
Chapter VII

Optimization and
Approximation Topics

1 Dirichlet’s Principle

When we considered elliptic boundary value problems in Chapter III we

found it useful to pose them in a weak form. For example, the Dirichlet

problem
−∆nu(x) = F (x) , x ∈ G ,

u(s) = 0 , s ∈ ∂G

}
(1.1)

on a bounded open set G in Rn was posed (and solved) in the form

u ∈ H10 (G) ;
∫
G
∇u · ∇v dx =

∫
G
F (x)v(x) dx , v ∈ H10 (G) . (1.2)

In the process of formulating certain problems of mathematical physics as

boundary value problems of the type (1.1), integrals of the form appearing

in (1.2) arise naturally. Specifically, in describing the displacement u(x) at

a point x ∈ G of a stretched string (n = 1) or membrane (n = 2) resulting
from a unit tension and distributed external force F (x), we find the potential

energy is given by

E(u) =
(
1
2

) ∫
G
|∇u(x)|2 dx−

∫
G
F (x)u(x) dx . (1.3)

Dirichlet’s principle is the statement that the solution u of (1.2) is that

function in H10 (G) at which the functional E(·) attains its minimum. That
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is, u is the solution of

u ∈ H10 (G) : E(u) ≤ E(v) , v ∈ H10 (G) . (1.4)

To prove that (1.4) characterizes u, we need only to note that for each

v ∈ H10 (G)

E(u+ v)− E(u) =
∫
G
(∇u · ∇v − Fv) dx +

(
1
2

) ∫
G
|∇v|2 dx

and the first term vanishes because of (1.2). Thus E(u + v) ≥ E(u) and
equality holds only if v ≡ 0.
The preceding remarks suggest an alternate proof of the existence of a

solution of (1.2), hence, of (1.1). Namely, we seek the element u of H10 (G)

at which the energy function E(·) attains its minimum, then show that u
is the solution of (1.2). This program is carried out in Section 2 where

we minimize functions more general than (1.3) over closed convex subsets

of Hilbert space. These more general functions permit us to solve some

nonlinear elliptic boundary value problems.

By considering convex sets instead of subspaces we obtain some elemen-

tary results on unilateral boundary value problems. These arise in applica-

tions where the solution is subjected to a one-sided constraint, e.g., u(x) ≥ 0,
and their solutions are characterized by variational inequalities. These top-

ics are presented in Section 3, and in Section 4 we give a brief discussion of

some optimal control problems for elliptic boundary value problems.

Finally, Dirichlet’s principle provides a means of numerically approxi-

mating the solution of (1.2). We pick a convenient finite-dimensional sub-

space of H10 (G) and minimize E(·) over this subspace. This is the Rayleigh-
Ritz method and leads to an approximate algebraic problem for (1.2). This

method is described in Section 5, and in Section 6 we shall obtain related

approximation procedures for evolution equations of first or second order.

2 Minimization of Convex Functions

Suppose F is a real-valued function defined on a closed interval K (possibly

infinite). If F is continuous and if either K is bounded or F (x) → +∞ as
|x| → +∞, then F attains its minimum value at some point of K. This
result will be extended to certain real-valued functions on Hilbert space

and the notions developed will be extremely useful in the remainder of this
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chapter. An essential point is to characterize the minimum by the derivative

of F . Throughout this section V is a real separable Hilbert space, K is a

non-empty subset of V and F : K → R is a function.

2.1

We recall from Section I.6 that the space V is weakly (sequentially) compact.

It is worthwhile to consider subsets of V which inherit this property. Thus,K

is called weakly (sequentially) closed if the limit of every weakly convergent

sequence from K is contained in K. Since convergence (in norm) implies

weak convergence, a weakly closed set is necessarily closed.

Lemma 2.1 If K is closed and convex (cf. Section I.4.2), then it is weakly

closed.

Proof : Let x be a vector not in K. From Theorem I.4.3 there is an x0 ∈ K
which is closest to x. By translation, if necessary, we may suppose (x0 +

x)/2 = θ, i.e., x = −x0. Clearly (x, x0) < 0 so we need to show that
(z, x0) ≥ 0 for all z ∈ K; from this the desired result follows easily. Since K
is convex, the function ϕ : [0, 1] → R given by

ϕ(t) = ‖(1− t)x0 + tz − x‖
2
V , 0 ≤ t ≤ 1 ,

has its minimum at t = 0. Hence, the right-derivative ϕ+(0) is non-negative,

i.e.,

(x0 − x, z − x0) ≥ 0 .

Since x = −x0, this gives (x0, z) ≥ ‖x0‖2V > 0.
The preceding result and Theorem I.6.2 show that each closed, convex

and bounded subset of V is weakly sequentially compact. We shall need to

consider situations in which K is not bounded (e.g., K = V ); the following

is then appropriate.

Definition. The function F has the growth property at x ∈ K if, for some
R > 0, y ∈ K and ‖y − x‖ ≥ R implies F (y) > F (x).

The continuity requirement that is adequate for our purposes is the fol-

lowing.

Definition. The function F : K → R is weakly lower-semi-continuous at
x ∈ K if for every sequence {xn} in K which weakly converges to x ∈ K
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we have F (x) ≤ lim inf F (xn). [Recall that for any sequence {an} in R,
lim inf(an) ≡ supk≥0(infn≥k(an)).]

Theorem 2.2 Let K be closed and convex and F : K → R be weakly lower-
semi-continuous at every point of K. If (a) K is bounded or if (b) F has the

growth property at some point in K, then there exists an x0 ∈ K such that
F (x0) ≤ F (x) for all x ∈ K. That is, F attains its minimum on K.

Proof : Let m = inf{F (x) : x ∈ K} and {xn} a sequence in K for which
m = limF (xn). If (a) holds, then by weak sequential compactness there is

a subsequence of {xn} denoted by {xn′} which converges weakly to x0 ∈ V ;
Lemma 2.1 shows x0 ∈ K. The weak lower-semi-continuity of F shows
F (x0) ≤ lim inf F (xn′) = m, hence, F (x0) = m and the result follows. For
the case of (b), let F have the growth property at z ∈ K and let R > 0
be such that F (x) > F (z) whenever ‖z − x‖ ≥ R and x ∈ K. Then set
B ≡ {x ∈ V : ‖x − z‖ ≤ R} and apply (a) to the closed, convex and
bounded set B ∩ K. The result follows from the observation inf{F (x) :
x ∈ K} = inf{F (x) : x ∈ B ∩K}.
We note that if K is bounded then F has the growth property at ev-

ery point of K; thus the case (b) of Theorem 2.2 includes (a) as a special

case. Nevertheless, we prefer to leave Theorem 2.2 in its (possibly) more

instructive form as given.

2.2

The condition that a function be weakly lower-semi-continuous is in general

difficult to verify. However for those functions which are convex (see below),

the lower-semi-continuity is the same for the weak and strong notions; this

can be proved directly from Lemma 2.1. We shall consider a class of func-

tions for which convexity and lower semicontinuity are easy to check and,

furthermore, this class contains all examples of interest to us here.

Definition. The function F : K → R is convex if its domain K is convex
and for all x, y ∈ K and t ∈ [0, 1] we have

F (tx+ (1− t)y) ≤ tF (x) + (1− t)F (y) . (2.1)



2. MINIMIZATION OF CONVEX FUNCTIONS 173

Definition. The function F : K → R is G-differentiable at x ∈ K if K is
convex and if there is a F ′(x) ∈ V ′ such that

lim
t→0+

1

t

[
F (x+ t(y − x))− F (x)

]
= F ′(x)(y − x)

for all y ∈ K. F ′(x) is called the G-differential of F at x. If F is G-
differentiable at every point in K, then F ′ : K → V ′ is the gradient of F on
K and F is the potential of the function F ′.

The G-differential F ′(x) is precisely the directional derivative of F at the

point x in the direction toward y. The following shows how it characterizes

convexity of F .

Theorem 2.3 Let F : K → R be G-differentiable on the convex set K. The
following are equivalent: (a) F is convex, (b) For each pair x, y ∈ K we have

F ′(x)(y − x) ≤ F (y)− F (x) . (2.2)

(c) For each pair x, y ∈ K we have

(F ′(x)− F ′(y))(x− y) ≥ 0 . (2.3)

Proof : If F is convex, then F (x + t(y − x)) ≤ F (x) + t(F (y) − F (x)) for
x, y ∈ K and t ∈ [0, 1], so (2.2) follows. Thus (a) implies (b). If (b) holds,
we obtain F ′(y)(x− y) ≤ F (x) − F (y) and F (x)− F (y) ≤ F ′(x)(x− y), so
(c) follows.

Finally, we show (c) implies (a). Let x, y ∈ K and define ϕ : [0, 1] → R
by

ϕ(t) = F (tx+ (1− t)y) = F (y + t(x− y)) , t ∈ [0, 1] .

Then ϕ′(t) = F ′(y + t(x − y))(x − y) and we have for 0 ≤ s < t ≤ 1 the
estimate

(ϕ′(t)−ϕ′(s))(t−s) = (F ′(y+ t(x−y))−F ′(y+s(x−y)))((t−s)(x−y)) ≥ 0

from (c), so ϕ′ is non-decreasing. The Mean-Value Theorem implies that

ϕ(1)− ϕ(t)

1− t
≥
ϕ(t) − ϕ(0)

t− 0
, 0 < t < 1 .

Hence, ϕ(t) ≤ tϕ(1) + (1− t)ϕ(0), and this is just (2.1).
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Corollary 2.4 Let F be G-differentiable and convex. Then F is weakly

lower-semi-continuous on K.

Proof : Let the sequence {xn} ⊂ K converge weakly to x ∈ K. Since
F ′(x) ∈ V ′, we have limF ′(x)(xn) = F ′(x)(x), so from (2.2) we obtain

lim inf(F (xn)− F (x)) ≥ lim inf F
′(x)(xn − x) = 0 .

This shows F is weakly lower-semi-continuous at x ∈ K.

Corollary 2.5 In the situation of Corollary 2.4, for each pair x, y ∈ K the
function

t 7−→ F ′(x+ t(y − x))(y − x) , t ∈ [0, 1]

is continuous.

Proof : We need only observe that in the proof of Theorem 2.3 the function

ϕ′ is a monotone derivative and thereby must be continuous.

2.3

Our goal is to consider the special case of Theorem 2.2 that results when F

is a convex potential function. It will be convenient in the applications to

have the hypothesis on F stated in terms of its gradient F ′.

Lemma 2.6 Let F be G-differentiable and convex. Suppose also we have

lim
‖x‖→+∞

F ′(x)(x)

‖x‖
= +∞ , x ∈ K .

Then lim‖x‖→∞ F (x) = +∞, so F has the growth property at every point in
K.

Proof : We may assume θ ∈ K. For each x ∈ K we obtain from Corol-
lary 2.5

F (x)− F (θ) =
∫ 1
0
F ′(tx)(x) dt

=

∫ 1
0
(F ′(tx)− F ′(θ))(x) dt+ F ′(θ)(x) .
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With (2.3) this implies

F (x)− F (θ) ≥
∫ 1
1/2
(F ′(tx)− F ′(θ))(x) dt+ F ′(θ)(x) . (2.4)

From the Mean-Value Theorem it follows that for some s = s(x) ∈ [12 , 1]

F (x)− F (θ) ≥
(
1
2

)
(F ′(sx)(x) + F ′(θ)(x))

≥
(
1
2

)
‖x‖
{
F ′(sx)(sx)

‖sx‖
− ‖F ′(θ)‖V ′

}
.

Since ‖sx‖ ≥ (12 )‖x‖ for all x ∈ K, the result follows.

Definitions. Let D be a non-empty subset of V and T : D → V ′ be a
function. Then T is monotone if

(T (x)− T (y))(x− y) ≥ 0 , x, y ∈ D ,

and strictly monotone if equality holds only when x = y. We call T coercive

if

lim
‖x‖→∞

(
T (x)(x)

‖x‖

)
= +∞ .

After the preceding remarks on potential functions, we have the following

fundamental results.

Theorem 2.7 Let K be a non-empty closed, convex subset of the real sep-

arable Hilbert space V , and let the function F : K → R be G-differentiable
on K. Assume the gradient F ′ is monotone and either (a) K is bounded or

(b) F ′ is coercive. Then the set M ≡ {x ∈ K : F (x) ≤ F (y) for all y ∈ K}
is non-empty, closed and convex, and x ∈M if and only if

x ∈ K : F ′(x)(y − x) ≥ 0 , y ∈ K . (2.5)

Proof : ThatM is non-empty follows from Theorems 2.2 and 2.3, Corollary

2.4 and Lemma 2.6. Each of the sets My ≡ {x ∈ K : F (x) ≤ F (y)} is closed
and convex so their intersection, M , is closed and convex. If x ∈ M then
(2.5) follows from the definition of F ′(x); conversely, (2.2) shows that (2.5)

implies x ∈M .
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2.4

We close with a sufficient condition for uniqueness of the minimum point.

Definition. The function F : K → R is strictly convex if its domain is

convex and for x, y ∈ K, x 6= y, and t ∈ (0, 1) we have

F (tx+ (1− t)y) < tF (x) + (1− t)F (y) .

Theorem 2.8 A strictly convex function F : K → R has at most one point
at which the minimum is attained.

Proof : Suppose x1, x2 ∈ K with F (x1) = F (x2) = inf{F (y) : y ∈ K} and
x1 6= x2. Since

1
2(x1 + x2) ∈ K, the strict convexity of F gives

F
(
(12 )(x1 + x2)

)
<
(
1
2

)
(F (x1) + F (x2)) = inf{F (y) : y ∈ K} ,

and this is a contradiction.

The third part of the proof of Theorem 2.3 gives the following.

Theorem 2.9 Let F be G-differentiable on K. If the gradient F ′ is strictly

monotone, then F is strictly convex.

3 Variational Inequalities

The characterization (2.5) of the minimum point u of F on K is an example

of a variational inequality . It expresses the fact that from the minimum point

the function does not decrease in any direction into the set K. Moreover, if

the minimum point is an interior point of K, then we obtain the “variational

equality” F ′(u) = 0, a functional equation for the (gradient) operator F ′.

3.1

We shall write out the special form of the preceding results which occur

when F is a quadratic function. Thus, V is a real Hilbert space, f ∈ V ′, and
a(·, ·) : V ×V → R is continuous, bilinear and symmetric. Define F : V → R
by

F (v) =
(
1
2

)
a(v, v) − f(v) , v ∈ V . (3.1)
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From the symmetry of a(·, ·) we find the G-differential of F is given by

F ′(u)(v − u) = a(u, v − u)− f(v − u) , u, v ∈ V .

If A : V → V ′ is the operator characterizing the form a(·, ·), cf. Section I.5.4,
then we obtain

F ′(u) = Au− f , u ∈ V . (3.2)

To check the convexity of F by the monotonicity of its gradient, we compute

(F ′u− F ′v)(u− v) = a(u− v, u− v) = A(u− v)(u− v) .

Thus, F ′ is monotone (strictly monotone) exactly when a(·, ·) is non-negative
(respectively, positive), and this is equivalent to A being monotone (respec-
tively, positive) (cf. Section V.1). The growth of F is implied by the state-

ment

lim
‖v‖→∞

(
a(v, v)

‖v‖

)
= +∞ . (3.3)

Since F (v) ≥ (12)a(v, v)−‖f‖ ·‖v‖, from the identity (3.2) we find that (3.3)
is equivalent to F ′ being coercive.

The preceding remarks show that Theorems 2.7 and 2.8 give the follow-

ing.

Theorem 3.1 Let a(·, ·) : V × V → R be continuous, bilinear, symmetric
and non-negative. Suppose f ∈ V ′ and K is a closed convex subset of V .
Assume either (a) K is bounded or (b) a(·, ·) is V -coercive. Then there exists
a solution of

u ∈ K : a(u, v − u) ≥ f(v − u) , v ∈ K . (3.4)

There is exactly one such u in the case of (b); there is exactly one in case

(a) if we further assume a(·, ·) is positive.

Finally we note that whenK is the whole space V , then (3.4) is equivalent

to

u ∈ V : a(u, v) = f(v) , v ∈ V , (3.5)

the generalized boundary value problem studied in Chapter III. For this

reason, when (3.5) is equivalent to a boundary value problem, (3.5) is called

the variational form of that problem and such problems are called variational

boundary value problems.

We shall illustrate some very simple variational inequalities by examples

in which we characterize the solution by other means.
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3.2 Projection

Given the Hilbert space V , the closed convex subsetK, and the point u0 ∈ V ,
we define

a(u, v) = (u, v)V , f(v) = (u0, v)V , u, v ∈ V .

Then (3.1) gives the function

F (v) =
(
1
2

){
‖u0 − v‖

2 − ‖u0‖
2
}
, v ∈ V ,

so u ∈ K is the minimum of F on K if and only if

‖u0 − u‖ ≤ ‖u0 − v‖ , v ∈ K .

That is, u is that (unique) point of K which is closest to u0. The existence

and uniqueness follows from Theorem 3.1; in this case we have the equivalent

of Theorem I.4.3. The computation

F ′(u)(v − u) = (u− v0, v − u)V

shows that u is characterized by the variational inequality

u ∈ K : (u− u0, v − u)V ≥ 0 , v ∈ K ,

and the geometric meaning of this inequality is that the angle between u−u0
and v − u is between −π/2 and π/2 for each v ∈ K. If K is a subspace of
V , this is equivalent to (3.5) which says u− u0 is orthogonal to K. That is,
u is the projection of u0 on the space K, cf. Section I.4.3.

3.3 Dirichlet’s Principle

Let G be a bounded open set in Rn and V = H10 (G). Let F ∈ L
2(Ω) and

define

a(u, v) =

∫
G
∇u · ∇v dx , f(v) =

∫
G
F (x)v(x) dx , u, v ∈ V .

Thus, the function to be minimized is

E(v) =
(
1
2

) ∫
G

n∑
j=1

|∂jv|
2 dx−

∫
G
Fv dx , v ∈ V .

In the applications this is a measure of the “energy” in the system. Take K

to be the whole space: K = V . The point u at which E attains its minimum

is characterized by (3.5). Thus, the solution is characterized by the Dirichlet

problem (1.1), cf. Chapter III.
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3.4 Free Boundary Problem

We take the space V , the form a(·, ·) and functional f as above. Let g ∈
H10 (Ω) and define

K = {v ∈ H10 (G) : v(x) ≥ g(x) a.e. x ∈ G} .

Since a(·, ·) is V -coercive, there exists a unique solution u of (3.4). This
solution is characterized by the following:

u ≥ g in G , u = 0 on ∂G ,

−∆nu− F ≥ 0 in G , and

(u− g)(−∆nu− F ) = 0 in G .


 (3.6)

The first follows from u ∈ K and the second is obtained from (3.4) by setting
v = u+ϕ for any ϕ ∈ C∞0 (G) with ϕ ≥ 0. Given the first two lines of (3.6),
the third line follows by setting v = g in (3.4). One can show, conversely,

that any u ∈ H1(G) satisfying (3.6) is the solution of (3.4). Note that the
region G is partitioned into two parts

G0 = {x : u(x) = g(x)} , G+ = {x : u(x) > g(x)}

and −∆nu = F in G+. That is, in G0 (G+) the first (respectively, second)
inequality in (3.6) is replaced by the corresponding equation. There is a free

boundary at the interface between G0 and G+; locating this free boundary

is equivalent to reducing (3.6) to a Dirichlet problem.

3.5 Unilateral Boundary Condition

Choose V = H1(G) and K = {v ∈ V : v ≥ g1 on ∂G}, where g1 ∈ H1(G) is
given. Let F (·) ∈ L2(G), g2 ∈ L2(∂G) and define f ∈ V ′ by

f(v) =

∫
G
Fv dx+

∫
∂G
g2v ds , v ∈ V

where we suppress the trace operator in the above and hereafter. Set

a(u, v) = (u, v)H1(G). Theorem 3.1 shows there exists a unique solution
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u ∈ K of (3.4). This solution is characterized by the following:

−∆nu+ u = F in G ,

u ≥ g1 on ∂G ,

∂u

∂ν
≥ g2 on ∂G , and(
∂u

∂ν
− g2

)
(u− g1) = 0 on ∂G .




(3.7)

We shall show that the solution of (3.4) satisfies (3.7); the converse is left to

an exercise. The first inequality in (3.7) follows from u ∈ K. If ϕ ∈ C∞0 (G),
then setting v = u + ϕ, then v = u − ϕ in (3.4) we obtain the partial
differential equation in (3.7). Inserting this equation in (3.4) and using the

abstract Green’s formula (Theorem III.2.3), we obtain

∫
∂G

∂u

∂ν
(v − u) ds ≥

∫
∂G
g2(v − u) , v ∈ K . (3.8)

If w ∈ H1(G) satisfies w ≥ 0 on ∂G, we may set v = u + w in (3.8); this
gives the second inequality in (3.7). Setting v = g1 in (3.8) yields the last

equation in (3.7). Note that there is a region Γ0 in ∂G on which u = g1, and

∂u/∂ν = g2 on ∂G ∼ Γ0. Thus, finding u is equivalent to finding Γ0, so we
may think of (3.7) as another free boundary problem.

4 Optimal Control of Boundary Value Problems

4.1

Various optimal control problems are naturally formulated as minimization

problems like those of Section 2. We illustrate the situation with a model

problem which we discuss in this section.

Example. Let G be a bounded open set in Rn whose boundary ∂G is a

C1-manifold with G on one side. Let F ∈ L2(G) and g ∈ L2(∂G) be given.
Then for each control v ∈ L2(∂G) there is a corresponding state y ∈ H1(G)
obtained as the unique solution of the system

−∆ny + y = F in G
∂y

∂ν
= g + v on ∂G


 (4.1)
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and we denote the dependence of y on v by y = y(v). Assume that we

may observe the state y only on ∂G and that our objective is to choose v

so as to place the observation y(v)|∂G closest to a given desired observation
w ∈ L2(∂G). Each control v is exerted at some cost , so the optimal control
problem is to minimize the “error plus cost”

J(v) =

∫
∂G
|y(v)− w|2 dx+ c

∫
∂G
|v|2 dx (4.2)

over some given set of admissible controls in L2(∂G). An admissible control

u at which J attains its minimum is called an optimal control . We shall

briefly consider problems of existence or uniqueness of optimal controls and

alternate characterizations of them, and then apply these general results to

our model problem.

We shall formulate the model problem (4.1), (4.2) in an abstract setting

suggested by Chapter III. Thus, let V and H be real Hilbert spaces with

V dense and continuously imbedded in H; identify the pivot space H with

its dual and thereby obtain the inclusions V ↪→ H ↪→ V ′. Let a(·, ·) be
a continuous, bilinear and coercive form on V for which the corresponding

operator A : V → V ′ given by

a(u, v) = Au(v) , u, v ∈ V

is necessarily a continuous bijection with continuous inverse. Finally, let

f ∈ V ′ be given. (The system (4.1) with v ≡ 0 can be obtained as the
operator equation Ay = f for appropriate choices of the preceding data; cf.
Section III.4.2 and below.)

To obtain a control problem we specify in addition to the state space

V and data space V ′ a Hilbert space U of controls and an operator B ∈
L(U, V ′). Then for each control v ∈ U , the corresponding state y = y(v) is
the solution of the system (cf. (4.1))

Ay = f + Bv , y = y(v) . (4.3)

We are given a Hilbert spaceW of observations and an operator C ∈ L(V,W ).
For each state y ∈ V there is a corresponding observation Cy ∈ W which
we want to force close to a given desired observation w ∈ W . The cost
of applying the control v ∈ U is given by Nv(v) where N ∈ L(U,U ′) is
symmetric and monotone. Thus, to each control v ∈ U there is the “error
plus cost” given by

J(v) ≡ ‖Cy(v) − w‖2W +Nv(v) . (4.4)
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The optimal control problem is to minimize (4.4) over a given non-empty

closed convex subset Uad of admissible controls in U . An optimal control is

a solution of

u ∈ Uad : J(u) ≤ J(v) for all v ∈ Uad . (4.5)

4.2

Our objectives are to give sufficient conditions for the existence (and possible

uniqueness) of optimal controls and to characterize them in a form which

gives more information.

We shall use Theorem 2.7 to attain these objectives. In order to compute

the G-differential of J we first obtain from (4.3) the identity

Cy(v)− w = CA−1Bv + CA−1f − w

which we use to write (4.4) in the form

J(v) = ‖CA−1Bv‖2W +Nv(v)+2(CA
−1Bv, CA−1f −w)W +‖CA

−1f −w‖2W .

Having expressed J as the sum of quadratic, linear and constant terms, we

easily obtain the G-differential

J ′(v)(ϕ) = 2
{
(CA−1Bv, CA−1Bϕ)W (4.6)

+Nv(ϕ) + (CA−1Bϕ, CA−1f − w)W
}

= 2
{
(Cy(v)− w, CA−1Bϕ)W +Nv(ϕ)

}
.

Thus, we find that the gradient J ′ is monotone and(
1
2

)
J ′(v)(v) ≥ Nv(v)− (const.)‖v‖U ,

so J ′ is coercive if N is coercive, i.e., if

Nv(v) ≥ c‖v‖2U , v ∈ Uad , (4.7)

for some c > 0. Thus, we obtain from Theorem 2.7 the following.

Theorem 4.1 Let the optimal control problem be given as in Section 4.1.

That is, we are to minimize (4.4) subject to (4.3) over the non-empty closed

convex set Uad. Then if either (a) Uad is bounded or (b) N is coercive over

Uad, then the set of optimal controls is non-empty, closed and convex.
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Corollary 4.2 In case (b) there is a unique optimal control.

Proof : This follows from Theorem 2.9 since (4.7) implies J ′ is strictly mono-

tone.

4.3

We shall characterize the optimal controls by variational inequalities. Thus,

u is an optimal control if and only if

u ∈ Uad : J
′(u)(v − u) ≥ 0 , v ∈ Uad ; (4.8)

this is just (2.5). This variational inequality is given by (4.6), of course, but

the resulting form is difficult to interpret. The difficulty is that it compares

elements of the observation space W with those of the control space U ;

we shall obtain an equivalent characterization which contains a variational

inequality only in the control space U . In order to convert the first term on

the right side of (4.6) into a more convenient form, we shall use the Riesz

map RW of W onto W
′ given by (cf. Section I.4.3)

RW (x)(y) = (x, y)W , x, y ∈W

and the dual C′ ∈ L(W ′, V ′) of C given by (cf. Section I.5.1)

C′(f)(x) = f(C(x)) , f ∈W ′ , x ∈ V .

Then from (4.6) we obtain

(
1
2

)
J ′(u)(v) = (Cy(u)− w, CA−1Bv)W +Nu(v)

= RW (Cy(u)− w)(CA
−1Bv) +Nu(v)

= C′RW (Cy(u)− w)(A
−1Bv) +Nu(v) , u, v ∈ U .

To continue we shall need the dual operator A′ ∈ L(V, V ′) given by

A′x(y) = Ay(x) , x, y ∈ V ,

where V ′′ is naturally identified with V . Since A′ arises from the bilinear
form adjoint to a(·, ·), A′ is an isomorphism. Thus, for each control v ∈ U we
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can define the corresponding adjoint state p = p(v) as the unique solution

of the system

A′p = C′RW (Cy(v)− w) , p = p(v) . (4.9)

From above we then have(
1
2

)
J ′(u)(v) = A′p(u)(A−1Bv) +Nu(v)

= Bv(p(u)) +Nu(v)

= B′p(u)(v) +Nu(v)

where B′ ∈ L(V,U ′) is the indicated dual operator. These computations lead
to a formulation of (4.8) which we summarize as follows.

Theorem 4.3 Let the optimal control problem be given as in (4.1). Then

a necessary and sufficient condition for u to be an optimal control is that it

satisfy the following system:

u ∈ Uad , Ay(u) = f + Bu ,

A′p(u) = C′RW (Cy(u) − w) ,

(B′p(u) +Nu)(v − u) ≥ 0 , all v ∈ Uad .


 (4.10)

The system (4.10) is called the optimality system for the control problem.

We leave it as an exercise to show that a solution of the optimality system

satisfies (4.8).

4.4

We shall recover the Example of Section 4.1 from the abstract situation

above. Thus, we choose V = H1(G), a(u, v) = (u, v)H1(G), U = L
2(∂G) and

define

f(v) =

∫
G
F (x)v(x) dx +

∫
∂G
g(s)v(s) ds , v ∈ V ,

Bu(v) =
∫
∂G
u(s)v(s) ds , u ∈ U , v ∈ V .

The state y(u) of the system determined by the control u is given by (4.3),

i.e.,
−∆ny + y = F in G ,

∂y

∂ν
= g + u on ∂G .

(4.11)
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Choose W = L2(∂G), w ∈W , and define

Nu(v) = c

∫
∂G
u(s)v(s) ds , u, v ∈W , (c ≥ 0)

Cu(v) ≡
∫
∂G
u(s)v(s) ds , u ∈ V , v ∈W .

The adjoint state equation (4.9) becomes

−∆np+ p = 0 in G

∂p

∂ν
= y − w on ∂G

(4.12)

and the variational inequality is given by

u ∈ Uad :
∫
∂G
(p + cu)(v − u) ds ≥ 0 , v ∈ Uad . (4.13)

From Theorem 4.1 we obtain the existence of an optimal control if Uad is

bounded or if c > 0. Note that

J(v) =

∫
∂G
|y(v) − w|2 ds+ c

∫
∂G
|v|2 ds (4.14)

is strictly convex in either case, so uniqueness follows in both situations.

Theorem 4.3 shows the unique optimal control u is characterized by the

optimality system (4.11), (4.12), (4.13). We illustrate the use of this system

in two cases.

4.5 Uad = L
2(∂G)

This is the case of no constraints on the control. Existence of an optimal

control follows if c > 0. Then (4.13) is equivalent to p + cu = 0. The

optimality system is equivalent to

−∆ny + y = F , −∆np+ p = 0 in G

∂y

∂ν
= g −

(
1

c

)
p ,

∂p

∂ν
= y − w on ∂G

and the optimal control is given by u = −(1/c)p.
Consider the preceding case with c = 0. We show that an optimal control

might not exist. First show inf{J(v) : v ∈ U} = 0. Pick a sequence {wm} of
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very smooth functions on ∂G such that wm → w in L2(∂G). Define ym by

−∆nym + ym = F in G

ym = wm on ∂G

and set vm = (∂ym/∂ν) − g, m ≥ 1. Then vm ∈ L2(∂G) and J(vm) =
‖wm − w‖2L2(∂G) → 0. Second, note that if u is an optimal control, then
J(u) = 0 and the corresponding state y satisfies

−∆ny + y = F in G

y = w on ∂G .

Then we have (formally) u = (∂y/∂ν)−g. However, if w ∈ L2(∂G) one does
not in general have (∂y/∂ν) ∈ L2(∂G). Thus u might not be in L2(∂G) in
which case there is no optimal control (in L2(∂G)).

4.6

Uad = {v ∈ L
2(∂G) : 0 ≤ v(s) ≤ M a.e.}. Since the set of admissible

controls is bounded, there exists a unique optimal control u characterized

by the optimality system (4.10). Thus, u is characterized by (4.11), (4.12)

and

if 0 < u < M , then p+ cu = 0

if u = 0 , then p ≥ 0 , and (4.15)

if u =M , then p+ cu ≤ 0 .

We need only to check that (4.13) and (4.15) are equivalent. The boundary

is partitioned into the three regions determined by the three respective cases

in (4.15). This is analogous to the free boundary problems encountered in

Sections 3.3 and 3.4.

We specialize the above to the case of “free control,” i.e., c = 0. One

may search for an optimal control in the following manner. Motivated by

(4.11) and (4.14), we consider the solution Y of the Dirichlet problem

−∆nY + Y = F in G ,

Y = w on ∂G .
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If it happens that

0 ≤
∂Y

∂ν
− g ≤M on ∂G , (4.16)

then the optimal control is given by (4.11) as

u =
∂Y

∂ν
− g .

Note that u ∈ Uad and J(u) = 0.
We consider the contrary situation in which (4.16) does not hold. Specif-

ically we shall show that (when all aspects of the problem are regular) the

set Γ ≡ {s ∈ ∂G : 0 < u(s) < M , p(s) = 0} is empty. This implies that the
control takes on only its extreme values 0,M ; this is a result of “bang-bang”

type.

Partition Γ into the three parts Γ0 = {s ∈ Γ : y(s) = w(s)}, Γ+ =
{s ∈ Γ : y(s) > w(s)} and Γ− = {s ∈ Γ : y(s) < w(s)}. On any interval
in Γ0 we have p = 0 (by definition of Γ) and

∂p
∂ν = 0 from (4.12). From

the uniqueness of the Cauchy problem for the elliptic equation in (4.12), we

obtain p = 0 in G, hence, y = w on ∂G. But this implies y = Y , hence

(4.16) holds. This contradiction shows Γ0 is empty. On any interval in Γ+
we have p = 0 and ∂p∂ν > 0. Thus, p < 0 in some neighborhood (in Ḡ)

of that interval. But ∆p < 0 in the neighborhood follows from (4.12), so

a maximum principle implies ∂p∂ν ≤ 0 on that interval. This contradiction
shows Γ+ is empty. A similar argument holds for Γ− and the desired result

follows.

5 Approximation of Elliptic Problems

We shall discuss the Rayleigh-Ritz-Galerkin procedure for approximating

the solution of an elliptic boundary value problem. This procedure can

be motivated by the situation of Section 3.1 where the abstract boundary

value problem (3.5) is known to be equivalent to minimizing a quadratic

function (3.1) over the Hilbert space V . The procedure is to pick a closed

subspace S of V and minimize the quadratic function over S. This is the

Rayleigh-Ritz method. The resulting solution is close to the original solution

if S closely approximates V . The approximate solution is characterized

by the abstract boundary vlaue problem obtained by replacing V with S;

this gives the (equivalent) Galerkin method of obtaining an approximate

solution. The very important finite-element method consists of the above
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procedure applied with a space S of piecewise polynomial functions which

approximates the whole space V . The resulting finite-dimensional problem

can be solved efficiently by computers. Our objectives are to describe the

Rayleigh-Ritz-Galerkin procedure, obtain estimates on the error that results

from the approximation, and then to give some typical convergence rates that

result from standard finite-element or spline approximations of the space.

We shall also construct some of these approximating subspaces and prove

the error estimates as an application of the minimization theory of Section 2.

5.1

Suppose we are given an abstract boundary value problem: V is a Hilbert

space, a(·, ·) : V × V → K is continuous and sesquilinear, and f ∈ V ′. The
problem is to find u satisfying

u ∈ V : a(u, v) = f(v) , v ∈ V . (5.1)

Let S be a subspace of V . Then we may consider the related problem of

determining us satisfying

us ∈ S : a(us, v) = f(v) , v ∈ S . (5.2)

We shall show that the error us−u is small if S approximates V sufficiently
well.

Theorem 5.1 Let a(·, ·) be a V -coercive continuous sesquilinear form and
f ∈ V ′. Let S be a closed subspace of V . Then (5.1) has a unique solution
u and (5.2) has a unique solution us. Furthermore we have the estimate

‖us − u‖ ≤ (K/c) inf{‖u − v‖ : v ∈ S} , (5.3)

where K is the bound on a(·, ·) (cf. the inequality I.(5.2)) and c is the coer-
civity constant (cf. the inequality III.(2.3)).

Proof : The existence and uniqueness of the solutions u and us of (5.1) and

(5.2) follow immediately from Theorem III.2.1 or Theorem 3.1, so we need

only to verify the estimate (5.3). By subtracting (5.1) from (5.2) we obtain

a(us − u, v) = 0 , v ∈ S . (5.4)
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Thus for any w ∈ S we have

a(us − u, us − u) = a(us − u,w − u) + a(us − u, us − w) .

Since us − w ≡ v ∈ S it follows that the last term is zero, so we obtain

c‖us − u‖
2 ≤ K‖us − u‖ ‖w − u‖ , w ∈ S .

This gives the desired result.

Consider for the moment the case of V being separable. Thus, there is a

sequence {v1, v2, v3, . . .} in V which is a basis for V . For each integer m ≥ 1,
the set {v1, v2, . . . , vm} is linearly independent and its linear span will be
denoted by Vm. If Pm is the projection of V into Vm, then limm→∞ Pmv = v

for all v ∈ V . The problem (5.2) with S = Vm is equivalent to

um ∈ Vm : a(um, vj) = f(vj) , 1 ≤ j ≤ m .

There is exactly one such um for each integer m ≥ 1 and we have the
estimates ‖um − u‖ ≤ (K/c)‖u − Pmu‖. Hence, limm→∞ um = u in V and
the rate of convergence is determined by that of {Pmu} to the solution u
of (5.1). Thus we are led to consider an approximating finite-dimensional

problem. Specifically um is determined by the point x = (x1, x2, . . . , xm) ∈
K
m through the identity um =

∑m
i=1 xivi, and (5.2) is equivalent to them×m

system of linear equations

m∑
i=1

a(vi, vj)xi = f(vj) , 1 ≤ j ≤ m . (5.5)

Since a(·, ·) is V -coercive, them×m coefficient matrix (a(vi, vj)) is invertible
and the linear system (5.5) can be solved for x. The dimension of the system

is frequently of the order m = 102 or 103, so the actual computation of

the solution may be a non-trivial consideration. It is helpful to choose the

basis functions so that most of the coefficients are zero. Thus, the matrix

is sparse and various special techniques are available for efficiently solving

the large linear system. This sparseness of the coefficient matrix is one of

the computational advantages of using finite-element spaces. A very special

example will be given in Section 5.4 below.
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5.2

The fundamental estimate (5.3) is a bound on the error in the norm of the

Hilbert space V . In applications to elliptic boundary value problems this

corresponds to an energy estimate. We shall estimate the error in the norm

of a pivot space H. Since this norm is weaker we expect an improvement on

the rate of convergence with respect to the approximation of V by S.

Theorem 5.2 Let a(·, ·) be a continuous, sesquilinear and coercive form on
the Hilbert space V , and let H be a Hilbert space identified with its dual and

in which V is dense, and continuously imbedded. Thus, V ↪→ H ↪→ V ′.
Let A∗ : D∗ → H be the operator on H which is determined by the adjoint
sesquilinear form, i.e.,

a(v,w) = (A∗w, v)H , w ∈ D∗ , v ∈ V

(cf. Section III.7.5). Let S be a closed subspace of V and e∗(S) a corre-

sponding constant for which we have

inf{‖w − v‖ : v ∈ S} ≤ e∗(S)|A∗w|H , w ∈ D∗ . (5.6)

Then the solutions u of (5.1) and us of (5.2) satisfy the estimate

|u− us|H ≤ (K
2/c) inf{‖u− v‖ : v ∈ S}e∗(S) . (5.7)

Proof : We may assume u 6= us; define g = (u − us)/|u − us|H and choose
w ∈ D∗ so that A∗w = g. That is,

a(v,w) = (v, g)H , v ∈ V ,

and this implies that

a(u− us, w) = (u− us, g)H = |u− us|H .

From this identity and (5.4) we obtain for any v ∈ S

|u−us|H = a(u−us, w−v) ≤ K‖u−us‖ ‖w−v‖ ≤ K‖u−us‖e
∗(S)|A∗w|H .

Since |A∗w|H = |g|H = 1, the estimate (5.7) follows from (5.3).



5. APPROXIMATION OF ELLIPTIC PROBLEMS 191

Corollary 5.3 Let A : D → H be the operator on H determined by a(·, ·),
V , H, i.e.,

a(w, v) = (Aw, v)H , w ∈ D , v ∈ V .

Let e(S) be a constant for which

inf{‖w − v‖ : v ∈ S} ≤ e(S)|Aw|H , w ∈ D .

Then the solutions of (5.1) and (5.2) satisfy the estimate

|u− us|H ≤ (K
2/c)e(S)e∗(S)|Au|H . (5.8)

The estimate (5.7) will provide the rate of convergence of the error that

is faster than that of (5.3). The added factor e∗(S) arising in (5.6) will

depend on how well S approximates the subspaceD∗ of “smoother” or “more

regular” elements of V .

5.3

We shall combine the estimates (5.3) and (5.7) with approximation results

that are typical of finite-element or spline function subspaces of H1(G). This

will result in rate of convergence estimates in terms of a parameter h > 0

related to mesh size in the approximation scheme. The approximation as-

sumption that we make is as follows: SupposeH is a set of positive numbers,
M and k ≥ 0 are integers, and S ≡ {Sh : h ∈ H} is a collection of closed
subspaces of V ⊂ H1(G) such that

inf{‖w − v‖H1(G) : v ∈ Sh} ≤Mh
j−1‖w‖Hj (G) (5.9)

for all h ∈ H, 1 ≤ j ≤ k+2, and w ∈ Hj(G)∩V . The integer k+1 is called
the degree of S.

Theorem 5.4 Let V be a closed subspace of H1(G) with H10 (G) ⊂ V and
let a(·, ·) : V × V → K be continuous, sesquilinear and V -coercive. Let S
be a collection of closed subspaces of V satisfying (5.9) for some k ≥ 0, and
assume a(·, ·) is k-regular on V . Let F ∈ Hk(G) and define f ∈ V ′ by
f(v) = (F, v)H , v ∈ V , where H ≡ L2(G). Let u be the solution of (5.1)
and, for each h ∈ H, uh be the solution of (5.2) with S = Sh. Then for some
constant c1 we have

‖u− uh‖H1(G) ≤ c1h
k+1 , h ∈ H . (5.10)
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If in addition the sesquilinear form adjoint to a(·, ·) is 0-regular, then for
some constant c2 we have

‖u− uh‖L2(G) ≤ c2h
k+2 , h ∈ H . (5.11)

Proof : Since F ∈ Hk(G) and a(·, ·) is k-regular it follows that u ∈ Hk+2(G).
Hence we combine (5.3) with (5.9) to obtain (5.10). If the adjoint form

is 0-regular, then in Theorem 5.2 we have D∗ ⊂ H2(G) and ‖w‖H2(G) ≤
(const.)‖A∗w‖L2(G). Hence (5.9) with j = 2 gives (5.6) with e

∗(Sh) =

(const.)h. Thus (5.11) follows from (5.7).

Sufficient conditions for a(·, ·) to be k-regular were given in Section III.6.
Note that this permits all the hypotheses in Theorem 5.4 to be placed on the

data in the problem (5.1) being solved. For problems for which appropriate

regularity results are not available, one may of course assume the appropriate

smoothness of the solution.

5.4

Let G be the interval (0, 1) and V a closed subspace of H1(G). Any function

f ∈ V can be approximated by a piecewise-linear f0 ∈ V ; we need only to
choose f0 so that it agrees with f at the endpoints of the intervals on which

f0 is affine. This is a simple Lagrange interpolation of f by the linear finite-

element function f0, and it leads to a family of approximating subspaces of

degree 1. We shall describe the spaces and prove the estimates (5.9) for this

example.

Let P = {0 = x0 < x1 < · · · < xN < xN+1 = 1} be a partition of G
and denote by µ(P ) the mesh of P : µ(P ) = max{xj+1 − xj : 0 ≤ j ≤ N}.
The closed convex set K = {v ∈ V : v(xj) = 0, 0 ≤ j ≤ N + 1} is
basic to our construction. Let f ∈ V be given and consider the function
F (v) = (12 )|∂(v − f)|

2
H on V , where H = L

2(G). The G-differential is given

by

F ′(u)(v) = (∂(u− f), ∂v)H , u, v ∈ V .

We easily check that F ′ is strictly monotone onK; this follows from Theorem

II.2.4. Similarly the estimate

F ′(v)(v) = |∂v|2H − (∂f, ∂v)H ≥ |∂v|
2
H − |∂f |H |∂v|H , v ∈ V ,

shows F ′ is coercive on K. It follows from Theorems 2.7 and 2.9 that there

is a unique uf ∈ K at which F takes its minimal value on K, and it is
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characterized in (2.5) by

uf ∈ K : (∂(uf − f), ∂v)H = 0 , v ∈ K .

This shows that for each f ∈ V , there exists exactly one f0 ∈ V which
satisfies

f0 − f ∈ K , (∂f0, ∂v)H = 0 , v ∈ K . (5.12)

(They are clearly related by f0 = f − uf .) The second part of (5.12) states
that −∂2f0 = 0 in each subinterval of the partition so f0 is affine on each
subinterval. The first part of (5.12) determines the value of f0 at each of the

points of the partition, so it follows that f0 is that function in V which is

affine in the intervals of P and equals f at the points of P . This f0 is the

linear finite-element interpolant of f .

To compute the error in this interpolation procedure, we first note that

|∂f0|
2
H + |∂(f0 − f)|

2
H = |∂f |

2
H

follows from setting v = f0 − f in (5.12). Thus we obtain the estimate

|∂(f0 − f)|H ≤ |∂f |H .

If g = f0 − f , then from Theorem II.2.4 we have∫ xj+1
xj

|g|2 dx ≤ 4µ(P )2
∫ xj+1
xj

|∂g|2 dx , 0 ≤ j ≤ N ,

and summing these up gives

|f − f0|H ≤ 2µ(P )|∂(f0 − f)|H . (5.13)

This proves the first two estimates in the following.

Theorem 5.5 For each f ∈ V and partition P as above, the linear finite-
element interpolant f0 of f with respect to P is characterized by (5.12) and

it satisfies

|∂(f0 − f)|H ≤ |∂f |H , (5.14)

and

|f0 − f |H ≤ 2µ(P )|∂f |H . (5.15)

If also f ∈ H2(G), then we have

|∂(f0 − f)|H ≤ 2µ(P )|∂
2f |H (5.16)

|f0 − f |H ≤ 4µ(P )
2|∂2f |H . (5.17)
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Proof : We need only to verify (5.16) and (5.17). Since (f − f0)(xj) = 0 for
0 ≤ j ≤ N + 1, we obtain for each f ∈ H2(G) ∩ V

|∂(f0 − f)|
2
H =

N∑
j=0

∫ xj+1
xj

(−∂2(f0 − f))(f0 − f) dx = (∂
2f, f0 − f)H ,

and thereby the estimate

|∂(f0 − f)|
2
H ≤ |f0 − f |H |∂

2f |H .

With (5.13) this gives (5.16) after dividing the factor |∂(f0 − f)|H . Finally,
(5.17) follows from (5.13) and (5.16).

Corollary 5.6 For each h with 0 < h < 1 let Ph be a partition of G with

mesh µ(Ph) < h, and define Lh to be the space of all linear finite-element

function in H1(G) corresponding to the partition Ph. Then L ≡ {Lh : 0 <
h < 1} satisfies the approximation assumption (5.9) with k = 0. The degree
of L is 1.

Finally we briefly consider the computations that are involved in imple-

menting the Galerkin procedure (5.2) for one of the spaces Lh above. Let

Ph = {x0, x1, . . . , xN+1} be the corresponding partition and define `j to be
the unique function in Lh which satisfies

`j(xi) =

{
1 if i = j ,
0 if i 6= j ,

0 ≤ i, j ≤ N + 1 . (5.18)

For each f ∈ H1(G), the interpolant f0 is given by

f0 =
N+1∑
j=0

f(xj)`j .

We use the basis (5.18) to write the problem in the form (5.5), and we must

then invert the matrix (a(`i, `j)). Since a(·, ·) consists of integrals over G
of products of `i and `j and their derivatives, and since any such product

is identically zero when |i − j| ≥ 2, it follows that the coefficient matrix is
tridiagonal. It is also symmetric and positive-definite. There are efficient

methods for inverting such matrices.
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6 Approximation of Evolution Equations

We present here the Faedo-Galerkin procedure for approximating the solu-

tion of evolution equations of the types considered in Chapters IV, V and VI.

As in the preceding section, the idea is to project a weak form of the problem

onto a finite-dimensional subspace. We obtain thereby a system of ordinary

differential equations whose solution approximates the solution of the orig-

inal problem. In the applications to initial-boundary-value problems, this

corresponds to a discretization of the space variable by a finite-element or

spline approximation. We shall describe these semi-discrete approximation

procedures, obtain estimates on the error that results from the approxima-

tion, and give the convergence rates that result from standard finite-element

or spline approximations in the space variable. This program is carried out

for first-order evolution equations and also for second-order evolution equa-

tions.

6.1

We first consider some first-order equations of the implicit type discussed

in Section V.2. Let M be the Riesz map of the Hilbert space Vm with

scalar-product (·, ·)m. Let V be a Hilbert space dense and continuously
imbedded in Vm and let L ∈ L(V, V ′). For a given f ∈ C((0,∞), V ′m)
and u0 ∈ Vm, we consider the problem of approximating a solution u ∈
C([0,∞), Vm) ∩ C1((0,∞), Vm) of

Mu′(t) + Lu(t) = f(t) , t > 0 , (6.1)

with u(0) = u0. SinceM is symmetric, such a solution satisfies

Dt(u(t), u(t))m + 2`(u(t), u(t)) = 2f(t)(u(t)) , t > 0 , (6.2)

where `(·, ·) : V × V → R is the bilinear form associated with L. This gives
the identity

‖u(t)‖2m + 2
∫ t
0
`(u(s), u(s)) ds = ‖u0‖

2
m + 2

∫ t
0
f(s)(u(s)) ds , t > 0 ,

(6.3)

involving the Vm norm ‖ · ‖m of the solution. Since the right side of (6.2) is
bounded by T‖f‖2V ′m + T

−1‖u‖2m for any given T > 0, we obtain from (6.2)

Dt(e
−t/T ‖u(t)‖2m) + e

−t/T 2`(u(t), u(t)) ≤ Te−t/T ‖f(t)‖2V ′m
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and from this follows the a-priori estimate

‖u(t)‖2m+2
∫ t
0
`(u(s), u(s)) ds ≤ e‖u0‖

2+Te

∫ t
0
‖f(s)‖2V ′m ds , 0 ≤ t ≤ T .

(6.4)

In the situations we consider below, L is monotone, hence, (6.4) gives an
upper bound on the Vm norm of the solution.

In order to motivate the Faedo-Galerkin approximation, we note that a

solution u of (6.1) satisfies

(u′(t), v)m + `(u(t), v) = f(t)(v) , v ∈ V , t > 0 . (6.5)

Since V is dense in Vm, (6.5) is actually equivalent to (6.1). Let S be

a subspace of V . Then we consider the related problem of determining

us ∈ C([0,∞), S) ∩ C1((0,∞), S) which satisfies

(u′s(t), v)m + `(us(t), v) = f(t)(v) , v ∈ S , t > 0 (6.6)

and an initial condition to be specified.

Consider the case of S being a finite-dimensional subspace of V ; let

{v1, v2, . . . , vm} be a basis for S. Then the solution of (6.6) is of the form

us(t) =
m∑
i=1

xi(t)vi

where x(t) ≡ (x1(t), x2(t), . . . , xm(t)) is in C([0,∞),Rm) ∩ C1((0,∞),Rm),
and (6.6) is equivalent to the system of ordinary differential equations

m∑
i=1

(vi, vj)mx
′
i(t) +

m∑
i=1

`(vi, vj)xi(t) = f(t)(vj) , 1 ≤ j ≤ m . (6.7)

The linear system (6.7) has a unique solution x(t) with the initial condition

x(0) determined by us(0) =
∑m
i=1 xi(0)vi. (Note that the matrix coefficient

of x′(t) in (6.7) is symmetric and positive-definite, hence, nonsingular.) As

in the preceding section, it is helpful to choose the basis functions so that

most of the coefficients in (6.7) are zero. Special efficient computational

techniques are then available for the resulting sparse system.
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6.2

We now develop estimates on the error, u(t)−us(t), in the situation of Theo-
rem V.2.2. This covers the case of parabolic and pseudoparabolic equations.

It will be shown that the error in the Faedo-Galerkin procedure for (6.1) is

bounded by the error in the corresponding Rayleigh-Ritz-Galerkin procedure

for the elliptic problem determined by the operator L. Thus, we consider
for each t > 0 the L-projection of u(t) defined by

u`(t) ∈ S : `(u`(t), v) = `(u(t), v) , v ∈ S . (6.8)

Theorem 6.1 Let the real Hilbert spaces V and Vm, operators M and L,
and data u0 and f be given as in Theorem V.2.2, and let S be a closed

subspace of V . Then there exists a unique solution u of (6.1) with u(0) = u0
and there exists a unique solution us of (6.6) for any prescribed initial value

us(0) ∈ S. Assume u ∈ C([0,∞), V ) and choose us(0) = u`(0), the L-
projection (6.8) of u(0). Then we have the error estimate

‖u(t)−us(t)‖m ≤ ‖u(t)−u`(t)‖m+
∫ t
0
‖u′(s)−u′`(s)‖m ds , t ≥ 0 . (6.9)

Proof : The existence-uniqueness results are immediate from Theorem V.2.2,

so we need only to verify (6.9). Note that u(0) = u0 necessarily belongs to

V , so (6.8) defines u`(0) = us(0). For any v ∈ S we obtain from (6.5) and
(6.6)

(u′(t)− u′s(t), v)m + `(u(t)− us(t), v) = 0 ,

so (6.8) gives the identity

(u′(t)− u′`(t), v)m = (u
′
s(t)− u

′
`(t), v)m + `(us(t)− u`(t), v) .

Setting v = us(t)− u`(t) and noting that L is monotone, we obtain

Dt‖us(t)− u`(t)‖
2
m ≤ 2‖u

′(t)− u′`(t)‖m‖us(t)− u`(t)‖m .

The function t 7→ ‖us(t)− u`(t)‖m is absolutely continuous, hence differen-
tiable almost everywhere, and satisfies

Dt‖us(t)− u`(t)‖
2
m = 2‖us(t)− u`(t)‖mDt‖us(t)− u`(t)‖m .

Let Z = {t > 0 : ‖us(t)− u`(t)‖m = 0}. Clearly, for any t /∈ Z we have from
above

Dt‖us(t)− u`(t)‖m ≤ ‖u
′(t)− u′`(t)‖m . (6.10)
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At an accumulation point of Z, the estimate (6.10) holds, since the left side

is zero at such a point. Since Z has at most a countable number of isolated

points, this shows that (6.10) holds at almost every t > 0. Integrating (6.10)

gives the estimate

‖us(t)− u`(t)‖m ≤
∫ t
0
‖u′(s)− u′`(s)‖m ds , t ≥ 0 ,

from which (6.9) follows by the triangle inequality.

The fundamental estimate (6.9) shows that the error in the approxima-

tion procedure is determined by the error in the L-projection (6.8) which is
just the Rayleigh-Ritz-Galerkin procedure of Section 5. Specifically, when

u ∈ C1((0,∞), V ) we differentiate (6.8) with respect to t and deduce that
u′`(t) ∈ S is the L-projection of u

′(t). This regularity of the solution u holds

in both parabolic and pseudoparabolic cases.

We shall illustrate the use of the estimate (6.9) by applying it to a second

order parabolic equation which is approximated by using a set of finite-

element subspaces of degree one. Thus, suppose S ≡ {Sh : h ∈ H} is a
collection of closed subspaces of the closed subspace V of H1(G) and S is of
degree 1; cf. Section 5.3. Let the continuous bilinear form a(·, ·) be V -elliptic
and 0-regular; cf. Section III.6.4. Set H = L2(G) = H ′, soM is the identity,
let f ≡ 0, and let `(·, ·) = a(·, ·). If u is the solution of (6.1) and uh is the
solution of (6.6) with S = Sh, then the differentiability in t > 0 of these

functions is given by Corollary IV.6.4 and their convergence at t = 0+ is

given by Exercise IV.7.8. We assume the form adjoint to a(·, ·) is 0-regular
and obtain from (5.11) the estimates

‖u(t)− u`(t)‖L2(G) ≤ c2h
2‖Au(t)‖L2(G) ,

‖u′(t)− u′`(t)‖L2(G) ≤ c2h
2‖A2u(t)‖L2(G) , t > 0 .


 (6.11)

The a-priori estimate obtained from (6.3) shows that |u(t)|H is non-increasing
and it follows similarly that |Au(t)|H is non-increasing for t > 0. Thus, if
u0 ∈ D(A2) we obtain from (6.9), and (6.11) the error estimate

‖u(t)− uh(t)‖L2(G) ≤ c2h
2{‖Au0‖L2(G) + t‖A

2u0‖L2(G)} . (6.12)

Although (6.12) gives the correct rate of convergence, it is far from optimal in

the hypotheses assumed. For example, one can use estimates from Theorem

IV.6.2 to play off the factors t and ‖Au′(t)‖H in the second term of (6.12) and
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thereby relax the assumption u0 ∈ D(A2). Also, corresponding estimates can
be obtained for the non-homogeneous equation and faster convergence rates

can be obtained if approximating subspaces of higher degree are used.

6.3

We turn now to consider the approximation of second-order evolution equa-

tions of the type discussed in Section VI.2. Thus, we let A and C be the
respective Riesz maps of the Hilbert spaces V and W , where V is dense

and continuously embedded in W , hence, W ′ is identified with a subspace

of V ′. Let B ∈ L(V, V ′), u0 ∈ V , u1 ∈ W and f ∈ C((0,∞),W ′). We shall
approximate the solution u ∈ C([0,∞), V )∩C1((0,∞), V )∩C1([0,∞),W )∩
C2((0,∞),W ) of

Cu′′(t) + Bu′(t) +Au(t) = f(t) , t > 0 , (6.13)

with the initial conditions u(0) = u0, u
′(0) = u1. Equations of this form were

solved in Section VI.2 by reduction to an equivalent first-order system of the

form (6.1) on appropriate product spaces. We recall here the construction,

since it will be used for the approximation procedure. Define Vm ≡ V ×W
with the scalar product

([x1, x2], [y1, y2]) = (x1, y1)V + (x2, y2)W , [x1, x1], [y1, y1] ∈ V ×W ,

so V ′m = V
′ ×W ′; the Riesz mapM of Vm onto V

′
m is given by

M([x1, x2]) = [Ax1, Cx2] , [x1, x2] ∈ Vm .

Define V` = V × V and L ∈ L(V`, V
′
` ) by

L([x1, x2]) = [−Ax2,Ax1 + Bx2] , [x1, x2] ∈ V` .

Then Theorem VI.2.1 applies if B is monotone to give existence and unique-
ness of a solution w ∈ C1([0,∞), Vm) of

Mw′(t) + Lw(t) = [0, f(t)] , t > 0 (6.14)

with w(0) = [u0, u1] and f ∈ C1([0,∞),W ′) given so that u0, u1 ∈ V with
Au0 + Bu1 ∈ W ′. The solution is given by w(t) = [u(t), u′(t)], t ≥ 0;
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from the inclusion [u, u′] ∈ C1([0,∞), V ×W ) and (6.14) we obtain [u, u′] ∈
C1([0,∞), V × V ). From (6.4) follows the a-priori estimate

‖u(t)‖2V + ‖u
′(t)‖2W + 2

∫ t
0
Bu′(s)(u′(s)) ds

≤ e(‖u0‖
2
V + ‖u1‖

2
W ) + Te

∫ t
0
‖f(s)‖2W ′ ds , 0 ≤ t ≤ T ,

on a solution w(t) = [u(t), u′(t)] of (6.14).

The Faedo-Galerkin approximation procedure for the second-order equa-

tion is just the corresponding procedure for (6.14) as given in Section 6.1.

Thus, if S is a finite-dimensional subspace of V , then we let ws be the solu-

tion in C1([0,∞), S × S) of the equation

(w′s(t), v)m + `(w(t), v) = [0, f(t)](v) , v ∈ S × S , t > 0 , (6.15)

with an initial value ws(0) ∈ S×S to be prescribed below. If we look at the
components of ws(t) we find from (6.15) that ws(t) = [us(t), u

′
s(t)] for t > 0

where us ∈ C2([0,∞), S) is the soluton of

(u′′s(t), v)W + b(u
′
s(t), v) + (us(t), v)V = f(t)(v) , v ∈ S , t > 0 . (6.16)

Here b(·, ·) denotes the bilinear form on V corresponding to B. As in Sec-
tion 6.1, we can choose a basis for S and use it to write (6.16) as a system of

m ordinary differential equations of second order. Of course this system is

equivalent to a system of 2m equations of first order as given by (6.15), and

this latter system may be the easier one in which to do the computation.

6.4

Error estimates for the approximation of (6.13) by the related (6.16) will be

obtained in a special case by applying Theorem 6.1 directly to the situation

described in Section 6.3. Note that in the derivation of (6.9) we needed only

that L is monotone. Since B is monotone, the estimate (6.9) holds in the
present situation. This gives an error bound in terms of the L-projection
w`(t) ∈ S × S of the solution w(t) of (6.14) as defined by

`(w`(t), v) = `(w(t), v) , v ∈ S × S . (6.17)

The bilinear form `(·, ·) is not coercive over V` so we might not expect w`(t)−
w(t) to be small. However, in the special case of B = εA for some ε ≥ 0 we
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find that (6.17) is equivalent to a pair of similar identities in the component

spaces. That is, if e(t) ≡ w(t)−w`(t) denotes the error in the L-projection,
and if e(t) = [e1(t), e2(t)], then (6.17) is equivalent to

(ej(t), v)V = 0 , v ∈ S , j = 1, 2 . (6.18)

Thus, if we write w`(t) = [u`(t), v`(t)], we see that u`(t) is the V -projection

of u(t) on S and v`(t) = u
′
`(t) is the projection of u

′(t) on S. It follows from

these remarks that we have

‖u(t)− u`(t)‖V ≤ inf{‖u(t) − v‖V : v ∈ S} (6.19)

and corresponding estimates on u′(t)−u′`(t) and u
′′(t)−u′′` (t). Our approx-

imation results for (6.13) can be summarized as follows.

Theorem 6.2 Let the Hilbert spaces V and W , operators A and C, and
data u0, u1 and f be given as in Theorem VI.2.1. Suppose furthermore that

B = εA for some ε ≥ 0 and that S is a finite-dimensional subspace of V .
Then there exists a unique solution u ∈ C1([0,∞), V ) ∩ C2([0,∞),W ) of
(6.13) with u(0) = u0 and u

′(0) = u1; and there exists a unique solution

us ∈ C2([0,∞), S) of (6.16) with initial data determined by

(us(0) − u0, v)V = (u
′
s(0) − u1, v)V = 0 , v ∈ S .

We have the error estimate

(‖u(t) − us(t)‖
2
V + ‖u

′(t)− u′s(t)‖
2
W )
1/2

≤ (‖u(t) − u`(t)‖
2
V + ‖u

′(t)− u′`(t)‖
2
W )
1/2 (6.20)

+

∫ t
0
(‖u′(s)− u′`(s)‖

2
V + ‖u

′′(s)− u′′` (s)‖
2
W )
1/2 ds , t ≥ 0

where u`(t) ∈ S is the V -projection of u(t) defined by

(u`(t), v)V = (u(t), v)V , v ∈ S .

Thus (6.19) holds and provides a bound on (6.20).

Finally we indicate how the estimate (6.20) is applied with finite-element

or spline function spaces. Suppose S = {Sh : h ∈ H} is a collection of finite-
dimensional subspaces of the closed subspace V of H1(G). Let k + 1 be the
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degree of S which satisfies the approximation assumption (5.9). The scalar-
product on V is equivalent to the H1(G) scalar-product and we assume it

is k-regular on V . For each h ∈ H let uh be the solution of (6.16) described
above with S = Sh, and suppose that the solution u satisfies the regular-

ity assumptions u, u′ ∈ L∞([0, T ],Hk+2(G)) and u′′ ∈ L1([0, T ],Hk+2(G)).
Then there is a constant c0 such that

(‖u(t) − uh(t)‖
2
V + ‖u

′(t)− u′h(t)‖
2
h)
1/2

≤ c0h
k+1 , h ∈ H , 0 ≤ t ≤ T . (6.21)

The preceding results apply to wave equations (cf. Section VI.2.1), vis-

coelasticity equations such as VI.(2.9), and Sobolev equations (cf. Section

VI.3).

Exercises

1.1. Show that a solution of the Neumann problem−∆nu = F inG, ∂u/∂v =
0 on ∂G is a u ∈ H1(G) at which the functional (1.3) attains its mini-
mum value.

2.1. Show that F : K → R is weakly lower-semi-continuous at each x ∈ K
if and only if {x ∈ V : F (x) ≤ a} is weakly closed for every a ∈ R.

2.2. In the proof of Theorem 2.3, show that ϕ′(t) = F ′(y+ t(x− y))(x− y).

2.3. In the proof of Theorem 2.7, verify that M is closed and convex.

2.4. Prove Theorem 2.9.

2.5. Let F beG-differentiable onK. If F ′ is strictly monotone, prove directly

that (2.5) has at most one solution.

2.6. Let G be bounded and open in Rn and let F : G × R → R satisfy the
following: F (·, u) is measurable for each u ∈ R, F (x, ·) is absolutely
continuous for almost every x ∈ G, and the estimates

|F (x, u)| ≤ a(x) + b|u|2 , |∂uF (x, u)| ≤ c(x) + b|u|

hold for all u ∈ R and a.e. x ∈ G, where a(·) ∈ L1(G) and c(·) ∈ L2(G).



6. APPROXIMATION OF EVOLUTION EQUATIONS 203

(a) Define E(u) =
∫
G F (x, u(x)) dx, u ∈ L

2(G), and show

E′(u)(v) =

∫
G
∂uF (x, u(x))v(x) dx , u, v ∈ L2(G) .

(b) Show E′ is monotone if ∂uF (x, ·) is non-decreasing for a.e. x ∈ G.

(c) Show E′ is coercive if for some k > 0 and c0(·) ∈ L2(G) we have

∂uF (x, u) · u ≥ k|u|
2 − c0(x)|u| ,

for u ∈ R and a.e. x ∈ G.

(d) State and prove some existence theorems and uniqueness theorems

for boundary value problems containing the semi-linear equation

−∆nu+ f(x, u(x)) = 0 .

2.7. Let G be bounded and open in Rn. Suppose the function F : G ×
R
n+1 → R satisfies the following: F (·, û) is measurable for û ∈ Rn+1,
F (x, ·) : Rn+1 → R is (continuously) differentiable for a.e. x ∈ G, and
the estimates

|F (x, û)| ≤ a(x) + b
n∑
j=0

|uj|
2 , |∂kF (x, û)| ≤ c(x) + b

n∑
j=0

|uj |

as above for every k, 0 ≤ k ≤ n, where ∂k =
∂
∂uk
.

(a) Define E(u) =
∫
G F (x, u(x),∇u(x)) dx, u ∈ H

1(G), and show

E′(u)(v) =

∫
G

n∑
j=0

∂jF (x, u,∇u)∂jv(x) dx , u, v ∈ H1(G) .

(b) Show E′ is monotone if

n∑
j=0

(∂jF (x, u0, u1, . . . , un)− ∂jF (x, v0, v1, . . . , vn))(uj − vj) ≥ 0

for all û, v̂ ∈ Rn+1 and a.e. x ∈ G.

(c) Show E′ is coercive if for some k > 0 and c0(·) ∈ L2(G)

n∑
j=0

∂jF (x, û)uj ≥ k
n∑
j=0

|uj |
2 − c0(x)

n∑
j=0

|uj |

for û ∈ Rn+1 and a.e. x ∈ Rn.
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(d) State and prove an existence theorem and a uniqueness theorem

for a boundary value problem containing the nonlinear equation

n∑
j=0

∂jFj(x, u,∇u) = f(x) .

3.1. Prove directly that (3.4) has at most one solution when a(·, ·) is (strictly)
positive.

3.2. Give an example of a stretched membrane (or string) problem described

in the form (3.6). Specifically, what does g represent in this applica-

tion?

4.1. Show the following optimal control problem is described by the abstract

setting of Section 4.1: find an admissible control u ∈ Uad ⊂ L
2(G)

which minimizes the function

J(u) =

∫
G
|y(u)− w|2 dx+ c

∫
G
|u|2 dx

subject to the state equations{
−∆ny = F + u in G ,

y = 0 on ∂G .

Specifically, identify all the spaces and operators in the abstract for-

mulation.

4.2. Give sufficient conditions on the data above for existence of an optimal

control. Write out the optimality system (4.10) for cases analogous to

Sections 4.5 and 4.6.

5.1. Write out the special cases of Theorems 5.1 and 5.2 as they apply to

the boundary value problem{
−∂(p(x)∂u(x)) + q(x)u(x) = f(x) , 0 < x < 1 ,

u(0) = u(1) = 0 .

Give the algebraic problem (5.5) and error estimates that occur when

the piecewise-linear functions of Section 5.4 are used.
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5.2. Repeat the above for the boundary value problem{
−∂(p(x)∂u(x)) + q(x)u(x) = f(x) ,

u′(0) = u′(1) = 0 .

(Note that the set K and subspaces are not exactly as above.)

5.3. We describe an Hermite interpolation by piecewise-cubics. Let the in-

terval G and partition P be given as in Section 5.4. Let V ≤ H2(G)
and define

K = {v ∈ V : v(xj) = v
′(xj) = 0 , 0 ≤ j ≤ N + 1} .

(a) Let f ∈ V and define F (v) = (12)|∂
2(v − f)|L2(G). Show there is a

unique uf ∈ K : (∂
2(uf − f), ∂

2v)L2(G) = 0, v ∈ K.

(b) Show there exists a unique f0 ∈ H2(G) for which f0 is a cubic
polynomial on each [xj, xj+1], f0(xj) = f(xj) and f

′
0(xj) = f

′(xj)

for j = 0, 1, . . . ,N + 1.

(c) Construct a corresponding family of subspaces as in Theorem 5.4

and show it is of degree 3.

(d) Repeat exercise 5.1 using this family of approximating subspaces.

5.4. Repeat exercise 5.3 but with V = H20 (G) and

K = {v ∈ V : v(xj) = 0 , 0 ≤ j ≤ N + 1} .

Show that the corresponding Spline interpolant is a piecewise-cubic,

f0(xj) = f(xj) for 0 ≤ j ≤ N + 1, and f0 is in C2(G).

6.1. Describe the results of Sections 6.1 and 6.2 as they apply to the problem

∂tu(x, t)− ∂x(p(x)∂xu(x, t)) = F (x, t) ,

u(0, t) = u(1, t) = 0 ,

u(x, 0) = u0(x) .

Use the piecewise-linear approximating subspaces of Section 5.4.

6.2. Describe the results of Sections 6.3 and 6.4 as they apply to the problem

∂2t u(x, t)− ∂x(p(x)∂xu(x, t)) = F (x, t) ,

u(0, t) = u(1, t) = 0 ,

u(x, 0) = u0(x) , ∂tu(x, 0) = u1(x) .

Use the subspaces of Section 5.4.


