
Chapter V

Implicit Evolution Equations

1 Introduction

We shall be concerned with evolution equations in which the time-derivative

of the solution is not given explicitly. This occurs, for example, in problems

containing the pseudoparabolic equation

∂tu(x, t)− a∂
2
x∂tu(x, t)− ∂

2
xu(x, t) = f(x, t) (1.1)

where the constant a is non-zero. However, (1.1) can be reduced to the stan-

dard evolution equation (3.4) in an appropriate space because the operator

I − a∂2x which acts on ∂tu(x, t) can be inverted. Thus, (1.1) is an example
of a regular equation; we study such problems in Section 2. Section 3 is

concerned with those regular equations of a special form suggested by (1.1).

Another example which motivates some of our discussion is the partial

differential equation

m(x)∂tu(x, t)− ∂
2
xu(x, t) = f(x, t) (1.2)

where the coefficient is non-negative at each point. The equation (1.2) is

parabolic at those points where m(x) > 0 and elliptic where m(x) = 0.

For such an equation of mixed type some care must be taken in order to

prescribe a well posed problem. If m(x) > 0 almost everywhere, then (1.2)

is a model of a regular evolution equation. Otherwise, it is a model of a

degenerate equation. We study the Cauchy problem for degenerate equations

in Section 4 and in Section 5 give more examples of this type.
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2 Regular Equations

Let Vm be a Hilbert space with scalar-product (·, ·)m and denote the corre-
sponding Riesz map from Vm onto the dual V

′
m byM. That is,

Mx(y) = (x, y)m , x, y ∈ Vm .

Let D be a subspace of Vm and L : D → V ′m a linear map. If u0 ∈ Vm
and f ∈ C((0,∞), V ′m) are given, we consider the problem of finding u ∈
C([0,∞), Vm) ∩ C1((0,∞), Vm) such that

Mu′(t) + Lu(t) = f(t) , t > 0 , (2.1)

and u(0) = u0.

Note that (2.1) is a generalization of the evolution equation IV(2.1). If

we identify Vm with V
′
m by the Riesz mapM (i.e., take M = I) then (2.1)

reduces to IV(2.1). In the general situation we shall solve (2.1) by reducing

it to a Cauchy problem equivalent to IV(2.1).

We first obtain our a-priori estimate for a solution u(·) of (2.1), with
f = 0 for simplicity. For such a solution we have

Dt(u(t), u(t))m = −2ReLu(t)(u(t))

and this suggests consideration of the following.

Definition. The linear operator L : D → V ′m with D ≤ Vm is monotone (or
non-negative) if

ReLx(x) ≥ 0 , x ∈ D .

We call L strictly monotone (or positive) if

ReLx(x) > 0 , x ∈ D , x 6= 0 .

Our computation above shows there is at most one solution of the Cauchy

problem for (2.1) whenever L is monotone, and it suggests that Vm is the

correct space in which to seek well-posedness results for (2.1).

To obtain an (explicit) evolution equation in Vm which is equivalent to

(2.1), we need only operate on (2.1) with the inverse of the isomorphismM,
and this gives

u′(t) +M−1 ◦ Lu(t) =M−1f(t) , t > 0 . (2.2)
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This suggests we define A =M−1 ◦L with domain D(A) = D, for then (2.2)
is equivalent to IV(2.1). Furthermore, sinceM is the Riesz map determined
by the scalar-product (·, ·)m, we have

(Ax, y)m = Lx(y) , x ∈ D , y ∈ Vm . (2.3)

This shows that L is monotone if and only if A is accretive. Thus, it follows

from Theorem IV.4.3 that −A generates a contraction semigroup on Vm if
and only if L is monotone and I+A is surjective. SinceM(I+A) =M+L,
we obtain the following result from Theorem IV.3.3.

Theorem 2.1 Let M be the Riesz map of the Hilbert space Vm with scalar

product (·, ·)m and let L be linear from the subspace D of Vm into V ′m. As-
sume that L is monotone and M + L : D → V ′m is surjective. Then, for
every f ∈ C1([0,∞), V ′m) and u0 ∈ D there is a unique solution u(·) of (2.1)
with u(0) = u0.

In order to obtain an analogue of the situation in Section IV.6, we suppose

L is obtained from a continuous sesquilinear form. In particular, let V be

a Hilbert space for which V is a dense subset of Vm and the injection is

continuous; hence, we can identify V ′m ⊂ V
′. Let `(·, ·) be continuous and

sesquilinear on V and define the corresponding linear map L : V → V ′ by

Lx(y) = `(x, y) , x, y ∈ V .

Define D ≡ {x ∈ V : Lx ∈ V ′m} and L = L|D. Then (2.3) shows that

`(x, y) = (Ax, y)m , x ∈ D , y ∈ V ,

so it follows that A is the operator determined by the triple {`(·, ·), V, Vm}
as in Theorem IV.6.1. Thus, from Theorems IV.6.3 and IV.6.5 we obtain

the following.

Theorem 2.2 LetM be the Riesz map of the Hilbert space Vm with scalar-

product (·, ·)m. Let `(·, ·) be a continuous, sesquilinear and elliptic form on
the Hilbert space V , which is assumed dense and continuously imbedded in

Vm, and denote the corresponding isomorphism of V onto V
′ by L. Then

for every Hölder continuous f : [0,∞)→ V ′m and u0 ∈ Vm, there is a unique
u ∈ C([0,∞), Vm) ∩ C1((0,∞), Vm) such that u(0) = u0, Lu(t) ∈ V ′m for
t > 0, and

Mu′(t) + Lu(t) = f(t) , t > 0 . (2.4)
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We give four elementary examples to suggest the types of initial-boundary

value problems to which the above results can be applied. In the first three

of these examples we let Vm = H
1
0 (0, 1) with the scalar-product

(u, v)m =

∫ 1
0
(uv̄ + a∂u∂v̄ ) ,

where a > 0.

2.1

Let D = {u ∈ H2(0, 1) ∩H10 (0, 1) : u
′(0) = cu′(1)} where |c| ≤ 1, and define

LU = −∂3u. Then we have Lu(ϕ) = (∂2u, ∂ϕ) for ϕ ∈ H10 (0, 1), and (cf.,
Section IV.4)

2ReLu(u) = |u′(1)|2 − |u′(0)|2 ≥ 0 , u ∈ D .

Thus, Theorem 2.1 shows that the initial-boundary value problem

(∂t − a∂
2
x∂t)U(x, t) − ∂

3
xU(x, t) = 0 , 0 < x < 1 , t ≥ 0 ,

U(0, t) = U(1, t) = 0 , ∂xU(0, t) = c∂xU(1, t) , t ≥ 0 ,

U(x, 0) = U0(x)

has a unique solution whenever U0 ∈ D.

2.2

Let V = H20 (0, 1) and define

`(u, v) =

∫ 1
0
∂2u · ∂2v̄ , u, v ∈ V .

Then D = H20 (0, 1) ∩ H
3(0, 1) and Lu = ∂4u, u ∈ D. Theorem 2.2 then

asserts the existence and uniqueness of a solution of the problem

(∂t − a∂
2
x∂t)U(x, t) + ∂

4
xU(x, t) = 0 , 0 < x < 1 , t > 0 ,

U(0, t) = U(1, t) = ∂xU(0, t) = ∂xU(1, t) = 0 , t > 0 ,

U(x, 0) = U0(x) , 0 < x < 1 ,

for each U0 ∈ H10 (0, 1).
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2.3

Let V = H10 (0, 1) and define

`(u, v) =

∫ 1
0
∂u∂v̄ , u, v ∈ V .

Then D = V = Vm and Lu = −∂2u, u ∈ D. From either Theorem 2.1 or 2.2
we obtain existence and uniqueness for the problem

(∂t − a∂
2
x∂t)U(x, t) − ∂

2
xU(x, t) = 0 , 0 < x < 1 , t > 0 ,

U(0, t) = U(1, t) = 0 , t > 0 ,

U(x, 0) = U0(x) , 0 < x < 1 ,

whenever U0 ∈ D = Vm.

2.4

For our last example we let Vm be the completion of C
∞
0 (G) with the scalar-

product

(u, v)m ≡
∫
G
m(x)u(x)v(x) dx .

We assume G is open in Rn and m ∈ L∞(G) is given with m(x) > 0 for
a.e. x ∈ G. (Thus, Vm is the set of measurable functions u on G for which
m1/2u ∈ L2(G).) Let V = H10 (G) and define

`(u, v) =

∫
G
∇u · ∇v̄ , u, v ∈ V .

Then Theorem 2.2 implies the existence and uniqueness of a solution of the

problem

m(x)∂tU(x, t)−∆nU(x, t) = 0 , x ∈ G , t > 0 ,

U(s, t) = 0 , s ∈ ∂G , t > 0 ,

U(x, 0) = U0(x) , x ∈ G .

Note that the initial condition is attained in the sense that

lim
t→0+

∫
G
m(x)|U(x, t) − U0(x)|

2 dx = 0 .
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The first two of the preceding examples illustrate the use of Theorems

2.1 and 2.2 when M and L are both differential operators with the order

of L strictly higher than the order of M . The equation in (2.2) is called

metaparabolic and arises in special models of diffusion or fluid flow. The

equation in (2.3) arises similarly and is called pseudoparabolic. We shall

discuss this class of problems in Section 3. The last example (2.4) contains

a weakly degenerate parabolic equation. We shall study such problems in

Section 4 where we shall assume only that m(x) ≥ 0, x ∈ G. This allows the
equation to be of mixed type: parabolic where m(x) > 0 and elliptic where

m(x) = 0. Such examples will be given in Section 5.

3 Pseudoparabolic Equations

We shall consider some evolution equations which generalize the example

(2.3). Two types of solutions will be discussed, and we shall show how these

two types differ essentially by the boundary conditions they satisfy.

Theorem 3.1 Let V be a Hilbert space, suppose m(·, ·) and `(·, ·) are con-
tinuous sesquilinear forms on V , and denote byM and L the corresponding
operators in L(V, V ′). (That is, Mx(y) = m(x, y) and Lx(y) = `(x, y) for
x, y ∈ V .) Assume that m(·, ·) is V -coercive. Then for every u0 ∈ V and
f ∈ C(R, V ′), there is a unique u ∈ C1(R, V ) for which (2.4) holds for all
t ∈ R and u(0) = u0.

Proof : The coerciveness assumption shows that M is an isomorphism of

V onto V ′, so the operator A ≡ M−1 ◦ L belongs to L(V ). We can define
exp(−tA) ∈ L(V ) as in Theorem IV.2.1 and then define

u(t) = exp(−tA) · u0 +
∫ t
0
exp(A(τ − t)) ◦M−1f(τ) dτ , t > 0 . (3.1)

Since the integrand is continuous and appropriately bounded, it follows that

(3.1) is a solution of (2.2), hence of (2.1). We leave the proof of uniqueness

as an exercise.

We call the solution u(·) given by Theorem 3.1 a weak solution of (2.1).
Suppose we are given a Hilbert space H in which V is a dense subset, contin-

uously imbedded. Thus H ⊂ V ′ and we can define D(M) = {v ∈ V :Mv ∈
H}, D(L) = {v ∈ V : Lv ∈ H} and corresponding operators M =M|D(M)



3. PSEUDOPARABOLIC EQUATIONS 133

and L = L|D(L) in H. A solution u(·) of (2.1) for which each term in (2.1)
belongs to C(R,H) (instead of C(R, V ′)) is called a strong solution. Such a

function satisfies

Mu′(t) + Lu(t) = f(t) , t ∈ R . (3.2)

Theorem 3.2 Let the Hilbert space V and operators M,L ∈ L(V, V ′) be
given as in Theorem 3.1. Let the Hilbert space H be given as above and define

the domains D(M) and D(L) and operators M and L as above. Assume

D(M) ⊂ D(L). Then for every u0 ∈ D(M) and f ∈ C(R,H) there is a
(unique) strong solution u(·) of (3.2) with u(0) = u0.

Proof : By making the change-of-variable v(t) = e−λtu(t) for some λ > 0

sufficiently large, we may assume without loss of generality that D(M) =

D(L) and `(·, ·) is V -coercive. Then L is a bijection ontoH so we can define a
norm on D(L) by ‖v‖D(L) = ‖Lv‖H , v ∈ D(L), which makes D(L) a Banach
space. (Clearly, D(L) is also a Hilbert space.) Since `(·, ·) is V -coercive, it
follows that for some c > 0

c‖v‖2V ≤ ‖Lv‖H‖v‖H , v ∈ D(L) ,

and the continuity of the injection V ↪→ H shows then that the injection
D(L) ↪→ V is continuous. The operator A ≡M−1L ∈ L(V ) leaves invariant
the subspace D(L). This implies that the restriction of A to D(L) is a

closed operator in the D(L)-norm. To see this, note that if vn ∈ D(L) and
if ‖vn − u0‖D(L) → 0, ‖Avn − v0‖D(L) → 0, then

‖v0 −Au0‖V ≤ ‖v0 −Avn‖V + ‖A(vn − u0)‖V

≤ ‖v0 −Avn‖V + ‖A‖L(V )‖vn − u0‖V ,

so the continuity of D(L) ↪→ V implies that each of these terms converges
to zero. Hence, v0 = Au0.

Since A|D(L) is closed and defined everywhere on D(L), it follows from
Theorem III.7.5 that it is continuous on D(L). Therefore, the restrictions

of the operators exp(−tA), t ∈ R, are continuous on D(L), and the formula
(3.1) in D(L) gives a strong solution as desired.

Corollary 3.3 In the situation of Theorem 3.2, the weak solution u(·) is a
strong solution if and only if u0 ∈ D(M).
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3.1

We consider now an abstract pseudoparabolic initial-boundary value prob-

lem. Suppose we are given the Hilbert spaces, forms and operators as in

Theorem IV.7.2. Let ε > 0 and define

m(u, v) = (u, v)H + εa(u, v)

`(u, v) = a(u, v) , u, v ∈ V .

Thus, D(M) = D(L) = D(A). Let f ∈ C(R,H). If u(·) is a strong solution
of (3.2), then we have

u′(t) + εA1u
′(t) +A1u(t) = f(t) ,

u(t) ∈ V , and

∂1u(t) +A2γ(u(t)) = 0 , t ∈ R .




(3.3)

Suppose instead that F ∈ C(R,H) and g ∈ C(R, B′). If we define

f(t)(v) ≡ (F (t), v)H + g(t)(γ(v)) , v ∈ V , t ∈ R .

then a weak solution u(·) of (2.4) can be shown by a computation similar to
the proof of Theorem III.3.1 to satisfy

u′(t) + εA1u
′(t) +A1u(t) = F (t) ,

u(t) ∈ V , and

∂1(εu
′(t) + u(t)) +A2(γ(εu′(t) + u(t))) = g(t) , t ∈ R .




(3.4)

Note that (3.3) implies more than (3.4) with g ≡ 0. By taking suitable
choices of the operators above, we could obtain examples of initial-boundary

value problems from (3.3) and (3.4) as in Theorem IV.7.3.

3.2

For our second example we let G be open in Rn and choose V = {v ∈ H1(G) :
v(s) = 0. a.e. s ∈ Γ}, where Γ is a closed subset of ∂G. We define

m(u, v) =

∫
G
∇u(x) · ∇v(x) dx , u, v ∈ V

and assume m(·, ·) is V -elliptic. (Sufficient conditions for this situation are
given in Corollary III.5.4.) Choose H = L2(G) and V0 = H

1
0 (G); the cor-

responding partial differential operator M : V → V ′0 ≤ D
∗(G) is given by
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Mu = −∆nu, the Laplacian (cf. Section III.2.2). Thus, from Corollary
III.3.2 it follows that D(M) = {u ∈ V : ∆nu ∈ L2(G), ∂u = 0} where ∂
is the normal derivative ∂ν on ∂G ∼ Γ whenever ∂G is sufficiently smooth.
(Cf. Section III.2.3.) Define a second form on V by

`(u, v) =

∫
G
a(x)∂nu(x)v(x) dx , u, v ∈ V ,

and note that L = L : V → H ≤ V ′ is given by Lu = a(x)(∂u/∂xn),
where a(·) ∈ L∞(G) is given. Assume that for each t ∈ R we are given
F (·, t) ∈ L2(G) and that the map t 7→ F (·, t) : R → L2(G) is continuous.
Let g(·, t) ∈ L2(∂G) be given similarly, and define f ∈ C(R, V ′) by

f(t)(v) =

∫
G
F (x, t)v(x) dx+

∫
∂G
g(s, t)v(s) ds , t ∈ R , v ∈ V .

If u0 ∈ V , then Theorem 3.1 gives a unique weak solution u(·) of (2.4) with
u(0) = u0. That is

m(u′(t), v) + `(u(t), v) = f(t)(v) , v ∈ V , t ∈ R ,

and this is equivalent to

Mu′(t) + Lu(t) = F (·, t) , t ∈ R

u(t) ∈ V , ∂t(∂u(t)) = g(·, t) .

From Theorem IV.7.1 we thereby obtain a generalized solution U(·, ·) of the
initial-boundary value problem

−∆n∂tU(x, t) + a(x)∂nU(x, t) = F (x, t) , x ∈ G , t ∈ R ,

U(s, t) = 0 , s ∈ Γ ,

∂νU(s, t) = ∂νU0(s) +

∫ t
0
g(s, τ) dτ , s ∈ ∂G ∼ Γ ,

U(x, 0) = U0(x) , x ∈ G .

Finally, we note that f ∈ C(R,H) if and only if g ≡ 0, and then ∂νU(s, t) =
∂νU0(s) for s ∈ ∂G ∼ Γ, t ∈ R; thus, U(·, t) ∈ D(M) if and only if U0 ∈
D(M). This agrees with Corollary 3.3.
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4 Degenerate Equations

We shall consider the evolution equation (2.1) in the situation where M is

permitted to degenerate, i.e., it may vanish on non-zero vectors. Although it

is not possible to rewrite it in the form (2.2), we shall essentially factor the

equation (2.1) by the kernel ofM and thereby obtain an equivalent problem
which is regular.

Let V be a linear space and m(·, ·) a sesquilinear form on V that is
symmetric and non-negative:

m(x, y) = m(x, y) , x, y ∈ V ,

m(x, x) ≥ 0 , x ∈ V .

Then it follows that

|m(x, y)|2 ≤ m(x, x) ·m(y, y) , x, y ∈ V , (4.1)

and that x 7→ m(x, x)1/2 = ‖x‖m is a seminorm on V . Let Vm denote this
seminorm space whose dual V ′m is a Hilbert space (cf. Theorem I.3.5). The

identity

Mx(y) = m(x, y) , x, y ∈ V

definesM∈ L(Vm, V ′m) and it is just such an operator which we shall place
in the leading term in our evolution equation. Let D ≤ V , L ∈ L(D,V ′m),
f ∈ C((0,∞), V ′m) and g0 ∈ V

′
m. We consider the problem of finding a

function u(·) : [0,∞)→ V such that

Mu(·) ∈ C([0,∞), V ′m) ∩ C
1((0,∞), V ′m) , (Mu)(0) = g0 ,

and u(t) ∈ D with

(Mu)′(t) + Lu(t) = f(t) , t > 0 . (4.2)

(Note that when m(·, ·) is a scalar product on Vm and Vm is complete then
M is the Riesz map and (4.2) is equivalent to (2.1).)

Let K be the kernel of the linear mapM and denote the corresponding

quotient space by V/K. If q : V → V/K is the canonical surjection, then we
define by

m0(q(x), q(y)) = m(x, y) , x, y ∈ V
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a scalar product m0(·, ·) on V/K. The completion of V/K, m0(·, ·) is a
Hilbert space W whose scalar product is also denoted by m0(·, ·). (Cf. The-
orem I.4.2.) We regard q as a map of Vm into W ; thus, it is norm-preserving

and has a dense range, so its dual q′ : W ′ → V ′m is a norm-preserving iso-
morphism (Corollary I.5.3) defined by

q′(f)(x) = f(q(x)) , f ∈W ′ , x ∈ Vm .

IfM0 denotes the Riesz map of W with the scalar product m0(·, ·), then we
have

q′M0q(x)(y) = M0q(x)(q(y)) = m0(q(x), q(y))

= Mx(y) ,

hence,

q′M0q =M . (4.3)

From the linear map L : D → V ′m we want to construct a linear map L0
on the image q[D] of D ≤ Vm by q so that it satisfies

q′L0q = L . (4.4)

This is possible if (and, in general, only if ) K∩D is a subspace of the kernel
of L, K(L) by Theorem I.1.1, and we shall assume this is so.

Let f(·) and g0 be given as above and consider the problem of finding a
function v(·) ∈ C([0,∞),W ) ∩ C1((0,∞),W ) such that v(0) = (q′M0)

−1g0
and

M0v
′(t) + L0v(t) = (q

′)−1f(t) , t > 0 . (4.5)

Since the domain of L0 is q[D], if v(·) is a solution of (4.5) then for each
t > 0 we can find a u(t) ∈ D for which v(t) = q(u(t)). But q′M0 :W → V ′m
is an isomorphism and so from (4.3), (4.4) and (4.5) it follows that u(·) is a
solution of (4.2) withMu(0) = g0. This leads to the following results.

Theorem 4.1 Let Vm be a seminorm space obtained from a symmetric and

non-negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V ′m) be the cor-
responding linear operator given by Mx(y) = m(x, y), x, y ∈ Vm. Let D
be a subspace of Vm and L : D → V ′m be linear and monotone. (a) If

K(M) ∩ D ≤ K(L) and if M + L : D → V ′m is a surjection, then for

every f ∈ C1([0,∞), V ′m) and u0 ∈ D there exists a solution of (4.2) with
(Mu)(0) = Mu0. (b) If K(M) ∩ K(L) = {0}, then there is at most one
solution.
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Proof : The existence of a solution will follow from Theorem 2.1 applied to

(4.5) if we show L0 : q[D] → W ′ is monotone and M0 + L0 is onto. But

(4.5) shows L0 is monotone, and the identity

q′(M0 + L0)q(x) = (M+ L)(x) , x ∈ D ,

implies thatM0 + L0 is surjective wheneverM+ L is surjective.

To establish the uniqueness result, let u(·) be a solution of (4.2) with
f ≡ 0 andMu(0) = 0; define v(t) = qu(t), t ≥ 0. Then

Dtm0(v(t), v(t)) = 2Re(M0v
′(t))(v(t)) , t > 0 ,

and this implies by (4.3) that

Dtm(u(t), u(t)) = 2Re(Mu)′(t)(u(t))

= −2ReLu(t)(u(t)) , t > 0 .

Since L is monotone, this shows Mu(t) = 0, t ≥ 0, and (4.2) implies
Lu(t) = 0, t > 0. Thus u(t) ∈ K(M) ∩K(L), t ≥ 0, and the desired result
follows.

We leave the proof of the following analogue of Theorem 2.2 as an exer-

cise.

Theorem 4.2 Let Vm be a seminorm space obtained from a symmetric and

non-negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V ′m) denote the
corresponding operator. Let V be a Hilbert space which is dense and contin-

uously imbedded in Vm. Let `(·, ·) be a continuous, sesquilinear and elliptic
form on V , and denote the corresponding isomorphism of V onto V ′ by

L. Let D = {u ∈ V : Lu ∈ V ′m}. Then, for every Hölder continuous
f : [0,∞) → V ′m and every u0 ∈ Vm, there exists a unique solution of (4.2)
with (Mu)(0) =Mu0.

5 Examples

We shall illustrate the applications of Theorems 4.1 and 4.2 by solving some

initial-boundary value problems with partial differential equations of mixed

type.
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5.1

Let Vm = L
2(0, 1), 0 ≤ a < b ≤ 1, and

m(u, v) =

∫ b
a
u(x)v(x) dx , v ∈ Vm .

Then V ′m = L
2(a, b), which we identify as that subspace of L2(0, 1) whose

elements are zero a.e. on (0, a)∪(b, 1), andM becomes multiplication by the
characteristic function of the interval (a, b). Let L = ∂ with domain D =

{u ∈ H1(0, 1) : u(0) = cu(1), ∂u ∈ V ′m ⊂ L
2(0, 1)}. We assume |c| ≤ 1, so L

is monotone (cf. Section IV.4(a)). Note that each function in D is constant on

(0, a)∪ (b, 1). Thus, K(M)∩D = {0} and K(M)∩D ≤ K(L) follows. Also,
note that K(L) is either {0} or consists of the constant functions, depending
on whether or not c 6= 1, respectively. Thus, K(M) ∩K(L) = {0}. If u is
the solution of (cf. Section IV.4(a))

u(x) + ∂u(x) = f(x) , a < x < b , u(a) = cu(b)

and is extended to (0, 1) by being constant on each of the intervals, [0, a]

and [b, 1], then (M + L)u = f ∈ V ′m. Hence M + L maps onto V
′
m and

Theorem 4.1 asserts the existence and uniqueness of a generalized solution

of the problem

∂tU(x, t) + ∂xU(x, t) = F (x, t) , a < x < b , t ≥ 0 ,

∂xU(x, t) = 0 , x ∈ (0, a) ∪ (b, a) ,

U(0, t) = cU(1, t) , U(x, 0) = U0(x) , a < x < b ,




(5.1)

for appropriate F (·, ·) and U0. This example is trivial (i.e., equivalent to
Section IV.4(a) on the interval (a, b)) but motivates the proof-techniques of

Section 4.

5.2

We consider some problems with a partial differential equation of mixed

elliptic-parabolic type. Let m0(·) ∈ L∞(G) with m0(x) ≥ 0, a.e. x ∈ G, an
open subset of Rn whose boundary ∂G is a C1-manifold with G on one side

of ∂G. Let Vm = L
2(G) and

m(u, v) =

∫
G
m0(x)u(x)v(x) dx , u, v ∈ Vm .
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Then M is multiplication by m0(·) and maps L2(G) into V ′m ≡ {
√
m0 · g :

g ∈ L2(G)} ⊂ L2(G). Let Γ be a closed subset of ∂G and define V = {v ∈
H1(G) : γ0v = 0 on Γ} as in Section III.4.1. Let

`(u, v) =

∫
G
∇u · ∇v dx , u, v ∈ V (5.2)

and assume
∑
≡ {s ∈ ∂G : νn(s) > 0} ⊂ Γ. Thus, Theorem III.5.3 implies

`(·, ·) is V -elliptic, so M + L maps onto V ′, hence, onto V ′m. Theorem 4.2
shows that if U0 ∈ L2(G) and if F is given as in Theorem IV.7.3, then there
is a unique generalized solution of the problem

∂t(m0(x)U(x, t)) −∆nU(x, t) = m0(x)F (x, t) , x ∈ G ,

U(s, t) = 0 , s ∈ Γ ,

∂U(s, t)

∂ν
= 0 , s ∈ ∂G ∼ Γ , t > 0 ,

m0(x)(U(x, 0) − U0(x)) = 0 .




(5.3)

The partial differential equation in (5.3) is parabolic at those x ∈ G for which
m0(x) > 0 and elliptic where m0(x) = 0. The boundary conditions are of

mixed Dirichlet-Neumann type (cf. Section III.4.1) and the initial value of

U(x, 0) is prescribed only at those points of G at which the equation is

parabolic.

Boundary conditions of the third type may be introduced by modifying

`(·, ·) as in Section III.4.2. Similarly, by choosing

`(u, v) =

∫
G
∇u · ∇v dx+ (γ0u)(γ0v)

on V = {u ∈ H1(G) : γ0u is constant}, we obtain a unique generalized
solution of the initial-boundary value problem of fourth type (cf., Section

III.4.2)

∂t(m0(x)U(x, t)) −∆nU(x, t) = m0(x)F (x, t) , x ∈ G ,

U(s, t) = h(t) , s ∈ ∂G ,(∫
∂G

∂U(s, t)

∂ν
ds
/∫
∂G
ds

)
+ h(t) = 0 , t > 0 ,

m0(x)(U(x, 0) − U0(x)) = 0 .




(5.4)

The data F (·, ·) and U0 are specified as before; h(·) is unknown and part of
the problem.
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5.3

Problems with a partial differential equation of mixed pseudoparabolic-parabolic

type can be similarly handled. Let m0(·) be given as above and define

m(u, v) =

∫
G
(u(x)v(x) +m0(x)∇u(x) · ∇v (x)) dx , u, v ∈ Vm ,

with Vm = H
1(G). Then Vm ↪→ L2(G) is continuous so we can identify

L2(G) ≤ V ′m. Define `(·, ·) by (5.2) where V is a subspace of H
1(G) which

contains C∞0 (G) and is to be prescribed. Then K(M) = {0} and m(·, ·) +
`(·, ·) is V -coercive, so Theorem 4.2 will apply. In particular, if U0 ∈ L2(G)
and F as in Theorem IV.7.3 are given, then there is a unique solution of the

equation

∂t(U(x, t)−
n∑
j=1

∂j(m0(x)∂jU(x, t)))−∆nU(x, t) = F (x, t) , x ∈ G , t > 0 ,

with the initial condition

U(x, 0) = U0(x) , x ∈ G ,

and boundary conditions which depend on our choice of V .

5.4

We consider a problem with a time derivative and possibly a partial differen-

tial equation on a boundary. Let G be as in (5.2) and assume for simplicity

that ∂G intersects the hyperplane Rn−1 × {0} in a set with relative interior
S. Let an(·) and b(·) be given nonnegative, real-valued functions in L∞(S).
We define Vm = H

1(G) and

m(u, v) =

∫
G
u(x)v(x) dx+

∫
S
a(s)u(s)v(s) ds , u, v ∈ Vm ,

where we suppress the notation for the trace operator, i.e., u(s) = (γ0u)(s)

for s ∈ ∂G. Define V to be the completion of C∞(Ḡ) with the norm given
by

‖v‖2V ≡ ‖v‖
2
H1(G) +

(∫
S
b(s)

n−1∑
j=1

|Djv(s)|
2 ds

)
.



142 CHAPTER V. IMPLICIT EVOLUTION EQUATIONS

Thus, V consists of these v ∈ H1(G) for which b1/2 · ∂j(γ0v) ∈ L2(S) for
1 ≤ j ≤ n− 1; it is a Hilbert space. We define

`(u, v) =

∫
G
∇u(x) ·∇v(x) dx+

∫
S
b(s)

(n−1∑
j=1

∂ju(s)∂jv(s)

)
ds , u, v ∈ V .

ThenK(M) = {0} andm(·, ·)+`(·, ·) is V -coercive. If U0 ∈ L2(G) and F (·, ·)
is given as above, then Theorem 4.2 asserts the existence and uniqueness of

the solution U(·, ·) of the initial-boundary value problem



∂tU(x, t)−∆nU(x, t) = F (x, t) , x ∈ G , t > 0 ,

∂t(a(s)U(s, t)) +
∂U(s, t)

∂ν
=
n−1∑
j=1

∂j(b(s)∂jU(s, t)) , s ∈ S ,

∂U(s, t)

∂ν
= 0 , s ∈ ∂G ∼ S ,

b(s)
∂U(s, t)

∂νS
= 0 , s ∈ ∂S ,

U(x, 0) = U0(x) , x ∈ G ,

a(s)(U(s, 0) − U0(s)) = 0 , s ∈ S .

Similar problems with a partial differential equation of mixed type or other

combinations of boundary conditions can be handled by the same technique.

Also, the (n−1)-dimensional surface S can occur inside the region G as well
as on the boundary. (Cf., Section III.4.5.)

Exercises

1.1. Use the separation-of-variables technique to obtain a series representa-

tion for the solution of (1.1) with u(0, t) = u(π, t) = 0 and u(x, 0) =

u0(x), 0 < x < π. Compare the rate of convergence of this series with

that of Section IV.1.

2.1. Provide all details in support of the claim that Theorem 2.1 follows

from Theorem IV.3.3. Show that Theorem 2.2 follows from Theorems

IV.6.3 and IV.6.5.

2.2. Show that Theorem 2.2 remains true if we replace the hypothesis that

L is V -elliptic by λM+ L is V -elliptic for some λ ∈ R.



5. EXAMPLES 143

2.3. Characterize V ′m in each of the examples (2.1)–(2.3). Construct appro-

priate terms for f(t) in Theorems 2.1 and 2.2. Write out the corre-

sponding initial-boundary value problems that are solved.

2.4. Show V ′m = {m
1/2v : v ∈ L2(0, 1)} in (2.4). Describe appropriate non-

homogeneous terms for the partial differential equation in (2.4).

3.1. Verify that (3.1) is a solution of (2.2) in the situation of Theorem 3.1.

3.2. Prove uniqueness holds in Theorem 3.1. [Hint: Show σ(t) ≡ ‖u(t)‖2V
satisfies |σ′(t)| ≤ Kσ(t), t ∈ R, where u is a solution of the homoge-
neous equation, then show that σ(t) ≤ exp(K|t|) · σ(0).]

3.3. Verify that (3.4) characterizes the solution of (2.4) in the case of Section

3.1. Discuss the regularity of the solution when a(·, ·) is k-regular.

4.1. Prove (4.1).

4.2. Prove Theorem 4.2. [Hint: Compare with Theorem 2.2.]

5.1. Give sufficient conditions on the data F , u0 in (5.1) in order to apply

Theorem 4.1.

5.2. Extend the discussion in Section 5.2 to include boundary conditions of

the third type.

5.3. Characterize V ′m in Section 5.3. Write out the initial-boundary value

problem solved in Section 5.3 for several choices of V .

5.4. Write out the problem solved in Section 5.4 when S is an interface as

in Section III.4.5.


