y )] E[g(Y )].

Applying this inequality to (1/2)X(δ)1{E(δ)6L}, we obtain

Pr(Sn > 0, En 6 L) >E

[

(

1

2

)X(G(n,p))
]

E
[

1{E(G(n,p))6L}

]

= Pr(Sn > 0) Pr(En 6 L).
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Thus our next step is to determine how large E(G(n, p)) is typically, if

p =
1 + λn−1/3

n
, λ = o(n1/3). (2.1.14)

For p = c/n, c < 1, it was shown in Pittel [21] that

lim Pr(G(n, p) does not have a cycle) = (1 − c)1/2 exp(c/2 + c2/4).

From this result and monotonicity of E(G), it follows that, for p in (2.1.14),

lim Pr(E(G(n, p)) > 0) = 1.

If λ → −∞, then we also have

lim Pr(E(G(n, p)) > 0) = 0, (2.1.15)

that is E(G(n, p)) 6 0 with high probability (whp). (The proof of (2.1.15) mimicks
 Luczak’s proof [15] of an analogous property of G(n, m), with n−2/3(n/2 − m) → ∞.)

Furthermore, by Theorem 1 in [17], and monotonicity of E(G(n, p)), it follows that
E(G(n, p)) is bounded in probability (is OP (1), in short), if lim sup λ < ∞.

Finally, suppose that λ → ∞. Let L(G(n, m)) denote the total excess of the num-
ber of edges over the number of vertices in the complex components of G(n, m), i. e.
the components that are neither trees nor unicyclic. According to a limit theorem for
L(G(n, m = (n/2)(1 + λn−1/3))) from [13], L(G(n, m))/λ3 → 2/3, in probability. Ac-
cording to  Luczak [15], whp G(n, m) has exactly one complex component. So whp
E(G(n, m)) = L(G(n, m)), i. e. E(G(n, m))/λ3 → 2/3 in probability, as well.

Now, if

m′ = Np + O
(

√

Npq
)

, N :=

(

n

2

)

,

then
m′ =

n

2
(1 + λ′n−1/3), λ′ := λ

(

1 + O(n−1/6)
)

.

Therefore, in probability,
E(G(n, m′))

λ3
→ 2

3
,

as well. From a general “transfer principle” ( [5], [16]) it follows then that

E(G(n, p))

λ3
→ 2

3
,

in probability, too.

This discussion justifies the following choice of L:

L =











0, if lim λ = −∞,

u → ∞ however slowly, if λ = O(1),

λ3, if λ → ∞, λ = o(n1/12).

(2.1.16)
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2.2 Generating functions

First, some basic facts about the generating functions Cℓ(x) and Eℓ(x). Introduce a tree
function T (x), the exponential generating function of {kk−1}, the counts of rooted trees
on [k], k > 1. It is well known that the series

T (x) =
∑

k>1

xk

k!
kk−1

has convergence radius e−1, and that

T (x) = xeT (x), |x| 6 e−1;

in particular, T (e−1) = 1. (This last fact has a probabilistic explanation: {kk−1

ekk!
} is the

distribution of a total progeny in a branching process with an immediate family size
being Poisson (1) distributed.) T (x) is a building block for all Cℓ(x). Namely, (Moon
[20], Wright [25], Bagaev [1] resp.),

C−1(x) = T (x) − 1

2
T 2(x), (2.2.1)

C0(x) =
1

2

[

ln
1

1 − T (x)
− T (x) − 1

2
T 2(x)

]

, (2.2.2)

C1(x) =
T 4(x)(6 − T (x))

24(1 − T (x))3
,

and ultimately, for all ℓ > 0,

Cℓ(x) =

3ℓ+2
∑

d=0

cℓ,d

(1 − T (x))3ℓ−d
, (2.2.3)

cℓ,d being constants, Wright [25]. Needless to say, |x| < e−1 in all the formulas. One
should rightfully anticipate though that the behaviour of Cℓ(x) for x’s close to e−1 is going
to determine an asymptotic behaviour of Pr(Sn > 0, En 6 L). And so the (d = 0)-term
in (2.2.3) might well be the only term we would need eventually. In this context, it is
remarkable that in a follow-up paper [26] Wright was able to show that, for cℓ := cℓ,0 > 0,
dℓ := −cℓ,1 > 0, (ℓ > 1),

cℓ

(1 − T (x))3ℓ
− dℓ

(1 − T (x))3ℓ−1
6c Cℓ(x) 6c

cℓ

(1 − T (x))3ℓ
. (2.2.4)

(We write
∑

j ajx
j 6c

∑

j bjx
j when aj 6 bj for all j.) In the same paper he also

demonstrated existence of a constant c > 0 such that

cℓ ∼ c

(

3

2

)ℓ

(ℓ − 1)!, dℓ ∼ c

(

3

2

)ℓ

ℓ!, (ℓ → ∞). (2.2.5)
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Later Bagaev and Dmitriev [2] showed that c = (2π)−1. By now there have been found
other proofs of this fact. See, for instance, Bender et al [3] for an asymptotic expansion
of cℓ due to Meerteens, and  Luczak et al [17] for a rather elementary proof based on the
behavior of the component size distribution for the critical G(n, m).

Turn to Er(x), r > 1. It was shown in [13] that, analogously to (2.2.3),

Er(x) =
5r
∑

d=0

εr,d

(1 − T (x))3r−d
,

εr,d =
(6r − 2d)!Qd(r)

25r32r−d(3r − d)!(2r − d)!
,

(2.2.6)

where Q0(r) = 1, and, for d > 0, Qd(r) is a polynomial of degree d. By Stirling’s formula,

εr := εr,0 ∼ (2π)−1/2

(

3

2

)r

rr−1/2e−r, r → ∞. (2.2.7)

Formally differentiating both sides of (2.1.8) with respect to w and equating coefficients
by wℓ−1, we get a recurrence relation

rEr(x) =
r
∑

k=1

kCk(x)Er−k(x). (2.2.8)

By (2.2.3) and (2.2.6), the highest power of (1 − T (x))−1 on both sides of (2.2.8) is 3r,
and equating the two coefficients we get a recurrence relation involving εr and cr,

r εr =

r
∑

k=1

kckεr−k, r > 1. (2.2.9)

With these preliminaries out of the way, we turn to the formula (2.1.11) for Pr(Sn >
0, En 6 L). Notice upfront that, for L = 0—arising when λ → −∞—we simply have

Pr(Sn > 0, En 6 0) = N(n, p) [xn]eH(x), H(x) =
q

p
C−1(x) +

1

2
C0(x). (2.2.10)

The next Lemma provides a counterpart of (2.1.10) and (2.2.10) for L ∈ [1,∞).

Lemma 2.5. Given L ∈ [1,∞),

Pr(Sn > 0, En 6 L) = N(n, p)

∞
∑

r=0

(

p

2q

)r

[xn]
{

eH(x)F L
r (x)

}

, (2.2.11)

where {F L
r (x)} is determined by a recurrence relation

rF L
r (x) =

1

2

r∧L
∑

k=1

k Ck(x)F L
r−k(x), r > 1, (2.2.12)

and F L
0 (x) = 1. (Here a ∧ b := min{a, b}.)
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Proof of Lemma 2.5. Clearly

exp

(

1

2

L
∑

ℓ=1

wℓCℓ(x)

)

=

∞
∑

r=0

wrF L
r (x), (2.2.13)

where F L
r (x) are some power series, with nonnegative coefficients, convergent for |x| < e−1.

This identity implies that

exp

(

L
∑

ℓ=1

wℓCℓ(x)

)

=

(

∞
∑

r=0

wrF L
r (x)

)2

.

Differentiating this with respect to w and replacing exp
(

∑L
ℓ=1 wℓCℓ(x)

)

on the left of the

resulting identity with
(
∑∞

s=0 wsF L
s (x)

)2
, we get , after multiplying by w,

(

∞
∑

s=0

wsF L
s (x)

)(

L
∑

ℓ=1

ℓwℓCℓ(x)

)

= 2
∞
∑

r=1

rwrF L
r (x).

Equating the coefficients by wr, r > 1, of the two sides we obtain the recurrence (2.2.12).

The recurrence (2.2.12) yields a very useful information about F L
r (x).

Lemma 2.6. Let L > 0. For r > 0,

F L
r (x) =

5r
∑

d=0

fL
r,d

(1 − T (x))3r−d
, (2.2.14)

and, denoting fL
r = fL

r,0, gL
r = −fL

r,1

fL
r

(1 − T (x))3r
− gL

r

(1 − T (x))3r−1
6c F L

r (x) 6c
fL

r

(1 − T (x))3r
. (2.2.15)

Furthermore the leading coefficients fL
r , gL

r satisfy a recurrence relation

rfL
r =

1

2

r∧L
∑

k=1

k ck fL
r−k; fL

0 = 1, (2.2.16)

rgL
r =

1

2

r∧L
∑

k=1

k ck gL
r−k +

1

2

r∧L
∑

k=1

k dk fL
r−k; gL

0 = 0, (2.2.17)

so, in particular, fL
r > 0 and gL

r > 0 for r > 0.
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Note. 1. This Lemma and its proof are similar to those for the generating functions
Er(x) obtained in [10].

Proof of Lemma 2.6. (a) We prove (2.2.14) by induction on r. (2.2.14) holds for
r = 0 as F L

0 (x) ≡ 1 and fL
0,0 = fL

0 = 1. Further, by (2.2.12) and (2.2.3),

F L
1 (x) =

1

2
C1(x) =

1

2

5
∑

d=0

c1,d

(1 − T (x))3−d
,

i. e. (2.2.14) holds for r = 1 too. Assume that r > 2 and that (2.2.14) holds for for
r′ ∈ [1, r − 1]. Then, by (2.2.12), (2.2.3) and inductive assumption,

F L
r (x) =

1

2r

r∧L
∑

k=1

kCk(x)F L
r−k(x)

=
1

2r

r∧L
∑

k=1

k
3k+2
∑

d=0

ck,d

(1 − T (x))3k−d

5(r−k)
∑

d1=0

fL
r−k,d1

(1 − T (x))3(r−k)−d1

=
1

2r

r∧L
∑

k=1

k
∑

d63k+2, d165(r−k)

ck,d fL
r−k,d1

(1 − T (x))3r−(d+d1)
.

Here
0 6 d + d1 6 3k + 2 + 5(r − k) = 5r − 2(k − 1) 6 5r,

so (2.2.14) holds for r as well.

(b) Plugging (2.2.14) and (2.2.3) into (2.2.12) we get

5r
∑

d=0

fL
r,d

(1 − T (x))3r−d
=

r∧L
∑

k=1

k

2r

3k+2
∑

d1=0

ck,d1

(1 − T (x))3k−d1

5(r−k)
∑

d2=0

fL
r−k,d2

(1 − T (x))3(r−k)−d2
.

Equating the coefficients by (1− T (x))−3r (by (1− T (x))−3r+1 resp.) on the right and on
the left, we obtain (2.2.16) ((2.2.17) resp.).

(c) For r = 0, (2.2.15) holds trivially. For r > 1, inductively we have: by (2.2.4)
(upper bound) and (2.2.12), (2.2.16),

F L
r (x) 6c

1

2r

r∧L
∑

k=1

k
ck

(1 − T (x))3k

fL
r−k

(1 − T (x))3(r−k)

=
1

(1 − T (x))3r

1

2r

r∧L
∑

k=1

kckf
L
r−k

=
fL

r

(1 − T (x))3r
;
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furthermore, by (2.2.4) (lower bound), (2.2.12) and (2.2.16)-(2.2.17),

F L
r (x) >c

1

2r

r∧L
∑

k=1

k

[

ck

(1 − T (x))3k
− dk

(1 − T (x))3k−1

]

F L
r−k(x)

>c
1

2r

r∧L
∑

k=1

k
ck

(1 − T (x))3k

[

fL
r−k

(1 − T (x))3(r−k)
− gL

r−k

(1 − T (x))3(r−k)−1

]

− 1

2r

r∧L
∑

k=1

k
dk

(1 − T (x))3k−1
· fL

r−k

(1 − T (x))3(r−k)

=
fL

r

(1 − T (x))3r
− 1

(1 − T (x))3r−1

[

1

2r

r∧L
∑

k=1

kckg
L
r−k +

1

2r

r∧L
∑

k=1

kdkf
L
r−k

]

=
f l

r

(1 − T (x))3r
− gL

r

(1 − T (x))3r−1
.

To make the bound (2.2.15) work we need to have a close look at the sequence
{fL

r , gL
r }r>0. First of all, it follows from (2.2.16) that

fL
r 6 fr := f∞

r , gL
r 6 gr := g∞

r .

That is fr and −gr are the coefficients by (1 − T (x))−3r and (1 − T (x))−3r+1 in the
expansion (2.2.13) for Fr(x) := F∞

r (x). Now, using (2.2.13) for L = ∞ and (2.1.8), we
see that

(

∑

r>0

wrFr(x)

)2

=
∑

r>0

wrEr(x).

So, equating the coefficients by wr, r > 0, we get

r
∑

k=0

Fk(x)Fr−k(x) = Er(x).

Plugging (2.2.6) and (2.2.14) (with L = ∞), and comparing coefficients by (1 − T (x))−3r

((1 − T (x))−3r+1, resp.), we obtain

r
∑

k=0

fkfr−k = εr,0; 2

r
∑

k=0

fkgr−k = −εr,1.

In particular,

fr 6
1

2
εr,0, gr 6 −1

2
εr,1.
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Consequently, using (2.2.6) for r > 2 and d = 0,

fr =
1

2
εr,0 −

1

2

r−1
∑

k=1

fkfr−k >
1

2
εr,0 −

1

2

r−1
∑

k=1

1

2
εk,0

1

2
εr−k,0

>
εr,0

2

(

1 − 1

4

r−1
∑

j=1

(

r

j

)−1
(

r
j

)(

2r
2j

)(

3r
3j

)

(

6r
6j

)

)

>
εr,0

2

(

1 − 1

4

r−1
∑

j=1

(

r

j

)−1
)

>
εr,0

2
(1 − 1/r),

that is

εr,0

2
(1 − 1/r) 6 fr 6

εr,0

2
∼ 1

2
√

2π

(

3

2

)r

rr−1/2e−r, (r → ∞), (2.2.18)

see (2.2.7). Furthermore, using (2.2.6) for r > 0 and d = 1,

gr 6b

(

3

2

)r

rr+1/2e−r. (2.2.19)

And one can prove a matching lower bound for gr. Hence, like εr, fr, gr grow essentially
as rr, too fast for Fr(x) = F∞

r (x) to be useful for asymptotic estimates. The next Lemma
(last in this subsection) shows that, in a pleasing contrast, fL

r , gL
r grow much slower when

r ≫ L.

Lemma 2.7. There exists L0 such that, for L > L0,

fL
r 6b

(

3L

2e

)r

, gL
r 6b r

(

3L

2e

)r

, ∀ r > 0. (2.2.20)

Proof of Lemma 2.7. (a) It is immediate from (2.2.18), (2.2.19) that, for some
absolute constant A and all L > 0,

fL
r = fr 6 A

(

3L

2e

)r

, gL
r = gr 6 Ar

(

3L

2e

)r

0 6 r 6 L.

Let us prove existence an integer L > 0, with a property: if for some s > L and all t 6 s,

fL
t 6 A

(

3L

2e

)t

, gL
t 6 At

(

3L

2e

)t

, (2.2.21)

then

fL
s+1 6 A

(

3L

2e

)s+1

, gL
s+1 6 A(s + 1)

(

3L

2e

)s+1

.
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By (2.2.16), (2.2.21), and (2.2.5), there exists an absolute constant B > 0 such that

(s + 1)fL
s+1 6 AB

(

3L

2e

)s+1

L1/2
L
∑

k=1

(

k

L

)k

.

A function (x/L)x attains its minimum on [0, L] at x = L/e, and it is easy to show that

(x/L)x 6

{

e−x, x 6 L/e,

e−(L−x)(3−e)/2, x > L/e.

Since s + 1 > L, we obtain then

fL
s+1 6AB

(

1

1 − e−1
+

1

1 − e−(3−e)/2

)

· L−1/2

(

3L

2e

)s+1

6A

(

3L

2e

)s+1

,

if we choose

L > L1 := B2

(

1

1 − e−1
+

1

1 − e−(3−e)/2

)2

.

Likewise, by (2.2.17), (2.2.21) and (2.2.5),

(s + 1)gL
s+1 6AB(s + 1)

(

3L

2e

)s+1

L1/2

L
∑

k=1

(

k

L

)k

+ AB′(s + 1)

(

3L

2e

)s+1

L1/2
L
∑

k=1

(

k

L

)k

,

so that

gL
s+1 6 A(s + 1)

(

3L

2e

)s+1

,

if we choose

L > L2 := (B + B′)2

(

1

1 − e−1
+

1

1 − e−(3−e)/2

)2

.

Thus, picking L = max{L1, L2} = L2, we can accomplish the inductive step, from s (> L)
to s + 1, showing that, for this L, (2.2.20) holds for all t.

Combining (2.2.10), Lemma 2.5, Lemma 2.6, we bound Pr(Sn > 0, En 6 L).

Proposition 2.1. Let L ∈ [0,∞). Then

Σ1 6 Pr(Sn > 0, En 6 L) 6 Σ2.
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Here

Σ1 = N(n, p)
∑

r>0

(

p

2q

)r

[xn]

[

fL
r eH(x)

(1 − T (x))3r
− gL

r eH(x)

(1 − T (x))3r−1

]

,

Σ2 = N(n, p)
∑

r>0

(

p

2q

)r

[xn]
fL

r eH(x)

(1 − T (x))3r
,

(2.2.22)

and

fL
r







= fr, r 6 L,

6b

(

3L

2e

)r

, r > L,
gL

r







= gr, r 6 L,

6b r

(

3L

2e

)r

, r > L,
(2.2.23)

with fr, gr satisfying the conditions (2.2.18)-(2.2.19).

Note. The relations (2.2.22)-(2.2.23) indeed cover the case L = 0, since in this case
f0 = 1, g0 = 0 and fL

r = gL
r = 0 for r > 0.

2.3 Asymptotic formula for Pr(Sn > 0).

The Proposition 2.1 makes it clear that we need to find an asymptotic formula for

N(n, p)φn,w, φn,w := [xn]
eH(x)

(1 − T (x))w
, w = 0, 3, 6 . . . (2.3.1)

Using N(n, p)!qn2/2(pq−3/2)n and Stirling’s formula for n!, with some work we obtain

N(n, p) =
√

2πn exp

[

− n
3

2
+ n2/3 λ

2
− n1/3 λ2

2

+
λ3

3
+

5

4
+ O(n−1/3(1 + λ4))

]

.

(2.3.2)

The big-Oh term here is o(1) if |λ| = o(n1/12), which is the condition of Theorem 1.1.

Turn to φn,w. Since the function in question is analytic for |x| < e−1,

φn,w =
1

2πi

∮

Γ

eH(x)

xn+1(1 − T (x))w
dx,

where Γ is a simple closed contour enclosing the origin and lying in the disc |x| < e−1. By
(2.1.10), (2.2.1)-(2.2.2), the function in (2.3.1) depends on x only through T (x), which
satisfies T (x) = xeT (x). This suggests introducing a new variable of integration y, such
that ye−y = x, i. e.

y = T (x) =
∑

k>1

xk

k!
kk−1, |x| < e−1.
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Picking a simple closed contour Γ′ in the y-plane such that its image under x = ye−y is a
simple closed contour Γ within the disc |x| < e−1, and using (2.2.1)-(2.2.2), we obtain

φn,w =
1

2πi

∮

Γ′

y−n−1eny exp

(

κ(y) − y

4
− y2

8

)

(1 − y)3/4−w dy,

κ(y) :=
q

p

(

y − y2

2

)

;

(2.3.3)

q/p ∼ n, so y−nenyeκ(y) would have fully accounted for asymptotic behavior of the integral,
had it not been for the factor (1 − y)3/4−w. Once Γ′ is picked, it can be replaced by any
circular contour y = ρeiθ, θ ∈ (−π, π], ρ < 1. (The condition ρ < 1 is dictated by the
factor (1 − y)3/4−w.) And (2.3.3) becomes

φn,w =
1

2π
I(w),

I(w) :=

∫ π

−π

eh(ρ,θ) exp
(

−ρeiθ/4 − ρ2ei2θ/8
)

(1 − ρeiθ)3/4−w dθ,

h(ρ, θ) =
q

p

(

ρeiθ − ρ2ei2θ

2

)

+ nρeiθ − n(ln ρ + iθ).

(2.3.4)

We will choose ρ < 1 in such a way that, as a function of θ, |eh(ρ,θ)| attains its maximum
at θ = 0. Now |eh(ρ,θ)| = ef(ρ,θ), with

f(ρ, θ) = Re h(ρ, θ) =
q

p
ρ cos θ − q

2p
ρ2 cos 2θ + nρ cos θ − n ln ρ,

so that

f ′
θ(ρ, θ) =

2q

p
ρ2 sin θ

(

cos θ − 1 + np/q

2ρ

)

.

Then f ′
θ(ρ, θ) > 0 (< 0 resp.) for θ < 0 (θ > 0 resp.) if

ρ <
1

2
(1 + np/q). (2.3.5)

Let us set ρ = e−an−1/3

, where a = o(n1/3), since we want ρ → 1. Now

1

2
(1 + np/q) > 1 +

λ

2
n−1/3, ρ 6 1 − an−1/3 +

a2

2
n−2/3;

so (2.3.5) is obviously satisfied if

a +
λ

2
>

a

2
. (2.3.6)

(2.3.6) is trivially met if λ > 0. For λ < 0, |λ| = o(n1/3), (2.3.6) is met if a > |λ|. In all
cases we will assume that lim inf a > 0.

Why do we want a = o(n1/3)? Because, as a function of ρ, h(ρ, 0) attains its minimum
at np/q ∼ 1, if λ < 0 is fixed, and in this case np/q < 1, and the minimum point
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is 1 if λ > 0. So our ρ is a reasonable approximation of the saddle point of |h(ρ, θ)|,
dependent on λ, chosen from among the feasible values, i. e. those strictly below 1.
Characteristically ρ is very close to 1, the singular point of the factor (1− y)3/4−w, which
is especially influential for large w’s. Its presence rules out a “pain-free” application of
general tools such as Watson’s Lemma, (see Miller [18]).

Under (2.3.6),

|f ′
θ(ρ, θ)| >

a

2
n2/3| sin θ|,

and signf ′
θ(ρ, θ) = −sign θ, so that

f(ρ, θ) 6 f(ρ, 0) − a

2
n2/3

∫ |θ|

0

sin z dz

= f(ρ, 0) − an2/3 sin2(θ/2)

6 f(ρ, 0) − aπ−2n2/3θ2 = h(ρ, 0) − aπ−2n2/3θ2.

(2.3.7)

Let us break the integral I(w) in (2.3.4) into two parts, I1(w) for |θ| 6 θ0, and I2(w) for
|θ| > θ0, where

θ0 = πn−1/3 ln n.

Since f(ρ, θ) is decreasing with |θ|, and |1 − ρeiθ| > 1 − ρ, it follows from (2.3.7) that

|I2(w)| 6b

(

1 − e−an−1/3)−w
ef(ρ,θ0)

6
(

a1n
−1/3

)−w
eh(ρ,0) exp(−a ln2 n);

a1 := n1/3
(

1 − e−an−1/3)

.

(2.3.8)

Turn to I1(w). This time |θ| 6 θ0. First, let us write

ρeiθ = e−sn−1/3

, s = a − it, t := n1/3θ;

so |s| 6 a + π ln n. The second (easy) exponent in the integrand of I1(w) is asymptotic
to −3/8, or more precisely,

−1

4
e−sn−1/3 − 1

8
e−2sn−1/3

= Q2(a) + O(|t|n−1/3),

Q2(a) := − 1

4
e−an−1/3 − 1

8
e−2an−1/3

.
(2.3.9)

Determination of a usable asymptotic formula for h(ρ, θ) is more laborious. It is convenient

to set q/pe−µn−1/3

; thus

µ1/3 ln
np

q
> n1/3 ln(1 + λn−1/3) > λ(1 − λn−1/3/2),

and
µ − λ = O(n−2/3 + n−1/3λ2).
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Using the new parameters s and µ we transform the formula (2.3.4) for h(ρ, θ) to

h(ρ, θ) = n

(

e−(µ+s)n−1/3 − 1

2
e−(µ+2s)n−1/3

+ e−sn−1/3

+ sn−1/3

)

.

Approximating the three exponents by the 4-th degree Taylor polynomials, we obtain

h(ρ, θ) = n

[

3

2
− n−1/3 µ

2
+ n−2/3 µ2

4
− n−1µ3

12

]

+ Q1(µ, a)

+

(

µs2

2
+

s3

3

)

+ O
(

D1(t)
)

;

Q1(µ, a) :=n−1/3

[

(µ + a)4

4!
− (µ + 2a)4

4!2
+

a4

4!

]

;

D1(t) :=n−1/3|t|(|λ| + a + ln n)3 + n−2/3(|λ| + a + ln n)5.

(2.3.10)

(Explanation: the second summand in D1(t) is the approximation error bound for each of
the Taylor polynomials; the first summand is the common bound of |(µ + a)4 − (µ + s)4|,
|(µ + 2s)4 − (µ + 2a)4|, and |s4 − a4|, times n−1/3.) And we notice immediately that both
Q1(µ, a) and D1(t) are o(1) if, in addition to |λ| = o(n1/12), we require that a = o(n1/12)
as well, a condition we assume from now on. Obviously O(D1(t)) absorbs the remainder
term O(|t|n−1/3) from (2.3.9).

Furthermore, since

n−1/3µ = ln

(

np

q

)−1/3

λ − n−2/3 λ2

2
+ n−1

(

λ3

3
+ 1

)

+ O(n−4/3(1 + λ4)),

for the cubic polynomial of n−1/3µ in (2.3.10) we have

n

[

3

2
− n−1/3 µ

2
+ n−2/3 µ2

4
− n−1µ3

12

]

= n
3

2
− n2/3 λ

2
+ n1/3 λ2

2
− λ3

2
− 1

2
+ O(n−1/3(1 + λ4)).

Observe that the first three summands are those in the exponent of the formula (2.3.2)
for N(n, p) times (−1).) Therefore, using (2.3.2) for N(n, p),

N(n, p) exp

(

h(ρ, θ) − 1

4
ρeiθ − 1

8
ρ2ei2θ

)

=
[

1 + O(D1(t))
]
√

2πn · exp

(

−λ3

6
+

3

4
+ Q(µ, a) +

µs2

2
+

s3

3

)

;

Q(µ, a) := Q1(µ, a) + Q2(a) + O(n−1/3(1 + λ4)),

(2.3.11)

and Q(µ, a) = o(1) as λ, a = o(n1/12). In particular, using (2.3.8), (2.3.10) for θ = 0, i. e.
s = a, we see that

N(n, p)|I2(w)| 6b n1/2(a1n
−1/3)−we−a ln2 n exp

(

−λ3

6
+

µa2

2
+

a3

3

)

. (2.3.12)
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Furthermore, switching integration from θ to t1/3θ, the contribution of the remainder term
O(D1(t)) to N(n, p)I1(w) is O(δn,w),

δn,w :−1/12 (a + ln n)3/4e−λ3/6

(a1n−1/3)w

∫ ∞

−∞

∣

∣

∣

∣

exp

(

µs2

2
+

s3

3

)
∣

∣

∣

∣

D1(t) dt.

(Explanation: n−1/12 = n1/2n−1/3n−1/4, with n−1/4 coming from n−1/4(a + π ln n)3/4, an
upper bound of |1 − ρeiθ|3/4, for |θ| 6 θ0.)

Now
∣

∣

∣

∣

exp

(

µs2

2
+

s3

3

)∣

∣

∣

∣

= exp

[

µa2

2
+

a3

3
−
(µ

2
+ a
)

t2
]

,

where, see (2.3.6),
µ

2
+ a =

λ

2
+ a + O(n−2/3 + n−1/3λ2) > 0,

since lim inf a > 0, and a > |λ| if λ < 0. Hence, see (2.3.10) for D1(t), we have δn,w 6b

∆n,w, where

∆n,w := n−1/12+w/3 · a−w
1 exp

(

−λ3

6
+

µa2

2
+

a3

3

)

· (a + ln n)3/4

[

n−1/3 (|λ| + a + ln n)3

µ/2 + a
+ n−2/3 (|λ| + a + ln n)5

(µ/2 + a)1/2

]

.

(2.3.13)

The denominators µ/2 + a, (µ/2 + a)1/2 come from the integrals

∫ ∞

−∞

|t|k exp
[

−
(µ

2
+ a
)

t2
]

dt = ck(µ/2 + a)−(k+1)/2, (k > 0),

for k = 0, 1. Clearly ∆n,w absorbs the bound (2.3.12).

Thus, switching from θ to s = a − in1/3θ, it remains to evaluate sharply

− i(2π)−1/2n1/6 exp

(

−λ3

6
+

3

4
+ Q(µ, a)

)

·
s2
∫

s1

exp

(

µs2

2
+

s3

3

)

(1 − e−sn−1/3

)3/4−w ds;

(2.3.14)

here s1 = a − in1/3θ0, s2 = a + in1/3θ0, and the integral is over the vertical line segment
connecting s1 and s2. Lastly we need to estimate an error coming from replacing (1 −
e−sn−1/3

)3/4−w with a genuinely palatable (sn−1/3)3/4−w. Using

|sn−1/3| > |1 − e−sn−1/3 | > |1 − e−an−1/3 |, (s = a − it),

|xu − 1| 6 u|x − 1|, (u > 1, |x| 6 1),
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we have: for u > 1

∣

∣

∣

∣

1

(1 − e−sn−1/3)u
− 1

(sn−1/3)u

∣

∣

∣

∣

6
1

|1 − e−an−1/3 |u

∣

∣

∣

∣

∣

1 −
(

1 − e−sn−1/3

sn−1/3

)u∣
∣

∣

∣

∣

6
u

|1 − e−an−1/3 |u

∣

∣

∣

∣

∣

1 − 1 − e−sn−1/3

sn−1/3

∣

∣

∣

∣

∣

6b
u |sn−1/3|

|1 − e−an−1/3 |u
6

u(a + |t|)n−1/3

|1 − e−an−1/3 |u
.

Also, for s in question,

|1 − e−sn−1/3| > 0.5|sn−1/3|.
So

|(1 − e−sn−1/3

)3/4 − (sn−1/3)3/4| = |sn−1/3|3/4

∣

∣

∣

∣

∣

∣

(

1 − e−sn−1/3

sn−1/3

)3/4

− 1

∣

∣

∣

∣

∣

∣

6b |sn−1/3|3/4+1 6b n−7/12(a + |t|)7/4.

Combining these two estimates, we have: for w ∈ {0, 3, 4, . . .},

|(1 − e−sn−1/3

)3/4−w − (sn−1/3)3/4−w| 6b (w + 1)
n−7/12(a + |t|)7/4

(a1n−1/3)w
;

see (2.3.8) for a1. Consequently, replacing (1−e−sn−1/3

)3/4−w in (2.3.14) with (sn−1/3)3/4−w

incurs an additive error of order

(w + 1)n−1/12+w/3 · a−w
1 exp

(

−λ3

6
+

µa2

2
+

a3

3

)

· n−1/3a5/4,

at most; thus the error is easily O((w + 1)∆n,w), see (2.3.13) for ∆n,w.

While these bounds will suffice for λ = O(1), the case λ → ∞ requires a sharper

approximation of (1 − e−sn−1/3

)3/4−w for w = O(λ3). We write

(1 − e−sn−1/3

)3/4−w = (sn−1/3)3/4−w exp

[

(3/4 − w) ln
1 − e−sn−1/3

sn−1/3

]

= (sn−1/3)3/4−w exp
[

Q3(w, a) + O(D3(w, t))
]

;

Q3(w, a) := (3/4 − w) ln
1 − e−an−1/3

an−1/3
;

D3(w, t) := (w + 1)tn−1/3.

(2.3.15)

Notice that Q3(a, w) → 0 as wa = O(λ3n1/12) = o(n1/3), and D3(t, w) → 0 as w ln n =
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o(n1/3). The expression (2.3.14) therefore becomes

−i(2π)−1/2n−1/12+w/3 exp

(

−λ3

6
+

3

4
+ Q(µ, w, a)

)

·
s2
∫

s1

exp

(

µs2

2
+

s3

3

)

s3/4−w ds + O((w + 1)∆̃n,w);

Q(µ, w, a) :=Q(µ, a) + Q3(w, a);

∆̃n,w :=n−5/12+w/3 · a−w exp

(

−λ3

6
+

µa2

2
+

a3

3

)

(a + ln n)3/4.

(2.3.16)

Finally, after this replacement we can extend the integration to (a− i∞, a+ i∞), since
the attendant additive error is easily shown to be absorbed by (w + 1)∆n,w for all w, and
by (w + 1)∆̃n,w if w = O(λ3).

Lemma 2.8. Suppose that λ = o(n1/12). Let a > |λ| be such that lim a > 0, a = o(n1/12).
Then, denoting µ1/3 ln(np/q),

N(n, p) [xn]
eH(x)

(1 − T (x))w

= − i(2π)−1/2e3/8+o(1)n−1/12+w/3e−µ3/6

a+i∞
∫

a−i∞

s3/4−w exp

(

µs2

2
+

s3

3

)

ds

+ O((w + 1)Rn,w), (2.3.17)

with Rn,w 6 ∆n,w for all w, and Rn,w = ∆n,w ∧ ∆̃n,w if wa and w ln n are both o(n−1/3).
Furthermore, shifting the integration line to {s = b + it : t ∈ (−∞,∞)} does not change
the value of the integral as long as b ∧ (µ/2 + b) remains positive.

Proof of Lemma 2.8. We only have to explain preservation of the integral, and
why e−λ3/6 can be replaced with e−µ3/6. Given such a b, pick T > 0 and introduce two
horizontal line segments, C1,2 = {s = α±iT : α ∈ [a, b]}, the top segment and the bottom
segment being respectively right and left oriented. On C1 ∪ C2,

Re

(

µs2

2
+

s3

3

)

=
µα2

2
+

α3

3
− T 2

(µ

2
+ α

)

,

and
µ

2
+ α >

µ

2
+ (a ∧ b) > 0.

Therefore

lim
T→∞

∫

C1∪C2

s3/4−w exp

(

µs2

2
+

s3

3

)

ds = 0.
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As for e−λ3/6 ∼ e−µ3/6, this follows from

|λ3 − µ3| 6b λ2(n−2/3 + n−1/3λ2) = (n−1/3λ)2 + n−1/3λ4 → 0. (2.3.18)

In the context of the critical random graph G(n, m), the integral appearing in (2.3.17)
was encountered and studied in [13]. Following [13], introduce

A(y, µ) =
e−µ3/6

2πi

a+i∞
∫

a−i∞

s1−y exp

(

µs2

2
+

s3

3

)

ds. (2.3.19)

We know that this integral is well defined, and does not depend on a, if a > 0 and
a > −µ/2. It was shown in [13] that (1)

A(y, µ) =
e−µ3/6

3(y+1)/3

∞
∑

k=0

(32/3µ/2)k

k!Γ((y + 1 − 2k)/3)
, (2.3.20)

(2) A(y, µ) > 0 for y > 0, A(y, µ) > 0 for y > 2, and (3)

A(y, µ) ∼











(2π)−1/2|µ|1/2−y, µ → −∞,

e−µ3/6

2y/2Γ(y/2)µ1−y/2
, µ → ∞.

(2.3.21)

We will also need two bounds

A(y, µ) 6b e2|µ|3/3 (2/3)
y+1

3

Γ
(

y+1
3

) ,

A(y, µ) 6b (a + µ/2)−1/2a1−y exp

(

−µ3

6
+

µa2

2
+

a3

3

)

,

(2.3.22)

(the second bound holding for y > 1 and a + µ/2 > 0), and an asymptotic formula: if
µ → ∞, y → ∞, and y = O(µ3), then

A(y, µ) ∼ (2π)−1/2(yξ−2 + µ + 2ξ)−1/2ξ1−y exp

(

−µ3

6
+

µξ2

2
+

ξ3

3

)

, (2.3.23)

where ξ = ξ(y, µ) is a unique positive root of

µξ2 + ξ3 = y.

Also, if y = O(λ3), then

A(y, µ) 6b µ−1/2ξ1−y exp

(

−µ3

6
+

µξ2

2
+

ξ3

3

)

. (2.3.24)

the electronic journal of combinatorics 17 (2010), #R92 26



(See Appendix for a proof of (2.3.22) and (2.3.23)-(2.3.24).)

With A(y, µ), we write (2.3.17) more compactly:

N(n, p) [xn]
eH(x)

(1 − T (x))w

= (2π)1/2e3/8+o(1)A(1/4 + w, µ)n−1/12+w/3 + O((w + 1)∆n,w). (2.3.25)

Let us use (2.3.25) for asymptotic evaluation of Pr(Sn > 0, En 6 L) given by (2.2.10)-
(2.2.11).

Case |λ| = O(1). According to (2.1.16), we can pick L → ∞ as slowly as we wish.
We pick L = (ln n)1/4.

As a first step, let us estimate the overall contributions, R
(1)
n and R

(2)
n , of the remainders

O((w + 1)Rn,w) to the bounds Σ1 and Σ2 in Proposition 2.1. In this case we choose

a = (L)1/3 for each w, and Rn,w = ∆n,w. Consider R
(2)
n first. By (2.2.19) and (2.3.13),

and dropping (3r + 1)(np/2q)r = (3r + 1)(1/2 + o(1))r factor,

R(2)
n 6b n−1/12 ·

(

n−1/3 ln15/4 n
)

· exp

(

−λ3

6
+

µa2

2
+

a3

3

)

·
∞
∑

r=0

fL
r a−3r

1 .
(2.3.26)

Now a1 ∼ a, so by (2.2.23) and (2.2.18),

∞
∑

r=0

fL
r a−3r

1 6b

∑

r6L

(

3r

2ea3
1

)r

+
∑

r>L

(

3L

2ea3
1

)r

6
∑

r>0

(

2

e

)r

< ∞.

So (2.3.26) becomes

R(2)
n 6b n−1/12 · n−1/3eln3/4 n = n−5/12+o(1).

Further, by (2.2.22) and gL
0 = 0,

Σ2 − Σ1 = N(n, p)
∑

r>0

(

p

2q

)r

[xn]
gL

r eH(x)

(1 − T (x))3r−1
.

Therefore

|R(1)
n | 6b R(2)

n + n−1/12 ·
(

n−1/3 ln15/4 n
)

· exp

(

−λ3

6
+

µa2

2
+

a3

3

)

·
∞
∑

r=1

gL
r a−3r+1

1 .
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So, using the bounds (2.2.19) and (2.2.23) for gL
r , we conclude that |R(1)

n | 6 2R
(2)
n . Thus,

for L = (ln n)1/4,

Σ∗
1 + O(n−1/3+o(1)) 6

Pr(Sn > 0, En 6 L)

(2π)1/2e3/8n−1/12
6 Σ∗

2 + O(n−1/3+o(1)), (2.3.27)

where

Σ∗
2 =

∑

r>0

(

np

2q

)r

fL
r A(1/4 + 3r, µ),

Σ∗
1 =Σ∗

2 − n−1/3
∑

r>0

(

np

2q

)r

gL
r A(−3/4 + 3r, µ).

(2.3.28)

Let us have a close look at Σ∗
1 and Σ∗

2. Write

Σ∗
2 =

∑

r6L

(

np

2q

)r

frA(1/4 + 3r, µ) +
∑

r>L

(

np

2q

)r

fL
r A(1/4 + 3r, µ)

= Σ∗
21 + Σ∗

22.

By fL
r 6 fr, (2.2.18), (2.3.22), and Stirling’s formula for Γ(r) = (r − 1)!,

Σ∗
22 6b e2|µ|3/3

∑

r>L

(

1

2
+ O

(

|λ|n−1/3
)

)r (
3

2

)r

rr−1/2e−r

(

2

3

)r

Γ−1(r)

6e2|µ|3/3
∑

r>L

(

2

3

)r

6b

(

2

3

)L

.

Further, since uniformly for r 6 L,

(1 + λn−1/3)r = exp
(

O(L|λ|n−1/3)
)

= 1 + O(n−1/3(ln n)1/4),

we have

Σ∗
21 = (1 + o(1))

∑

r6L

fr

2r
A(1/4 + 3r, µ).

And, analogously to Σ∗
22,

∑

r>L

fr

2r
A(1/4 + 3r, µ) 6 b

(

2

3

)L

.

Therefore

Σ∗
2 ∼

∑

r6L

fr

2r
A(1/4 + 3r, µ) →

∑

r6L

fr

2r
A(1/4 + 3r, µ).

Also, by the definition of Σ∗
1 in (2.3.25), it follows that |Σ∗

1 − Σ∗
2| is O(n−1/3). Hence
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Proposition 2.2. For |λ| = O(1),

Pr(Sn > 0, En 6 L)

(2π)1/2e3/8n−1/12
∼ c(µ) :=

∑

r>0

fr

2r
A(1/4 + 3r, µ),

and µ (= λ + O(n−1/3)) can be replaced with λ, as c(x) is positive and continuous for all
x.

Case λ → ∞, λ = o(n1/12). According to (2.1.16), we select L = αλ3, α > 2/3. This
time we use a eqrefined version of (2.3.24), with the exponential factor sneaking behind
the sum operation for r 6 αλ3, which allows us to choose a (6 2λ) dependent on r for
r 6 αλ3. Also, for those r and a, ra = O(λ4) = o(n1/3) and r ln n = O(λ3 ln n) = o(n1/3);
so Rn,3r = ∆̃n,3r in this range. For r > αλ3 we select a = λ, and here Rn,3r = ∆n,3r. (So,
a = o(n1/12) throughout.) By (2.2.20),

exp

(

−λ3

6
+

λa2

2
+

a3

3

)

∑

r>αλ3

(r + 1)(1/2 + o(1))rfL
r

6b exp

(

2λ3

3

)

∑

r>αλ3

(r + 1)

(

3αλ3(1 + o(1))

4eλ3

)r

6b λ3 exp

(

2λ3

3
+ λ3α ln

3α(1 + o(1))

4e

)

6b λ3 exp

(

λ3α ln
3α(1 + o(1))

4

)

,

and, pushing α down to 2/3, we can make the coefficient of λ3 in the exponent arbitrarily
close to

2

3
· ln

1

2
= −0.46 . . . .

According to (2.2.18) and (2.3.13), it remains to bound

∑

r6αλ3

r + 1

(r + 1)1/2
min
a62λ

{

exp

(

−µ3

6
+

µa2

2
+

a3

3

)(

3r

4ea3

)r}

;

(we have replaced a
1/3
1 (1 − e−an−1/3

) with a, since for r 6 αλ3,

a3r
1 = a3reO(λ4n−1/3) ∼ a3r,

and λ3/6 with µ3/6, see (2.3.18)). So we need to find mina62λ Φ(r, a),

Φ(r, a) := −µ3

6
+ r ln

(

3r

4ea3

)

+
µa2

2
+

a3

3
. (2.3.29)
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Φ(r, a) attains its absolute minimum at a = ξ(r), a unique positive root of

µξ + ξ2 =
3r

ξ
6

3αλ3

ξ
, (2.3.30)

i. e. ξ(r) < 2λ if α is sufficiently close to 2/3 from above. Further φ(r) := Φ(r, ξ(r))
attains its maximum at r̄, a root of

φ′(r) = Φr(r, ξ)|ξ=ξ(r) + ξr(r)Φξ(r, ξ)|ξ=ξ(r)

= Φr(r, ξ)|ξ=ξ(r) = ln
3r

4
− 3 ln ξ(r) = 0,

i. e.

r̄ =
4

81
µ3, ξ̄ := ξ(r̄) =

µ

3
(< 2λ). (2.3.31)

Consequently

φ(r̄) = −4µ3

27
= −4λ3

27
+ o(1). (2.3.32)

From (2.3.30) it follows, via implicit differentiation, that

ξr(r) :=
dξ(r)

dr
=

3ξ(r)

6r + ξ3(r)
.

Hence

φ′′(r) =
1

r
− 3

ξr(r)

ξ(r)
= − µξ2(r)

r(6r + ξ3(r))
< 0;

in particular

φ′′(r̄) = − 27

4µ3
∼ − 27

4λ3
. (2.3.33)

A standard application of Laplace method yields

∑

r6αλ3

(r + 1)1/2 min
a6λ

{

exp

(

−µ3

6
+

λa2

2
+

a3

3

)(

3r

4ea3

)r}

6b λ3 exp

(

−4λ3

27

)

.

Therefore, consulting (2.3.16) for ∆̃n,w and (2.3.13) for ∆n,w, we bound R
(2)
n , the total

contribution of the remainders (w + 1)Rn,w to the sum Σ2 in (2.2.20):

R(2)
n =

∑

r

(r + 1)Rn,3r 6b n−1/12 exp

(

−4λ3

27

)

(

n−1/3λ3.75 + n−1/3 ln3/4 n
)

+ n−1/12λ3e−0.27λ3(

n−1/3λ4 + n−1/3 ln4 n
)

6b

(

λ−1/4 + n−1/3+o(1)
)

n−1/12 exp

(

−4λ3

27

)

. (2.3.34)
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As for R
(1)
n , the total contribution of the remainders (w + 1)Rn,w to Σ1 in (2.2.20), it is

O(R
(2)
n ), just like the λ = O(1) case. So we arrive at the counterpart of (2.3.27)-(2.3.28),

with
(

λ−1/4 + n−1/3+o(1)
)

exp

(

−4λ3

27

)

taking place of n−1/3+o(1). Further, again we split Σ∗
2 = Σ∗

21 + Σ∗
22. To bound Σ∗

22 we use
the second bound in (2.3.22) for A(1/4 + 3r, µ) with a ≡ λ, and the bound (2.2.20) for

fL
r . Just like R

(2)
n , we obtain

Σ∗
22 6b λ1/2 exp

(

−λ3

6
+

λa2

2
+

a3

3

)

·
∑

r>αλ3

(1/2 + o(1))rfL
r 6b λ1/2e−0.46λ3

. (2.3.35)

To evaluate sharply Σ∗
21, we use (2.3.23) to approximate A(y, µ) for εµ 6 y, y = O(λ3),

and (2.3.24) to bound A(y, µ) for y 6 εµ, ε > 0 sufficiently small. Invoking (2.2.18) as
well, we have

∑

εµ6r6αλ3

(

np

2q

)r

frA(1/4 + 3r, µ) ∼ 1

4π

∑

εµ6r6αλ3

ξ3/4eφ(r)

(

r((1
4

+ 3r)ξ−2 + µ + 2ξ)
)1/2

;

here φ(r) := mina Φ(r, a) = Φ(r, ξ), see (2.3.28)-(2.3.29) for Φ(r, a) and ξ = ξ(r). We
know that φ(r) attains its pronounced maximum at r̄ = (4/81)λ3, i. e. well within
[εµ, αλ3]. Using (2.3.31)-(2.3.33), by Laplace method,

∑

εµ6r6αλ3

(

np

2q

)r

frA(1/4 + 3r, µ) ∼ 1

4π

ξ̄ 3/4eφ(r̄)

(

r̄((1
4

+ 3r̄)ξ̄ −2 + µ + 2ξ̄)
)1/2

(

2π

−φ′′(r̄)

)1/2

∼ 1

2(2π)1/233/4
λ1/4 exp

(

−4λ3

27

)

.

Applying (2.3.24), it is not difficult to show that

∑

r6εµ

(

np

2q

)r

frA(1/4 + 3r, µ) ≪ λ1/4 exp

(

−4λ3

27

)

.

So

Σ∗
12 :=

∑

r6αλ3

(

np

2q

)r

frA(1/4 + 3r, µ) ∼ 1

2(2π)1/233/4
λ1/4 exp

(

−4λ3

27

)

,

whence (see (2.3.35))

Σ∗
2 ∼

1

2(2π)1/233/4
λ1/4 exp

(

−4λ3

27

)

, (2.3.36)

as well. And, analogously to the λ = O(1) case, for Σ∗
1 defined in (2.3.28),

∣

∣Σ∗
1 − Σ∗

2| ≪ λ1/4 exp

(

−4λ3

27

)

. (2.3.37)
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Proposition 2.3. For λ → ∞, λ = o(n1/12),

Pr(Sn > 0, En 6 L) ∼ n−1/12 e3/8

2 · 33/4
λ1/4 exp

(

−4λ3

27

)

.

Proof of Proposition 2.3. The probability is asymptotic to the expression in (2.3.36)
times (2π)1/2e3/8n−1/12.

Lastly,

Case λ → −∞, |λ| = o(n1/12). According to (2.1.16), we can pick L = 0. By Proposition
2.1 and (2.3.17) for w = 0, and a > |λ|, a = o(n1/12), we have

Pr(Sn > 0, En 6 0) = N(n, p) [xn] eH(x)

= (2π)1/2n−1/12e3/8A(1/4, µ) + O(∆n,0).

Notice that
(

µa2

2
+

α3

3

)
∣

∣

∣

∣

a=|λ|

=
λ3

6
+ o(1),

since λ3 − µ3 = o(1). Setting a = λ in (2.3.13), we obtain

∆n,0 ≪ n−1/12 · n−1/3 · n−1/3
(

|λ|3.75 + ln3.75 n
)

.

And, by (2.3.21),

A(1/4, µ) ∼ (2π)−1/2|µ|1/2−1/4 ∼ (2π)−1/2|λ|1/4.

Proposition 2.4. Suppose λ → −∞, |λ| = o(n1/12). Then

Pr(Sn > 0, En 6 0) ∼ e3/8|λ|1/4.

Since in each of the three cases our L is such that

lim Pr(En 6 L) = 1,

Propositions 2.2 -2.4 combined with the relations (2.1.12) and (2.1.13), prove the part of
Theorem 1.1 about G(n, p), p̂ = 1/2.

3 Solvability probability: G(n, m) and p̂ = 1/2

Our task is to show that the result for the near-critical G(n, p), p = (1 + λn−1/3)/n,
λ = o(n1/12), implies the analogous claim for G(n, m), m = (n/2)(1 + λn−1/3). Denoting
N =

(

n
2

)

,

p =
m

N
+ O(m1/2N−1) =

1 + n−1/3λ′

n
, λ′ = λ + O(n−1/6)). (3.0.1)
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Obviously λ′ = o(n1/12), so
Pr(S(G(n, p) > 0) → 0.

Since an event {S(G) > 0} is monotone (increasing) with G, the general “p-to-m” results,
Bollobás [5],  Luczak [16], imply that

Pr(S(G(n, m) > 0) → 0,

too. However we want to prove a sharp formula

Pr(S(G(n, m) > 0) ∼ c(λ)n−1/12, λ = o(n1/12); (3.0.2)

that is, by Proposition 2.3, the probabilities in question can be as small as
exp
(

−n1/4−o(1)
)

. It turns out that in our case the arguments in [5], [16] can be sharpened
to yield (3.0.2).

To start, recall the classic entropy bound

Pr(Bin(N, p) > k) 6 exp[NH(k/N)], k > Np,

Pr(Bin(N, p) 6 k) 6 exp[NH(k/N)], k < Np,

where
H(x) := x ln(p/x) + (1 − x) ln(q/(1 − x)).

Approximating H(x) by its second degree Taylor polynomial plus a remainder term, we
obtain: uniformly for p 6 1/2, and ω 6 a(Np)1/6, a > 0 being fixed,

Pr
(

Bin(N, p) > Np + ω
√

Npq
)

6b e−ω2/2,

Pr
(

Bin(N, p) 6 Np − ω
√

Npq
)

6b e−ω2/2,
(3.0.3)

(The bounded factor implicit in 6b notation depends on a.) Given m and ω 6 m1/6,
introduce p1 < p2:

Np1 + ω
√

Np1 =m =⇒ p1 = (4N)−1
(
√

4m + ω2 − ω)2,

Np2 − ω
√

Np2 =m =⇒ p2 = (4N)−1
(
√

4m + ω2 + ω)2.
(3.0.4)

Then
Np2

ω6
>

Np1

ω6
=

m

ω6

(

√

1 + ω2/4m − ω/(2
√

m
)2

> a := (
√

2 − 1)2,
(3.0.5)

as ω/2
√

m 6 0.5m−1/3 6 1.

Now, using e(G) to denote the number of edges in a graph G, e(G(n, p)) = Bin(N, p).
So, by (3.0.3)-(3.0.5),

Pr(e(G(n, p1)) > m) 6 Pr(e(G(n, p1)) > Np1 + ω
√

Np1q1) 6b e−ω2/2,

Pr(e(G(n, p2)) < m) 6 Pr(e(G(n, p2)) 6 Np2 − ω
√

Np2q2) 6b e−ω2/2.
(3.0.6)
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Since

Pr(S(G(n, p)) > 0) =

N
∑

µ=0

Pr(e(G(n, p)) = µ) Pr(S(G(n, µ)) > 0),

and Pr(S(G(n, µ)) > 0) decreases with µ, we have

Pr(S(G(n, p1)) > 0) > Pr(e(G(n, p1)) 6 m) Pr(S(G(n, m)) > 0)

>(1 − O(e−ω2/2)) Pr(S(G(n, m)) > 0),

and

Pr(S(G(n, p2)) = 0) > Pr(e(G(n, p2)) > m) Pr(S(G(n, m)) = 0))

=(1 − O(e−ω2/2)) Pr(S(G(n, m)) = 0).

Therefore
Pr(S(G(n, p1)) > 0)

1 − O(e−ω2)
> Pr(S(G(n, m)) > 0)

>
Pr(S(G(n, p2)) > 0) − O(e−ω2/2)

1 − O(e−ω2/2)
.

(3.0.7)

Now, by (3.0.4),

p1,2 =
m

N

(

1 + O(ωm−1/2)
)

=
1 + λ1,2n

−1/3

n
,

λ1,2 =λ + O(ωm−1/2 + n−2/3);

so, as |λ| = o(n1/12),

λ3
1,2 = λ3 + O

[

λ2(ωm−1/2 + n−2/3)
]

+ O
[

(ωm−1/2)3 + n−2
]

= λ3 + o(ωn−1/3).

That is, λ3
1,2 − λ3 → 0. Hence,

Pr(S(G(n, p1,2)) > 0) ∼ c(λ)n−1/12. (3.0.8)

Also ω2 ≫ |λ|3 if ω1/8, which is compatible with the restriction ω 6 n1/6. For this choice
of ω, the relations (3.0.7) - (3.0.8) imply: for λ = o(n1/12),

Pr(S(G(n, m)) > 0) ∼ c(λ)n−1/12.

This completes the proof of Theorem 1.1 for p̂ = 1/2.
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4 Solvability (2-colorability) probability:

G(n, p), G(n, m) and p̂ = 1.

Consider the G(n, p) case. We know that the system

xi + xj ≡ 1 (mod 2), (i, j) ∈ E(G),

is solvable iff the graph G has no odd cycles. So a counterpart of (2.1.11) is

Pr(Sn > 0, En 6 L) = N(n, p) [xn] exp

[

L
∑

ℓ=−1

(

p

q

)ℓ

Ce
ℓ (x)

]

, (4.0.1)

(Sn = S(G(n, p)), En = E(G(n, p))), where Ce
ℓ (x) is the exponential generating function

of graphs G without odd cycles , with an excess E(G) = ℓ. And again the events {Sn > 0}
and {En 6 L} are positively correlated, i. e.

Pr(Sn > 0, En 6 L) 6 Pr(Sn > 0) 6
Pr(Sn > 0, En 6 L)

Pr(En 6 L)
.

Thus the generating functions Ce
ℓ (x) take a center stage. Obviously

Ce
−1(x) = C−1(x)

(

= T (x) − 1

2
T 2(x)

)

.

Furthermore, while

C0(x) =
1

2

(

ln
1

1 − T (x)
− T (x) − 1

2
T 2(x)

)

,

for Ce
0(x) we have

Ce
0(x) =

1

4

(

ln
1

1 − T 2(x)
− T 2(x)

)

. (4.0.2)

Indeed, we enumerate the connected unicyclic graphs with an even cycle, i. e. forests of
an even number of rooted trees, whose roots form an undirected cycle. So

Ce
0(x) =

∑

even j>4

(j − 1)!

2

T j(x)

j!
,

which simplifies to (4.0.2). Comparing Ce
0(c) and C0(x) we see that, for |x| < e−1, x → 1,

i. e. for x dominant asymptotically,

Ce
0(x) =

1

2
C0(x) +

1

8
− 1

4
ln 2 + O(|T (x) − 1|); (4.0.3)

in particular, Ce
0(x) ∼ (1/2)C0(x). We want to show that this pattern persists for ℓ > 0,

namely

Ce
ℓ (x) ∼ 1

2ℓ+1
Cℓ(x), (|x| < e−1, x → e−1). (4.0.4)
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Comparing (2.1.11) and (4.0.1), and recalling the different roles played by C0(x) and
{Cℓ(x)}ℓ>0 in the analysis of the p̂ = 1/2 makes it transparent, hopefully, that for p̂ = 1
we should have

Pr(G(n, p) is 2-colorable) = Pr(Sn > 0) ∼ 2−1/4e1/8c(λ)n−1/12.

Let us prove (4.0.4). First

Proposition 4.1. Given n and m 6 N :=
(

n
2

)

, let C(n, m) denote the total number
of connected graphs on [n] with m edges, and let Ce(n, m) denote the total number of
connected graphs without odd cycles. Then

Ce(n, m) 6
1

2m+1−n
C(n, m). (4.0.5)

Consequently

Ce
ℓ (x) 6c

1

2ℓ+1
Cℓ(x), ℓ > −1. (4.0.6)

Proof of Proposition 4.1. We begin with a simple claim.

Lemma 4.1. Let T be a tree on the vertex set [n]. Let X(T ) denote the total number of
paths in T of an even edge-length 2 at least. Then X(T ) > X(Pn), where Pn is a path on
[n], and

X(Pn) =

⌈

n(n − 2)

4

⌉

. (4.0.7)

Proof of Lemma 4.1. Pick a vertex v ∈ [n], and introduce V0(T ) and V1(T ) the set
of vertices reachable from v by paths of even length 2 at least, and odd length respectively;
in particular v ∈ V0. Now every two vertices from Vi(T ), (i = 0, 1), are connected by an
even path, while there is no even path connecting v0 ∈ V0(T ) and v1 ∈ V1(T ). Hence

X(T ) =

(|V0(T )|
2

)

+

(|V1(T )|
2

)

.

It follows that X(T ) attains its minimum when |V0(T )| = ⌊n/2⌋ and |V1(T )| = ⌈n/2⌉, or
the other way around, i. e. when T = Pn, and the minimum value is

X(Pn) =

(⌊n/2⌋
2

)

+

(⌈n/2⌉
2

)

=

⌈

n(n − 2)

4

⌉

.

Armed with this Lemma, we will derive a recurrence inequality for Ce(n, m). First we
recall a recurrence equality for C(n, m), [25], [3]: for n > 3, n − 1 6 m 6 N ,

mC(n, m) =(N − m + 1)C(n, m − 1)

+
1

2

∑

n1+n2,
m1+m2=m−1

(

n

n1

)

n1n2C(n1, m1)C(n2, m2). (4.0.8)
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Explanation. The left hand side of (4.0.8) is the total number of the connected (n, m)
graphs with a marked edge. Each one of these graphs with a marked edge can be obtained
in one of two, mutually exclusive ways. First way is inserting a marked edge into a
connected graph on [n] with m − 1 edges, which accounts for the first term on the right
hand side of (4.0.8); indeed N −m + 1 is the total number of unordered pairs of vertices
not connected by an edge in a given connected graph with m − 1 edges. Second way is
to start with a connected (n1, m1) graph and a connected (n2, m2) graph, having m − 1
edges in total, and to add a marked edge that joins two connected graphs; n1n2 is the
total number of ways to select two “contact” points, representing each of two graphs.

Let us see if there is a similar recursive formula for Ce(n, m). Clearly, if a marked
edge joins two connected graphs, none of these two graphs may have an odd cycle. So
we definitely have the “Ce(·, ·)” counterpart of the second term on the right hand side of
(4.0.8). As for a potential counterpart of the first term, a difficulty is that an additional
m-th edge is not allowed to form an odd cycle with any of the m−1 edges already present.
And so the total number of admissible options depends on the structure of a (n, m − 1)
graph G in question. (For such a graph to be connected, it is necessary that m > n.)
However we can bound the number of options. G is spanned by a tree T on [n], and none
of the m−1−(n−1) = m−n edges of G\T completes an odd cycle by joining the ends of
an even path in T . By Lemma 4.1, the total number of those even paths is ⌈n(n− 2)/4⌉,
at least. Hence the total number of options for the m-edge is N − (m−1)−⌈n(n−2)/4⌉,
at most. And it is straightforward that, for n > 3 and by m > n,

N − (m − 1) −
⌈

n(n − 2)

4

⌉

6
1

2
(N − (m − 1)).

So Ce(·, ·) satisfies a recursive inequality : for n > 3, n − 1 6 m 6 N ,

mCe(n, m) 6
1

2
(N − m + 1)Ce(n, m − 1)

+
1

2

∑

n1+n2,
m1+m2=m−1

(

n

n1

)

n1n2C
e(n1, m1)C

e(n2, m2).
(4.0.9)

(Ce(ν, µ) := 0 if ν = 0, or µ /∈ [ν − 1,
(

ν
2

)

].) We will use (4.0.9) and induction to prove
the bound (4.0.5). To this end, we define a lexicographical order, ≺, on {(n, m) : n >

1, n − 1 6 m 6
(

n
2

)

} as follows: denoting ℓ = m − n,

(n1, m1) ≺ (n2, m2) ⇐⇒ ℓ1 < ℓ2, or ℓ1 = ℓ2 and n1 < n2.

The order ≺ is total, and (1, 0) is the minimal element. The inductive basis holds, since
Ce(1, 0) = C(1, 0) = 1, and Ce(2, 1) = C(2, 1) = 1. Suppose that, for some n > 2 and
m ∈ [n − 1,

(

n
2

)

],

Ce(ν, µ) 6
1

2µ−ν+1
C(ν, µ), ∀ (ν, µ) ≺ (n, m).
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Since (n, m − 1) ≺ (n, m), the inductive assumption implies that

1

2
(N − m + 1)Ce(n, m − 1) 6

1

2
(N − m + 1)

1

2m−1−n+1
C(n, m − 1)

=
1

2m−n+1
(N − m + 1)C(n, m). (4.0.10)

Further, for the double sum in (4.0.9),

m1 − n1 + 1 > 0, m2 − n2 + 1 > 0,

and
(m1 − n1 + 1) + (m2 − n2 + 1) = m − 1 − n + 2 = m − n + 1,

so that
mi − ni + 1 6 m − n + 1 =⇒ mi − ni 6 m − n, i = 1, 2.

So, for n1, n2 > 0, we have (ni, mi) ≺ (n, m) and therefore, by the inductive assumption,

2
∏

i=1

Ce(ni, mi) 6

2
∏

i=1

1

2mi−ni+1
C(ni, mi) =

1

2m−n+1

2
∏

i=1

C(ni, mi). (4.0.11)

Combining (4.0.9)-(4.0.11), and the recurrence equation (4.0.8) for C(·, ·), we obtain

mCe(n, m) 6
1

2m−n+1
(N − m + 1)C(n, m − 1)

+
1

2m−n+1

1

2

∑

n1+n2,
m1+m2=m−1

(

n

n1

) 2
∏

i=1

niC(ni, mi)

=
1

2m−n+1
mC(n, m).

Thus the bound (4.0.3) holds for (n, m) too. The proof of Proposition 4.1 is complete.

By Proposition 4.1 and and the formula (4.0.1), we have

Pr(Sn > 0, En 6 L)

6N(n, p) [xn] exp

[

q

p
C1(x) + Ce

0(x) +
1

2

L
∑

ℓ=1

(

p

2q

)ℓ

Cℓ(x)

]

.
(4.0.12)

Since Ce
0(x) is asymptotic to (1/2)C0(x) + ln(2−1/4e1/8) as x → e−1, only a trivial

change in the proof of Theorem 1.1 (i) is needed to show that

Pr(Sn > 0) . 2−1/4e1/8c(λ)n−1/12, (|λ| = o(n1/12). (4.0.13)

We omit the details. Furthermore, since for λ → −∞ we use L = 0, the sums
∑L

ℓ=1 in
(4.0.1), (4.0.12) disappear, and we obtain an asymptotic equality

Pr(Sn > 0) ∼ 2−1/4e1/8c(λ)n−1/12, (|λ| = o(n1/12, λ → −∞).
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To complete the proof of (ii), (case λ = O(1)), we need to prove (4.0.4) for each fixed
ℓ > 0. Recall Wright’s formula

Cℓ(x) = (1 − T (x))−3ℓ

[

2ℓ
∑

d=0

cℓ,d(1 − T (x))d

]

, (ℓ > 0). (4.0.14)

Let us find a similar formula for Ce
ℓ (x), ℓ > 0.

Proposition 4.2. For ℓ > 0,

Ce
ℓ (x) = (1 − T 2(x))−3ℓ

[

8ℓ−1
∑

d=0

ce
ℓ,d(1 − T (x))d

]

, (4.0.15)

where
ce
ℓ,0 = 22ℓ−1 cℓ,0. (4.0.16)

Consequently, for |x| < e−1 and x → e−1,

Ce
ℓ (x) ∼ 1

2ℓ+1
Cℓ(x).

Proof of Proposition 4.2. We use the ideas of Wright’s original proof of (4.0.14),
and the improvements suggested by Stepanov [24], (cf. [13], Section 9).

Given a connected graph G on [n], with an excess ℓ = e(G) − v(G) > 0, we apply a
“pruning” algorithm which successively deletes vertices of degree 1. Obviously the excess
is preserved, and so for a terminal graph (core) Ḡ we have e(Ḡ) − v(Ḡ) = ℓ. Ḡ inherits
all the cycles of G, and thus Ḡ has only even cycles iff G does. A minimum degree of Ḡ
is 2 at least, and—since ℓ(Ḡ) = ℓ > 0—a maximum degree is 3 at least. Next we apply
a “cancellation” algorithm to Ḡ: at each step, we delete a vertex of degree 2, splicing
together the two edges it formerly touched. The excess is preserved again. Once all the
vertices of degree 2 are gone, we get a connected multigraph (kernel) G̃, with possible
loops and parallel edges, and a minimum vertex degree 3 at least. Thus

2e(G̃) > 3v(G̃), e(G̃) − v(G̃) = ℓ,

and so
v(G̃) 6 2ℓ, e(G̃) 6 3ℓ. (4.0.17)

Notice that the largest numbers of vertices and the edges in the kernel are 2ℓ and 3ℓ
respectively, and the corresponding kernel is a 3-regular multigraph. (In [13] graphs G
with such kernels were called clean. It is these clean graphs that are most populous
asymptotically among all connected graphs on [n] with excess ℓ.) Now that we have a
reduced number v(G̃) of vertices, we relabel them using indices from [v(G̃)] and preserving
the order of their old indices from [n]. Under this rule, it follows that the number of kernels
G̃ for the collection of all connected graphs G on [n] with excess ℓ is a function of ℓ only!
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A key element of Wright’s argument was the following identity. Let M be a connected
multigraph on a vertex set [ν], with µi indistinguishable loops at vertex i, and µij indis-
tinguishable parallel edges joining i and j, (i, j ∈ [ν], i 6= j). Let hn,M denote the total
number of the connected simple graphs G on [n], with minimum degree 2 at least and
maximum degree 3 at least (core-type graphs, in short), such that G̃ = M . Letting

HM(z) =
∑

n

hn,M

n!
zn, (4.0.18)

we have

HM(z) =
κ

ν!

zν

(1 − z)µ
· KM(z), µ :=

∑

i

µi +
∑

i<j

µij, (4.0.19)

where

KM(z) =
∏

16i6ν

(

z2µi

∏

16i<j6ν

zµij−1(µij − (µij − 1)z)

)

,

κ =
∏

16i6ν

1

2µiµi!

∏

16i<j6ν

1

µij !
.

(4.0.20)

(Observe that KM(1) = 1.) Once (4.0.19)-(4.0.20) are established, it is easy to determine
HM(x), the exponential generating function of all connected graphs G whose kernel is
the multigraph M . Indeed to go from a core Ḡ back to G on [n] we need to choose an
ordered sequence of v(Ḡ) of rooted trees, of total size n, and plant them at the vertices
of Ḡ, moving increasingly from vertex 1 to vertex v(Ḡ). Since the generating function of
such sequences is T (x)v(Ḡ), we see that

HM(x) =
∑

n

hn,M

n!
T (x)n = HM(T (x)). (4.0.21)

Finally

Cℓ(x) =
∑

M : e(M)−v(M)=ℓ

HM(x) = (1 − T (x))−3ℓ

[

2ℓ
∑

d=0

cℓ,d(1 − T (x))d

]

;

cℓ,0 :=
1

(2ℓ)!

∑

µ meets (4.0.18)

κ(µ).

(4.0.22)

Our first step is to obtain a counterpart of (4.0.18)-(4.0.20) for

He
M(z) =

∑

n

he
n,M

n!
zn,

where he
n,M is the total number of the connected core-type graphs on [n] with only even

cycles, that cancel to a given multigraph M . To this end, consider an auxilliary problem.
Let

µi = µe
i + µo

i , µij = µe
ij + µo

ij, (1 6 i 6= j 6 ν). (4.0.23)
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Let hn,(µe,µo) denote the total number of the core-type graphs G on [n], which cancel to
M , such that: (1) for each i, G has an even (odd resp.) number of 2-degree vertices put
on each of µe

i (µ0
i resp.) loops at vertex i of M ; (2) for each (i, j), G has an even (odd

resp.) number of 2-degree vertices put on each of µe
ij (µo

ij resp.) parallel edges joining the
vertices i and j in M . Let us determine

H(µe,µo)(z) =
∑

n

hn,(µe,µo)

n!
zn.

A core-type graph G on [n] cancelling to M and meeting the parity conditions (1)-(2) can
be viewed as a partition of [n] into:

(a) a subset of cardinality ν, whose elements are the assigned to the ν vertices of M in a
unique (order-preserving) fashion;

(b) ∀ i ∈ [ν], a collection of µi ordered subsets, each having 2 elements at least (as G
is simple), such that exactly µe

i (µo
i resp.) subsets have an even (odd resp.) number of

elements;

(c) ∀ 1 6 i 6= j 6 ν, a collection of µij ordered subsets, with at most one empty subset (as
G is simple), such that exactly µe

ij (µo
ij resp.) subsets have an even (odd resp.) number

of elements.

So H(µe,µo)(z) is the product of generating functions Ht(z) corresponding to 1+ν+
(

ν
2

)

combinatorial structures described in (a), (b), (c). The first is easy:

H(z) =
zν

ν!
. (4.0.24)

Next, for i ∈ [ν],

Hi(z) =
1

2µiµe
i !µ

o
i !

∑

n

an,(µe
i ,µo

i )z
n;

here an,(µe
i ,µo

i ) is the total number of compositions of n with µi parts, each 2 at least, such
that the first µe

i parts (the last µ0
i parts resp.) are even (odd resp.). The factor 1/2µi is

needed as we do not distinguish between two opposite orderings of vertices sprinkled on
each of µi loops of M at i. Consequently

Hi(z) =
1

2µiµe
i !µ

o
i !

(

∑

k>1

z2k

)µe
i
(

∑

k>1

z2k+1

)µo
i

=
1

2µiµe
i !µ

o
i !

z2µi+µo
i

(1 − z2)µi
.

(4.0.25)

Similarly, for each 1 6 i < j 6 ν,

Hij(z) =
1

µe
ij!µ

o
ij!

[

(

z2

1 − z2

)µe
ij

+ µe
ij

(

z2

1 − z2

)µe
ij−1
]

(

z

1 − z2

)µo
ij

. (4.0.26)
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Taking the product of the generating functions in (4.0.24)-(4.0.26) we obtain

H(µe,µo)(z) =
κ

ν!

zν

(1 − z2)µ
· K(µe,µo)(z), (4.0.27)

where

K(µe,µo)(z) =
∏

i∈[ν]

(

µi

µe
i

)

z2µi+µo
i ·

∏

16i<j6ν

(

µij

µe
ij

)

zµij+µe
ij−2

[

µe
ij − (µe

ij − 1)z2
]

. (4.0.28)

As a partial check, summing over (µe, µo), we obtain Wright’s formula (4.0.18)-(4.0.20).

Now, for a core-type graph G on [n] without odd cycles, that cancels to M , G’s parity
parameters µe, µo must satisfy certain conditions. First of all, for each i ∈ [ν], µe

i = 0,
since otherwise G would have an odd cycle, with a single branching vertex. Likewise, for
µij > 0, the numbers of 2-degree vertices of G on µij parallel edges of M must all be of
the same parity, hence µe

ij = µij or µo
ij = µij. Subject to this condition, how many choices

for (µe, µo) do we have? For each (i, j) such that µij > 0, define

bij = bji =

{

1, if µe
ij = µij,

0, if µe
ij = 0.

If C is a cycle in M , then the parity of a cycle in G that cancels to C is the parity of
b(C) :=

∑

(i,j)∈C bij . Hence b(C) must be even for all cycles C, and we need to check this

condition only for simple cycles that do not use parallel edges. Let T = T (M) be a tree
on [ν] that spans M . Pick µe

ij for all ν − 1 pairs (i, j) such that (i, j) ∈ E(T ), i. e. one
of µij parallel edges is in E(T ). Let µij > 0 and e = (i, j) /∈ E(T ). Then e completes a
cycle C with a path in T that connects i and j. The condition “b(C) is even” determines
µe

ij uniquely. Hence a choice of ν − 1 values of µe
ij determines uniquely the remaining µe

··.
Arguing as in the proof of Lemma 2.1.1, we see that the condition “b(C) is even” will
hold for all other cycles C. Thus we have have 2ν−1 choices for (µe, µo).

For each of those choices, (4.0.28) becomes

K(µe,µo)(z) =
∏

i∈[ν]

z3µi ·
∏

16i<j6ν
µe

ij
=µij

z2(µij−1)
[

µij − (µij − 1)z2
]

·
∏

16i<j6ν
µe

ij
=0

zµij . (4.0.29)

For each of these 2ν−1 polynomials,

K(µe,µo)(1) = 1, (4.0.30)

and
degK(µe,µo)(z) 6 3

∑

i

µi + 2
∑

16i<j6ν

µij.

Using the constraints
∑

i

µi +
∑

16i<j6ν

µij = µ,
∑

i

µi + 2
∑

16i<j6ν

µij > 3ν,
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we easily obtain then that
degK(µe,µo)(z) 6 4µ − 3ν.

Now, the generating function He
M(z) of the core-type graphs G without odd cycles

that cancel to M is the sum of H(µe,µo)(z) over all 2ν−1 sets of feasible pairs (µe, µo).
Using (4.0.27), (4.0.29) and (4.0.30) we arrive at the following formula.

Lemma 4.2. For each kernel M , with ℓ := µ − ν > 0,

He
M(z) =

κ

ν!

2ν−1

(1 − z2)µ
PM(z), (4.0.31)

where PM(z) is a polynomial of degree 4µ − 3ν = µ + 3ℓ at most, and PM(1) = 1.

This Lemma directly implies

Corollary 4.1.

Ce
ℓ (x) =

∑

M :e(M)−v(M)=ℓ

He
M(x), (4.0.32)

where

He
M(x) =

κ

ν!

2ν−1

(1 − T 2(x))µ
PM(T (x)), (4.0.33)

Using ℓ < µ(M) 6 3ℓ, ν(M) = µ(M) − ℓ, we deduce from (4.0.32)-(4.0.33) that

Ce
ℓ (x) = (1 − T 2(x))−3ℓ

[

8ℓ−1
∑

d=0

ce
ℓ,d(1 − T (x))d

]

, (4.0.34)

where

ce
ℓ,0 =

22ℓ−1

(2ℓ)!

∑

µ meets (4.0.19)

κ(µ). (4.0.35)

So, by the second line in (4.0.22), ce
ℓ,0 = 22ℓ−1cℓ,0. The proof of Proposition 4.2 is complete.

Comparing (4.0.14) and (4.0.34)-(4.0.35), and using T (e−1) = 1, we obtain: for ℓ > 0,

Ce
ℓ (x) =

1

2ℓ+1
Cℓ(x) + O

(

|1 − T (x)|−3ℓ+1
)

, (|x| < e−1, x → e−1). (4.0.36)

And we recall, (4.0.3), that

Ce
0(x) =

1

2
C0(x) + ln(2−1/4e1/8) + O(|T (x) − 1|). (4.0.37)

Now, by (4.0.1), for a fixed L > 0,

Pr(Sn > 0, En 6 L) = N(n, p)

∮

Γ

x−n−1 exp

[

L
∑

ℓ=−1

(

p

q

)ℓ

Ce
ℓ (x)

]

dx,
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where Γ is within the disc |x| < e−1. As in Section 2.3, we switch to y by x = ye−y, and

choose in the y-plane the circular contour Γ′ y = e−an−1/3+iθ, a > 0 being fixed this time.
Observe that, for each 1 6 ℓ 6 L,

(

p

q

)ℓ

|1 − T (ye−y)|−3ℓ+1 6b n−ℓ|1 − y|−3ℓ+1 6b n−1/3,

and, likewise in (4.0.3) the remainder term O(|T (ye−y) − 1|) is O(n−1/3). And of course
Ce

−1(ye−y) = C−1(ye−y). On the basis of (4.0.36)-(4.0.37), it can be shown then that

Pr(Sn > 0, En 6 L)

∼ 2−1/4e1/8N(n, p)

∮

Γ′

(ye−y)−n−1 exp

[

1

2

L
∑

ℓ=−1

(

p

2q

)ℓ

Cℓ(ye−y)

]

d(ye−y), (4.0.38)

where now Γ′ can be replaced by a circular contour of an arbitrarily small radius. Going
back to the x-plane, we recognize (see (2.1.11)) the value of the resulting integral as

2−1/4e1/8 Pr(Sn > 0, En 6 L)|p̂=1/2 ,

for λ = O(1) needless to say. By (2.1.13), the latter probability is at least

Pr(Sn > 0)|p̂=1/2 · Pr(En 6 L).

Letting n → ∞, and using the part (i) for Pr(Sn > 0)|p̂=1/2, we get

lim inf
Pr(Sn > 0, En 6 L)

2−1/4e1/8c(λ)n−1/12
> lim inf Pr(En 6 L).

Since Pr(Sn > 0) > Pr(Sn > 0, En 6 L), and En = OP (1), letting L ↑ ∞ enables us to
conclude that

Pr(Sn > 0) & 2−1/4e1/8c(λ)n−1/12.

Together with (4.0.14) this proves that

Pr(Sn > 0) ∼ 2−1/4e1/8c(λ)n−1/12.

The proof of Theorem 1.1 (ii) is now complete.
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Appendix

Proof of (2.3.22). (i) For the second bound, we use (2.3.19) and, setting s = a + it,
∣

∣

∣

∣

s1−y exp

(

µs2

2
+

s3

3

)
∣

∣

∣

∣

6 a1−y exp

(

µa2

2
+

a3

3

)

exp
[

−t2(a + µ/2)
]

.

So

A(y, µ) 6 (2π)−1

√

π

a + µ/2
exp

(

−µ3

6
+

µa2

2
+

a3

3

)

.

(ii) For the first bound, we use (2.3.20), i. e.

eµ3/6 3(y+1)/3A(y, µ) =

∞
∑

k=0

(32/3µ/2)k

Γ(k + 1)Γ((y + 1 − 2k)/3)
, (A.1)

and the inequalities

(1/2)a+b+2

a + b + 2
6

Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
6

aabb

(a + b)a+b
6 1, (a > 0, b > 0),

which follow from a classic formula
∫ 1

0

xa(1 − x)b dx =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
,
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and

max
x∈[0,1]

xa(1 − x)b =
aabb

(a + b)a+b
,

∫ 1

0

xa(1 − x)b dx > (1/2)b

∫ 1/2

0

xa dx + (1/2)a

∫ 1

1/2

(1 − x)b dx

= (1/2)a+b+1

(

1

a + 1
+

1

b + 1

)

.

Break the sum in (A.1) into Σ1, Σ2, and Σ3, for {k > 2 : (y + 1 − 2k)/3 > 1},
{k > 1 : (y +1−2k)/3 6 0}, and {k = 0, 1 : or (y +1−2k)/3 > 1}, respectively. (Recall
that Γ(0) = ∞.) For Σ1,

1

Γ(k + 1)Γ((y + 1 − 2k)/3))
=

Γ(2k/3)

Γ(k + 1)
· 1

Γ((y + 1 − 2k)/3)Γ(2k/3)

6
2(y+1)/3

Γ((y + 1)/3)
· Γ(2k/3)Γ(k/3 + 1)

Γ(k + 1)
· 1

Γ(k/3 + 1)

6
2(y+1)/3

Γ((y + 1)/3)
· 2

(2k/3)2k/3−1(k/3)k/3

kk−1
· 1

Γ(k/3 + 1)

6 6
2(y+1)/3

Γ((y + 1)/3)
· (22/3/3)k

Γ(k/3 + 1)
.

Therefore

|Σ1| 6 6
2(y+1)/3

Γ((y + 1)/3

∑

k>0

(|µ|3/6)k/3

Γ(k/3 + 1)
6b (|µ|3 ∨ 1)

2(y+1)/3

Γ((y + 1)/3)
· e|µ|3/6. (A.2)

For Σ2, we use

Γ(z)Γ(1 − z) =
π

sin(πz)
=⇒ 1

|Γ((y + 1 − 2k)/3)| 6 Γ(1 + (2k − y − 1)/3),

and

Γ(1 + (2k − y − 1)/3)

Γ(k + 1)
6

1

Γ(1 + (y + 1)/3)
· Γ(2k/3 + 2)

Γ(k + 1)

=
1

Γ(1 + (y + 1)/3)
· Γ(2k/3 + 2)Γ(k/3 + 1)

Γ(k + 1)
· 1

Γ(k/3 + 1)

6
1

Γ(1 + (y + 1)/3)
· Γ(k + 3)

Γ(k + 1)
· (k/3)k/3(1 + 2k/3)1+2k/3

(k + 1)k+1

6
1

Γ(1 + (y + 1)/3)
· (k + 2)2 (22/3/3)k

Γ(k/3 + 1)
.

Therefore

|Σ2| 6b (|µ|9 ∨ 1)
1

Γ((y + 1)/3)
· e|µ|3/6. (A.3)
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And it is not difficult to show that

|Σ3| 6b |Σ1| + |Σ2|. (A.4)

The relations (A.1)-(A.4) imply that

A(y, µ) 6b e|µ|
3/2 (2/3)

y+1

3

Γ
(

y+1
3

) .

Proof of (2.3.23)-(2.3.24). Again we use (2.3.19). We will choose a = ξ, where ξ = ξ(y, µ)
is a maximum point of

Ψ(a; y, µ) := −y ln a +
µa2

2
+

a3

3
, a ∈ (0,∞),

i. e. a positive root of

Ψ(1)
a (a; y, µ) = µa + a2 − y

a
= 0. (A.5)

A root exists and is unique, since Ψa(0+; y, µ) = −∞, Ψ(∞; y, µ) = ∞ and

Ψ(2)
a (a; y, µ) = µ + 2a +

y

a2
> 0, (a > 0).

Observe that µξ2/y is bounded away from zero. If not, then, by (A.5),

µ3ξ6

y3
→ 0,

y2

ξ6
→ 1,

which implies that µ3/y → 0, contradicting y = O(λ3) = O(µ3).

Break the integral in (2.3.19) into I1 over |t| 6 µ−1/2y1/7 and I2 over |t| > µ−1/2y1/7.
Arguing as the part (i) of the previous proof, we bound

|I2| 6b ξ exp[Ψ(ξ; y, µ)]

∫

|t|>µ−1/2y1/7

exp
[

−t2(ξ + µ/2)
]

dt

6b
ξ exp[Ψ(ξ; y, µ)]

(ξ + µ/2)1/2
· e−y2/7/2.

(A.5)

Turn to I1. Since

Ψ(3)
s (s; y, µ) = −2y

s3
= O(yξ−3),

we have

Ψ(s; y, µ) = Ψ(ξ; y, µ) − t2

2
(µ + 2ξ + yξ−2) + O

(

yξ−3µ−3/2y3/7
)

,
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and

yξ−3µ−3/2y3/7 =
y3/7−1/2

(

µξ2

y

)3/2
6b y−1/14.

Consequently

I1 ∼ ξ exp[Ψ(ξ; y, µ)]

∫

|t|6µ−1/2y1/7

exp

(

−t2

2
(µ + 2ξ + yξ−2)

)

dt

∼ ξ exp[Ψ(ξ; y, µ)]

(

2π

µ + 2ξ + yξ−2

)1/2

.

(A.6)

Since yξ−2 = O(µ), (A.5)-(A.6) imply that I1 ≫ I2, hence

A(y, µ) ∼ e−µ3/6(2π)−1I1,

which proves (2.3.23).

If we drop the condition y → ∞, then the integral in (2.3.19) is of order

ξ exp[Ψ(ξ; y, µ)]

∞
∫

−∞

exp
[

−t2(ξ + µ/2)
]

dt = ξ exp[Ψ(ξ; y, µ)]

(

2π

ξ + µ/2

)1/2

,

which proves (2.3.24).

Proof of (1.0.5). The system (1.0.1) is solvable iff for every cycle C of G,

∑

e∈E(C)

be = O( mod 2). (A.7)

If be ∈ {0, 1} are independent random variables with Pr(be = 1) = p̂, the condition (A.7)
is met with probability (1 + (1 − 2p̂)|C|)/2, Kolchin [14].

Consider G = G(n, p = γ/n), γ < 1. Let Xns denote the number of cycles of length
s which are “bad”, i. e. do not meet the condition (A.7). We need to find the limiting
distribution of Xn =

∑

s>3 Xns the total number of “bad” cycles. To this end, observe
that, with probability approaching 1, the cycles G(n, p) may have are those in the unicyclic
components. Let us call them u-cycles. The expected number of all cycles of length k > 3
is

(

n

k

)

(k − 1)!

2
pk 6

γk

2k
.

So
lim

A→∞
lim

n→∞
Pr(G(n, p) has a cycle of length > A) = 0.
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Let Yns be the total number of all u-cycles of length s. In [20] it was proven that, for
γ fixed, {Yns}s6A converges in distribution to {Poisson(σs)}s6A, where the Poissons are
independent and

σs =
T s(γe−γ)

2s
, s > 3.

As γ < 1, we have T (γe−γ) = γ, because T (x) = xeT (x), for x < e−1. Now a u-cycle of
length s is bad with probability

πs =
1 − (1 − 2p̂)s

2
.

Consequently {Xns}s6A converges to {Poisson(πsσs)}s6A, whence Xn converges to
Poisson

(
∑

s6A πsσs

)

. Therefore,

lim
n→∞

Pr{there are nod bad u-cycles of length A at most} = e−
P

s6A πsσs.

It remains to notice that

∑

s>3

πsσs =
∑

s>3

1 − (1 − 2p̂)s

2

γs

2s

=
1

4
ln

1 − γ(1 − 2p̂)

1 − γ
− γ

2
p̂ − γ2

2
p̂(1 − p̂).

That the same formula holds for G(n, m = γn/2) follows then in a standard way.
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