
Chapter III

Boundary Value Problems

1 Introduction

We shall recall two classical boundary value problems and show that an

appropriate generalized or abstract formulation of each of these is a well-

posed problem. This provides a weak global solution to each problem and

motivates much of our latter discussion.

1.1

Suppose we are given a subset G of Rn and a function F : G → K. We

consider two boundary value problems for the partial differential equation

−∆nu(x) + u(x) = F (x) , x ∈ G . (1.1)

The Dirichlet problem is to find a solution of (1.1) for which u = 0 on ∂G.

The Neumann problem is to find a solution of (1.1) for which (∂u/∂ν) = 0

on ∂G. In order to formulate these problems in a meaningful way, we recall

the first formula of Green∫
G
((∆nu)v +∇u · ∇v) =

∫
∂G

∂u

∂ν
v =

∫
∂G
γ1u · γ0v (1.2)

which holds if ∂G is sufficiently smooth and if u ∈ H2(G), v ∈ H1(G). Thus,
if u is a solution of the Dirichlet problem and if u ∈ H2(G), then we have
u ∈ H10 (G) (since γ0u = 0) and (from (1.1) and (1.2))

(u, v)H1(G) = (F, v)L2(G) , v ∈ H10 (G) . (1.3)

59



60 CHAPTER III. BOUNDARY VALUE PROBLEMS

Note that the identity (1.3) holds in general only for those v ∈ H1(G) for
which γ0v = 0. If we drop the requirement that v vanish on ∂G, then

there would be a contribution from (1.2) in the form of a boundary integral.

Similarly, if u is a solution of the Neumann problem and u ∈ H2(G), then
(since γ1u = 0) we obtain from (1.1) and (1.2) the identity (1.3) for all

v ∈ H1(G). That is, u ∈ H2(G) and (1.3) holds for all v ∈ H1(G).
Conversely, suppose u ∈ H2(G) ∩ H10 (G) and (1.3) holds for all v ∈

H10 (G). Then (1.3) holds for all v ∈ C
∞
0 (G), so (1.1) is satisfied in the sense

of distributions on G, and γ0u = 0 is a boundary condition. Thus, u is a

solution of a Dirichlet problem. Similarly, if u ∈ H2(G) and (1.3) holds for
all v ∈ H1(G), then C∞0 (G) ⊂ H1(G) shows (1.1) is satisfied as before, and

substituting (1.1) into (1.3) gives us∫
∂G
γ1u · γ0v = 0 , v ∈ H1(G) .

Since the range of γ0 is dense in L
2(∂G), this implies that γ1u = 0, so u is

a solution of a Neumann problem.

1.2

The preceding remarks suggest a weak formulation of the Dirichlet problem

as follows:

Given F ∈ L2(G), find u ∈ H10 (G) such that (1.3) holds for all
u ∈ H10 (G).

In particular, the condition that u ∈ H2(G) is not necessary for this formu-
lation to make sense. A similar formulation of the Neumann problem would

be the following:

Given F ∈ L2(G), find u ∈ H1(G) such that (1.3) holds for all
v ∈ H1(G).

This formulation does not require that u ∈ H2(G), so we do not necessarily
have γ1u ∈ L2(∂G). However, we can either extend the operator γ1 so (1.2)
holds on a larger class of functions, or we may prove a regularity result to the

effect that a solution of the Neumann problem is necessarily in H2(G). We

shall achieve both of these in the following, but for the present we consider

the following abstract problem:
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Given a Hilbert space V and f ∈ V ′, find u ∈ V such that for all
v ∈ V

(u, v)V = f(v) .

By taking V = H10 (G) or V = H1(G) and defining f to be the functional

f(v) = (F, v)L2(G) of V
′, we recover the weak formulations of the Dirichlet

or Neumann problems, respectively. But Theorem I.4.5 shows that this

problem is well-posed.

Theorem 1.1 For each f ∈ V ′, there exists exactly one u ∈ V such that

(u, v)V = f(v) for all v ∈ V , and we have ‖u‖V = ‖f‖V ′ .

Corollary If u1 and u2 are the solutions corresponding to f1 and f2, then

‖u1 − u2‖V = ‖f1 − f2‖V ′ .

Finally, we note that if V = H10 (G) or H
1(G), and if F ∈ L2(G) then

‖f‖V ′ ≤ ‖F‖L2(G) where we identify L
2(G) ⊂ V ′ as indicated.

2 Forms, Operators and Green’s Formula

2.1

We begin with a generalization of the weak Dirichlet problem and of the

weak Neumann problem of Section 1:

Given a Hilbert space V , a continuous sesquilinear form a(·, ·) on
V , and f ∈ V ′, find u ∈ V such that

a(u, v) = f(v) , v ∈ V . (2.1)

The sesquilinear form a(·, ·) determines a pair of operators α, β ∈ L(V )
by the identities

a(u, v) = (α(u), v)V = (u, β(v))V , u, v ∈ V . (2.2)

Theorem I.4.5 is used to construct α and β from a(·, ·), and a(·, ·) is clearly
determined by either of α or β through (2.2). Theorem I.4.5 also defines the

bijection J ∈ L(V ′, V ) for which

f(v) = (J(f), v)V , f ∈ V ′ , v ∈ V .
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In fact, J is just the inverse of RV . It is clear that u is a solution of the

“weak” problem associated with (2.1) if and only if α(u) = J(f). Since J is

a bijection, the solvability of this functional equation in V depends on the

invertibility of the operator α. A useful sufficient condition for α to be a

bijection is given in the following.

Definition. The sesquilinear form a(·, ·) on the Hilbert space V is V -
coercive if there is a c > 0 such that

|a(v, v)| ≥ c‖v‖2V , v ∈ V . (2.3)

We show that the weak problem associated with a V -coercive form is

well-posed.

Theorem 2.1 Let a(·, ·) be a V -coercive continuous sesquilinear form. Then,
for every f ∈ V ′, there is a unique u ∈ V for which (2.1) is satisfied. Fur-
thermore, ‖u‖V ≤ (1/c)‖f‖V ′.

Proof : The estimate (2.3) implies that both α and β are injective, and we

also obtain

‖α(v)‖V ≥ c‖v‖V , v ∈ V .

This estimate implies that the range of α is closed. But β is the adjoint of α in

V , so the range of α, Rg(α), satisfies the orthogonality condition Rg(α)⊥ =

K(β) = {0}. Hence, Rg(α) is dense in V , and this shows Rg(α) = V . Since
J is norm-preserving the stated results follow easily.

2.2

We proceed now to construct some operators which characterize solutions of

problem (2.1) as solutions of boundary value problems for certain choices of

a(·, ·) and V . First, define A ∈ L(V, V ′) by

a(u, v) = Au(v) , u, v ∈ V . (2.4)

There is a one-to-one correspondence between continuous sesquilinear forms

on V and linear operators from V to V ′, and it is given by the identity (2.4).

In particular, u is a solution of the weak problem (2.1) if and only if u ∈ V
and Au = f , so the problem is determined by A when f ∈ V ′ is regarded
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as data. We would like to know that the identity Au = f implies that u

satisfies a partial differential equation. It will not be possible in all of our

examples to identify V ′ with a space of distributions on a domain G in Rn.

(For example, we are thinking of V = H1(G) in a Neumann problem as in

(1.1). The difficulty is that the space C∞0 (G) is not dense in V .)

There are two “natural” ways around this difficulty. First, we assume

there is a Hilbert space H such that V is dense and continuously imbedded

in H (hence, we may identify H ′ ⊂ V ′) and such that H is identified with

H ′ through the Riesz map. Thus we have the inclusions

V ↪→ H = H ′ ↪→ V ′

and the identity

f(v) = (f, v)H , f ∈ H , v ∈ V . (2.5)

We call H the pivot space when we identify H = H ′ as above. (For example,

in the Neumann problem of Section 1, we choose H = L2(G), and for this

choice of H, the Riesz map is the identification of functions with functionals

which is compatible with the identification of L2(G) as a space of distribu-

tions on G; cf., Section I.5.3.) We define D = {u ∈ V : Au ∈ H}. In the
examples, Au = f , u ∈ D, will imply that a partial differential equation is
satisfied, since C∞0 (G) will be dense in H. Note that u ∈ D if and only if
u ∈ V and there is a K > 0 such that

|a(u, v)| ≤ K‖v‖H , v ∈ V .

(This follows from Theorem I.4.5.) Finally, we obtain the following result.

Theorem 2.2 If a(·, ·) is V -coercive, then D is dense in V , hence, dense
in H.

Proof : Let w ∈ V with (u,w)V = 0 for all u ∈ D. Then the operator β
from (2.2) being surjective implies w = β(v) for some v ∈ V . Hence, we

obtain 0 = (u, β(v))V = Au(v) = (Au, v)H by (2.5), since u ∈ D. But A
maps D onto H, so v = 0, hence, w = 0.

A second means of obtaining a partial differential equation from the

continuous sesquilinear form a(·, ·) on V is to consider a closed subspace V0
of V , let i : V0 ↪→ V denote the identity and ρ = i′ : V ′ → V ′0 the restriction
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to V0 of functionals on V , and define A = ρA : V → V ′0 . The operator

A ∈ L(V, V ′0) defined by

a(u, v) = Au(v) , u ∈ V , v ∈ V0

is called the formal operator determined by a(·, ·), V and V0. In examples,
V0 will be the closure in V of C

∞
0 (G), so V

′
0 is a space of distributions on G.

Thus, Au = f ∈ V ′0 will imply that a partial differential equation is satisfied.

2.3

We shall compare the operators A and A. Assume V0 is a closed subspace
of V , H is a Hilbert space identified with its dual, the injection V ↪→ H

is continuous, and V0 is dense in H. Let D be given as above and define

D0 = {u ∈ V : Au ∈ H}, where we identify H ⊂ V ′0 . Note that u ∈ D0 if
and only if u ∈ V and there is a K > 0 such that

|a(u, v)| ≤ K‖v‖H , v ∈ V0 ,

so D ⊂ D0. It is on D0 that we compare A and A. So, let u ∈ D0 be fixed
in the following and consider the functional

ϕ(v) = Au(v)− (Au, v)H , v ∈ V . (2.6)

Then we have ϕ ∈ V ′ and ϕ|V0 = 0. But these are precisely the conditions
that characterize those ϕ ∈ V ′ which are in the range of q′ : (V/V0)′ → V ′,

the dual of the quotient map q : V → V/V0. That is, there is a unique

F ∈ (V/V0)′ such that q′(F ) = F ◦ q = ϕ. Thus, (2.6) determines an

F ∈ (V/V0)′ such that F (q(v)) = ϕ(v), v ∈ V . In order to characterize

(V/V0), let V0 be the kernel of a linear surjection γ : V → B and denote

by γ̂ the quotient map which is a bijection of V/V0 onto B. Define a norm

on B by ‖γ̂(x̂)‖B = ‖x̂‖V/V0 so γ̂ is bicontinuous. Then the dual operator
γ̂′ : B′ → (V/V0)′ is a bijection. Given the functional F above, there is a
unique ∂ ∈ B′ such that F = γ̂′(∂). That is, F = ∂ ◦ γ̂. We summarize the
preceding discussion in the following result.

Theorem 2.3 Let V and H be Hilbert spaces with V dense and continuously

imbedded in H. Let H be identified with its dual H ′ so (2.5) holds. Suppose γ

is a linear surjection of V onto a Hilbert space B such that the quotient map

γ̂ : V/V0 → B is norm-preserving, where V0, the kernel of γ, is dense in H.
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Thus, we have V0 ↪→ H ↪→ V ′0. Let A ∈ L(V, V
′) and define A ∈ L(V, V ′0)

by A = ρA, where ρ : V ′ → V ′0 is restriction to V0, the dual of the injection

V0 ↪→ V . Let D0 = {u ∈ V : Au ∈ H}. Then, for every u ∈ D0, there is a
unique ∂(u) ∈ B′ such that

Au(v)− (Au, v)H = ∂(u)(γ(v)) , v ∈ V . (2.7)

The mapping ∂ : D0 → B′ is linear.

When V ′0 is a space of distributions, it is the formal operator A that

determines a partial differential equation. When γ is a trace function and

V0 consists of those elements of V which vanish on a boundary, the quotient

V/V0 represents boundary values of elements of V . Thus B is a realization of

these abstract boundary values as a function space and (2.7) is an abstract

Green’s formula. We shall call ∂ the abstract Green’s operator .

Example. Let V = H1(G) and γ : H1(G) → L2(∂G) be the trace map

constructed in Theorem II.3.1. Then H10 (G) = V0 is the kernel of γ and

we denote by B the range of γ. Since γ̂ is norm-preserving, the injection

B ↪→ L2(∂G) is continuous and, by duality, L2(∂G) ⊂ B′, where we identify
L2(∂G) with its dual space. In particular, B consists of functions on ∂G and

L2(∂G) is a subspace of B′. Continuing this example, we choose H = L2(G)

and a(u, v) = (u, v)H1(G), so Au = −∆nu + u and D0 = {u ∈ H1(G) :

∆nu ∈ L2(G)}. By comparing (2.7) with (1.2) we find that when ∂G is
smooth ∂ : D0 → B′ is an extension of ∂/∂ν = γ1 : H

2(G)→ L2(∂G).

3 Abstract Boundary Value Problems

3.1

We begin by considering an abstract “weak” problem (2.1) motivated by

certain carefully chosen formulations of the Dirichlet and Neumann problems

for the Laplace differential operator. The sesquilinear form a(·, ·) led to two
operators: A, which is equivalent to a(·, ·), and the formal operator A, which
is determined by the action of A restricted to a subspace V0 of V . It is A that
will be a partial differential operator in our applications, and its domain will

be determined by the space V and the difference of A and A as characterized
by the Green’s operator ∂ in Theorem 2.3. If V is prescribed by boundary

conditions, then these same boundary conditions will be forced on a solution
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u of (2.1). Such boundary conditions are called stable or forced boundary

conditions. A second set of constraints may arise from Theorem 2.3 and

these are called unstable or variational boundary conditions. The complete

set of both stable and unstable boundary conditions will be part of the

characterization of the domain of the operator A.

We shall elaborate on these remarks by using Theorem 2.3 to characterize

solutions of (2.1) in a setting with more structure than assumed before. This

additional structure consists essentially of splitting the form a(·, ·) into the
sum of a spatial part which determines the partial differential equation in

the region and a second part which contributes only boundary terms. The

functional f is split similarly into a spatial part and a boundary part.

3.2

We assume that we have a Hilbert space V and a linear surjection γ : V → B

with kernel V0 and that B is a Hilbert space isomorphic to V/V0. Let V be

continuously imbedded in a Hilbert space H which is the pivot space iden-

tified with its dual, and let V0 be dense in H. Thus we have the continuous

injections V0 ↪→ H ↪→ V ′0 and V ↪→ H ↪→ V ′ and the identity (2.5). Let

a1 : V × V → K and a2 : B × B → K be continuous sesquilinear forms and
define

a(u, v) = a1(u, v) + a2(γu, γv) , u, v ∈ V .

Similarly, let F ∈ H, g ∈ B′, and define

f(v) = (F, v)H + g(γv) , v ∈ V .

The problem (2.1) is the following: find u ∈ V such that

a1(u, v) + a2(γu, γv) = (F, v)H + g(γv) , v ∈ V . (3.1)

We shall use Theorem 2.3 to show that (3.1) is equivalent to an abstract

boundary value problem.

Theorem 3.1 Assume we are given the Hilbert spaces, sesquilinear forms

and functionals as above. Let A2 : B → B′ be given by

A2ϕ(ψ) = a1(ϕ,ψ) , ϕ, ψ ∈ B ,

and A : V → V ′0 by

Au(v) = a1(u, v) , u ∈ V , v ∈ V0 .
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Let D0 = {u ∈ V : Au ∈ H} and ∂1 ∈ L(D0, B′) be given by (Theorem 2.3)

a1(u, v)− (Au, v)H = ∂1u(γv) , u ∈ D0 , v ∈ V . (3.2)

Then, u is a solution of (3.1) if and only if

u ∈ V , Au = F , ∂1u+A2(γu) = g . (3.3)

Proof : Since a2(γu, γv) = 0 for all v ∈ V0, it follows that the formal oper-
ator A and space D0 (determined above by a1(·, ·)) are equal, respectively,
to the operator and domain determined by a(·, ·) in Section 2.3. Suppose u
is a solution of (3.1). Then u ∈ V , and the identity (3.1) for v ∈ V0 and V0
being dense in H imply that Au = F ∈ H. This shows u ∈ D0 and using
(3.2) in (3.1) gives

∂1u(γv) + a2(γu, γv) = g(γv) , v ∈ V .

Since γ is a surjection, this implies the remaining equation in (3.3). Similarly,

(3.3) implies (3.1).

Corollary 3.2 Let D be the space of those u ∈ V such that for some F ∈ H

a(u, v) = (F, v)H , v ∈ V .

Then u ∈ D if and only if u is a solution of (3.3) with g = 0.

Proof : Since V0 is dense in H, the functional f ∈ V ′ defined above is in H
if and only if g = 0.

4 Examples

We shall illustrate some applications of our preceding results in a variety of

examples of boundary value problems. Our intention is to indicate the types

of problems which can be described by Theorem 3.1.
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4.1

Let there be given a set of (coefficient) functions

aij ∈ L
∞(G) , 1 ≤ i , j ≤ n ; aj ∈ L

∞(G) , 0 ≤ j ≤ n ,

where G is open and connected in Rn, and define

a(u, v) =

∫
G

{ n∑
i,j=1

aij(x)∂iu(x)∂jv(x) +
n∑
j=0

aj(x)∂ju(x)v(x)

}
dx ,

u, v ∈ H1(G) , (4.1)

where ∂0u = u. Let F ∈ L2(G) ≡ H be given and define f(v) = (F, v)H .

Let Γ be a closed subset of ∂G and define

V = {v ∈ H1(G) : γ0(v)(s) = 0 , a.e. s ∈ Γ} .

V is a closed subspace of H1(G), hence a Hilbert space. We let V0 = H
1
0 (G)

so the formal operator A : V → V ′0 ⊂ D
∗(G) is given by

Au = −
n∑
i,j=1

∂j(aij∂iu) +
n∑
j=0

aj∂ju .

Let γ be the restriction to V of the trace map H1(G) → L2(∂G), where

we assume ∂G is appropriately smooth, and let B be the range of γ, hence

B ↪→ L2(∂G ∼ Γ) ↪→ B′. If all the aij ∈ C1(Ḡ), then we have from the

classical Green’s theorem

a(u, v)− (Au, v)H =
∫
∂G∼Γ

∂u

∂νA
· γ0(v) ds , u ∈ H2(G) , v ∈ V

where
∂u

∂νA
=

n∑
i=1

∂iu(s)
n∑
j=1

aij(s)νj(s)

denotes the (weighted) normal derivative on ∂G ∼ Γ. Thus, the operator ∂
is an extension of ∂/∂νA from H2(G) to the domain D0 = {u ∈ V : Au ∈
L2(G)}. Theorem 3.1 now asserts that u is a solution of the problem (2.1)
if and only if u ∈ H1(G), γ0u = 0 on Γ, ∂u = 0 on ∂G ∼ Γ, and Au = F .
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That is, u is a generalized solution of the mixed Dirichlet-Neumann boundary

value problem
Au(x) = F (x) , x ∈ G ,

u(s) = 0 , s ∈ Γ ,

∂u(s)

∂νA
= 0 , s ∈ ∂G ∼ Γ .




(4.2)

If Γ = ∂G, this is called the Dirichlet problem or the boundary value problem

of first type. If Γ = ∅, it is called the Neumann problem or boundary value
problem of second type.

4.2

We shall simplify the partial differential equation but introduce boundary

integrals. Define H = L2(G), V0 = H
1
0 (G), and

a1(u, v) =

∫
G
∇u · ∇v̄ u, v ∈ V (4.3)

where V is a subspace of H1(G) to be chosen below. The corresponding

distribution-valued operator is given by A = −∆n and ∂1 is an extension of
the standard normal derivative given by

∂u

∂ν
= ∇u · ν .

Suppose we are given F ∈ L2(G), g ∈ L2(∂G), and α ∈ L∞(∂G). We define

a2(ϕ,ψ) =

∫
∂G
α(s)ϕ(s)ψ̄(s) ds , ϕ, ψ ∈ L2(∂G)

f(v) = (F, v)H + (g, γ0v)L2(∂G) , v ∈ V ,

and then use Theorem 3.1 to characterize a solution u of (2.1) for different

choices of V .

If V = H1(G), then u is a generalized solution of the boundary value

problem
−∆nu(x) = F (x) , x ∈ G ,

∂u(s)

∂ν
+ α(s)u(s) = g(x) , s ∈ ∂G .


 (4.4)

The boundary condition is said to be of third type at those points s ∈ ∂G
where α(s) 6= 0.



70 CHAPTER III. BOUNDARY VALUE PROBLEMS

For an example of non-local boundary conditions, choose V = {v ∈
H1(G) : γ0(v) is constant}. Let g(s) = g0 and α(s) = α0 be constants, and

define a2(·, ·) and f as above. Then u is a solution of the boundary value
problem of fourth type

−∆nu(x) = F (x) , x ∈ G ,

u(s) = u0 (constant) , s ∈ ∂G ,(∫
∂G

∂u(s)

∂ν
ds
/∫
∂G

ds

)
+ α0 · u0 = g0 .




(4.5)

Note that B = K in this example and u0 is not prescribed as data. Also,

periodic boundary conditions are obtained when G is an interval.

4.3

We consider a problem with a prescribed derivative on the boundary in a

direction which is not necessarily normal. For simplicity we assume n = 2,

let c ∈ R, and define

a(u, v) =

∫
G
{∂1u(∂1v̄ + c∂2v̄ ) + ∂2u(∂2v̄ − c∂1v̄ )} (4.6)

for u, v ∈ V = H1(G). Taking V0 = H10 (G) gives A = −∆2 and the classical
Green’s theorem shows that for u ∈ H2(G) and v ∈ H1(G) we have

a(u, v) − (Au, v)L2(G) =
∫
∂G

(
∂u

∂ν
+ c

∂u

∂τ

)
v̄ ds

where
∂u

∂τ
= ∇u · τ

is the derivative in the direction of the tangent vector τ = (ν2,−ν1) on ∂G.
Thus ∂ is an extension of the oblique derivative in the direction ν+cτ on the

boundary. If f is chosen as in (4.2), then Theorem 3.1 shows that problem

(2.1) is equivalent to a weak form of the boundary value problem

−∆2u(x) = F (x) , x ∈ G ,

∂u

∂ν
+ c

∂u

∂τ
= g(s) , s ∈ ∂G .
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4.4

Let G1 and G2 be disjoint open connected sets with smooth boundaries ∂G1
and ∂G2 which intersect in a C

1 manifold Σ of dimension n − 1. If ν1 and
ν2 denote the unit outward normals on ∂G1 and ∂G2, then ν1(s) = −ν2(s)
for s ∈ Σ. Let G be the interior of the closure of G1 ∪G2, so that

∂G = ∂G1 ∪ ∂G2 ∼ (Σ ∼ ∂Σ) .

For k = 1, 2, let γk0 be the trace mapH
1(Gk)→ L2(∂Gk). Define V = H

1(G)

and note that γ10u1(s) = γ20u2(s) for a.e. s ∈ Σ when u ∈ H
1(G) and uk is

the restriction of u to Gk, k = 1, 2. Thus we have a natural trace map

γ : H1(G) −→ L2(∂G) × L2(Σ)

u 7−→ (γ0u, γ
1
0u1|Σ) ,

where γ0u(s) = γ
k
0uk(s) for s ∈ ∂Gk ∼ Σ, k = 1, 2, and its kernel is given by

V0 = H
1
0 (G1)×H

1
0 (G2).

Let a1 ∈ C1(Ḡ1), a2 ∈ C1(Ḡ2) and define

a(u, v) =

∫
G1

a1∇u · ∇v̄ +
∫
G2

a2∇u · ∇v̄ , u, v ∈ V .

The operator A takes values in D∗(G1 ∪G2) and is given by

Au(x) =




−
n∑
j=1

∂j(a1(x)∂ju(x)) , x ∈ G1 ,

−
n∑
j=1

∂j(a2(x)∂ju(x)) , x ∈ G2 .

The classical Green’s formula applied to G1 and G2 gives

a(u, v) − (Au, v)L2(G) =
∫
∂G1

a1
∂u1
∂ν1

v̄1 +

∫
∂G2

a2
∂u2
∂ν2

v̄2

for u ∈ H2(G) and v ∈ H1(G). It follows that the restriction of the operator
∂ to the space H2(G) is given by ∂u = (∂0u, ∂1u) ∈ L2(∂G)× L2(Σ), where

∂0u(s) = ak(s)
∂uk(s)

∂νk
, a.e. s ∈ ∂Gk ∼ Σ , k = 1, 2 ,

∂1u(s) = a1(s)
∂u1(s)

∂ν1
+ a2(s)

∂u2(s)

∂ν2
, s ∈ Σ .
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Let f be given as in Section 4.2. Then a solution of u of (2.1) is characterized

by Theorem 3.1 as a weak solution of the boundary value problem


u1 ∈ H
1(G1) , −

n∑
j=1

∂ja1(x)∂ju1(x) = F (x) , x ∈ G1 ,

u2 ∈ H
1(G2) , −

n∑
j=1

∂ja2(x)∂ju2(x) = F (x) , x ∈ G2 ,

a1(s)
∂u1(s)

∂ν1
= g(s) , s ∈ ∂G1 ∼ Σ ,

a2(s)
∂u2(s)

∂ν2
= g(s) , s ∈ ∂G2 ∼ Σ ,

u1(s) = u2(s) ,

a1(s)
∂u1(s)

∂ν1
+ a2(s)

∂u2(s)

∂ν2
= 0 , s ∈ Σ .

Since ν1 = −ν2 on Σ, this last condition implies that the normal derivative
has a prescribed jump on Σ which is determined by the ratio of a1(s) to

a2(s). The pair of equations on the interface Σ are known as transition

conditions.

4.5

Let the sets G1, G2 and G be given as in Section 4.4. Suppose Σ0 is an

open subset of the interface Σ which is also contained in the hyperplane

{x = (x′, xn) : xn = 0} and define V = {v ∈ H10 (G) : γ
1
0u1|Σ0 ∈ H

1(Σ0)}.
With the scalar product

(u, v)V ≡ (u, v)H10 (G) + (γ
1
0u, γ

1
0v)H1(Σ0) , u, v ∈ V ,

V is a Hilbert space. Let γ(u) = γ10(u)|Σ be the corresponding trace operator
V → L2(Σ), so K(γ) = H10 (G1)×H

1
0 (G2) contains C

∞
0 (G1 ∪G2) as a dense

subspace. Let α ∈ L∞(Σ0) and define the sesquilinear form

a(u, v) =

∫
G
∇u · ∇v̄ +

∫
Σ0
α∇′(γu) · ∇′(γv) , u, v ∈ V . (4.7)

Where ∇′ denotes the gradient in the first n−1 coordinates. Then A = −∆n
in D∗(G1 ∪G2) and the classical Green’s formula shows that ∂u is given by

∂u(v) =

∫
Σ

(
∂u1
∂ν1

v̄ +
∂u2
∂ν2

v̄

)
+

∫
Σ0
α∇′(γ(u))∇′v̄
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for u ∈ H2(G) and v ∈ B. Since the range of γ is dense in L2(Σ ∼ Σ0), it
follows that if ∂u = 0 then

∂u1(s)

∂ν1
+
∂u2(s)

∂ν2
= 0 , s ∈ Σ ∼ Σ0 .

But ν1 = −ν2 on Σ, so the normal derivative of u is continuous across
Σ ∼ Σ0. Since the range of γ contains C∞0 (Σ0), it follows that if ∂u = 0
then we obtain the identity

∫
Σ0
α∇′(γu)∇′(γv) +

∫
Σ0

∂u1
∂ν1
(γv) +

∂u2
∂ν2
(γv) = 0 , v ∈ V ,

and this shows that γu|Σ0 satisfies the abstract boundary value

−∆n−1(γu)(s) =
∂u2(s)

∂ν1
−
∂u1(s)

∂ν1
, s ∈ Σ0 ,

(γu)(s) = 0 , s ∈ ∂Σ0 ∩ ∂G ,

∂(γu)(s)

∂ν0
= 0 , s ∈ ∂Σ0 ∼ ∂G ,

where ν0 is the unit normal on ∂Σ0, the (n − 2)-dimensional boundary of
Σ0.

Let F ∈ L2(G) and f(v) = (F, v)L2(G) for v ∈ V . Then from Corollary
3.2 it follows that (3.3) is a generalized boundary value problem given by

−∆nu(x) = F (x) , x ∈ G1 ∪G2 ,

u(s) = 0 , s ∈ ∂G ,

u1(s) = u2(s) ,
∂u1(s)

∂ν1
=
∂u2(s)

∂ν1
, s ∈ Σ ∼ Σ0 ,

−∆n−1u(s) =
∂u2(s)

∂ν1
−
∂u1(s)

∂ν1
, s ∈ Σ0 ,

∂u(s)

∂ν0
= 0 , s ∈ ∂Σ0 ∼ ∂G0 .




(4.8)

Nonhomogeneous terms could be added as in previous examples and similar

problems could be solved on interfaces which are not necessarily flat.



74 CHAPTER III. BOUNDARY VALUE PROBLEMS

5 Coercivity; Elliptic Forms

5.1

Let G be an open set in Rn and suppose we are given a collection of functions

aij , 1 ≤ i, j ≤ n; aj, 0 ≤ j ≤ n, in L∞(G). Define the sesquilinear form

a(u, v) =

∫
G

{ n∑
i,j=1

aij(x)∂iu(x)∂j v̄(x) +
n∑
j=0

aj(x)∂ju(x) · v(x)
}
dx (5.1)

on H1(G). We saw in Section 4.1 that such forms lead to partial differential

equations of second order on G.

Definition. The sesquilinear form (5.1) is called strongly elliptic if there is

a constant c0 > 0 such that

Re
n∑
i,j=1

aij(x)ξiξ̄j ≥ c0

n∑
j=1

|ξj |
2 , ξ = (ξ1, . . . , ξn) ∈ K

n , x ∈ G . (5.2)

We shall show that a strongly elliptic form can be made coercive over (any

subspace of) H1(G) by adding a sufficiently large multiple of the identity to

it.

Theorem 5.1 Let (5.1) be strongly elliptic. Then there is a λ0 ∈ R such
that for every λ > λ0, the form

a(u, v) + λ

∫
G
u(x)v̄(x) dx

is H1(G)-coercive.

Proof : Let K1 = max{‖aj‖L∞(G) : 1 ≤ j ≤ n} and K0 = ess inf{Re a0(x) :
x ∈ G}. Then, for 1 ≤ j ≤ n and each ε > 0 we have

|(aj∂ju, u)L2(G)| ≤ K1‖∂ju‖L2(G) · ‖u‖L2(G)

≤ (K1/2)
(
ε‖∂ju‖

2
L2(G) + (1/ε)‖u‖

2
L2(G)

)
.

We also have Re(a0u, u)L2(G) ≥ K0‖u‖2L2(G), so using these with (5.2) in
(5.1) gives

Re a(u, u) ≥ (c0 − εK1/2)‖∇u‖2L2(G)

+(K0 − nK1/2ε)‖u‖2L2(G) , u ∈ H1(G) .
(5.3)
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We choose ε > 0 so that K1ε = c0. This gives us the desired result with

λ0 = (nK
2
1/2c0)−K0.

Corollary 5.2 For every λ > λ0, the boundary value problem (4.2) is well-

posed, where

Au = −
n∑
i,j=1

∂j(aij∂iu) +
n∑
j=1

aj∂ju+ (a0 + λ)u .

Thus, for every F ∈ L2(G), there is a unique u ∈ D such that (4.2) holds,
and we have the estimate

‖(λ− λ0)u‖L2(G) ≤ ‖F‖L2(G) . (5.4)

Proof : The space D was defined in Section 2.2 and Corollary 3.2, so we

need only to verify (5.4). For u ∈ D and λ > λ0 we have from (5.3)

(λ− λ0)‖u‖
2
L2(G) ≤ a(u, u) + λ(u, u)L2(G) = (Au, u)L2(G)

≤ ‖Au‖L2(G) · ‖u‖L2(G)

and the estimate (5.4) now follows.

5.2

We indicate how coercivity may be obtained from the addition of boundary

integrals to strongly elliptic forms.

Theorem 5.3 Let G be open in Rn and suppose 0 ≤ xn ≤ K for all x =

(x′, xn) ∈ G. Let ∂G be a C1-manifold with G on one side of ∂G. Let

ν(s) = (ν1(s), . . . , νn(s)) be the unit outward normal on ∂G and define

Σ = {s ∈ ∂G : νn(s) > 0} .

Then for all u ∈ H1(G) we have

∫
G
|u|2 ≤ 2K

∫
Σ
|γ0u(s)|

2 ds+ 4K2
∫
G
|∂nu|

2 .
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Proof : For u ∈ C1(Ḡ), the Gauss Theorem gives∫
∂G
νn(s)sn|u(s)|

2 ds =

∫
G
Dn(xn|u(x)|

2) dx

=

∫
G
|u|2 +

∫
G
xnDn(|u(x)|

2) dx .

Thus, we obtain from the inequality

2|a| |b| ≤
|a|2

2K
+ 2K|b|2 , a, b ∈ C ,

the estimate∫
G
|u|2 ≤

∫
∂G
νnsn|u(s)|

2 ds+ (1/2)

∫
G
|u|2 + 2K2

∫
G
|Dnu|

2 .

Since νn(s)sn ≤ 0 for s ∈ ∂G ∼ Σ, the desired result follows.

Corollary 5.4 If (5.1) is strongly elliptic, aj ≡ 0 for 1 ≤ j ≤ n, Re a0(x) ≥
0, x ∈ G, and if Σ ⊂ Γ, then the mixed Dirichlet-Neumann problem (4.2) is
well-posed.

Corollary 5.5 If α ∈ L∞(∂G) satisfies

Reα(x) ≥ 0 , x ∈ ∂G , Reα(x) ≥ c > 0 , x ∈ Σ ,

then the third boundary value problem (4.4) is well-posed. The fourth bound-

ary value problem (4.5) is well-posed if Re(α0) > 0.

Similar results can be obtained for the example of Section 4.3. Note that

the form (4.6) satisfies

Re a(u, u) =

∫
G

{
|∂1u|

2 + |∂2u|
2
}
, u ∈ H1(G) ,

so coercivity can be obtained over appropriate subspaces of H1(G) (as in

Corollary 5.4) or by adding a positive multiple of the identity on G or bound-

ary integrals (as in Corollary 5.5). Modification of (4.6) by restricting V ,

e.g., to consist of functions which vanish on a sufficiently large part of ∂G,

or by adding forms, e.g., that are coercive over L2(G) or L2(∂G), will result

in a well-posed problem.

Finally, we note that the first term in the form (4.7) is coercive over

H10 (G) and, hence, over L
2(Σ). Thus, if Reα(x) ≥ c > 0, x ∈ Σ0, then (4.7)

is V -coercive and the problem (4.8) is well-posed.
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5.3

In order to verify that the sesquilinear forms above were coercive over certain

subspaces of H1(G), we found it convenient to verify that they satisfied the

following stronger condition.

Definition. The sesquilinear form a(·, ·) on the Hilbert space V is V -elliptic
if there is a c > 0 such that

Re a(v, v) ≥ c‖v‖2V , v ∈ V . (5.5)

Such forms will occur frequently in our following discussions.

6 Regularity

We begin this section with a consideration of the Dirichlet and Neumann

problems for a simple elliptic equation. The original problems were to find

solutions in H2(G) but we found that it was appropriate to seek weak so-

lutions in H1(G). Our objective here is to show that those weak solutions

are in H2(G) when the domain G and data in the equation are sufficiently

smooth. In particular, this shows that the solution of the Neumann problem

satisfies the boundary condition in L2(∂G) and not just in the sense of the

abstract Green’s operator constructed in Theorem 2.3, i.e., in B′. (See the

Example in Section 2.3.)

6.1

We begin with the Neumann problem; other cases will follow similarly.

Theorem 6.1 Let G be bounded and open in Rn and suppose its boundary

is a C2-manifold of dimension n− 1. Let aij ∈ C1(G), 1 ≤ i, j ≤ n, and

aj ∈ C1(G), 0 ≤ j ≤ n, all have bounded derivatives and assume that the

sesquilinear form defined by

a(ϕ,ψ) ≡
∫
G

{ n∑
i,j=1

aij∂iϕ∂jψ +
n∑
j=0

aj∂jϕψ̄

}
dx , ϕ, ψ ∈ H1(G) (6.1)

is strongly elliptic. Let F ∈ L2(G) and suppose u ∈ H1(G) satisfies

a(u, v) =

∫
G
F v̄ dx , v ∈ H1(G) . (6.2)

Then u ∈ H2(G).
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Proof : Let {(ϕk, Gk) : 1 ≤ k ≤ N} be coordinate patches on ∂G and
{βk : 0 ≤ k ≤ N} the partition-of-unity construction in Section II.2.3. Let
Bk denote the support of βk, 0 ≤ k ≤ N . Since u =

∑
(βku) in G and each

Bk is compact in R
n, it is sufficient to show the following:

(a) u|Bk∩G ∈ H
2(Bk ∩G), 1 ≤ k ≤ N , and

(b) β0u ∈ H2(B0).

The first case (a) will be proved below, and the second case (b) will follow

from a straightforward modification of the first.

6.2

We fix k, 1 ≤ k ≤ N , and note that the coordinate map ϕk : Q → Gk
induces an isomorphism ϕ∗k : H

m(Gk ∩ G) → Hm(Q+) for m = 0, 1, 2 by

ϕ∗k(v) = v ◦ ϕk. Thus we define a continuous sesquilinear form on H
1(Q+)

by

ak (ϕ∗k(w), ϕ
∗
k(v)) ≡

∫
Gk∩G

{ n∑
i,j=1

aij∂jw∂jv +
n∑
j=0

aj∂jwv̄

}
dx . (6.3)

By making the appropriate change-of-variable in (6.3) and setting wk =

ϕ∗k(w), vk = ϕ
∗
k(v), we obtain

ak(wk, vk) =

∫
Q+

{ n∑
i,j=1

akij∂i(wk)∂j(vk) +
n∑
j=0

akj∂j(wk)vk

}
dy . (6.4)

The resulting form (6.4) is strongly-elliptic on Q+ (exercise).
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Let u be the solution of (6.2) and let v ∈ H1(G ∩Gk) vanish in a neigh-
borhood of ∂Gk. (That is, the support of v is contained in Gk.) Then the

extension of v to all of G as zero on G ∼ Gk belongs to H
1(G) and we obtain

from (6.4) and (6.2)

ak(ϕ∗k(u), ϕ
∗
k(v)) = a(u, v) =

∫
Q+

Fkϕ
∗
k(v) dy ,

where Fk ≡ ϕ∗k(F ) · J(ϕk) ∈ L
2(Q+). Letting V denote the space of those

v ∈ H1(Q+) which vanish in a neighborhood of ∂Q, and uk ≡ ϕ∗k(u), we

have shown that uk ∈ H
1(Q+) satisfies

ak(uk, vk) =

∫
Q+

Fkvk dy , vk ∈ V (6.5)

where ak(·, ·) is strongly elliptic with continuously differentiable coefficients
with bounded derivatives and Fk ∈ L

2(Q+). We shall show that the restric-

tion of uk to the compact subset K ≡ ϕ
−1
k (Bk) of Q belongs to H

2(Q+∩K).
The first case (a) above will then follow.

6.3

Hereafter we drop the subscript “k” in (6.5). Thus, we have u ∈ H1(Q+),
F ∈ L2(Q+) and

a(u, v) =

∫
Q+

Fv , v ∈ V . (6.6)

Since K ⊂⊂ Q, there is by Lemma II.1.1 a ϕ ∈ C∞0 (Q) such that 0 ≤ ϕ(x) ≤
1 for x ∈ Q and ϕ(x) = 1 for x ∈ K. We shall first consider ϕ · u.
Let w be a function defined on the half-space Rn+. For each h ∈ R we

define a translate of w by

(τhw)(x1, x2, . . . , xn) = w(x1 + h, x2, . . . , xn)

and a difference of w by

∇hw = (τhw − w)/h

if h 6= 0.

Lemma 6.2 If w, v ∈ L2(Q+) and the distance δ of the support of w to ∂Q
is positive, then

(τhw, v)L2(Q+) = (w, τ−hv)L2(Q+)

for all h ∈ R with |h| < δ.
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Proof : This follows by the obvious change of variable and the observation

that each of the above integrands is non-zero only on a compact subset of

Q+.

Corollary ‖τhw‖L2(Q+) = ‖w‖L2(Q+).

Lemma 6.3 If w ∈ V, then

‖∇hw‖L2(Q+) ≤ ‖∂1w‖L2(Q+) , 0 < |h| < δ .

Proof : It follows from the preceding Corollary that it is sufficient to con-

sider the case where w ∈ C1(Ḡ) ∩ V. Assuming this, and denoting the
support of w by supp(w), we have

∇hw(x) = h
−1
∫ x1+h
x1

∂1w(t, x2, . . . , xn) dt , w ∈ supp(w) .

The Cauchy-Schwartz inequality gives

|∇hw(x)| ≤ h
−1/2
(∫ x1+h
x1

|∂1w(t, x2, . . . , xn)|
2 dt

)1/2
, x ∈ supp(w) ,

and this leads to

‖∇hw‖
2
L2(Q+)

≤ h−1
∫
supp(w)

∫ x1+h
x1

|∂1w(t, x2, . . . , xn)|
2 dt dx

= h−1
∫
Q+

∫ h
0
|∂1w(t+ x1, x2, . . . , xn)|

2 dt dx

= h−1
∫ h
0

∫
Q+

|∂1w(t+ x1, . . . , xn)|
2 dx dt

= h−1
∫ h
0

∫
Q+

|∂1w(x1, . . . , xn)|
2 dx dt

= ‖∂1w‖L2(Q+) .

Corollary limh→0(∇hw) = ∂1w in L
2(Q+).

Proof : {∇h : 0 < |h| < δ} is a family of uniformly bounded operators on
L2(Q+), so it suffices to show the result holds on a dense subset.
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We shall consider the forms

ah(w, v) ≡
∫
Q+

{ n∑
i,j=1

(∇haij)∂iw∂jv +
n∑
j=0

(∇haj)∂jwv̄
}

for w, v ∈ V and |h| < δ, δ being given as in Lemma 6.2. Since the coefficients

in (6.5) have bounded derivatives, the mean-value theorem shows

|ah(w, v)| ≤ C‖w‖H1(Q+) · ‖v‖H1(Q+) (6.7)

where the constant is independent of w, v and h. Finally, we note that for

w, v and h as above

a(∇hw, v) + a(w,∇−hv) = −a−h(τ−hw, v) . (6.8)

This follows from a computation starting with the first term above and

Lemma 6.2.

After this lengthy preparation we continue with the proof of Theorem

6.1. From (6.6) we have the identity

a(∇h(ϕu), v) = {a(∇h(ϕu), v) + a(ϕu,∇−hv)} (6.9)

+ {a(u, ϕ∇−hv)− a(ϕu,∇−hv)} − (F,ϕ∇−hv)L2(Q+)

for v ∈ V and 0 < |h| < δ, δ being the distance from K to ∂Q. The first

term can be bounded appropriately by using (6.7) and (6.8). The third is

similarly bounded and so we consider the second term in (6.9). An easy

computation gives

a(u, ϕ∇−hv)− a(ϕu,∇−hv)

=

∫
Q+

{ n∑
i,j=1

aij(∂iu∂jϕ∇−hv − ∂iϕu∇−h(∂jv))−
n∑
j=1

aj∂jϕu(∇−hv)
}
.

Thus, we obtain the estimate

|a(∇h(ϕu), v)| ≤ C‖v‖H1(Q+) , v ∈ V , 0 < |h| < δ , (6.10)

in which the constant C is independent of h and v. Since a(·, ·) is strongly-
elliptic we may assume it is coercive (Exercise 6.2), so setting v = ∇h(ϕu)
in (6.10) gives

c‖∇h(ϕu)‖
2
H1(Q+)

≤ C‖∇h(ϕu)‖H1(Q+) , 0 < |h| < δ , (6.11)



82 CHAPTER III. BOUNDARY VALUE PROBLEMS

hence, {∇h(ϕu) : |h| < δ} is bounded in the Hilbert space H1(Q+). By
Theorem I.6.2 there is a sequence hn → 0 for which ∇hn(ϕu) converges
weakly to some w ∈ H1(Q+). But ∇hn(ϕu) converges weakly in L

1(Q+) to

∂1(ϕu), so the uniqueness of weak limits implies that ∂1(ϕu) = w ∈ H1(Q+).
It follows that ∂21(ϕu) ∈ L

2(Q+), and the same argument shows that each

of the tangential derivatives ∂21u, ∂
2
2u, . . . , ∂

2
n−1u belongs to L

2(K). (Recall

ϕ = 1 onK.) This information together with the partial differential equation

resulting from (6.6) implies that ann · ∂2n(u) ∈ L
2(K). The strong ellipticity

implies ann has a positive lower bound on K, so ∂
2
nu ∈ L2(K). Since n

and all of its derivatives through second order are in L2(K), it follows from

Theorem II.5.5 that u ∈ H2(K).
The preceding proves the case (a) above. The case (b) follows by using

the differencing technique directly on β0u. In particular, we can compute

differences on β0u in any direction. The details are an easy modification of

those of this section and we leave them as an exercise.

6.4

We discuss some extensions of Theorem 6.1. First, we note that the result

and proof of Theorem 6.1 also hold if we replace H1(G) by H10 (G). This

results from the observation that the subspaceH10 (G) is invariant under mul-

tiplication by smooth functions and translations and differences in tangential

directions along the boundary of G. Thus we obtain a regularity result for

the Dirichlet problem.

Theorem 6.4 Let u ∈ H10 (G) satisfy

a(u, v) =

∫
G
F v̄ , v ∈ H10 (G)

where the set G ⊂ Rn and sesquilinear form a(·, ·) are given as in Theorem
6.1, and F ∈ L2(G). Then u ∈ H2(G).

When the data in the problem is smoother yet, one expects the same to

be true of the solution. The following describes the situation which is typical

of second-order elliptic boundary value problems.

Definition. Let V be a closed subspace of H1(G) with H10 (G) ≤ V , and let
a(·, ·) be a continuous sesquilinear form on V . Then a(·, ·) is called k-regular
on V if for every F ∈ Hs(G) with 0 ≤ s ≤ k and every solution u ∈ V of

a(u, v) = (F, v)L2(G) , v ∈ V
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we have u ∈ H2+s(G).

Theorems 6.1 and 6.4 give sufficient conditions for the form a(·, ·) given
by (6.1) to be 0-regular over H1(G) and H10 (G), respectively. Moreover, we

have the following.

Theorem 6.5 The form a(·, ·) given by (6.1) is k-regular over H1(G) and
H10 (G) if ∂G is a C

2+k-manifold and the coefficients {aij , aj} all belong to
C1+k(Ḡ).

7 Closed operators, adjoints and eigenfunction ex-

pansions

7.1

We were led in Section 2 to consider a linear map A : D → H whose

domain D is a subspace of the Hilbert space H. We shall call such a map

an (unbounded) operator on the Hilbert space H. Although an operator is

frequently not continuous (with respect to the H-norm on D) it may have

the property we now consider. The graph of A is the subspace

G(A) = {[x,Ax] : x ∈ D}

of the product H × H. (This product is a Hilbert space with the scalar

product

([x1, x2], [y1, y2])H×H = (x1, y1)H + (x2, y2)H .

The addition and scalar multiplication are defined componentwise.) The

operator A on H is called closed if G(A) is a closed subset of H ×H. That
is, A is closed if for any sequence xn ∈ D such that xn → x and Axn → y in

H, we have x ∈ D and Ax = y.

Lemma 7.1 If A is closed and continuous (i.e., ‖Ax‖H ≤ K‖x‖H , x ∈ H)
then D is closed.

Proof : If xn ∈ D and xn → x ∈ H, then {xn} and, hence, {Axn} are
Cauchy sequences. H is complete, so Axn → y ∈ H and G(A) being closed
implies x ∈ D.
When D is dense in H we define the adjoint of A as follows. The domain

of the operator A∗ is the subspace D∗ of all y ∈ H such that the map



84 CHAPTER III. BOUNDARY VALUE PROBLEMS

x 7→ (Ax, y)H : D → K is continuous. Since D is dense in H, Theorem I.4.5
asserts that for each such y ∈ D∗ there is a unique A∗y ∈ H such that

(Ax, y) = (x,A∗y) , x ∈ D , y ∈ D∗ . (7.1)

Then the function A∗ : D∗ → H is clearly linear and is called the adjoint of

A. The following is immediate from (7.1).

Lemma 7.2 A∗ is closed.

Lemma 7.3 If D = H, then A∗ is continuous, hence, D∗ is closed.

Proof : If A∗ is not continuous there is a sequence xn ∈ D∗ such that

‖xn‖ = 1 and ‖A∗xn‖ → ∞. From (7.1) it follows that for each x ∈ H,

|(x,A∗xn)H | = |(Ax, xn)H | ≤ ‖Ax‖H ,

so the sequence {A∗xn} is weakly bounded. But Theorem I.6.1 implies that
it is bounded, a contradiction.

Lemma 7.4 If A is closed, then D∗ is dense in H.

Proof : Let y ∈ H, y 6= 0. Then [0, y] /∈ G(A) and G(A) closed in H ×H
imply there is an f ∈ (H ×H)′ such that f [G(A)] = {0} and f(0, y) 6= 0. In
particular, let P : H ×H → G(A)⊥ be the projection onto the orthogonal

complement of G(A) in H ×H, define [u, v] = P [0, y], and set

f(x1, x2) = (u, x1)H + (v, x2)H , x1, x2 ∈ H .

Then we have

0 = f(x,Ax) = (u, x)H + (v,Ax)H , x ∈ D

so v ∈ D∗, and 0 6= f(0, y) = (v, y)H . The above shows (D∗)⊥ = {0}, so D∗

is dense in H.

The following result is known as the closed-graph theorem.

Theorem 7.5 Let A be an operator on H with domain D. Then A is closed

and D = H if and only if A ∈ L(H).
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Proof : If A is closed and D = H, then Lemma 7.3 and Lemma 7.4 imply

A∗ ∈ L(H). Then Theorem I.5.2 shows (A∗)∗ ∈ L(H). But (7.1) shows
A = (A∗)∗, so A ∈ L(H). The converse in immediate.
The operators with which we are most often concerned are adjoints of

another operator. The preceding discussion shows that the domain of such an

operator, i.e., an adjoint, is all of H if and only if the operator is continuous.

Thus, we shall most often encounter unbounded operators which are closed

and densely defined.

We give some examples in H = L2(G), G = (0, 1).

7.2

Let D = H10 (G) and A = i∂. If [un, Aun] ∈ G(A) converges to [u, v] in

H ×H, then in the identity∫ 1
0
Aunϕdx = −i

∫ 1
0
unDϕdx , ϕ ∈ C∞0 (G) ,

we let n→∞ and thereby obtain∫ 1
0
vϕdx = −i

∫ 1
0
uDϕdx , ϕ ∈ C∞0 (G) .

This means v = i∂u = Au and un → u in H1(G). Hence u ∈ H10 (G), and
we have shown A is closed.

To compute the adjoint, we note that∫ 1
0
Auv̄ dx =

∫ 1
0
uf̄ dx , u ∈ H10 (G)

for some pair v, f ∈ L2(G) if and only if v ∈ H1(G) and f = i∂v. Thus

D∗ = H1(G) and A∗ = i∂ is a proper extension of A.

7.3

We consider the operator A∗ above: on its domain D∗ = H1(G) it is given by

A∗ = i∂. Since A∗ is an adjoint it is closed. We shall compute A∗∗ = (A∗)∗,

the second adjoint of A. We first note that the pair [u, f ] ∈ H ×H is in the
graph of A∗∗ if and only if∫ 1

0
A∗vū dx =

∫ 1
0
vf̄ dx , v ∈ H1(G) .
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This holds for all v ∈ C∞0 (G), so we obtain i∂u = f . Substituting this into

the above and using Theorem II.1.6, we obtain

i

∫ 1
0
∂(vū) dx =

∫ 1
0

[
(i∂v)ū − v(i∂u)

]
dx = 0 ,

hence, v(1)ū(1) − v(0)ū(0) = 0 for all v ∈ H1(G). But this implies u(0) =
u(1) = 0, hence, u ∈ H10 (G). From the above it follows that A

∗∗ = A.

7.4

Consider the operator B = i∂ on L2(G) with domain D(B) = {u ∈ H1(G) :
u(0) = cu(1)} where c ∈ C is given. If v, f ∈ L2(G), then B∗v = f if and

only if ∫ 1
0
i∂u · v̄ dx =

∫ 1
0
uf̄ dx , u ∈ D .

But C∞0 (G) ≤ D implies v ∈ H1(G) and i∂v = f . We substitute this

identity in the above and obtain

0 = i

∫ 1
0
∂(uv̄ ) dx = iu(1)[v̄(1) − cv̄(0)] , u ∈ D .

The preceding shows that v ∈ D(B∗) only if v ∈ H1(0, 1) and v(1) =

c̄v(0). It is easy to show that every such v belongs to D(B∗), so we have

shown that D(B∗) = {v ∈ H1(G) : v(1) = c̄v(0)} and B∗ = i∂.

7.5

We return to the situation of Section 2.2. Let a(·, ·) be a continuous sesquilin-
ear form on the Hilbert space V which is dense and continuously imbedded

in the Hilbert space H. We let D be the set of all u ∈ V such that the map
v 7→ a(u, v) is continuous on V with the norm of H. For such a u ∈ D, there
is a unique Au ∈ H such that

a(u, v) = (Au, v)H , u ∈ D , v ∈ V . (7.2)

This defines a linear operator A on H with domain D.

Consider the (adjoint) sesquilinear form on V defined by b(u, v) = a(v, u),

u, v ∈ V . This gives another operator B onH with domainD(B) determined
as before by

b(u, v) = (Bu, v)H , u ∈ D(B) , v ∈ V .
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Theorem 7.6 Assume there is a λ > 0 and c > 0 such that

Re a(u, u) + λ|u|2H ≥ c‖u‖
2
V , u ∈ V . (7.3)

Then D is dense in H, A is closed, and A∗ = B, hence, D∗ = D(B).

Proof : Theorem 2.2 shows D is dense in H. If we prove A∗ = B, then by

symmetry we obtain B∗ = A, hence A is closed by Lemma 7.2.

Suppose v ∈ D(B). Then for all u ∈ D(A) we have (Au, v)H = a(u, v) =
b(v, u) = (Bv, u)H , hence, (Au, v)H = (u,Bv)H . This showsD(B) ≤ D

∗ and

A∗|D(B) = B. We need only to verify that D(B) = D∗. Let u ∈ D∗. Since
B + λ is surjective, there is a u0 ∈ D(B) such that (B + λ)u0 = (A∗ + λ)u.
Then for all v ∈ D we have

((A+ λ)v, u)H = (v, (B + λ)u0)H = a(v, u0) + λ(v, u0)H

= ((A+ λ)v, u0)H .

But A+λ is a surjection, so this implies u = u0 ∈ D(B). Hence, D∗ = D(B).
For those operators as above which arise from a symmetric sesquilinear

form on a space V which is compactly imbedded in H, we can apply the

eigenfunction expansion theory for self-adjoint compact operators.

Theorem 7.7 Let V and H be Hilbert spaces with V dense in H and assume

the injection V ↪→ H is compact. Let A : D → H be the linear operator

determined as above by a continuous sesquilinear form a(·, ·) on V which we
assume is V -elliptic and symmetric:

a(u, v) = a(v, u) , u, v ∈ V .

Then there is a sequence {vj} of eigenfunctions of A with

Avj = λjvj , |vj |H = 1 ,

(vi, vj)H = 0 , i 6= j ,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞ as n→ +∞ ,


 (7.4)

and {vj} is a basis for H.

Proof : From Theorem 7.6 it follows that A = A∗ and, hence, A−1 ∈ L(H)
is self-adjoint. The V -elliptic condition (5.5) shows that A−1 ∈ L(H,V ).
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Since the injection V ↪→ H is compact, it follows that A−1 : H → V → H is

compact. We apply Theorem I.7.5 to obtain a sequence {vj} of eigenfunc-
tions of A−1 which are orthonormal in H and form a basis for D = Rg(A−1).

If their corresponding eigenvalues are denoted by {µj}, then the symmetry
of a(·, ·) and (5.5) shows that each µj is positive. We obtain (7.4) by setting
λj = 1/µj for j ≥ 1 and noting that limj→∞ µj = 0.
It remains to show {vj} is a basis for H. (We only know that it is a basis

for D.) Let f ∈ H and u ∈ D with Au = f . Let
∑
bjvj be the Fourier series

for f ,
∑
cjvj the Fourier series for u, and denote their respective partial

sums by

un =
n∑
j=1

cjvj , fn =
n∑
j=1

bjvj .

We know limn→∞ un = u and limn→∞ fn = f∞ exists in H (cf. Exercise

I.7.2). For each j ≥ 1 we have

bj = (Au, vj)H = (u,Avj)H = λjcj ,

so Aun = fn for all n ≥ 1. Since A is closed, it follows Au = f∞, hence,

f = limn→∞ fn as was desired.

If we replace A by A + λ in the proof of Theorem 7.7, we observe that

ellipticity of a(·, ·) is not necessary but only that a(·, ·)+λ(·, ·)H be V -elliptic
for some λ ∈ R.

Corollary 7.8 Let V and H be given as in Theorem 7.7, let a(·, ·) be con-
tinuous, sesquilinear, and symmetric. Assume also that

a(v, v) + λ|v|2H ≥ c‖v‖
2
V , v ∈ V

for some λ ∈ R and c > 0. Then there is an orthonormal sequence of
eigenfunctions of A which is a basis for H and the corresponding eigenvalues

satisfy −λ < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞ as n→ +∞.

We give some examples in H = L2(G), G = (0, 1). These eigenvalue

problems are known as Sturm-Liouville problems. Additional examples are

described in the exercises.

7.6

Let V = H10 (G) and define a(u, v) =
∫ 1
0 ∂u∂v dx. The compactness of V →

H follows from Theorem II.5.7 and Theorem 5.3 shows a(·, ·) is H10 (G)-
elliptic. Thus Theorem 7.7 holds; it is a straightforward exercise to compute
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the eigenfunctions and corresponding eigenvalues for the operator A = −∂2

with domain D(A) = H10 (G) ∩H
2(G):

vj(x) = 2 sin(jπx) , λ = (jπ)2 , j = 1, 2, 3, . . . .

Since {vj} is a basis for L2(G), each F ∈ L2(G) has a Fourier sine-series

expansion. Similar results hold in higher dimension for, e.g., the eigenvalue

problem {
−∆nv(x) = λv(x) , x ∈ G ,

v(s) = 0 , s ∈ ∂G ,

but the actual computation of the eigenfunctions and eigenvalues is difficult

except for very special regions G ⊂ Rn.

7.7

Let V = H1(G) and choose a(·, ·) as above. The compactness follows from
Theorem II.5.8 so Corollary 7.8 applies for any λ > 0 to give a basis of

eigenfunctions for A = −∂2 with domain D(A) = {v ∈ H2(G) : v′(0) =

v′(1) = 0}:
v0(x) = 1 , vj(x) = 2 cos(jπx) , j ≥ 1 ,

λj = (jπ)
2 , j ≥ 0 .

As before, similar results hold for the Laplacean with boundary conditions

of second type in higher dimensions.

7.8

Let a(·, ·) be given as above but set V = {v ∈ H1(G) : v(0) = v(1)}. Then
we can apply Corollary 7.8 to the periodic eigenvalue problem (cf. (4.5))

−∂2v(x) = λv(x) , 0 < x < 1 ,

v(0) = v(1) , v′(0) = v′(1) .

The eigenfunction expansion is just the standard Fourier series.

Exercises

1.1. Use Theorem 1.1 to show the problem −∆nu = F in G, u = 0 on ∂G is
well-posed. Hint: Use Theorem II.2.4 to obtain an appropriate norm

on H10 (G).
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1.2. Use Theorem 1.1 to solve (1.1) with the boundary condition ∂u/∂ν+u =

0 on ∂G. Hint: Use (u, v)V ≡ (u, v)H1(G) + (γu, γv)L2(∂G) on H
1(G).

2.1. Give the details of the construction of α, β in (2.2).

2.2. Verify the remark on H = L2(G) following (2.5) (cf. Section I.5.3).

2.3. Use Theorem I.1.1 to construct the F which appears after (2.6). Check

that it is continuous.

2.4. Show that a(u, v) =
∫ 1
0 ∂u(x)∂v̄(x) dx, V = {u ∈ H

1(0, 1) : u(0) = 0},
and f(v) ≡ v(1/2) are admissible data in Theorem 2.1. Find a formula
for the unique solution of the problem.

2.5. In Theorem 2.1 the continuous dependence of the solution u on the data

f follows from the estimate made in the theorem. Consider the two ab-

stract boundary value problems A1u1 = f and A2u2 = f where f ∈ V ′,
and A1,A2 ∈ L(V, V ′) are coercive with constants c1, c2, respectively.
Show that the following estimates holds:

‖u1 − u2‖ ≤ (1/c1)‖(A2 −A1)u2‖ ,

‖u1 − u2‖ ≤ (1/c1c2)‖A2 −A1‖ ‖f‖ .

Explain how these estimates show that the solution of (2.1) depends

continuously on the form a(·, ·) or operator A.

3.1. Show (3.3) implies (3.1) in Theorem 3.1.

3.2. (Non-homogeneous Boundary Conditions.) In the situation of Theorem

3.1, assume we have a closed subspace V1 with V0 ⊂ V1 ⊂ V and

u0 ∈ V . Consider the problem to find

u ∈ V , u− u0 ∈ V1 , a(u, v) = f(v) , v ∈ V1 .

(a) Show this problem is well-posed if a(·, ·) is V1-coercive.

(b) Characterize the solution by u − u0 ∈ V1, u ∈ D0, Au = F , and

∂u(v) + a2(γu, γv) = g(γv), v ∈ V1.

(c) Construct an example of the above with V0 = H
1
0 (G), V = H

1(G),

V1 = {v ∈ V : v|Γ = 0}, where Γ ⊂ ∂G is given.



7. CLOSED OPERATORS, ADJOINTS ... 91

4.1. Verify that the formal operator and Green’s theorem are as indicated

in Section 4.1.

4.2. Characterize the boundary value problem resulting from the choice of

V = {v ∈ H1(G) : v = const. on G0} in Section 4.2, where G0 ⊂ G is

given.

4.3. When G is a cube in Rn, show (4.5) is related to a problem on Rn with

periodic solutions.

4.4. Choose V in Section 4.2 so that the solution u : Rn → K is periodic in
each coordinate direction.

5.1. Formulate and solve the problem (4.8) with non-homogeneous data pre-

scribed on ∂G and Σ.

5.2. Find choices for V in Section 4.3 which lead to well-posed problems.

Characterize the solution by a boundary value problem.

5.3. Prove Corollary 5.4.

5.4. Discuss coercivity of the form (4.6). Hint: Re(
∫
∂G
∂u
∂τ ū ds) = 0.

6.1. Show (6.4) is strongly-elliptic on Q+.

6.2. Show that the result of Theorem 6.1 holds for a(·, ·) if and only if it
holds for a(·, ·) + λ(·, ·)L2(G). Hence, one may infer coercivity from
strong ellipticity without loss of generality.

6.3. If u ∈ H1(G), show ∇h(u) converges weakly in L
2(G) to ∂1(u).

6.4. Prove the case (b) in Theorem 6.1.

6.5. Prove Theorem 6.5.

6.6. Give sufficient conditions for the solution of (6.2) to be a classical solu-

tion in C2u(G).

7.1. Prove Lemma 7.2 of Section 7.1.

7.2. Compute the adjoint of ∂ : {v ∈ H1(G) : v(0) = 0} → L2(G), G =

(0, 1).
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7.3. Let D ≤ H2(G), G = (0, 1), a1(·), a2(·) ∈ C1(Ḡ), and define L : D →
L2(G) by Lu = ∂2u+ a1∂u+ a2u. The formal adjoint of L is defined

by

L∗v(ϕ) =

∫ 1
0
v(x)Lϕ(x) dx , v ∈ L2(G) , ϕ ∈ C∞0 (G) .

(a) Show L∗v = ∂2v − ∂(ā1v) + ā2v in D∗(G).

(b) If u, v ∈ H2(G), then
∫ 1
0 (Luv̄ − uL∗v̄ ) dx = J(u, v)|x=1x=0, where

J(u, v) = v̄∂u− u∂v̄ + a1uv̄.

(c) D(L∗) = {v ∈ H2(G) : J(u, v)|x=1x=0 = 0, all u ∈ D} determines the
domain of the L2(G)-adjoint.

(d) Compute D(L∗) when L = ∂2 + 1 and each of the following:

(i) D = {u : u(0) = u′(0) = 0},

(ii) D = {u : u(0) = u(1) = 0},

(iii) D = {u : u(0) = u(1), u′(0) = u′(1)}.

7.4. Let A be determined by {a(·, ·), V,H} as in (7.2) and Aλ by {a(·, ·) +
λ(·, ·)H , V,H}. Show D(Aλ) = D(A) and Aλ = A+ λI.

7.5. Let Hj, Vj be Hilbert spaces with Vj continuously embedded in Hj for

j = 1, 2. Show that if T ∈ L(H1,H2) and if T1 ≡ T |V1 ∈ L(V1, V2),

then T1 ∈ L(V1, V2).

7.6. In the situation of Section 6.4, let a(·, ·) be 0-regular on V and assume
a(·, ·) is also V -elliptic. Let A be determined by {a(·, ·), V, L2(G)} as
in (7.2).

(a) Show A−1 ∈ L(L2(G), V ).

(b) Show A−1 ∈ L(L2(G),H2(G)).

(c) If a(·, ·) is k-regular, show A−p ∈ L(L2(G),H2+k(G)) if p is suffi-
ciently large.

7.7. Let A be self-adjoint on the complex Hilbert space H. That is, A = A∗.

(a) Show that if Im(λ) 6= 0, then λ−A is invertible and | Im(λ)| ‖x‖H ≤
‖(λ−A)x‖H for all x ∈ D(A).

(b) Rg(λ−A) is dense in H.
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(c) Show (λ−A)−1 ∈ L(H) and ‖(λ−A)−1‖ ≤ | Im(λ)|−1.

7.8. Show Theorem 7.7 applies to the mixed Dirichlet-Neumann eigenvalue

problem

−∂2v = λv(x) , 0 < x < 1 , v(0) = v′(1) = 0 .

Compute the eigenfunctions.

7.9. Show Corollary 7.8 applies to the eigenvalue problem with boundary

conditions of third type

−∂2v(x) = λv(x) , 0 < x < 1 ,

∂v(0) − hv(0) = 0 , ∂v(1) + hv(1) = 0 ,

where h > 0. Compute the eigenfunctions.

7.10. Take cc̄ = 1 in Section 7.4 and discuss the eigenvalue problem Bv = λv.

7.11. In the proof of Theorem 7.7, deduce that {vj} is a basis for H directly
from the fact that D̄ = H.


