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ABSTRACT. Let © be a domain in RV, N > 1, and 2* = oo if N = 1,2,

2% = ]\2,17\]2 if N > 2,2 < p<2* Consider the semilinear elliptic problem

—Au+u=uP%u inQ
u € H(Q).

Let H}(Q) be the Sobolev space in Q2. The existence, the nonexistence, and the
multiplicity of positive solutions are affected by the geometry and the topology
of the domain 2. The existence, the nonexistence, and the multiplicity of
positive solutions have been the focus of a great deal of research in recent
years.

That the above equation in a bounded domain admits a positive solution is
a classical result. Therefore the only interesting domains in which this equation
admits a positive solution are proper unbounded domains. Such elliptic prob-
lems are difficult because of the lack of compactness in unbounded domains.
Remarkable progress in the study of this kind of problem has been made by P.
L. Lions. He developed the concentration-compactness principles for solving a
large class of minimization problems with constraints in unbounded domains.
The characterization of domains in which this equation admits a positive so-
lution is an important open question. In this monograph, we present various
analyses and use them to characterize several categories of domains in which
this equation admits a positive solution or multiple solutions.
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1. INTRODUCTION

Let Q be a domain in RY, N > 1, and 2* = o if N = 1,2, 2*:% if N > 2,
2 < p < 2*. Consider the semilinear elliptic problem

—Au+u=|uff2u in

u € Hy(Q). (L)

Let H}(Q) be the Sobolev space in 2. For the general theory of Sobolev spaces
H} (), see Adams [2]. Associated with (I.1)), we consider the energy functionals a,
b and J for u € H ()

alu) = /Q (IVul? + u?);

b = [ Jul”

1

Tw) = Jalu) - %b(u).

As in Rabinowitz [64, Proposition B.10], a, b and J are of C2. It is well known
that the solutions of and the critical points of the energy functional J are the
same.

The existence, the nonexistence, and the multiplicity of positive solutions of
are affected by the geometry and the topology of the domain 2. The existence, the
nonexistence, and the multiplicity of positive solutions of (1.1]) have been the focus
of a great deal of research in recent years. That Equation n a bounded domain
admits a positive solution is a classical result. Gidas-Ni-Nirenberg [35] and Kwong
[46] asserted that in the whole space RV admits a “unique” positive spherically
symmetric solution. Therefore the only interesting domains in which admits a
positive solution are proper unbounded domains. Such elliptic problems are difficult
because of the lack of compactness in unbounded domains. Remarkable progress
in the study of this kind of problem has been made by P. L. Lions [49] and [50].
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He developed the concentration-compactness principles for solving a large class of
minimization problems with constraints in unbounded domains. The cornerstone
is the paper of Esteban-Lions [33], in which they asserted : no any nonzeroal
solutions H}(Q2) for the (I.1]) exist in an Esteban-Lions domain (see Definition )
The characterization of domains in which admits a positive solution is an
important open question. In this monograph, we present various analyses and use
them to characterize several categories of domains in which admits a positive
solution or multiple solutions.

In Section 2 we define the Palais-Smale (denoted by (PS))-sequences, (PS)-
values, and (PS)-conditions. We study the properties of (PS)-values. We recall the
classical compactness theorems such as the Lebesgue dominated convergence theo-
rem and the Vitali convergence theorem. We then come to study (PS)-conditions:
the modern concepts for compactness.

In Section 3 we recall the (PS) decomposition theorems in RY of Lions [49] and
the (PS) decomposition theorems in the infinite strip A" of Lien-Tzeng-Wang [47].

In Section 4 we assert the four classical (PS)-values in §2: the constrained maxi-
mizing value, the Nehari minimizing value, the mountain pass minimax value, and
the minimal positive (PS)-value are the same. We call any one of them the index
of the functional J in the domain 2. We also study in detail various indexes of the
functional J in domain €.

In Section 5 we use the indexes of the functional J in domains 2 to characterize
the (PS)-conditions: we obtain a theorem in which eight conditions are equivalent
to the (PS)-conditions.

In Section 6 we establish y-symmetric (PS)-conditions. The development is in-
teresting in its own right and will also be used to prove the multiplicity of nonzero
solutions in Section 13.

In Section 7 we present the y-symmetric (PS) decomposition theorems in the
infinite strip A".

In Section 8 we study the fundamental properties, regularity, and asymptotic
behavior of solutions of .

In Section 9 we use the asymptotic behavior of solutions developed in Section 8
and apply the “moving plane” method to prove the symmetry of positive solutions
to in the infinite strip A”. Our approach is similar to those in Gidas-Ni-
Nirenberg [34], Theorem 1] and [35, Theorem 2] but is more complicated. Finally
we propose an open question—are positive solutions of in the generalized
infinite strip S” unique up to a translation—?

In Section 10 we characterize Esteban-Lions domains. We prove that proper large
domains, Esteban-Lions domains, and some interior flask domains are nonachieved.

Nonachieved domains may admit higher energy solutions. Berestycki conjectured
that there is a positive solution of in an Esteban-Lions domain with a hole.
In Section 11 we answer the Berestycki conjecture affirmatively. We also study the
dynamic system of those solutions.

In Section 12 we assert that a bounded domain, a quasibounded domain, a
periodic domain, some interior flask domains, some flat interior flask domains, canal
domains, and manger domains are achieved. Finally we propose an open question:
in Theorem [12.7] is s =7 7

In Section 12 we prove that there is a ground state solution in an achieved
domain. In Section 13 we prove that if we perturb , then we obtain three
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nontrivial solutions of or if we perturb the achieved domain by adding or
removing a domain, then we obtain three positive solutions of .

For the simplicity and the convenience of the reader, we present results for .
As a matter of fact, our results also hold for more general semilinear elliptic equa-
tions as follows:

—Au+u=|uff2u+h(z) inQ

—Au+u=g(u) inQ;
o (1.3)
—Au= f(z,u) in€ (1.4)

u € HYH ).

Readers interested in other aspects of critical point theory may consult the fol-
lowing books: Aubin-Ekeland [6], Brézis [14], Chabrowski [18], [19], Ghoussoub [37],
Mawhin-Willem [56], Ni [58], Rabinowitz [64], Struwe [66], Willem [78], and Zei-
dler [T9]. For the study of semilinear elliptic equations in unbounded domains, we
recommend the following articles: Ambrosetti-Rabinowitz [4], Benci-Cerami [I1],
Berestycki-Lions [13], Esteban-Lions [33], Lions [49], [50], Palais [59], and Palais-
Smale [60].

I am grateful to Roger Temam for inviting me to visit Université de Paris-Sud
in 1983, to Haim Brézis for introducing me to critical point theory in 1983, to Wei-
Ming Ni for introducing me to the semilinear elliptic problems in 1987, to Henri
Berestycki, Maria J. Esteban, and H. Attouch, and to Pierre-Louis Lions for giving
me his preprints and for enlightening discussions.

2. PRELIMINARIES

Throughout this monograph, let X (2) be a closed linear subspace of Hg (£2) with
dual X ~1(Q) with the space X (Q) satisfying the following three properties:
(pl) If uw € X(Q), then |u| € X(£2)
(p2) Ifu € X(2), then &,u € X(Q) for each n =1,2,..., where £ € C*°([0, 0))
satisfies 0 < ¢ <1,

_J0 forte(0,1];
&0 = {1 for t € [2, 00),
and
ulz) = 220, 21)

n
(p3) Ifu € X(Q), then n,u € X(Q) for eachn =1,2,..., where n € C°(]0, 00))
satisfies 0 <7 <1 and

() = 1 fort¢e]0,1];
=0 for t € [2,00),

and
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FIGURE 2. n,(2).

Typical examples of X () are the whole space Hg (£2) and the y-symmetric space

Let 2 = (z,y) € RY~! x R. In this monograph, we refer to three universal
domains: the whole space RY, the infinite strip A", the infinite hole strip A7
(in this case, N > 3), and their subdomains: the ball BY (z¢;s), the upper semi-
strip AY, the interior flask domain F7, the infinite cone C, and the epigraph II as
follows.

A" = {(x,y) e RN : |z| < r};
Al ={(zy) e A" s <y <t}
Al ={(z,y) € A" s <y}
A"™\w, wherew C A" is a bounded domain;
A= A"\AT;

BN (2058) = {z € RN : |z — 2| < s};
F[ = AjuBY(0:5);

A2 = {(z,y) € RN 11y < |z| < 1)
A" ={(z.y) e AT s <y <th
A ={(z,y) € AT s <yl
AT = AT\ AT,

RY = {(x,y) eRY : 0 < y};
R]jp,p ={(z,y) € RY —p<y<pk

Pt ={(z,y) eRY .y > |z*};
P~ = {(x,—y) : (x,y) e PT};
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C={(z,y) eRY : [a] <y}
= {(z,y) € RN : f(z) <y}, where f : RN"! = R is a function.

Definition 2.1. (i) We say that () is a large domain in RY if for any r > 0, z € Q
exists such that B(z;r) C Q;

(i) We say that € is a strictly large domain in RY if 2 contains an infinite cone of
RV:

(73) We call © a large domain in A" if for any positive number m, a, b exist such
that b—a=m and A} , C

(i7') We call Q a strlctly large domain in A" if Q contains a semi-strip of A”;

(7i7) We call Q a large domain in A™ "2 if for any positive number m, a, b exist
with a < b such that b —a =m and A} C Q;

(791") We call Q a strictly large domain in A™"2 if ) contains a semi-strip of A2,

Let Q be any one of RN, A" or A™ "2, Then a strictly large domain in € is a
large domain in .

Example 2.2. The infinite cone C, the upper semi-space Rf , the paraboloid P+,
and the epigraph II are strictly large domains in R¥.

Example 2.3. A7 and A \ D are strictly large domains in A", where s € R and
D C A} is a bounded domain.

Example 2.4. A7t and Al*"™ \ D are strictly large domains in A™ "2, where
s€Rand D C A" is a bounded domain.

There is a large domains in A" which is not a strictly large domain in A”.

Example 2.5. Let Q = Af\ U B(zn, ) where z, = (0,0,...,2"). Then Q is a

large domain in A" which is not a strictly large domain in A".

FicURE 3. Large domains 1.

Definition 2.6. A proper smooth unbounded domain €2 in RY is an Esteban-Lions
domain if y € RY exists with ||x|| = 1 such that n(z)-x >0, and n(z) - x Z 0 on
09, where n(z) is the unit outward normal vector to 0f2 at the point z.

Example 2.7. An upper half strip A}, a lower half strip AV;, the epigraph II, the
infinite cone C, the upper half space Rf , and the paraboloid PT are Esteban-Lions
domains.

We define the Palais-Smale (denoted by (PS)) sequences, (PS)-values, and (PS)-
conditions in X () for J as follows.
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Definition 2.8. (i) For § € R, a sequence {u,} is a (PS)g-sequence in X () for
Jif J(uy,) = B+ o(1) and J'(uy,) = o(1) strongly in X ~1(Q) as n — oo;

(7) B € Ris a (PS)-value in X (Q) for J if there is a (PS)-sequence in X (2) for J;
(41) J satisfies the (PS)g-condition in X (Q) if every (PS)s-sequence in X () for J
contains a convergent subsequence;

(iv) J satisfies the (PS)-condition in X (Q) if for every 8 € R, J satisfies the (PS)g-
condition in X ().

A (PS)g-sequence in X (Q) for J is a (PS)g-sequence in H{ () for J.

Lemma 2.9. (i) For p € X 1(2), we can extend it to be up € H1(Q) such that

il = llell -5

(ii) Let {u,} be in X(Q) and satisfy J'(u,) = o(1) strongly in X~1(Q), then
J'(uy,) = o(1) strongly in H=1(Q) as n — oo;

(iig) If J'(u) = 0 in X ~1(Q), then J'(u) =0 in H= ().

Proof. (i) Since X() is a closed linear subspace of the Hilbert space H} (), we
have

HI(Q)=X(Q)® X(Q)*.

Since p is a bounded linear functional in X (€2), by the Riesz representation theorem,
there is a w € X (Q) such that

p(p) = (w, o) for each ¢ € X(2)

and ||p||x-1 = ||w|| 2. Define

() = (w, @) for each ¢ € Hy ().
Note that (w, @)z = 0 for each ¢ € X (Q)L. For any v € HE(Q) with [[v]| gz < 1,
vs € X(Q) and v+ € X(Q)* exist such that v = v, +v&. Then
(V)] = Kw,v) | = [(w, 05 + 05 | = [(w,v5) | < JJwllae = [lplx—

Thus, ||g|lg-1 < ||xllx-1. Moreover,

il x -1 = sup{|u(p)| lp € X(Q), ¢l <1}
< sup{|u(p)| |¢ € Hy (), [l m <1}
< |lpllg-1-

Therefore, ||p||lg-1 = ||p|lx-1. Part (i¢) follows from part (i). Part (iii) follows
form (1). O

Bound and weakly convergence are the same.

Lemma 2.10. Let Y be a normed linear space and u, — u weakly in'Y", then {u,}
s bounded in'Y and

lul < liminf ||uy,]|-.
n—oo

Lemma 2.11. Let u,, — u weakly in X (). Then there exists a subsequence {uy}
such that:

(7) {un} is bounded in X () and ||ull g <liminf, o ||un| g ;

(i1) up — u, Vu, — Vu weakly in L?(Q2), and u,, — u a.e. in §;

(i) i — By = a3 — s + o(1).
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Proof. Part (i) follows from Lemma [2.10} (ii) For v € (L?())V, define

f(u):/QvVu for u € X(Q),

then |f(w)| < ||v|lrzl|Vullrz < ||v|lgz||ullg:. Thus, f is a bounded linear functional
in X (). By the Riesz representation theorem, w € X ~1(£2) exists such that

f(u) = (u,wygr  for u € X(Q).
Hence, if u,, — u weakly in X (Q), then f(u,) — f(u), or

/(Vun)v — / (Vu)v  for v € (L*(Q))V.
Q Q
Thus, Vu,, — Vu weakly in L?(Q2). Similarly, for v € L?(Q2), define

g(u) = /Qvu for u € X(Q),

then we have u,, — u weakly in L?(2). Recall that the embedding X (Q) — L ()
is compact. There is a subsequence {u?,} of {u{~!} and u in X (£2) such that u!, — u
in LP(QN BN (0;4)) and a.e. in QN BY(0;7). Then we have u” — u a.e. in Q.
(#i1) By the definition of weak convergence in X (2), we have

/Q(VunVu—Funu) = /Q(|Vu\ + ul?) + o(1).

Therefore,
i — |2 = / YV, — Vuf? + / fu — uf?
Q Q

— / (|Vn|* + Jun|?) + / (1Vul® + ul?) - 2/ (Vu,Vu + unpu)
Q Q

Q
= [lunllFrs = Il + 0(D).

There is a sequence which converges weakly to zero.

Lemma 2.12. For u € H'(RY) and {z,} in RN satisfying |2,| — 00 as n — oo,
then u(z + z,) — 0 weakly in H*(RN) as n — co.

Proof. For e >0, o € HY(RY), and ¢ € C}(RY) exist such that

e = ollar <e/2([ullgr +1).
Let K = supp ¢, then K is compact. We have

(u(z + zn), d(2)) gr = /RNVu(z + 2,)Vo(2)dz + /R u(z + zn)p(2)dz

N

= / Vu(z + z,)V(z)dz + / u(z + zp)o(2)dz
K

K
S IVulz + zo)lL2 ) IVOll 2y + 1wz + 20) | 2 (50) |l 2 (k)
=o0(l) asn — oc.
Thus, for some N > 0 such that [(u(z + z,), ¢(2)) 1| < § for n > N. In addition,
(Wl + 20)s (2N i1 = (Ul + 20),9(2) — i + (w2 + 20), 6(2)) an
< luz + zn) [l 1 @) ll(2) = (2)l 1 @)
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+ (u(z + 2n), ¢(2)) 12

< ul@)llm ) l9(2) = () vy + 5

< e forn> N.
Therefore, u(z + z,) — 0 weakly in H*(RY). O
Lemma 2.13. For u € H}(A") and {z,} in A" satisfying |z,| — 0o as n — oo,
then u(z + z,) — 0 weakly in H}(A") as n — .

The proof of this lemma is the same as the proof of Lemma [2.12] Therefore, we
omit it. Bounded LP(Q)) sequence admits interesting convergent properties.

Lemma 2.14 (Brézis-Lieb Lemma). Suppose u, — u a.e. in Q and there is a
¢ > 0 such that ||up||Le) < ¢ forn=1,2,.... Then
(Dllun = ullZe = llunlze = ullZs +o(1); ]
(i1) un — uP~2(up — u) — |un|P"2upn + |u|P~2u = o(1) in L7—1(Q).
Proof. (i) Let (t) =t for t > 0, then ¢'(t) = ptP~! and
lun = ul” = [un|” = @(jun = ul) = ¢(Junl) = @' (#)(lun — u| = Jual),
where t = (1 — 0)|un| + 0lu, — u| < |up| + |u| for some 6 € [0,1]. Thus, by the
Young inequality, for £ > 0
llun = ul? = unlP| < p(lun| + [ul)?~ ul < d(junl?~ul) + dul” < efun P + cc|ul.

Thus,

[un = ul” = Jun|? + Juf?| < elunl” + (cc + 1)ful".
We have

[l =l = ual? + ul?] < e+ (e +1) [ P
Q Q

Since ||ul|r < liminf, o |Junl|zr < c. For some § > 0 |E| < ¢ implies [, |uf? < e.
In addition, K in R exists such that |K| < oo and [ |u[P <e. Thus,

/ e — uf? — Junl? + [uf?] < (P + ¢« + 1)e,
E

/ [|un — ulP = |un|? + ulP| < (¢ +c. + 1)e.
Clearly, [lun — ul? — |Jun|P + |u[P| = o(1) a.e. in . By Theorem below,
Jalltn = ulP = |un [P + [uP| = o(1), or
llun = ullze = llunllZe = lulls +o(1).
(ii) Let o(t) = [t|P72¢t, then ¢/(t) = (p — 1)[t|P~2. The proof is similar to part
(4) 0
New (PS)-sequences can be produced as follows.
Lemma 2.15. Let u, — u weakly in X(Q) and
J (un) = —Aty + up — [un|P?u, = o(1) in X HQ).
Then
(1) |un — uP2(up — u) = |un|P 2wy + [uP~2u = o(1) in X 1(Q);
(i) J' (on) = —Apn + @n — |@nlP"2pn = o(1) in X1(Q) where p, = up — u;
(iii) if {un} is a (PS)s-sequence, then {¢n} is a (PS)— ju))-sequence.
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Proof. (i) By Lemma[2.14]
/ [l = ™ (s = ) = fun P2 + [ulP 27T = o(1).
Q

Now for ¢ € H*(Q),

[t =l — 10) — it + [P0, )|
f|/enso|< /|s\z~ 5</Q|so|p>1/p
< cllenll, 2 Iellan

where ¢, = |u, — uP72(uy — u) — |un|P~%u, + |u[P~2u. Therefore,

e = ulP = (un = ) = Jun "1 + [ulPul x-1 < cllenl|, 2, = o0(1).

(49) Since
J (un) = =Dty + tp — |[un|P%u, = 0(1)  in X(Q) (2.3)
and u, — u, then by Lemma we have J'(u) =0, or
—Au+u — |ulP"u = 0. (2.4)

Now by part (i), , and ( .,

J' (‘Pn) =—App +on — |<Pn|p72§0n
= —Aup —u) + (U —u) = |un — ulP "> (u, — u)
= (=Aup + Uy — [un [P 2upn) — (—Au +u — [uP~?u)
— (Jun — |72 (up — ) = Jun [P~ 2up + [ufP~2u)
= o(1).
(iii) Since u, — u weakly in X(Q) and {u,} is a (PS)g-sequence, by Lemma [2.11]
2.14]and Theorem [2.28 below, a subsequence {u,} exists such that a(¢,) = a(u,)—

a(u) +o(1) and b(py,) = b(uy) — b(u) +o(1). Thus, J(¢n) = J(u,) —J(u) +o(1) =
B — J(u) + o(1). Therefore, by part (ii), {¢n} is a (PS)(g_ s(u))-sequence. O

Define the concentration function of |u,|? in RV by

Qn(t) = sup/ |un|2
z€RN J 24BN (05t)

Then we have the following concentration lemma.

Lemma 2.16. Let {u,} be bounded in H*(RY) and for some ty > 0, let Q,(ty) =
o(1). Then

(i) u, = o(1) strongly in LI(RN) for 2 < q < 2*;

(ii) in addition, if u, satisfies

— Aty + Uy, — [P ?u, = 0(1)  in HHRY),
then u, = o(1) strongly in H'(RYN).
Proof. (i) Decompose RY into the family Fy = {P?}2, of unit cubes P? of edge

?

1. Continue to bisect the cubes to obtain the family ]—"m = {P/"}52, of unit cubes
P™ of edge 2—% Let mg satisfy \/Nz,,%0 < to. For each i, let B/ be a ball in

3
RY with radius to such that the centers of B and P/ are the same. Then
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P C BI", RN = U2, P™ and {P/"°}%°, are nonoverlapping. Write P; = P/,
2<qg<r<?2 and

|7 = / |7 = / ot 200 iy
> 1—t t
s </ ) (f )
i=1 “Pi Pi
a(t0)) (1— t)Z(/ |t |” )

P;

@)Y ([ [Vl )
=1 i

where 0 < ¢t < 1. Since %t — 4 > 1asr — ¢, we may choose r satisfying

2<q<r<2*ands:%t>1. Recall that

| A

IA

[{an}

o= Zlal ”5<Z\an\f||{an}||gl ... cr

n=1
Thus,
> /|wn|2+|un| “< Z/ (Vunl? + )’
i=1
= ([ (¥l + )’
RN
:Huan;l(RN)gc forn=1,2,....
Therefore,

/ [unl? < e(Qn(to)) ™", or / [un|?=o0(1) asn — co.
RN RN
(#4) In addition, if u,, satisfies
— Aty + Uy, — [Un|P?u, = 0(1) in HHRY), (2.5)
then {u,} is bounded. Multiply Equation by u, and integrate it to obtain
alup,) = b(un) + o(1).
By part (¢), b(uy,) = o(1). Thus, a(u,) = o(1), or
||| g1 = o(1)  strongly in H*(RY).

Lemma 2.17. Let {u,} be bounded in H}(A") and for some to > 0,

Qr (o) = sup/ [un|? = o(1).
veR J(0,y)+AT,

Then

(1) un = o(1) strongly in L1(A") for 2 < g < 2*;

(i4) In addition, if u, satisfies

— Aty 4 Uy, — [P ?u, = 0(1)  in HTH(AT),
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then u, = o(1) strongly in H}(AT).

The proof of the above lemma is the same as the proof of Lemma We have
a sufficient condition for a solution of (1.1]) to be zero.

Lemma 2.18. Let N > 2. For ¢ > 0, there is a § > 0 such that if v € H(Q)
solves (1.1)) in Q satisfying ||v||m < ¢ and ||v||pz < 8, then v = 0.

Proof. For 0 <ty <1andp<q< o0, let

)2t for n > 3;
= qto for n = 2,

and p = 2(1 —tg) +~. Since ||v||z: < cand ||v]|z2 < 6, multiply —Av+v = |[v|P~2v
by v and integrate it to obtain

_ 2(1—t _
o2 = /Q ol = /Q 2= o7 < ol 28 o7, < doPA=t0) ][,

Thus, we have
[ollF < d6>C= ol (2.6)

Suppose that ||v]|g: > 0.
(7) Let v —2 > 0. Note that 2(1 —#p) > 0. By (2.6]), we have

1< d52(1_t0)”’0”l;12 < d67_252(1_t0).
Let 61 > 0 satisfy dc”‘26f(1_t°) < 1. If 6 < 41, then
1< dC’Y—252(1—to) < dc’y—?éf(l—to) <1,

which is a contradiction.
(79) Let v — 2 < 0. By (2.6, we have
2(1—tg)

ollgr <6 7= d7,

since
ol F = / WP <erllolf,  or 1< elolhn’
Q

Thus, we have

2(1—tg)(p—2)
1< efoltn? < P

where ¢y = cldg > 0. Note that 2(1%&}’72) > 0. Let d5 > 0 such that

2(1—tg)(p—2)
8252 2y < 1.

2(1—tg) (p—2)

If § < do, then 1 < cd™ 27 < 1, which is a contradiction.
Take 09 = min{dq, d2}, if 6 < g, from parts (i) and (i7), and we obtain |[v||g1 =0
or v =20. O

Let

a(z) = u(z) for z € Q;
o for z € RN\Q.

Then we have the following characterization of a function in W, ().
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Lemma 2.19. Let Q be a C%' domain in RY and v € LP(Q) with 1 < p < oco.
Then the following are equivalent:

(i) u € WeP(9);

(#9) there is a constant ¢ > 0 such that

0
|/ u—sﬁ| < c|lollre, for each o € CHRYN), i =1,2,..., N;
o Oz

(ifi) @ € Wy P (RN) and 2% = 2v.

For the proof of this lemma, see Brézis [14, Proposition IX.18], Gilbarg-Trudinger
[36, Theorem 7.25], and Grisvard [38] p26].

We recall the classical compactness theorems. The Lebesgue dominated conver-
gence theorem is a well-known compactness theorem.

Theorem 2.20 (Lebesgue Dominated Convergence Theorem). Suppose Q is a
domain in RN, {u,}°%, and u are measurable functions in Q such that u, — u
a.e. in Q. If p € LY(Q) ewists such that for each n

lun] < ¢ a.e inQ,
then u, — u in L1(£2).
The converse of the Lebesgue dominated convergence theorem fails.

Example 2.21. Forn=1,2,..., let u, : R — R be defined by

0 for z <mn;
2 for z=n+1/2n;
un(z) =
0 forz>n+1/n;
linear otherwise.
N
R
] R
“-‘ uz.':
151 ‘- ,: us;‘:
1 24172 334173 >
2 3 4 R

FIGURE 4. Counter example 1.

We have )
/un(z)dz =— <0 for each n € N.
R
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Hence, u, — 0 a.e. in R and strongly in L!(R). Let ¢ : R — R satisfy |u,| < ¢ a.e.
o0 o0
inR foreachn € N. Thenoco = > L = [ 3 u, < [¢. Consequently, ¢ ¢ L*(R).
n=1 n=1
However, the generalized Lebesgue dominated convergence theorem is a neces-
sary and sufficient result for L' convergence.

Theorem 2.22 (Generalized Lebesgue Dominated Convergence Theorem:). Sup-
pose Q is a domain in RN, {u, }>°, and u are measurable functions in 2 such that
Up — u a.e. in Q. Then u, — u in LY(Q) if and only if {vn}3 1, ¢ € LY(Q) exist
such that @, — ¢ a.e. inQ, [u,| < @, a.e. inQ for eachn, and p, — ¢ in L*(Q).
Proof. (=) Suppose that u, — u in L'(Q), take , = |u,| and ¢ = |u|, then
©n — @ in L1(Q).

(«<=) Suppose that a sequence of measurable functions {¢,}22; and ¢ in Q exist
such that ¢, € LY(Q), v, — ¢ ae. in Q, |u,| < ¢, a.e. in Q for each n, and
©n — @ in L1(Q). Applying the Fatou lemma, we have

/ liminf(p, —u,) < liminf/ (on — un),
Q Q

n—oo n— 00

/uzlimsup/ Up,-
Q n—oo Q

Applying the Fatou lemma again, we have

/ lim inf (¢, + up) < liminf/ (pn + un),
Q Q

or

n—oo n—00

/ugliminf/un.
Q n—oo O

u = lim Up,
Q n—oo Jo

Another necessary and sufficient result for L! convergence is the Vitali conver-
gence theorem.

or

Thus,

O

Theorem 2.23 (Vitali Convergence Theorem for L(€2)). Suppose Q is a domain
in RN, {u, 2, in LY(Q), and u € LY(Q). Then ||u, — u| g1 — 0 if the following
three conditions hold:
(1) up, — u a.e in Q;
(#) (Uniformly integrable) For each € > 0, a measurable set E C § exists such that

|E| < 0o and
/ |un|dp < e
EC

for each n € N, where E¢ = Q\E;
(#i) (Uniformly continuous) For each &€ > 0, 6 > 0 exists such that |E| < 6 implies

/ |un|du < e for each n € N.
E

Conversely, if ||un, — ul|pr — 0, then conditions (ii) and (iii) hold and there is a
subsequence {u,} such that (i) holds. Furthermore, if |Q| < oo, then we can drop
condition (i).
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Proof. Assume the three conditions hold. Choose € > 0 and let § > 0 be the cor-
responding number given by condition (#i¢). Condition (ii) provides a measurable
set E C  with |E| < oo such that

/ |un|dp < €
EC

for all positive integers n. Since |E| < oo, we can apply the Egorov theorem to
obtain a measurable set B C E with |E\B| < ¢ such that w,, converges uniformly
to u on B. Now write

/ |ty — uldu = / [, — u|dp —|—/ [, — uldp —|—/ [ty — u|dp.
Q B E\B Be

Since u,, — u uniformly in B, the first integral on the right can be made arbitrarily
small for large n. The second and third integrals will be estimated with the help
of the inequality

[tn, — v < up| + |ul.
From condition (i), we have fE\B |tn|du < € for all n € N and the Fatou Lemma
shows that fE\B lu|dp < € as well. The third integral can be handled in a similar
way using condition (i7). Thus, it follows that ||u, — u|[: — 0.
Now suppose ||u, — ul|pr — 0. Then for each € > 0, a positive integer ng exists

such that |lu, — u||pr < €/2 for n > ng, and measurable sets A and B of finite
measure exist such that

/ luldp < /2 and / lunpldp < e forn=1,2,... np.
Ac Be
Minkowski’s inequality implies that

Hun”Ll(Ac) < ||un — UHLI(AC) + ||UHL1(AC) <e forn> no.

Then let E = AU B to obtain the necessity of condition (4¢). Similar reasoning
establishes the necessity of condition ().

Convergence in L! implies convergence in measure. Hence, condition (i) holds
for a subsequence. ([l

There is a bounded sequence {u,, } in L!(R) that violates Theorem condition
(i7).
Example 2.24. Forn=1,2,..., let u, : R — R be defined by

0 for z < n;
2 forz=n+1/2;
0 forz>n+1;

linear otherwise,

up(2) =

then [pun(2)dz =1 for each n € N. Clearly, {u,} violates Theorem ﬂ (#4).

There is a bounded sequence {u,, } in L!(R) that violates Theorem condition
(idd).
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FIGURE 5. counter example violating Theorem condition (i).

Example 2.25. Forn =1,2,..., let u, : R — R be defined by
0 for z <m;

2n for z=n+1/2n;

0 forz>n+1/n;

linear therwise.

un(z) =

v

FIGURE 6. counter example violating Theorem condition (4i7).

Then
/un(z)dz =1 foreachneN.
R

Clearly, {u,} violates Theorem condition (7).

Lemma 2.26. In the Vitali convergence theorem condition (i7), the set E with
|E| < oo can be replaced by the condition that E is bounded.
Proof. Let E,, = EN BN (0;n) forn=1,2,.... Then By C E; C --- /' E. Thus

|E1| < |Eg| < --- /|E|. For § > 0 as in Theorem condition (i), there is an
Ey such that |E\Ey| < 6. Now

/ \un|dz:/ \un\dz—i—/ lun|dz < 2¢
ES Ee E\Ey
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for each n € N. O

Lemma 2.27. Let Q be a domain in RN, 1 <r < q < s, and {u,} in L"(Q)NL*(£2).
Suppose that either ||uy||r = o(1) and ||up|lLs = O(1), or ||uy|lr = O() and
llun|lLs = o(1), then ||uy|/Ls = o(1).

Proof. Note that ¢ = (1 —t)r+1ts,0<t <1, so by the Holder inequality,

/|un\qdz< /|un| dz - /|un|sdz
Q

Then the conclusion follows. O
We recall the Sobolev embedding theorem as follows.

Theorem 2.28 (Sobolev Embedding Theorem in Wy"?(Q))). Let m € N and
1 < p < oo. Then we have the following continuous injections.
(i) If% — >0, then WP () — L), where q € [p,p*], =

-1
p* P

(1) If & L_m =0, then Wy"P(Q) — L4(Q), where q € [p,00);
(vit) ]ff — %<0, then WP (Q) — L>(Q).

m .
N

Moreover, zfm — ; > 0 s not an integer, let k = [m - %} and 0 = m — % —k

(0 < @ < 1), then we have for u € Wy (£2)
ID%ullz < cllullwms  for || < k
u(@) = u()| < cllullwnsle —y®  ae forz,yeQ.
In particular, WyP(Q) — C*9(Q).
For the proof ot the theorem above, see Gilbarg-Trudinger [36, p.164].

Definition 2.29. () satisfies a uniform interior cone condition jf a fixed cone Kq
exists such that each x € 9Q is the vertex of a cone Kq(z) C Q and congruent to
Kq.

Theorem 2.30 (Sobolev Embedding Theorem in W™P(Q)). Let Q satisfy a uni-
form interior cone condition, m € N and 1 < p < co. Then we have the following
continuous mjections

(7) Iff — % >0, then W™P(Q) — L9(Q), where q € [p,p*] and z% =
(44) If}lj — % =0, then W™P(Q) — L9(Q), where q € [p,00);

(@) If  — % <0, then W™P(Q) — L>(Q).

Moreover, if m — % > 0 s not an integer, let

J

T =
Z[3

N N
k=[m—-—] and 6=m—-———-k (0<6<1),
p p

then we have for u € W™P(§2),
ID%ull e < clulwoms  for B with |8] <k
|DPu(x) — DPu(y)| < cllul|lwmelz —y|® ae forxz,yeQ and|B|=k.
In particular, W™P(Q) — Ck9(Q)).

For the proof of the theorem above, see Brézis [I4, Cor. IX.13] and Gilbarg-
Trudinger [36, Theorem 7.26].
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Theorem 2.31 (Rellich-Kondrakov Theorem in W;""(2)). Let Q be a bounded
domain, m € N and 1 < p < co. Then we have the following compact injections.
(i) If% — >0, then Wi"?(Q) — L%(Q), where q € [1,p*), p% = % - %

(i7) If% — 2 =0, then WP (Q) — Lq(Q);where q € [1,00);

(id) If % — <0, then Wi"P(Q) — C*(Q), where m — % > 0 is not an integer

and k = {m — ﬂ} .
P
For the proof of the aboved theroem, see Gilbarg-Trudinger [36, Theorem 7.22].

Theorem 2.32 (Rellich-Kondrakov Theorem in W™P(Q)). Let 2 be a bounded
C%! domain in RN, m € N and 1 < p < oco. Then we have the following compact
injections.

(1) If% — % >0, then W™P(Q) — L9(S2), where q € [1,p*), p% = %
(i7) If% — % =0, then W™P(Q) — Lq(Q);where q €[1,00);
(#i1) If% — B <0, then W™P(Q) — C*P(Q), where m — % > 0 is not an integer,
0<B<0, k= {m—N}, and §=m Y —k (0<0<1).

P

m.
N

For the proof of the above theorem, see Brézis [14, p. 169] and Gilbarg-Trudinger
[36, Theorem 7.26].

For the Sobolev space X (€2), we can drop condition (#i:) of the Vitali convergence
theorem through the interpolation results.

Theorem 2.33 (Rellich-Kondrakov Theorem). Let Q be a domain in RY of finite
measure. Then the embedding X (2) — LP(Q) is compact.

Proof. Let {u,} be a bounded sequence in X (£2), then by Lemma a subse-
quence {u,} and u € X () exist such that u, — u a.e. in . By the Egorov
theorem, for € > 0, a closed subset F in R exists such that F' C €, |Q\F| < ¢,
and u, — u uniformly in F. Thus,

/ |up, —ulP =0(1) asn — oo.
P

For N > 2, we have

/r /s
Sl == () (o =)

1/s
<P (| o= )
< el — ul|B [Q\F T < et/

where ps = 2* and % + % = 1. For N = 2, take any s > 1 to obtain the above
inequality. Hence, u,, — u strongly in LP(). |

Theorem 2.34 (Vitali Convergence Theorem for X (2)). (i) Let Q be a domain in
RY of finite measure. Then the embedding X (Q) — LP(S2) is compact;

(i) Let Q be a domain in RN and let {u,}>>, be a sequence in X(Q). Suppose
that a constant ¢ > 0 exists such that ||u,|m < ¢ for each n and u, — u a.e. in
Q. Then for each € > 0, a measurable set E C Q exists such that |F| < oo and
Jpe lunlPdz < e for each n € N if and only if |un — ull, o, = o(1).
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Proof. Part (i) follows from Willem [78]. (iz) By the Fatou lemma, [, |ulPdz < e.
Since |E| < oo and ||u,||g1 < ¢, by (i), there is a subsequence {uy}5 ; satisfying

/ lun, — ulPdz = o(1).
B

Therefore,

/ |y, — u|Pdz = / |y, — ulPdz + / |un, — uPdz = o(1).
Q ENQ EenQ

Now suppose ||u, — ul[zr) = o(1). Then for each ¢ > 0, a positive integer ng
exists such that |Ju, — ul[z» o) < # for n > ng, and measurable sets A and B of
finite measure exist such that
€
/ |u\pdz<27 and / |unPdz < e forn=1,2,... ng.

The Minkowski inequality implies
unllLr(acy < lun —wl|Leaey + [JullLeae) < P for n > ny.
Then let £ = A U B to obtain the conclusion. O
Let L2 (RN) = {u € LY (RY): [on [u(z)Pw(z)dz < oo} be a weighted Lebesgue

loc
space, where the weight w is nonnegative with

”uHi{L(RN) == /RN |u(z)|Pw(z)dz
We denote by Q(x,1) the cube of the form
Qa,l) ={y e RY : |y; —zj| <1/2,j=1,...,N}.
Theorem 2.35 (Vitali Convergence Theorem for H'(RY)). The embedding of
HY(RY) into L2 (RY) is compact:
pts
(i) Let N > 2. Suppose that w € L.’ (RN), with2 < p < p+6 < 2* for some
0 >0, and
pgs

lim w(z) ° dz=0 (2.7
[zl=0c0 JQ(a,l)

for some I > 0. Then HY(RY) is compactly embedded in LE,(RN);
(ii) Let N = 2 and suppose that w € L:,(RY) for some s > 1 and

lim w(z) dz =0 (2.8)
l#l=o0 JQ(a,1)
for some 1 > 0. Then HY(RY) is compactly embedded in LE,(RN) for every p > 2;
(iii) Let N =1 and suppose that w € L{ (RN) and

loc

lim w(z)dz =0 (2.9)
2[00 JQ(x,1)

for some | > 0. Then HY(RY) is compact embedded in LE,(RN) for every p > 2.

Proof. (i) It suffices to show that for every ¢ > 0, a R > 0 exists such that

lu —uxq,r)llLy @Yy <€ (2.10)

for ecach u € H*(RY) such that [[u]z:@y) < 1, where xq is the characteristic
function of the cube. Indeed, let {u,} be a bounded sequence in H*(RY). We
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assume that [|u,[| g1~y < 1 for all n € N. Consequently, a subsequence {u, } and
au e H(RY) exist such that u, — u in H'(RY) and u,, — u in LP(Q(0, R)). On
the other hand, by (2.10), we have

|ltn, — U”L{’U(]RN\Q(O,R)) < HUnHL{;(RN\Q(O,R)) + HUHLT‘ZJ(RN\Q(QR)) < 2e.

Combining this with the previous observation, it is easy to conclude that u, — u
in LP (RN).

To show (2.10]), we cover RY with cubes Q(3,1), 2 € ZN. We may assume that
(7) holds with [ = 1. For n > 0, we use ([Z7) to find a positive constant ngy such

that fQ w(z)pTMdz < n for each @ = Q(2,1) outside Q(0,7n9). By the Sobolev
embedding theorem, for any v € H'(R"), a constant ¢ > 0 exists such that

llullzr @y < cllullgrgy forall2 <p <2~
Thus, by the Holder inequality, we have

3 P
e < ([ wFaz)™ ([ i)™ <t il

where ¢ = #/(*+9)_ Now, choose ¢/n'/* < ¢ and add these inequalities over all

Q(%,1) outside Q(0,ng) to obtain R = ny.

(#4) and (#i7) are similar to (7). O
We define H}(Q) = {u € H}(Q) : u is radially symmetric}.

Lemma 2.36. For N > 2, every u € H}(RY) is equal to a continuous function U
a.e. in RN\{0} such that for z # 0

el < e (f mopa) " (f

y|>|2|

1/4
[Vu(t)at) ",

where wy s the area of the unit ball in RN

Proof. Let ¢ € C°(RY) be a radially symmetric function. Then for 0 < r < oo,
I = [ el ds

= — Ts“ 20(s)%ds + Ts“ Lo(s)¢' (s)ds.
C'hus,
= — SN 2 S 2 S SN 1 S / S)das.
0= (N 1)/0 p(s)°d +2/0 p(s)p'(s)d

Consequently,

PNl < (V- [

; sN720p(s)%ds + 2/ sN7po(s)p! (s)ds

0

- —2/005N71cp(5)<p'(s)ds
= ([ e wa

WN St zr

<2 /| ZTso(zf>2dt)”2( /| ZT'W”'%)U ’
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For u € H(RY), take a sequence {¢,,} radially symmetric in C2°(R¥), such that
¢n —u in HY(RY),

then there is a subsequence {¢,(r)} such that

N-1 2

on(r)
< nli_{go(ij)(/ltly|<pn(t)|2dt)1/2</tlzr|V<Pn(t)|2dt>1/2
< (WQN)(/“ET u(t)|2dt)1/2(/lt|2T|Vu(t)|2dt)1/2

Since u € HL(RY), it is a function in H'(R), and there is a continuous function U
in R such that v = U a.e. and

W < o= ([ ) ([ wupa)”

TN lu(r)? = lim r
n—oo

Let © be an annulus, say © = {z € RV : 1 < |2|} with N > 3.

Theorem 2.37 (Rellich-Kondrakov Theorem for H}(©)). The embedding
HY(©) — LP(O) is compact.

Proof. Let {u,} be a bounded sequence in H}!(©). Then a subsequence {u,} exists
such that u, — u a.e. in © and u, — u weakly in H}(©). By Lemma

lim w,(z) = 0 uniformly in n and lin})% = 0. Thus, for € > 0, there is a
5s—0I¢ ‘

|z| =00

K > 0 such that if |z| > K, for each n, we have

[un (2)[7 < e(lun(2)]? + [un(2)*),

/ [un|? < ce,
(C]

c
K

where O = {z € ©: z| < K}. By the Fatou lemma,

/ |ulP < ce.
e

c
K

or

By the Rellich-Kondrakov compactness theorem, a subsequence {u,} exists such
that

lim |y, — ulP = 0.
Thus,

lim | |u, —ul? =0.

n—oo e

O

For any § € R, a (PS)g-sequence in X (Q) for J is bounded. Moreover, a (PS)-
value (8 should be nonnegative.
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Lemma 2.38. Let § € R and let {u,} be a (PS)g-sequence in X () for J, then
a positive sequence {c,(8)} exists such that ||uy,| g < cn(B) < ¢ for each n and
cn(B) =0(1) as n — oo and § — 0. Furthermore,

(i) = blun) + o(1) = ]%ﬁ +o(1)
and 3 > 0.

Proof. Since {uy,} is a (PS)g-sequence in X () for J, we have

> () = (7). ) = (5 = 2 [

‘ﬂ|+§ +5n||un||]—[l
n

where 0, = o(1) and ¢, = o(1). Take

() = 5 e + V2 + 200 = 2B+ 5.)).

then ¢,(8) = o(1) as n — oo and S — 0 and ||up|| g < ¢(8) < ¢ for each n. Since
{un} is bounded, we have

o(1) = (J' (up), upn) = aluy) — b(uy),

or
B+o(l) = J(uy,) = la(un) — —b(up) = p;an(un) + o(1)
Therefore,
a(un) = b(up) + o(1) = %5 +o(1).
This implies 8 > 0. O

Lemma 2.39. Let {u,} be in X(Q)\{0} satisfying a(u,) = b(u,) + o(1) and let
J(un) =B+ o0(1) with 8 > 0, then ¢ > 0 exists such that ||u,| g > ¢ for each n.

Proof. Suppose that a subsequence {u,} satisfies lim [lu,||z1 = 0. Then J(u,) =

o(1), but this contradicts 8 > 0. Thus, ¢ > 0 exists such that ||uy| g1 > ¢ for each
n. g

Let © be an unbounded domain and &, as in (2.1)), then we have the following

lemma.

Lemma 2.40. Let {u,} be a (PS)g-sequence in X () for J such that

[l = ot1),

n

where Q,, = QN BY(0;n). Then for any v > 1, we have

(i) Jo&nlunl? = [olunl? +o0(1) = 2556+ o(1);

(i) Jo&n(IVunl* +up) = [o&hlunl? +0(1) = 558+ o(1);
(113) fo (€], — Ding = o(1)pll i for every o € X(9);

() |Jo(&h = Dlunl"2unel = o(D|pll 1 for every ¢ € X (Q);
) [o(&h = DVun Vel = o(1)l¢l|mr for every ¢ € X().
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Proof. (i) Clearly, we have

[ bl = [ funp +0(1) = 255+ o(0)

(ii) Let wy, = & uy. Since {w, } is bounded in X (), we have
o(1) = (J'(un), wn)
— [ €10l 1 V6 T+ ) - / €xlunl”
Q

Note that |V&,(2)] < £ and {u,} is bounded in X(Q), s

/ &, Ve, - Vu, = o(1).
Q
We conclude that
r r 2p
[ &9l +u2) = [ &+ o) = -2 5 +0(1),
Q Q p—

Therefore, the results follow.
(#4i) By the Holder and Sobolev inequalities we have

&=t < ([ ) ([ 162) " < owlielin

(iv) By the Holder and Sobolev inequalities, we have

[ = D2 < ([ )T ([ 16977 < o0l

(v) By the hypothesis and part (i), we have
o(1) = (J' (un), wn)
= (S (un)s wn) = (J'(un), un) + (J' (un), un)

= /Q@; = 1)[Vun| +/Q(§;; — 12 — /Q(g;; — D)]un|? + o(1)
= [ (€ = DIl + o)

Thus,
|/Q<s:;fl>|wn|2| :/Qu—s:;)wun\? — o(1).

Therefore, by the Holder inequality,

[ €= 0vu el < ([ € - 129uk)  loln
< ([a-evur) el

<oM)ellm
O
Lemma 2.41. (i) Suppose that {u,} is a sequence in X(Q) satisfying u, — 0

weakly in X (Q), then there is a subsequence {u,} in X(Q) such that an |un [P =
o(1) as n — oo;
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(#3) For any B > 0, suppose that {uy,} is a (PS)g-sequence in X () for J satisfying
Jo lunlP = o0(1) as n — oo, then {&,un} is also a (PS)z-sequence in X () for J.

Proof. (i) Since u,, — 0 weakly in X (), there is a subsequence {u,} such that
U, — u strongly in LY (£2), or there is a subsequence {u,} such that

[t = o),

Qp

where Q,, = QN BY(0;n).

(4i) Let {u,} be a (PS)g-sequence in X (Q) for J satisfying [, [un|P = o(1) as
n — oo. By Lemma we have

J(gnun) = %/ﬂ [|v(€nun)|2 + (gnun)Z] - %A|§nun|p

loc

= %/Q [|V§n|2ufl +§i(|Vun|2 + ui) + QSnUHVSnVun] - %/Qfmuﬂp
1 1
Then for ¢ € X (), we have
(' (Entin), 80>|
= ’ (Enun), ) — <J/(un)a ®) + <J/(un)7 ‘P>‘

=| / (£ VUV + un VEN @ + Entine — E87 un [P 2un )
T (un), @) + (' (un), ©)|
=| / — D)Vu, Ve + (6n — Dune — (57" = Dlun P 2une] + (J'(un), ©)|
Dl
Thus, J' (Enun) = o(1). O
Moreover, we have the following lemma.

Lemma 2.42. Let {u,} be a (PS)-sequence in H () for J satisfying u, — 0
weakly in X(Q) and let v, = Euup. Then ||u, — vpllgr = o(1) as n — oco.

Proof. Note that
a(ty, — V) = (Up — Upy Uy, — V) 1t
= a(un) + a(vy) — 2{tp, vp) g
= 2a(un) — 2(Un, V) g1 + o(1).
Thus, it suffices to show that
a(up) = (Un, Un)gr + 0o(1).
We have

(Up, V) g1 = / Vu, Vo, + tntn,
Q

_ /Q En [|Vttn|? + (un)?] + /Q Un Vit V.
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Note that |V&,| < £ and {u,} is a (PS)-sequence in Hg () for J, so

/QunVunV&L =o(1).
Hence,
(tim ) 111 = /Q,gn [Vt + (un)?] + 0(1).
By Lemma (i), (i7) and Lemma [2.41] (i), we have
(ts ) 111 = /an [[Vun? + (un)?] + 0(1) = a(un) + o(1).
(I

Bibliographical notes: The (PS)-sequences were originally introduced by Palais-

Smale [60]. Lemma is from Brézis [I4] p. 35]. Lemma is from Zeidler [79]
IT/A, p. 303]. Lemma is from Bahri-Lions [I0]. Lemma is from Grisvard

38, p. 24].
3. PALAIS-SMALE DECOMPOSITION THEOREMS

In this section, we present the Palais-Smale decomposition theorem in H(€2) for
J. This is the concentration-compactness method of P. L. Lions.

Theorem 3.1 (Palais-Smale Decomposition Theorem in RY)). Let Q be strictly
large domain (see Deﬁnition in RN and let {u,} be a (PS)g-sequence in H} ()
for J. Then there are a subsequence {u,}, a positive integer m, sequences {z8 1}
in RN a function u € HX(Q), and 0 # w' € HY(RY) for 1 <i < m such that

|28 | — 0o, fori=1,2,...,m,
~Au+a=aPa inQ,
—Aw' +w' =| w'P 2w in RY,
and

Up =T+ sz( —2L) 4 o(1) strongly in  H'(RY),
i=1

m

a(un) = a(@) + 3 _a(w’) +o(1),
b(un) = b(@) + Y b(w') +o(1),
i=1

J(un) = J(@) + Y J(w') + o(1),
i=1

In addition, if u, >0, then @ > 0 and w* > 0 for each 1 <i < m.

Proof. Step 0. Since {u,} is a (PS)g-sequence in H{(f2) for J, by Lemma
there is a ¢ > 0 such that ||u,|| g < ¢. In the following proof of this theorem, we fix
such a c. There is a subsequence {u,} and a @ in Hg(f2) such that u,, — @ weakly
in H}(Q) and @ solves

~Au+a=|aP%a in Q.
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Suppose that u,, — @ strongly in H}(Q), then we have u,, = u + o(1) strongly in
Hy(Q), a(un) = a(@) + o(1), bun) = b(@) + o(1), J(un) = J (@) + o(1).
Step 1. Suppose that u, - @ strongly in Hg (). Let

uh =u, —u forn=1,2,....
By Lemma {u},} is a (PS)(s—(a))-sequence in Hj(Q) for J.
(1-0) fBN(O;1)|w}L(z)\2dz > 4 for some constant d; > 0 and n = 1,2, ..., where
wk(z) = ul(z+yl) for some {yl} C RY: since {ul} is bounded, J'(ul) =
o(1), and ul - 0 strongly in H}(2). By Lemma there is a subsequence
{ul}, a constant d; > 0 such that

1 1)2
= = aq =1,2,....
Q@ sup/ luy | >dy forn=1,2
z+BN (0;1)

Take {y:} in RV such that
d
/ )Pz > G
yn+BN(01) 2

Let w;,(2) = uy (2 + yy,), then
d
/ \w}l(z)|2d2271 forn=1,2,....
BN (0;1) 2

(1-1) un(2) = a(2) + wh(z — yl) in HY(RY).
(1-2) [Jwp|lgr@yy < cforn=1,2,... and [|w'| g < ¢, where w), — w' weakly
in H'(RY): by Lemma [2.11] (41),
lwnllF = llunllzn = lunlz — Gl +o(1) < ¢+ o(1),
we have [[w} | ryy < ¢ for n = 1,2,.... Then there is a subsequence
{wl} and a w' in H'(RY) such that w! — w! weakly in H*(RY). By

Lemma (i), we have

! [l s < liminf [[w} [ < c.
n—oo

(1-3) {wp} is a (PS)(5— s(a))-sequence in H*(RY) for J: note that J'(u),) = o(1)
in H1(Q). Because Q is a strictly large domain, (1-7) below and Theorem
m we have for every ¢ € H} (RY),

Twhhe) = [ Veierule- [ il ule = o)

RN RN

Therefore, J'(w}) = o(1) strongly in H~*(RY). Moreover, we have
J(wy) = J(up (2 +yn)) = J(uy,) = (B = J(@)) + o(1).

(1-4) —Aw! +w! — [w![P72w! =0 in RY : by Theorem (7) below.
(1-5) w' # 0: by the Rellich-Kondrakov theorem and (1 — 0), we have
dy

[t = whf? >
BN (0:1) n=o0 JBN (051) 2

thus w! # 0.
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(1-6) By (1—2), (1—4), (1 —5), and Lemma d > 0 exists such that
w1 ey > [l || 2@y > 6.
Therefore,
1 1 1 1
1 1 2 g
=(z—= - —=)c =4
Twh) = (5 - patw!) > (5 - 2)
(1-7) |yL| — co: otherwise, R > 0 exists such that y! + B™(0;1) C BY(0; R) for
n=1,2,.... Then by (1 —0), we have
d
0= lim lub|> > Tim [ E——
n=o /BN (0;R) =0 Jyl+BN (051) 2
which is a contradiction.

(1-8) a(u,) = a(u) + a(wl) + o(1) : since u,, — @ weakly in H'(RY), by Lemma

2.11| (44), we have
a(un) — a(@) = alu, —a) + o(1) = a(ul) + o(1) = a(wl) + o(1).
Thus, a(u,) = a(ii) + a(w}) + o(1).
(1-9) b(uyn) = b(u) + b(w}) + o(1): since u,, — @ a.e. in Q and {u,} is bounded
in LP(Q), by Lemma [2.14] (i), we have
b(uy) — b() = b(up, — @) + o(1) = b(u),) + o(1) = b(w,,) + o(1).
Thus, b(u,) = b(@) + b(wL) + o(1).
(1-10) J(un) = J(a) + J(w}) + o(1): by (1 —8) and (1 —9), we have
J(uy) = J(@) + J(w)) + o(1).
Step 2. Suppose that wl(z) - w!(z) strongly in H*(RY). Let
Uy (2) = wy (2) — w' ().
We have u2 — 0 weakly in H'(R"™) but u2 - 0 strongly in H'(R").

(2-0) fBN(O;1)|w,2L(z)\2dz > % for some constant d» > 0 and n = 1,2,...,
where w2 (z) = u2(z + y2) for some {y2} C R¥: since {u2} is bounded,
J'(u2) = o(1), and u2 - 0 strongly in H(RY), by Lemmam there are
a subsequence {u2}, and a constant dy > 0 such that

Q% = sup / |uZ(2)]?dz > dy forn=1,2,....
z€RN J 24BN (0;1)
Forn =1,2,..., take {y2} in R" such that

d
w(Pdz> 2 forn=12,....
| .2,
y2+BN(0;1) 2
Let w?(2) = u},(z + y;), then
d
/ \wZ(Z)Idez—z forn=1,2,....
BN (0;1) 2

As in Step 1, we have the following results.
(2-1) un(2) = u(2) + w'(z = yp) + w3 (z = yp — yp) in H(RY);
(2-2) ||w2||gr < cforn=1,2,... and ||w?| g < ¢, where w2 — w
H'(RY);
(2-3) {w?} is a (PS)-sequence in H(RY) for J;
(2-4) —Aw? +w? — [w?[P~2w? = 0 in RY;

2 weakly in
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5) w? #0;

6) Hw2||L2(RN) > ¢ and J(UJQ) > (5';

-7) |yl — oo;

8) a(u,) = a(u) + a(w!) + a(w?) + o(1): since
n(2) = wy(2) —w'(z) =0,

U,

we have
a(wy) = a(up) = a(w,) - a(w') + o(1).
Further by (1 — 8), we have

a(un) — a(@) = a(wy,) + o(1) = a(w") + a(w;) + o(1).
(2-9) b(un) = b(w) + b(w?) + b(w;) + o(1);
(2-10) J(u,) = J(@) + J(wh) + J(w?) + o(1).
Continuing this process, we arrive at the m-th step.
(m-0) fBN(O.1)|w,T(z)\2dz > %n for some constant d,,, > 0 and n = 1,2, ..., where

wh(z) = u™(z + y™) for some {ym} C RY;

(m-1) un(z) = u(z) + mz wi(z — 28) + wm(z — 2™) in HY(RY), where 2! =
Yyt + -+l for iZ::11,2,...,m:Since
wi'(2) = uy (2 +y') = wi Tz +y) —w Tz ),
thus
w(2) +w™ T z ) = w2y

Continuing this way, we obtain

w'(2) +w™ Ay o wt (2 YRy

= wn (2 + Yo+ )

= up (2 +yp +yn o)

(m-2) ||lw||g <cforn=1,2,... and [|w™||g < ¢, where w]* — w™ weakly in
HY(RY);

(m-3) {w™} is a (PS)-sequence in H'(RY) for J;

(m-4) —Aw™ +w™ — |w™P~2w™ =0 in RY;

(m-5) w™ # 0;

(m-6) ||w™| 2@~y > 0 and J(w™) > &'

(m-7) |yi| = |2t — 2871 — oo and |z%| — oo, for each i = 1,2,...,m : we

show it by 1nduct10n oni. Fori =1, |z}| = |yl| — oco. Assume that

|2i| — oo, for i = 1,2,...,k, for some k < m. By Lemma [2.12} we

have wi(z — 21) — 0 weakly in H*(RY) for i = 1,2,...,k. We claim

that [2X*1] — oco. Otherwise, suppose that {z%¥*1} is bounded. Since

|w* | L2®yy > 6, R > 0 exists such that

A1+ BN(0; R) BN (0;2R)

and

[ weps ).
BN (0;R) 2
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We have

)
O I BN e Ol
BN (0;R) /BN (0;R)

= lim lul (z + 28+1)2d2
n—oc JpN(o;R)

< lim il (=) = 0,

n—0o0 JBN(0;2R)
which is a contradiction. By the induction hypothesis, we have

|2t — o0 fori=1,2,...,m.

(m-8) a(un) = a(@) + 75" a(w') + a(w]?) + o(1);
(m-9) bluy) = b(@) + 7" b(w?) + b(wi) + o(1);
(m-10) J(uy) = J(@) + S0t T(w') + J(wi) + o(1).
By the Archimedean principle, I € N exists such that 162 > 3. Then after step
(I+ 1), we obtain

a(up) = a(t) + a(w') + a(w?) + - + a(w') + a(w™) + o(1).

Since a(wlitl) > 0, a(a) > 0, and a(w®) > §2 for i = 1,2,...,l, we have 3 +
o(1) > 162 > 3, which is a contradiction. Therefore, there is an m € N, such that

m(z) = w™(z) + o(1) strongly in HY(RY), wi (z) = w'(z) + o(1) weakly, and

) # w'(z) + o(1) strongly in H'(RY) for i =1,2,...m — 1. Then we have

(sm-0) fBN(O;1)|w,T(z)\2dz > 4o for some constant d,, > 0andn =1,2,..., where

wpP() = (= + y) for some {y'} € RY;
(sm-1) un(z) = u(z) + S wi(z — 2%) + o(1) strongly in H*(RY), where 2! =

i=1
yb 4+ 4yl fori=1,2,...,m;
(sm-2) [[wi||gr <cforn=1,2,... and ||[w™| g < ¢, where w]* — w™ weakly in
H(RY);
{w™} is a (PS)-sequence in H'(RY) for J;
—Aw™ +w™ — |w™P~2w™ =0 in RY;
w™ # 0
|[w™||L2@yy > 6 and J(w™) > &5
[yl | = |28 — 271 — oo and |2} — oo, for each i = 1,2,...,m;
a(un) = a(@) + 32, a(w') +o1);
bun) = (@) + 323, b(w') + o(1);
J(un) = J(@) + > J(w?) + o(1).
i=1

Finally, suppose u, > 0 forn =1,2,.... Then
(i) Since u,, — @ weakly in HJ(Q2). By Lemma m (47), there is a subsequence
{un} such that u, — @ a.e. in Q. Thus, @ > 0.
(i1) Since w} (2) = un (z4yL)—u(z+yl) — w'(z) weakly in HY(RY) and u(z+y}) —
0 weakly in H'(R™). Thus, u,(z +y.) — w!(2) a.e. in Q, or w! > 0.
(ii7) Continuing this process, we obtain w® > 0 for each i = 1,2,...,m. O

We have the following useful corollary.
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Corollary 3.2. Let Q be a strictly large domain in RN. If {u,} is a positive
(PS)s-sequence in H} () for J.

(i) If B # ja(RN) for each j € N, then there is a positive solution U of in €
(ii) If a(RN) < B < 2a(RYN), then {u,} contains a strongly convergent subsequence.

Proof. By Theorem we have

J(up) = J(@) + Y i =1"J(w') +o(1).
By Corollary below, the positive solutions of in RN are unique, and we
obtain J(w?) = a(RY) for each i. Thus, we have

B = J(@) +md(w") + o(1).
(i) If B # ja(RY) for each j € N, then J(u) # 0, or @ # 0. By Theorem (1)
below, there is a positive solution @ of (|1.1]) in €.
(ii) Recall that we always have 8 > «(Q) > a(RY). Suppose that m > 1 and
a(RY) < B < 2a(RY), then J(u) # 0 or J(u) > a(f2). Thus,
20(RN) > B+ 0o(1) = J(@) + ma(®RY) > (m + 1)a(RY).
This is a contradiction. Hence, m = 0. By the proof of Theorem we have
up, =7+ o(l) strongly in HJ ().
O

Remark 3.3. Note that if we replace a strictly large domain by a domain in

Theorem then the theorem may fail. Let Aj be an upper semi-strip with

sufﬁciently large 7, then a(RY) < a(A}) < 2a(RY). By the Esteban-Lions theorem

E_L in Aj admits only trivial solution, but if T heorernholds7 by Corollary
1.1)

in Af admits a positive solution, a contradiction.

Definition 3.4. A domain © in R" is a periodic domain if a partition {Q,,}>°_,
of © and points {2, }5°_; in RY exist, satisfying the following conditions:

(i) {zm }2°_; forms a subgroup of RY;

(i) Qo is bounded,;

(4i1) Qm = zm + Qo for each m.

Typical examples of periodic domains are the infinite strip A", the infinite hollow
strip A" 72, and the whole space RY.

Similarly, we have the Palais-Smale decomposition theorem in H{(Q2) for J in a
periodic domain in © C RV.

Theorem 3.5 (Palais-Smale Decomposition Theorem in a Periodic Domain). Let §2
be a strictly large domain in © and let {u,} be a positive (PS)z-sequence in Hg ()
for J. Then there are a subsequence {un}, a positive integer m, a subsequence
{28322, of {zm}S5_1 in ©, and a function © € HE(Q), and 0 # w® € HY(O), for
1 <i<m such that

(i) |24 —, 00 fori=1,2,...,m;

(i) —Au+u=|u "~ 2 mQ

(i11) —Aw® + w' = [P~ 2w’ in O;
(iv) up =u+ Y i w'(-—2h) + 0(1) strongly in H*(©);

(v) a(un) = a@) + S a(w) + o(1);
(01) Blt) = b() + S b + o{1):
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(vid) J(un) = J(@) + X, T(w) +o(L).
In addition, if up, > 0, then @ > 0 and w® > 0 for each 1 < i < m.
Proof. The proof is similar to those of Theorem see Lien-Tzeng-Wang [47].
Note that instead of
Qn = sup / [ (2)2dz
2+BN (0;1)

2€RN

we use
Q, = sup/ [ty (2)]%dz,
yeER J(0,y)+AT | |
where A", = {(z,y) € A" | —1<y<1}. O

Corollary 3.6. Let © be a periodic domain in RN and let Q be a strictly large
domain in ©, and let {u,} be a positive (PS)g-sequence in H}(Q) for J. Suppose
that the only positive solutions in © are ground state solutions.

(0) If B # ja(®) for each j € N, then there is a positive solution T of n Q;

(i7) If a(®) < B < 2a(@®), then {u,} contains a strongly convergent subsequence.

The proof of the above corollary is same as the proof of Corollary
Bibliographical notes: Theorem is from Lions [49, Lemma 19] and Struwe
[66]. Theorem is from Lien-Tzeng-Wang [47, Theorem 4.1].

4. PALAIS-SMALE VALUES AND INDEXES OF DOMAINS

In this section, we prove that four classical important (PS)-values in X (Q) for
J are the same. Then any one of them is called the index of a domain. The index
of a domain ) is important in studying the existence of solutions of in Q.
(A) Consider the constrained maximization problem

0n (@) = (5 = D)7,

where v(2) = sup{b(u) | v € X(2), a(u) = 1}. By the Sobolev embedding
theorem, we have a.(2) > 0. Moreover, a,(2) is a (PS)-value in X (Q) for J.
)

Theorem 4.1. a,(Q) is a (PS)-value in X(Q) for J.

Proof. Let {u,} in X(Q2) be a maximizing sequence of (). Then a(u,) = 1 for
n=12 ..., and

/|un|p =v(Q)P +0(1) asn — co.
Q

Let v, = W(Q)ﬁun for each n = 1,2,.... Then we have

a(vy,) = /Q(\an|2 +02) = 'y(Q)Q% foreach n=1,2,...,

b(vn) = /Q|U7L|p = ')/(Q)% + O(l) as n — 0o,

and



32 HWAI-CHIUAN WANG EJDE-2004/MON. 06

For each n =1,2,... and ¢ € X(Q), denote

ln(p) = /Q [onlP .

Let ¢ € X(Q) satisty ||¢]| g1 = 1. Then v(2) > |||z and

(p—1)/p 1/p
|—|/\v P20,0] < /|vn|p /| o)

)QP’Y(Q)+ (1):’7(9)2?+0(1 as n — oo.
Thus,
lnllx-1 < Y(Q)TF 4+ 0(1) asn — oo.

Furthermore,

| ( Vn B fQ |vn|P B 7(9)213/(2—17)
Mo |l g lvnllar  y(Q)p/2-P)

as n — 0o. We conclude that

+0(1) = y(2)=F + o(1)

llnllx-—1 = ’Y(Q)ﬁ +o(1) asn — oo.

Since [, is a continuous linear functional in X(2), by the Riesz representation
theorem, for each n, w, € X () exists such that

() = (wn, o) = /Q(an -Vo+wyp) for each p € X(Q),
and ||wy, || gt = ||| x-1. Since
(Wny vn) 1 =l (vn) = /Q 0n]? = Y ()25 +o(1) asn — oo,
we obtain
an - wn”%ﬂ = <Unvvn>H1 - 2<Umwn>H1 + <wmwn>H1
= llvallf = 2(vn, wa) i + [lwallfn

= ()75 = 27(Q)7F + ()7 +o(1)

=o0(l) asn— oco.

For ¢ € X(Q) satisfying ||¢||g: = 1, we have

(e ) = [ (Vo T+ vap) = [ fouP20ns
Q Q
= <Una<p>H1 - <wn7¢>H1 = <Un - wna(p>H17
SO
(T (vn), 0)] < (v — wn|a-
We conclude that

J' (vy) = 0(1) strongly in X 1(Q) asn — oc.
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(B) Consider the Nehari minimizing problem

Q)= inf J(v),
aM( ) vell\r/lI(Q) (U)
where M(Q2) = {u € X(Q)\{0} : a(u) = b(u)}. Note that M(Q) contains every
nonzero solution of (1.1). Consider the unit sphere U(f) and the zero energy
manifold Z(€?), where

U(Q) = {ue X : [lullm =1},
2() = {u € X(Q\(0) : ja(u) = %b(a)}.

am(f2) > 0 is a consequence of part (i) of the following lemma. Part (i7) of the
following lemma will be used later in Lemma [.6] and Theorem

Lemma 4.2. (i) There is a bijective C** map m from U(2) to M(Q). Moreover,
M(R2) is path-connected and a constant ¢ > 0 exists such that for u € M(),
lullgr > ¢ and J(u) > ¢;

(ii) There is a bijective CYY map z from U(Q) to Z(Q). Moreover, Z(Q) is path-
connected and a constant ¢’ > 0 exists such that for v € Z(Q), ||u|l g > ¢

Proof. (i) For t > 0, u € U(Q), let

1 1
ho(t) = J(tu) = —t* — —tPb(u).
(0 = J(t0) = 32 = 270(a)

Then k! (t) =t — tP~1b(u). We take uniquely s, € R* such that s, > 0, s,u €
M(Q), and 0 = R/,(s,). For v € U(Q), a s, € R exists such that s,v € M(Q):
that is

(J' (550), 8,0) = 8% — sPb(v) = 0.
Consider the function g(¢,u) : RT x U(2) — R defined by

g(t,u) = (J'(tu), tu) = t2a(u) — tb(u).

Note that g(sy,v) = (J'(s,v), s$,v) = 0. Thus,
—(t,u)|(s 0= 25, — psP1b(v) = 5,(2 — p) < 0.

By the implicit function theorem, a neighborhood W of v in U(Q2) and a unique
function t € C1! exist such that

t: W —RT, t(v) = sy,
g(t(u),u) =0 for all u € W.

Therefore, for each v € U(Q), t : U(Q) — R* and m : U(Q) — M(Q), t, m € C11
exist such that t(v) = s,, m(v) = syv. Clearly, t and m are injective. For each
u € M(Q), write u = s,v, where s, = |jul|g: and v = —*— € U(Q). Since

llell g1
m(v) = u, m is surjective. Since U(Q) is path-connected, M(ins path-connected.
Note that u € M(Q), so J'(u) = 0, or s2 = [, s5|v|P. By the Sobolev embedding

theorem, we have s2 = Jo sBlv[P < dsb, or ¢ < s, where d and ¢ are two positive

constants. Therefore, ||ul|g1 = [|$yv|| g1 = sy > ¢ for u € M(Q).
(#4) The proof is similar to part (). O
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Theorem 4.3. Let 8 > 0 and let {u,} in X(Q)\{0} be a sequence for J such that
J(un) = B+ o0(1) and a(uy,) = b(uy,) + o(1). Then there is a sequence {s,} in RT
such that s, = 14 0(1), {spun} is in M(Q) and J(spun) = 8+0(1). In particular,
if {un} is a (PS)g-sequence for J, then there is a sequence {s,} in RT such that
{snun} is in M(Q) and there is also a (PS)g-sequence in X (Q) for J.

Proof. By Lemma there is a sequence {s, } in R* such that {s,u,} is in M(Q) :
s2a(uy,) = sPb(uy,) for each n, because a(u,) = b(u,) + o(1) and J(u,) = B+ o(1)
imply s, = 1+ o(1). Therefore, J(spuy,) = 8+ o(1). The last part follows from
Lemma [2.38 ]

A minimizing sequence {u, } in M(Q) of an(2) is a (PS)q,, ()-sequence in X ()
for J .

Theorem 4.4. Let {u,} be in X (). Then {un} is a (PS)ay 0)-sequence for J if
and only if J(u,) = am(Q) + o(1) and a(uy,) = bluy) + o(1). In particular, every
minimizing sequence {u, } in M(Q) of am(S2) is a (PS)ay(0)-sequence in X (S2) for
J . In particular, ani(Q2) is a (PS)ay o) —value in X (Q) for J .

Proof. Suppose {u,} is a (PS)a,,(q)-sequence in X (§2) for J. By Lemma we
have a(u,) = b(u,) + o(1).
Conversely, let {u,} satisfy J(u,) = am(2) + o(1) and a(uy,) = b(uy,) + o(1).
Then we have
2
a(un) = %QM(Q) +o(l) asn— oo (4.1)
p—
For n=1,2,..., denote

Lo(p) = /Q [tn [P 2 U, for ¢ € X(Q). (4.2)

Let ¢ € U(Q2). By Lemma t > 0 exists such that t¢ € M(Q) : [[t¢[|3. = [td]|}.;
we conclude that ¢ = ||¢||p 72 and

I 2

< >|| ol =P 2 o P2
(Q) H? 2p 2p Lr -

Therefore, ||¢]Lr < ( M(Q))2 . For each n,

@1 =1 [ Jual- 2un¢|
< (L) ([1or)"

< (Lgam(@)F (Z5am(@)F + o)

2
— (@) + (1) asn— o

we have

2
Il < (prQOzM(Q))lm +o(1) asn — . (4.3)
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Furthermore, by (4.2)), we have

(- = Jalunl”

Ml Ml
= (b(un))"? + o(1) (4.4)

2
= (pfp204M(Q))l/2 +o(l) asn— oo
By (4.3) and (4.4), we conclude that
2
lnllx— = (prQ MOQ)Y2 +0(1) as n — co.

By the Riesz representation theorem, for each n, w, € X(Q) exists such that, for
each ¢ € X(Q),

() = (wn, Q) = /Q (V- Vo + wnip),
and

2p
lwn [ = [llnllx- = (pi_ 2041\/1(9))1/2 +o(1). (4.5)
Consequently,
2
(W ) 11 = L (1) :/ unl” =~ cna () + o(1). (4.6)
Q

-2
By (4.1), (4.5)), and (4.6)), we obtain
Hun - wn”%[l = <Unaun>H1 - 2<un7wn>H1 + <wn;wn>H1
= HunH%ﬂ — 2(Up, wn) g1 + ||wnH§{1
2p 2p 2p

= — Q) —2——— Q —_— Q 1

2 ana(6) — 22 Sana (@) + -2 ana() + o)
=o(l) asn — oc.

For ¢ € U(Q2), we have

(J' (un), @) Z/(Vun-VsO+un¢)—/\un|p—2un<p
Q Q

= <un790>H1 - <wn7¢>H1 = <un - wna<p>Hla
S0
1" (un) | x-2 < un — wnllm: = o(1).
We conclude that J'(u,) = o(1) strongly in X ~1(Q) as n — oo. O

If u achieves apn(2), then u is a nonzero solution of (1.1J).

Theorem 4.5. Let u € M(Q) be such that J(u) = min,enmq) J(v). Then u is a
nonzero solution of .

Proof. Set g(v) = a(v) —b(v) for v € X(Q). Note that (¢'(u),u) = (2 —p)a(u) # 0.
Since the minimum of J is achieved at w and is constrained in M(), by the
Lagrange multiplier theorem, A € R exists such that J'(u) = Ag’(u) in X(Q).
Thus,

0= <J/(u)au> = )\(g’(u),u>7

or A = 0. Thus, J'(u) = 0. Hence, u is a weak solution of such that
J(u) = am(9). O
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(C) Consider the mountain pass minimax problem

= dil )

where e # 0, J(e) =0, and
I'(Q) = {g € C([0,1], X()) : 9(0) = 0,9(1) = e}.

Then ar(£2) > 0 is a consequence of the following lemma.

Lemma 4.6. A ball B(0;7) in X(2), ¢ > 0, and e ¢ B(0;r) exist such that
J(e) =0 and min,cpp(oy J(v) > c.

Proof. By Lemma [4.2] (ii), for each u € U(R), there is a t > 0 such that J(tu) = 0.

Let e = tu, then J(e) = 0. Since for each v € X (Q)\{0}
1 1
J(v) = ia(v) - Eb(v)v

by the Sobolev inequality, there is a constant ¢; > 0 such that b(v) < cya(v)?/?,
and we have

J() > a(v) % - %a(v)p?;z}.
Take 7 > 0 such that e ¢ B(0;7) and § — %rp_2 > 1 then for [|v||g1 =, we have
J(v) > ¢,
where ¢ = 172, O

We require the following lemma.

Theorem 4.7 (Ekeland variational principle). Let M be a complete metric space
with metric d and let F : M — RU {400} be lower semi-continuous, bounded from
below, and # oo. Then for any e > 0 and A > 0, and any v € M with

F(u) <inf F + ¢,
M

there is an element v € M such that
F(v) < F(u),
1
d < =
(U, ’U) — )\’
F(w) +eXd(v,w) > F(v) forw # v.
Proof. Tt is sufficient to prove our assertion for A = 1. The general case is obtained
by replacing d by an equivalent metric Ad. We define the relation on M:
w < v <= F(w)+ed(v,w) < F(v).

It is easy to see that this relation define a partial ordering on M. We now construct
inductively a sequence {u,,} as follows: ug = u; also assuming that u,, has been
defined, we set

Sp={weM|w<u,}

and choose uy1 € Sy, so that
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Since up41 < Up, Spy1 C Sy, and by the lower semicontinuity of F', .S, is closed.
We now show that diam S,, — 0. Indeed, if w € S,11, then w < up41 < uy, and
consequently,

. 1
ed(w, uny1) < Funy1) — Fw) < lélan to1 Hlan =0T
This estimate implies
2
diam S, 11 < ———
T o = e(n+1)
and our claim follows. The fact that M is complete implies that
ﬂnZOSn = {U}

for some v € M. In particular, v € Sy, that is, v < ug = u. Hence,
F(v) < F(u) —ed(u,v) < F(u).
Moreover,

d(u,v) < e H(F(u) — F(v)) < a_l(iil/[fF—i—a—iJr&fF) =1

To complete the proof we must show w < v implies w = v. If w < v, then w < u,
for each integer n > 0, that is w € Ny,>0S, = {v}. O

Lemma 4.8. Let T'(2) be the complete metric space with the usual L distance d
and J € CY(X(Q),R). Then for each e > 0 and each f € T'(Q) such that

Jnax J (f(s)) < ar() +e, (4.7)

v € X(Q) exists such that

ar(2) £ < J(v) < max J(F(s),

dist (v, £([0,1])) < /2,
| (v)] < e'/2.
Proof. Without loss of generality, we can assume that
0<e<ar(f). (4.8)
Let f € I'(Q) satisfy the condition (.7). We define the function ® : T'(€2) — R by
D(g) = Jnax J (9(s))-

Then (i) ® is bounded below: ®(g) > ar(f2) > 0.

(73) ® is continuous at each g € I'(Q?) : since J is continuous on the compact set
K = ¢([0,1)), for each € > 0, u € K, there is a d,, > 0 such that if w € B(u;d,,) is
an open ball in X (), then |J(w) — J(u)| < ie. Since K is compact, finite values
B(ui;dy,), i =1,...,n, exist such that

] 0
K C B(uy; SI)U--~UB(un; ;")
Take § = min{%,...,éz’l }. Let k € T'(Q) satisfy ||k — g|lr~ < . For each
s € [0,1], we have

k(s) —g(s)| <,
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or g(s) € B(uy; 612” ), k(s) € B(u;;0y,). Thus

[J(k(s)) = J(g(s))| <&, or [|®(k)—2(g)] <e.
The Ekeland variational principle (Theorem implies the existence of h € T'(£2)
such that
d(h) < O(f) < ar(Q) +¢,

h < gl/2
Iél[g)i]l (s) = f(s)| <e

and
®(g) > ®(h) —e2d(h,g) whenever g € [(Q) and g # h. (4.9)
Let A={s€0,1]: ar(Q?) —e < J(h(s))}, then A is nonempty since

Q) — Q) = inf J < J(h(s)).
arp(Q2) —e < ar(®) jonk ) e (9(8))_321[% (h(s))

Note that for s € A,
|/ (h(s))] < €'/2,

if and only if

[(J'(h(s)),v)| < e¥/? for ve UQ),
if and only if

(J'(h(s)),v) > —e'/? forveU
We claim that there is some s € A satisfying |J'(h(s))
case, then for each s € A, vy € U(Q) exists such that
the continuity of J’, s > 0 and an open ball B in [0
that for t € B; and v € X () with |u| < d5, we have

(J'(h(t) + u),vs) < —e/2. (4.10)

Since A is compact, a finite subcovering By, Bs, ... B, of A exists. We define the
Lipschitz continuous functions, for each j =1,2,...,k, ¢; : [0,1] — [0, 1] by

dist(t, BS,)/ o8, dist(t, B,) for t € A;
¥;(t) = 7

)-
< ¢1/2. If this is not the
J

(h(s)),vs) < —€!/2. By
1] containing s exist such

(€
|
(

0 for t ¢ Uk, B,..
Then
k
Zz/}j(t) = 1for t € A;
k
1Y i (tvs, |l <1 for t € A
j=1

Let § = min{ds,,...ds,} and let ¢ : [0,1] — [0,1] be a continuous function such
that

1 i () > ar(Q);
vl = {0 if J(h(t)) < ar(Q) — ¢,

and let g € C([0,1], X(£2)) be defined by

k
g(t) = h(t) + 69 (1) Y _v;(t)vs,-

Jj=1
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It follows from that, for t € {0,1}, we have J(h(t)) = 0 < ar(Q)) — ¢, or
¥ (t) = 0. Consequently, g(0) = h(0) = 0 and ¢g(1) = h(1) = e, that is, g € ().
The mean value theorem and imply that, for each ¢ € A, there is some
0 < 7 < 1 for which

J(g(t)) — J(h(1))
k k
= (J'(h(t) + 760 (6))_w;(t)vs; ), ()Y w5 (t)vs,)

k k
= 5¢(t)z¢j(t)<J'(h(t) +T0U(1)Y_i(t)vs, ), vs,)

j=1

(4.11)

< —'25y(t).
Thus
J(g(t)) < J(h(t)) — e"/260(t) < J(h(t)).

Ift ¢ A, then ¢(¢) = 0 and hence J(g(t)) = J(h(t)). Let ¢ € [0,1] satisfy J(g(t)) =
®(g), then we obtain

J(h(t)) > J(g(t)) = ar(),
so that £ € A and ¥ (¢) = 1. By , we obtain

J(g(t) = J(h(B) < —€'/25
and in particular

®(g) +e'/26 < J(h(D)) < @(h),

so that g # h. However, by the definition of g, we have d(g,h) < 6 and

®(g) +£'/2d(g, h) < (h)
which contradicts (4.9)). The proof is complete . ([

ar(Q) is a (PS)-value in X (Q) for J.

Theorem 4.9. Under the conditions of Lemma[{.8 for each minimizing sequence
{fr} CT(R) such that

D(fr) = srél[g‘?i]‘](fk(s)) = ar(Q) +o(1),

there is a (PS)-sequence {vy} in X (Q) for J satisfying
J(vr) = ap() + o(1),
dist(vg, f([0,1])) = o(1),
J' (vg) = 0(1)  strongly in X~ 1(Q)

as k — oo. In particular, ar(Q) is a (PS)-value in X () for J.
Proof. We define ¢}, = Slél[%?ilj(fk(s)) — ap() if Srél[%’)i](](fk(s)) —ar(Q) > 0 and
Ep = % in the other case. Then we apply Lemma to e and f:

or(§) — & < J(vy) < max J(fi(s)) < ar(Q) + e,

dist(vg, fx(0,1])) < &/,

|J (vg)] < sé for each k > 0.
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This completes the proof. ([
(D) Consider the infimum of positive (PS)-values in X () for J :

ap(Q) = ﬁelgfm B,

where P () is the set of all positive (PS)-values in X () for J. That ap(Q2) > 0 is
a consequence of the following theorem.

Theorem 4.10. There is a By > 0 such that 5 > [y for every positive (PS)-value
B in X(Q) for J.

Proof. Let {uy} be a (PS)g-sequence in X () for J with 3 > 0. By Lemma [2.38]
a positive sequence {c,(0)} exists such that ¢, (5) = o(1) as n — oo, § — 0, and

a(un) < cn(B)?. (4.12)
By the Sobolev embedding theorem, there is a constant d > 0 such that
b(un) < da(uy,)P/?. (4.13)

By Lemma [2.38] (4.12)), and (4.13)), we have
o(1) = a(un) — b(uyn) > aluy,) [1 - dcn(ﬂ)pd] .

Take By > 0 and ng > 0 such that if 3 < By and n > ng, then 1 — dc,(3)P~2 > %
Consequently, a(uy) = b(u,) = o(1), or J(uy) = o(1). Thus, 5 > So. O

ap () is a (PS)-value in X (Q) for J.
Theorem 4.11. ap(Q) € P(Q).

Proof. For each n € N, take u,, € X(Q) and ¢, € P(2) such that

1
n Q ™
[en —ap(Q)] <

1
Jn_n<77
() = cal <

1
I )l <
Then J(up) = ap() + o(1) and J'(u,) = o(1). Thus, ap(Q) € P(Q). O
The following theorem is very useful.

Theorem 4.12. Let § be a positive (PS)-value in X () for J. Then
(1) 8= ay(Q); (i) 8= am(Q); (i) 8= ar(R); (iv) § > ap(9).
Proof. Let {u,} be anonzero (PS)g-sequence in X () for J with 8 > 0. By Lemma
[2:38] we have
J(un) = B+ o(1),

a(uy) — b(uy) = o(1).
(i) Let wy = un(a(uy)) ™2, then a(wy,) = 1 and b(w,) = a(un) P/2b(u,) < ¥(Q)?.
Thus, a(n) > Y2/ 1 o(1), or § > (5 — 1)y(2)2/C7) = a,(0).
(i) By Theorem [4.3] there is a sequence {s,,} in R* such that {s,u,} C M(Q2) and
J(snun) = B+ o(1). Therefore, 5 > am ().
(#i1) By Theorem and Lemma (i), there are sequences {s,} and {¢,} in
R such that {s,u,} C M(Q), {t,u,} C Z(R), and J(spu,) = B+ o(1). Since the
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manifold Z(€) is path-connected, there is a path ¢, in Z(2) that connects t,u,, to
e. Let v/, be the line segment connecting 0 and ¢, u,, and the path v, = v/, U (,,
then

ar() < max J(y,(t)) = J(spun) = 5+ o(1).

— 0<t<1
Thus, 8 > ar(Q).
(iv) Clearly, 8 > ap(Q). O

By Theorems 44 and we have the following theorem.
Theorem 4.13. a,(Q) = am () = ar(Q) = ap(Q).

Definition 4.14. By Theorem we conclude that the positive (PS)-values
ay(Q2), ar (), am (), and ap () in X () for J are the same. Any one of them is
called the index of J in X (€2) and denoted by ax (£2). By the definition of an (), if
u is a nonzero solution of Equation (L)), then u € M(£2). Thus, J(u) > am(Q) =
ax(92). We say that a nonzero solution u of Equation in X(Q) is a ground
state solution if J(u) = ax(€2), and is a higher energy solution if J(u) > ax ().

Remark 4.15. We denote ax () by «(Q) for X(Q) = H}(Q2) and by a,(Q2) for
X(Q) = HX(Q) (see Definition [6.1).

Remark 4.16. By Theorem a ground state solution in X (£2) is of constant

sign. Note that if u is a solution of (|1.1)), then —u is also a solution of (l.1)). By

the maximum principle, if v is a nonzero and nonnegative solution of (|1.1)), then u
is positive. From now on, by a ground state solution in X (), we mean a positive

solution of (1.1).

Definition 4.17. We say that a domain  in RY is an achieved domain if there
is a solution w in H () of (1.1 such that J(u) = (), by Remark we may
assume that u be positive. Otherwise, we say that () is a nonachieved domain.
Theorem 4.18. (i) If Q is a large domain in RY, then a(Q) = a(RY);

(i) If Q is a large domain in A", then a(Q) = a(A");

(#i1) If Q is a large domain in A™72 then a(Q)) = a(A™2).

Proof. Tt suffices to prove part (7). Let w € H*(RY) be a ground state solution of
Equation (|1.1)) satisfying
2
atw) = [ (Vo +0?) =bw) = [ ol = Lo a(®)
RN RN p—2

For 7, — oo, take {z,} C € such that BY(z,;r,) C Q. Consider the cut-off
function n € C°([0,00)) as in (2.2)), and for each n, let

wn(z) = n(

2|z — zy|
Then w,, € H}(Q2) and

atwa) = [ (Vi +02) = (L5)a®) +of1).

b(wy) = /Q|wn|p - (%)Q(RN) to(l) asn— oo

Thus,
J(wy,) = a(RY) +o(1),
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a(wy,) = b(w,) +0o(1) asn — oco.

By Theorem {wn} is a (PS)q @y )-sequence in Hj(Q) for J. Therefore, a(Q) <
a(RY). Clearly, a(RY) < a(Q), thus we have a(Q) = a(RY). O

Theorem 4.19. Let Q be a large domain in RYN. If 3 is a positive (PS)-value
in HE(QY) for J, then mB is also a positive (PS)-value in H}(Q) for J, where
m=2,3,....

Proof. Tt suffices to prove the case m = 2. First embed Hg(Q) into H*(RY). Let
{un} be a (PS)g-sequence in Hj (). Then by Lemma there is a constant ¢ > 0
such that, for each n, a(u,) < c and b(u,) < c. For r,, — oo, since Q\BY(0;5r,,)
is also a large domain in RY, z,, € Q exists such that B (z,;2r,) C Q and

1 1
/ |Vun|* +u2 <~ and lun|P < —.
BN (03rp,)¢ n BN (0;ry,)¢ n

Note that |z,| > 5rp,. Let n,(2) = (‘ |) where 17 is as in 7 Un(2) = np(2)un(z)
and wy,(2) = v, (2 — 2,). Then we have |V, | < 2 - and suppw,, C BN (z,;2r,).

(2) J(vn) = B+ o(1): note that
(Vol? = [0 * [ Vun|? + Vi, *|un? + 2051, Vi, Vg
Thus, for z € BY(0;7,), we have |Vuv,| = |Vu,| and

/\V%P / |an|2+/ Vo, 2
0 Tn) BN(O;QT'n)\BN (O;Tn)

:/ |V, |? + o(1)
BN (0;ry,)
= / |Vu,|? + o(1).
Q
Similarly, we have

/|Un|2 /\un\2+o 1), /|vn\”:/|un|r7+o(1)
Q Q

Thus, J(v,) = J(u,) + 0o(1) = B4 o(1). Clearly, for each n, J(w,) = J(v,), and
hence J(wy) = 5+ o(1).
(7)) J(vn, + wp) =28+ o(1) : since the supports of v,, and w,, are disjoint, we have

a(vn +wn) :/|v(vn+wn)|2+(vn+wn)2
Q
=/|an|2+vi+/|an\2+wi+2/anan+2/vnwn
Q Q Q Q

= a(v,) + a(wy,).

Now,

[ 1on+wal? = onl? =
Q

— [ ol = o~ o+ wal” = fonl? [
BN (0;2r,) BN (0;2r,)cNQ

=0.
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Thus,

b(on + wn) / [V + wnlP = / ol + / wal? = b(v) + b(uwn).

Hence,

J (v +wp) = %a(vn +wp) — %b(vn +wy) = J(vg) + J(wn) =26 + o(1).

(#51) ||J (v, + wy)|| = 0(1) : for ¢ € C(R), we have

(' (o). 0) = / n(Va) - Vo + / I (Vitn) - Vo + it
BN (05r) BN (0irn)
- / |77nun‘p7277nun(p + 0(1)
BN (0;7r,)
- / Viin(2) - Vpl2) + tin(2)0l2)
BN (0ir)

- / [un P~ unip(2) + o(1)
BN (0;7n)

= (J'(un), ) + o(1).

Thus, ||J'(vn)||g-1 = o(1). Similarly, ||J'(w,)||g-1 = o(1).
We have

/ |U" + wn|p72(vn + wn)@ - |Un|p72vn90 - ‘wn|p72wn90

Q

- oy 0l 0 ) = foul o = P
BN (0;2r,

+ / ‘Un + wn|p72(vn + wn)‘ﬁ - |Un|p72vn90 - |wn|p72wn@
BN (0;2r,)cNQ
=0.

Now for ¢ € C°(£2), we have

(J' (v, + wy), /V (Un + wy) Vo + (v + wy) e
- / [V + W [P (v 4wy
Q

Z/VUnV<P+Un<P+/anV<P+wn<P

/ [onl? 20 — / P 2o

= (J'(vn), ) + (J'(wn), @)
Therefore, ||J'(vy + wy)|[g-1 = o(1). We conclude that
J(vn, + wy) =28 + o(1),
J (vn +wy,) =0(1)  strongly in H~(Q).

The following theorem has a proof similar to that of Theorem [4.19)

43
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Theorem 4.20. Let Q be a large domain in A". If B is a positive (PS)-value
in HY(Q) for J, then mB3 is also a positive (PS)-value in HL(Q) for J, where
m=2,3,....

Lemma 4.21. The set P(Q) is closed.

The proof of this lemma is similar to the proof of Theorem [4.11} so we omit it.
By Lemma J(M()) is bounded below away from zero. Actually for any
domain Q in RY | J(M()) is unbounded above.

Theorem 4.22. If Q is a domain in RY, then J(M(Q)) = (a(Q),00) for a
nonachieved domain @ and J(M(Q)) = [a(Q), 00) for an achieved domain 2.
Proof. (i) Suppose that Q is bounded. By Struwe [66, p.116 Theorem 6.6], an
unbounded sequence {u,} exists in M(f2) for J. Since J(u,) = (3 — %)a(un) and
M($?) is path connected, then we have J(M(Q)) = [a(f2), 00).
(7i) Let Q be an unbounded domain and €; be a bounded domain in €. Then
M(©2;) € M(Q) and () <a(€1). By part (i), we have

(1), 00) = J(M(&)) C J(M(£2)).
Since M(2) is path connected, the result follows. O

Theorem 4.23. Let ) be an Esteban-Lions domain as well as a large domain in
RN, Then we have P(Q) = {a(Q), 2a(Q), 3a(),...}.

Proof. By Theorem P(2) D {a(Q), 2a(9), 3a(f),...}. Suppose that a
(PS)s-sequence {u, } exists for J, where ka(Q2) < 8 < (k+ 1)a(Q) for some k €
N. By the Palais-Smale decomposition theorem (3.1} Equation has a nonzero
solution. This contradicts Theorem [0.7 O

By Lemma [2.38] if {u,} is a (PS)g—sequence in Hg(Q) for J, then a(u,) =
b(un) + o(1) = 253 + o(1). By Theorems m and [4.23) we have:

Lemma 4.24. Let Q be an Esteban-Lions domain as well as a large domain in RV .
For each B and m = 0,1,..., satisfying ma(Q) < B < (m + 1)a(Q), then there is
a sequence {u,} in HE(Q) for J satisfying
2
a(un) = b(un) +o0(1) = =55+ o(1)
but
J (un) 0 strongly in H™(Q).

Let  be an unbounded domain in RY and Q, = QN BY(0;r,), then we have
the following theorem.

Theorem 4.25. ax(9,) = ax () +o(1) as n — 0.

Proof. Suppose that {u,} in X () is a minimizing sequence in M(2) of ax (),
then by Lemma {un} is bounded in X (€2). Let {r,} be a sequence of strictly
increasing positive integers such that r, > n,

1
/ (Vg |? + u,|? < = (4.14)
an{lzl> 3} n

and

1
/ un|? < = (4.15)
anflz1> ) n
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Define n,(z) = n(), where 7 is as in 1' Then nyu, € X(2,) C X(©2). From
the inequalities (4.14) and (4.15)), we obtain
a‘(nnun) = a‘(un) + 0(1) and b(nnun) = b(un) + 0(1)
Therefore, we have
J(nun) = J(up) + o(1) = ax () + o(1).
and
a’(nnun) = b(nnun) + 0(1)'
By Theorem there is a sequence {s, } in R™ such that s, = 1+0(1), {spnnun}

is in M(Q) and J(spnnun) = ax () + o(1). Note that J(s,nuun) > ax () >
ax(92). Hence, ax(Q2,) = ax(Q) 4+ o(1). O

Let © be a domain containing zero in RY. For § > 0, we define
I ={6z|z€Q}.
Then we have the following theorem.

Theorem 4.26. (i) lims_ o, a(692) = a(RY);
(#7) Let 082 be achieved for each § > 0, then lims_g+a(6Q2) = co.

Proof. (i) By Theorem below, there is a ground state solution u in H'(RY)
such that a(u) = b(u) and J(u) = a(RY). A sequence {6,} exists such that

8, — oo and BN (0;n) C 6,9. Consider the cut-off function 1 and 1, (z) = n(%)

for n = 1,2,.... Let un(2) = nu(2)u(2), then u,(2) € HF(BN(0;n)), J(u,) =
a®N) + o(1), and a(u,) = b(u,) + o(1) as n — oo. By Theorem there is
-

a sequence {s,} in RT such that s, = 1+ o(1), {spu,} is in M(B
J(spun) = a(RY) 4+ 0(1). Then we have

lim «(6,Q) < lim a(BY(0;n)) < lim J(s,u,) = a(RY) +o(1).

(0;n)) and

However, a(RY) < a(5Q) for each § > 0. Thus, lims_, a(62) = a(RY).
(ii) Let u be a ground state solution of Equation (1.1]) in Hg (692), then a(u) = b(u)
and J(u) = a(d9). Set v(z) = u(d2), then v € H}(Q). Note that

a(u) = / (|Vu(2) > + u(z)?)dz = 5N72/ |Vo|? + 5N/ v?,
5Q Q Q
and
P = ([ Jup?r =53 ([ or)?,
5Q Q
Therefore, by the Sobolev continuous embedding theorem,

a(u) > 5N—2/ Vo2 > caN-2(/ WP)3 > N2 % (b(u))2/7.
Q

Q
That is, (a(u))pv;2 > N2 Thus,
1 1 1 1, ny_g_2xn _
—(=_= > o= — = > \P/(P—2)
Tw) = (5= Dalu) = el = )6V F)
Therefore, a(6€2) > c(3 — %)(61\7_2_%)?/(1772)' Since p < 2%, we have N — 2 —
% < 0. We conclude that lims_ o+ a(0Q) = oc. O

As a corollary of Theorem [4.26] we have
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Theorem 4.27. (i) lim, o, a(BN(0;7)) = a(RN); (ii) lim,_ oy a( BN (0;7)) = oco.
Using the same argument as for the proof of Theorem [£.26] we obtain the fol-
lowing theorem.

Theorem 4.28. (i) lim; .o a(A”, ;) = a(A"); (i) lim;_o+ a(A”, ;) = 00,

Let © = O x RY, where O is a bounded domain in R™, m > 1, n > 1. With the
same argument of the proof in Theorem [£.26] we get

Theorem 4.29. (i) lims_o, a(6Q2) = a(RY); (i) lims_ oy a(6Q) = cc.
We have the following continuity property.

Theorem 4.30. We have
hmoz((SAr) =a(A").

6—1
Proof. (i). hm a(éA”) = a(A") : let 1 < § < 2. By Theorem (it) below,
a(2A7) < 04((5A7) < a(A"). In addition, a(§A") is increasing as d is decreasing.
Let ¢ = lims_,1+ a(6A"), then ¢ < a(A”). We claim that ¢ > a(A"). By Theorem
below, a ground state solution u, in M((1+ )A") exists such that

a(un) = blu,) and  J(up) = a((1+ %)Ar) for each n € N.

Moreover, we have a(u,) = b(u,) = (;%2)04— o(1) and J(u,) = a((1+ L1)A") =
c+o(1). Define v, (2) = un ((1 + £)2) € Hj(A"). Since

aluy,) = (1+ %)N_z/

1
|V |2dz + (1 + f)N/ v2dz
A" n r

and .
bluy) = (1+ f)N/ |0, |Pdz,
n r

then {v,} is bounded in H}(A™). Thus, a(v,) = b(v,) +0(1) and J(v,) = c+o(1).

By Theorem sp > 0 exists such that s,v, € M(A"), s, = 1+ o(1), and

J(snvn) = ¢+ o(1). Hence, ¢ > a(A"). We conclude the proof.

(i4) 5111{1_a(5AT) = a(A") : by Theorem u € M(A") satisfies a(u) = b(u)

and J(u) = «(A"). Let vy(2,y) = u((1 + ;)z,y) for n € N. Then v,(z,y) €
(n_HAT) a(vy,) = a(u)+o(1), and b(v,) = b(u ) o(1). Thus a(v,) = b(v,)+0(1)

as n — 0o and

J(vy) = %a(vn) - %b(vn) = J(u) + o(1).

By Theorem . for each n, there is an s,, > 0 such that s,v, € M(;Z7A"),
=14 0o(1) and J(spv,) = J(u) + o(1) as n — oo. Moreover, J(s,v,) >

A") > a(A") for each n € N. By the squeeze theorem,
6hm a(dA") = a(A").
—1-

(n+1

O

Bibliographical notes: The constrained maximization problem a.(f2) is a clas-
sical problem. Theorem is from Lien-Tzeng-Wang [47]. The Nehari minimizing
problem an(Q2) was first studied by Nehari [57]. Theorem [4.3is from Chen-Wang
[26], p.158]. For Theorem Stuart [67] proved that there is a (PS)q,, (0)-sequence.
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However, Chen-Wang [26], Lemma 2.1] proved that every minimizing sequence in
M(€) for anm(€2) is a (PS)q,,(0)-sequence. The mountain pass minimax problem
ar(Q) is originally from the mountain pass lemmas and by Ambrosetti-
Rabinowitz [4] and the new version is from Brézis-Nirenberg [15]. Theorem is
due to Willem [78] and Wang [71] p.4241]. Theorem [2.7]is from Lien-Tzeng-Wang
[47, Lemma 2.5].

5. PALAIS-SMALE CONDITIONS

The Palais-Smale conditions are conditions for compactness. They are useful in
ascertaining the existence of solutions of ([I.1)). In this section, we assert that eight
related (PS)-conditions in X () for J are actually equivalent.

Theorem 5.1. The (PS), ()-condition for J holds in a bounded domain Q. In
particular, there is a ground state solution of (1.1 in a bounded domain €.

Proof. Let {u,} be a (PS), (q)-sequence in X () for .J, by Lemma {un} is
bounded and

J(un) = ax () + o(1), a(u,) = b(u,) + o(1).
Take a subsequence {u,} and u € X (§2) such that u,, — u weakly in X (). By the
compactness theorem, u,, — u strongly in L?(Q). Suppose u = 0, then b(u,) = o(1).
Thus, a(u,) = o(1) and J(u,) = o(1), contradicting that a(€2) > 0. By Theorem
u is a ground state solution in X (2) for J and u, — w strongly in X (). O

The (PS)q (0)-condition holds in unbounded domains and quasibounded do-
mains.

Definition 5.2. A domain € is quasibounded if
lim  dist(z,00) = 0.

2€Q,|z|—o0

Example 5.3. (i) Let f,g: RV~! — R be two functions of C*, f < g,
lim (g(z) — f(x)) =0,

|| —o0

and
Q={z=(2,y) e RV xR: f(2) <y < g(x)}.

Then €2 is a quasibounded domain;
(ii) Let A be the domain in RNY~! x R with a hypersurface boundary. For each
teR, let Ay = {(z,y) € A:y =1t} be the section of A at ¢t. If lim;_,, diamA; = 0,
then A is a quasibounded domain.

Theorem 5.4. (i) Let Q be a C' quasibounded domain, then the embedding
HY(Q) — L) is compact, where 2 < q < 2*;

(i4) The (PS)a (0)-condition holds for J in a C quasibounded domain Q, and there
is a ground state solution of in a C* quasibounded domain.

Proof. (i) By Adams [2]. (i) Similar to the proof of Theorem O

Theorem 5.5. Let m > 1, k > 2, w be a smooth bounded open set in R™, and let
E = w x R¥. Denote by (x,y) a generic point in R™ x R* and consider the space
HL(E) consisting of functions in H} (E) that are spherically symmetric in y. Then
the Sobolev embedding from HL(E) into LY(E) is compact for every q € (2, 225)
with N =m + k.
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The proof of this theorem can be found in Wang [72] and Lions [50].

As a consequence of Lemma [2.38] for each (PS)g-sequence {u,} in X () for J,
there is a subsequence {u,} and a v in X(Q) such that u,, — u weakly in X(Q).
Then u is a solution of Equation .

Theorem 5.6. (i) Let {u,} be a (PS)a (q)-sequence in X () for J and u in X (Q)
satisfying u, — u weakly in X(Q). Then u is a solution of Equation ;

(i) Let {un} be a (PS)qy(q)-sequence in X () for J and u in X(Q) such that
Up, — u weakly in X () and w is nonzero. Then u is a ground state solution of
Equation and u, — u strongly in X (Q);

(iii) The (PS)ay(0)-condition holds for J if and only if for each (PS)y ()~ se-
quence {un} in X(Q) for J, there is a subsequence {uy}and a nonzero u in X (Q)
such that u, — u weakly in X ().

Proof. (i) By Lemmas and Theorem [2.33] there is a subsequence {u,,}
such that w, — w weakly in X(Q), a.e. in Q, and strongly in L] () where
1 < ¢ < 2*. By Lemma we obtain, for ¢ € X(Q) NC(Q), suppp = K,

/QVun-V¢—>/QVu-V¢,

/Qun¢ - Qu¢.

Let g, = |unP~ ¢ and g = |uP~1¢ . Then ||tn|P~2und| < gp for each n, g, — g
a.e. By the Rellich-Kondrakov theorem [2.33} g, — ¢ in L*(K). By Theorem m

[P0~ / [ulP—2ug.

Thus, (J'(uy), ¢) — (J'(u), ¢) for each ¢ € X (02 ﬂC‘X’( ). Since (J'(un), ) = o(1),
for each ¢ € X (2)NC° (), we have J'(u) = O in X ~1(2). Therefore, u is a solution
of Equation (1.1).

(#) By part (i), u is a nonzero solution of Equation (1.1)), hence u € M(Q2) and

1 1
J(un) = ia(un) - ;b(un) = ax(22) +o(1),
(' (un), un) = a(un) — bluyp) = o(1).
Thus,
2p
a(u,) = maX(Q) + o(1). (5.1)
Since a is weakly lower semicontinuous, we have

%(@) £ I = (5 = )a(w < (5~ ) minf alu,) = ax(),
or J(u) = ax (). By Lemma [8.2] below, u is of constant sign. Recall that if w is
a solution of Equation , then —w is also a solution of . By the maximum
principle, we may assume that w is positive. Let p,, = u,, — u. By Lemma and
2.14] we have
J(pn) = J(un) = J(u) + o(1) = o(1).

By Lemma [2.15] {p,} is a Palais-Smale sequence for J, thus (J'(p,),pn) = o (1).
Similar to d&l we have

2p
a(pn) = b2

=5 (pa) + o(1) = o(1).
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Thus, u,, — u strongly in X (). (i) follows by part (ii). O

Let Q' S Q% and oy = ax (@) for i = 1,2, then clearly o5 < ok. If o = ak,
then we have the following useful results.

Theorem 5.7. Let Q! ; 02 and J : X(22) — R be the energy functional. Suppose
that a3 = ak;. Then
(i) ok does not admit any ground state solution;
(i) J does not satisfy the (PS)y1 -condition;
(ii) J does not satisfy the (PS)yz -condition.
Proof. (i) Suppose that o admits a ground state solution u € M(Q!) C M(Q?)
such that J(u) = k. Then we have J(u) = ak = a% = min,emqz) J(v). By
Lemma and Theorem (i), (i), u is a ground state solution of in 02,
Thus, u > 0 in Q2 which contradicts the fact that u € X (Q').
(73) By part (i) and Theorem [5.6| (é¢), (¢3).
(iii) Let {u,} in X(Q') satisfy J(u,) — o and J'(u,) — 0 strongly in X ~1(Q1).
By Theorem {sn} in R exists such that s,, = 1+0(1), w,, = s,u, € M(Q2!) and
J(wy) = ak+o(1) and J'(w,) = o(1) strongly in X ~1(Q'). Since M(Q') C M(Q?),
{wy} € M(Q?) and J(wy,) = a% +o(1). By Theorem we have
J(wn) = a%{ +o(1),

J' (wy,) = o(1) strongly in X ~(Q?).
Suppose that J satisfies the (PS),z2 -condition. Then there is a subsequence {w, }
and a w € X (Q?) satisfying w,, — w strongly in X(Q?) and J(w) = a%. Hence,
w # 0. By Lemma below and the maximum principle, w is a ground state
solution of in Q2. Since {w,} € M(Q!) and w, — w strongly in X(0?),
we have w = 0 in (21)¢. This contradicts the fact that w is a positive solution of
Equation in Q2. Thus, J does not satisfy the (PS)O@( -condition. O

Compare Theorem for X(Q) = HZ(2) and the following results.

Corollary 5.8. Let E be either RN, or A™, or A™™2 and Q a proper large domain
of E. Then there is no any ground state solution of (1.1)) in Q.

The proof of this corollary follows by Theorem [5.7| (¢4) and Theorem m

Theorem 5.9. Let X(Q) = H}(Q). We have: (i) a(A") > a(0©) for each domain
© 2 A7; (i) J does not satisfy (PS)qar)-condition.

Proof. (i) Since the infinite strip A" is a periodic domain, by Theorem below,
there is a ground state solution ug € M(A") such that
J(UQ) = Oz(AT).

The result follows from Theorem 5.7
(i1) Let u, = ug(z,y + n) for each n. Since A" is a periodic domain, we have
un € HY(A™) for each n € N,

J(up) = a(A")  and a(up) = b(uy).

By Theorem {un} is a (PS),(ar)-sequence for J. Moreover, for ¢ € C2°(A")
and K =suppy, we have

(un, p(2)) 1 = (uo(@,y +n), ¢ (2))
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= Vug(z,y +n)Vp(2)dz + / uo(z,y + n)p(z)dz
AT T

:/Vuo(x,ern)V(p(z)der/uo(:c,y+n)<p(z)dz
K K

=o0(l) as n— oo
For e > 0, ¢ € HE(A"), there is p € C2°(A") such that

¢ — el <e/(ullg: +1)
and

(un, @(2)) 1 = (un, ¢(2) = @(2)) 1 + (un, $(2))
< Nlunllzll¢(2) — e()ar + (un, 0(2))m
<& asn— o0.

Thus, u,, — 0 weakly in Hj(A"). Suppose that J satisfies the (PS)4ar)-condition,
then there is a subsequence {u,} such that u, — 0 strongly in Hg(A"). This
contradicts a(A”) > 0. Therefore, J does not satisfy the (PS),(ar)-condition. [

From now on ax () is simply denoted by ax. Let {u,} in X(Q2) be a (PS)q -
sequence for J in Q. Clearly, {u,} is bounded in X (£2). Then a subsequence {uy}
and u € X () exist such that u, — u weakly in X(Q) a.e. in Q, and strongly in
LY (Q). Define

loc

(oo = lim hmsup/ (IVun* 4+ u3),
R Qn{R<|z(}

—X0 n—oo

beo = lim limsup/ e |P.
R—o0 n—oo Jan{R<|z[}
We have the following results.

Lemma 5.10. Let {u,} be a (PS)ay -sequence in X () for J, then a subsequence
{un} exists such that

(4) imsup,, o, [o|Vun|* +ul = ([o|Vul> + u?) 4 aoo;

(id) imsup, o [olunl? = [qlul” + boo;

(191) oo = boo and ax = Jo + J(u), where Joo = (%)bm.

Proof. Since {uy,} is a (PS),,-sequence in X (2) for J, by Lemma {un} is
bounded in X (). A subsequence {u,} and v € X(Q) exist such that w, — u
weakly in X (Q), a.e. in §, and strongly in L (Q).

loc
22|

(i) Let na(2) = n(2E). then

/ V2 + 02 = / (i + 1 — 0 (Ve ? + u2)
Q Qn{|z|<R}

+/ (|Vun|* +u?)
QN{R<|z|}

— [ naVun? +2)+ (1= n)(Vunf? +12)
Q on{&<|z|<R}

—I—/ (|Vun|* +u?).
QN{R<|z|}

(5.2)
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Step 1: Since {ngu,} is bounded in X(£2), we have for each R > 0

o(1) = (I (tn), ) = /Q (Ve [? 4 42) + 1 ViV — /Q niltnl?.

/ nR(|Vun\2 + u%) + upVnrVu, — / Nrlun|? = o(1).
Q Q
Then, for each R > 0,

- |/unV77RVUn| +/ 77R|un|p + 0(1)
Q Qn{|z|<R}

S/QnR(Wun\ + ul) (5.3)

<| [ wn ViV + [ nilual” + o(1).
Q Qn{|z|<R}

Since {uy,} is bounded in X(Q) and |Vngr| < £ for each R, then by the Holder
inequality,

c
|/QunV773Vun| < =
Recall that for bounded sequences {s,} and {t,}, we have

lim sup(s,, + t,) < limsup s,, + limsup ¢,

n—oo n—oo n—oo

lim inf(sn +t,) > lim inf Sp + lim inf t,,
n—oo — 00

—limsups, = hm 1nf( )

Thus, by (5.3), we have for each R > 0

limsup/ Nr(|Vu,|? +u2) < — —|—/ nrlul?, (5.4)
n—oo JQ Qn{|z|<R}
liminf/ e Vaunl? +122) Zliminf(—\/ unVnRVun\)—&-/ nglul?, (5.5)
n—oo Jo n—oo Q Qn{|z|<R}
and
Rlim limliminf(—| [ ©,VnrVu,|) = — hm limsup(| [ v, VnrVu,|) =0 (5.6)
—00 n—o00 Q —0 n—oo Q
By (5.4), (5.5), and (5.6)), letting R — oo we obtain
hm hmsup/ nr(|Vun|> +u?) S/ |ul? :/ |Vu|* 4 u? (5.7)
R—00 n—oo Q Q
and
lim liminf/ nr(|Vug|? +u) 2/ |u|p:/ (V| + u?. (5.8)
R—oco n—oo  Jo Q Q

Step 2: Let ¢ € C°([0,00)) satisfy

1—mn(t) fortell,2];
p(t) = qn(t—1) forte[2,3];
0 otherwise,
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then 0 < » < 1. Let pg(z) = w(%). Since {¢Rru,} is bounded in X (), we have
0(1) = <J/(uﬂ)a(pRun>

:/@R(|Vun|2+ui)+unV<pRVun—/ch|un|p.
Q Q

Then

/ er(|Vun|* +up) < |/ Un VRV | +/ orlunl? + o(1).
“ Q on{f<|zl<3}

Note that | [ unVorVu,| < 4. Similarly to (5.4), we obtain

limsup/ or(|Vun|? +u?) < < +limsup/ or|ulP.
Q R Qn{f<|z|<3E}

n—oo n—oo

Thus,
lim limsup/ or(|Vu,|? +ul) = 0. (5.9)
Q

—00 n—oo

Note that (1 —ng)(z) = ¢r(z) for each £ < |z| < R. Let R — oo, and by (5.9) we
have,

—0 n—oo

R}im 1imsup/ (1= ng)(|Vun|? + u)
R
on{£<|z|<R} (5.10)
< lim hmsup/ r(|Vun > +up) = 0.

R—oo pooo
Step 3: by , -, and -, we obtain

limsup/|Vun|2 +u? < [ lim hmsup/nR(|Vun|2 +u?)]
Q

n— o0 —0 n—oo

+ hm hmbup/ (1 =nr)(|Vun | + u2) + oo
on{£<|z|<R}

R—oo pnooo

< (/|Vu|2 +u?) + oo
Q

On the other hand, by ([5.2)), , and (5.10)), we have

Goo < limsup/ (|[Vun|® +u2) + hm limsup [ — /nR(|Vun|2 +u2)]
Q Q

n—oo —X0 n—oo

+ hm lim sup [ / (1 = nr)(|Vun|® + ui)}
an{ & <|z|<R}

R—00 nooo
hmsup/|Vun\2+u /\Vu|2+u2.
n— 00 Q

Hence, we have limsup,, ., [o|Vun|* + u2 = (Jo|Vul* + v?) + ao.
(#7) Recall that for bounded sequences {s,} and {t,} such that lim, .o s, = s,
then

limsup(s,, + t,) = lim s, + limsupt,.

n—oo n—0oo n—oo

For each R > 0

limsup/ [t |P :/ |u\p+limsup/ [tn|P.
n—oo JQ Qn{|z|<R} n—oo JON{R<|z|}
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Let R — oo, we have

limsup/ |un|p=/ [ulP 4 boo .
n—oo JQ Q

(#i1) There is a subsequence {u,} such that

Note that
b(w) + boo = buy) + 0(1) = a(u,) + o(1) = a(u) + ao,

thus, ase = boo. Moreover,

n—oo

ox = lim (Sa(u,) - %b(un))

1 1 1 1

= J(u) + Joo-

We require the following results to assert our main result.

Theorem 5.11. Let ,, = QN BN (0;n), then the following properties are equiva-
lent:

(i) J does not satisfy the (PS)q (o) -condition in X (Q) for J;

(it) There is a (PS)o () -sequence {un} in X(Q) for J such that

/Qn [unl? = o(1);

(iii) There is a (PS)s () -sequence {uy} in X () for J such that {,un} is also
a (PS)ay () -sequence {u,} in X(Q) for J.

Proof. (i) == (ii) Suppose J does not satisfy the (PS),  (o)-condition in X () for
J. By Lemma there is a (PS), () -sequence {u,} in X(2) for J such that
u, — 0 weakly in X (). By Theorem and the Rellich compactness lemma,
up, — 0 ae. in Q and strongly in LY (Q). Thus, lim,, an |um|P = 0. We can

take a subsequence {u,, } such that [, |uy,, [P < Loor Jo, lval? = o(1).
(i1) = (441) Suppose there is a (PS),  (o)-sequence {u,} in X () for J such that

/ [unl” = o(1). (5.11)

n

By (5.11)) and Lemma we have
2
/ €9 |up P = / lunl? + 0(1) = —2—ax(Q) +o(1) for ¢ > 0. (5.12)
Q Q p—2
Let v, = & up. Then v, € X(Q2). By (5.12)), we have

bon) = | €Blual” = —L5ax(@)+o(0). (513)

p—2



54 HWAIL-CHIUAN WANG EJDE-2004/MON. 06
Since {£2u,,} is bounded in X (), we have
o) = (7). &) = [ (€19 4260, 960V €0)~ [ E2funl?. (514)
By |[V&n(2)] < £ and (5.11)), we have
/ EnunVEy, - Vu, = o(1).
By (5.13) and (5.14) we have

a(vm) = /Qg,%qwnﬁ ) = b+ of1) = ~Foax () +of1).
Thus
1 1
J(vy) = ia(vn) — ];b(vn)
— 5o gax(®) = Lax(@) + o)
= Otx(Q) + 0(1)

Since J(vy,) = ax(2) 4+ o(1) and a(v,) = b(v,) + o(1), by Theorem {vn} is a
(PS)ax (2)-sequence in X (Q2) for J.

(iii) = (i) Let {u,} be a (PS),, ()-sequence in X (Q) for J such that {&,u,}
is also a (PS), (q)-sequence in X(Q) for J. Let v, = &,u,. Claim: v, — 0 as
n — oo. For ¢ € C1(Q) and K = supp ¢, K C  is compact and there is an ng
such that v,(z) = 0 in K for all n > ng. We have

(vn(2),0(2)) i = | Vou(2)Ve(2)dz + /vn(z)gb(z)dz =0 for all n > ny.
Q Q
By Lemma there is a C' > 0 such that |Jv,(2)||z: < C. For e > 0, p € H}(Q),
¢ € CH(Q) exists such that

e —dllur <e/2(C+1)

Moreover,

(vn(2), 0(2)) 1 = (vn(2), 0(2) = &(2)) 11 + (vn(2), #(2)) 2
< lvn(2) a2 llo(2) = ¢(2) |2 + (vn(2), 9(2)) m2
< Clle(z) — ¢(2)| m
< ¢ for n > ny.

This implies v, — 0 weakly in HE (). Therefore, by Lemma J does not satisfy
the (PS)q (q)-condition in X (€2). O

Fork>1,i=1,2,...,k, let Q2 be an unbounded domain and let {2; be a proper
domain in Q such that Q = UM, Qi, ©;NQ; is bounded, and at least one of €; is
unbounded. Let ax = ax(Q) and oy = aX(Q ), then

M = {u € X(Q\{0} | a(u) = b(u)},
= {u € Hy(U)\{0} | a(u) =b(u)} fori=1,2,... k.



EJDE-2004/MON. 06 PALAIS-SMALE APPROACHES 55

Since X (Q;) C X(Q) and M; C M, fori = 1,2,...,k, ax < min{al, %, ..., %}
Let © be an unbounded domain in RY and Q° & Q with the indexes ax = ax(Q)
and o% = ax(Q°). Then we have ax < o%. Let
Q, = Q\ BN(0;n);
M, = {u € Hy(2,)\{0} | a(u) = b(u)};
% =a(Q,) = inf J(u).

ueM,,
Theorem 5.12. The following properties are equivalent:
(1) J satisfies the (PS)qy -condition;
(73) For every (PS)ay -sequence {u,} in X () for J, there are a subsequence {uy}
and u # 0 in X (Q) such that u, — u strongly in X (Q);
(iii) For every (PS)q, -sequence {uy} in X () for J, there are ¢ > 0, a subsequence
{un}, and positive integers K and ng such that for each n > ngy, we have

/ ‘un|p > ¢
QN{|z|<K}

(tv) For every (PS)q, -sequence {un} C X (Q) for J, there is a subsequence {uy}
such that for any € > 0, there is a measurable set E such that |E| < oo and
Jge lun|Pdz < e for each n € N;

(v) ax < &% for each n € N;

(vi) ax < min{ak,a%,...,ak};

(vid) Joo < ax;

(viii) ax < o for each proper subdomain Q° of .

Proof. (i) = (4i) Suppose that J satisfies the (PS),, —condition. Let {u,} be a
(PS)ay-sequence in X (€2) for J. Then there are a subsequence {u,} and a v in
X (9Q) such that u, — u strongly in X (£2). We conclude that J(u) = ax > 0.
Thus, u # 0.

(i1) = (4i1) Suppose that {u,} is a (PS),-sequence in X () for J that has a sub-
sequence {u,} and u # 0 in X () such that u, — u weakly in X (). By Theorem
limp, oo folunl? = [olulP. Take K >0 and ¢ > 0 with [o 0 e [ul? > 2c.
ng > 0 exists such that

/ |un|P > ¢ for n > ng.
QN{|z|<K}
Then (ii3) follows.

(#41) = (iv) Given a (PS)4-sequence {u,} C X (92) for J, there are a subsequence
{un} and a v in X (92) such that u, — u weakly in X (Q2). By (i), there are ¢ > 0,
a subsequence {u, }, positive integers K and ng such that for each n > ng, we have

/ lun|P > c.
Qn{|z|<K}

Since lim,, oo an{|z|<K}|Un|p = fQﬁ{|z <y |ulP, we have u # 0. By Theorem
Up, — uw in LP(Q). Thus, by Theorem for € > 0, there is a set E such that
|E| < oo and [, |up|Pdz < e for each n € N.

(iv) = (v) For every (PS)q-sequence {u,} in X () for J, there is a subsequence
{un} such that for & > 0, there is a set E such that |E| < oo and [, |up|Pdz < ¢
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for each n € N. Then {u,} is bounded and there is a subsequence {u,} and a u in
X () such that w, — u a.e. in Q. By Theorem [2.34] w,, — u in LP(Q2). Note that

1 1 1 1
ax +o(l) = J(u) = (5 - Z;)b(un) +to(l)=(5~ ];)b(U) +o(1).
Thus, v # 0. By Theorem J satisfies the (PS),,-condition in 2. Suppose that
a'y = ax for some ng € N, by Theorem J does not satisfy the (PS),, -condition
in Q, which is a contradiction. Hence, we have ax < &% for each n.
(v) = (vi) On the contrary, suppose that ax = min{ak,a%,...,a%}, say ax =
o Since Q& Q, by Theorem J does not satisfy the (PS)q,-condition in
Q. By Theorem there is a (PS)q -sequence {u,} such that u,, — 0 weakly in
X (). There is a subsequence {u,} and a sequence {2, } such that

/Q |un|? = o(1).

Let &, be as in (2.1) and v,, = £, u,. By Lemma we have
J(vp) = ax + o(1).
J'(v) = o(1) strongly in X~ (Q).

Then by Theorem there is a sequence {s,,} in R* such that w,, = s, v,, {w,} €
M.,,, and J(w,) = J(v,)+0(1) = ax +0(1). Note that a% < J(wy,) for each n € N.
Hence, lim,, o &% < ax. Since D S~2n D (NZnH, we have ax < a%y < &}H for
each n € N. Then we can conclude that ax = &% for each n € N, which is a
contradiction.

(vi) = (vit) Let {u,} be a (PS),-sequence in X(€2). Then a subsequence {uy}
and a u in X (€2) exist such that u, — u weakly in X(Q). By Lemma[5.10] ax =
Jso + J(u). On the contrary, suppose that Jo, = ax, and we have u = 0. Thus,
u, — 0 weakly in X (€). There are a subsequence {u, } and a sequence {2, } such

that
[t = o).
Q

Let v, = £, u,. By Lemma {vn} is a (PS)a,-sequence in X (£2). Since ; N€;
is bounded for i # j, ng > 0, v, = 0 in BY(0;ng) exists for n > ngy, where
BN(0;m0) D ;N8 for i # j. Set v, = vl +v2 + - + vk, where v}, € HE(Q;),
and fori =1,2,...,k,

vp(z) for z € Qy;
n(2) = .

0 otherwise.
As in the proof of Lemma [2:41] we obtain

J'(vh) = o(1) strongly in X 1(Q) fori=1,2,...,k.

Assume
J@i) =c; +o(1) fori=1,2,...,k.

Since J(u,) = ax + o(1), we have ¢; + co + -+ + ¢x = ax. Since ¢; are (PS)-
values in X (Q) for J, by Lemma they are nonnegative. There is at least
one of the ¢; that is positive, say ¢; > 0. By Theorem c1 > ok, thus
ax > c¢; > ak. This proves ay > min{oé(,a%(,...,a’;(}. We conclude that
ax = min{ak,a%,...,a%}.

(vii) = (viii) Let {u,} be a (PS)s-sequence in 2. Then a subsequence {uy,} and
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a u in X(Q) exist such that u, — u weakly in X(Q2). By Lemma J(u) =
ax — Joo. Suppose that Jo < ax, then u # 0. By Theorem J satisfies
(PS)ax-condition in X (£2). By Theorem ax < af for each proper subdomain
Q0 of Q.

(viii) = (i) Suppose that J does not satisfy the (PS),,-condition in Q. By
Lemma and Theorem5.7] {u,} exists in X () and is a (PS)a-sequence for J
such that {&,u,} also is a (PS),-sequence in X (Q)for J. Let v, = &,uy, then

J(vp) = a+o(1),
J'(v,) = o(1) strongly in X~ (Q).

By Theorem there is a sequence {s,} in Rt such that w, = s,v,, {w,} €
M(Q\BN(0; %)) and J(wyp) = J(vn) + o(1) = ax + o(1). ng > 0 exists such
that Q \ BN(0;ng) & Q. Let Q0 = Q\BN(0;n9). Then w, € M(Q°) for n >
no. Since M(Q2°) ¢ M(Q) and J(w,) = ax + o(1), thus, o% = ax, which is a
contradiction. O

Bibliographical notes: Theorem is from Chen-Lee-Wang [24, Lemma 19].
Theorem is from Chen-Lin-Wang [25] Theorem 23].

6. SYMMETRIC PALAIS-SMALE CONDITIONS

In this section, we focus on the symmetric Palais-Smale conditions which will be
used in Section 13.

Definition 6.1. (i) Suppose that (z,y) € Q if and only if (z,—y) € Q, then we
call Q a y-symmetric domain ;

(73) Let  be a y-symmetric domain and © be a y-symmetric bounded domain in
RY. If two disjoint subdomains 7 and 5 of Q exist such that

(z,y) € Qo if and only if (z,—y) € 4,
Q\é =0 U,

then we say that € is separated by ©;

(iii) Let Q be a y-symmetric domain in RY. If a function u : @ — R satisfies
u(z,y) = u(z, —y) for (z,y) € Q, then we call u a y-symmetric (axially symmetric)
function;

(iv) Let Q be a y-symmetric domain in RY and denote the space H!(Q2) by the
H'-closure of the space {u € C§°(f2) : u is y-symmetric}.

Remark 6.2. (i) Note that H!(Q) is a closed linear subspace of H}(Q). Let
H;1(Q) be the dual space of H(f);

(ii) Let  be a y-symmetric domain in A" and let BY(0;7 +1) be a N—ball. Then
clearly Q is separated by B (0;7 + 1).

Example 6.3. (i) For each p > 0, let Q@ = (RV\K,)UA". Then 2 is a y-symmetric
large domain in RY separated by a bounded domain AT

(i1) Let @ = [PT+(0, %) U BN (0; R) U [P~—(0, &)], then Q is a y-symmetric large
domain in RY separated by the bounded domain BY (0; R).

Theorem 6.4. (i) a,(BN(0;R)) = a(BY(0; R));
(i1) as(RY) = a(RY);
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(d44) O‘S(Ar—t,t) = a(ACt,t);

(iv) ag(A") = a(A").

Proof. By Lien-Tzeng-Wang [47] and Theorem below, there is a ground state
solution of in BN(0; R), RN, A", ;, and A". By Gidas-Ni-Nirenberg [34] and
[35] and Chen-Chen-Wang [23], every positive solution of in BN(0; R), RY,
A”,;, and A" is y-symmetric. O

The following symmetric results are required to assert our main result.

Theorem 6.5. Suppose that §) is a y-symmetric large domain in RN separated by
a y-symmetric bounded domain, then as(€2) < 2a(0).

Proof. First, by Lien-Tzeng-Wang [47] and Gidas-Ni-Nirenberg [35], there is a pos-
itive solution ug of Equation with radial symmetry such that J(ug) = a(RY).
Since  is a y-symmetric proper large domain in RY, for n = 1,2, ..., sequences
{z,} and {r,} exist such that BN (z,;7,) C Q and r, — o0 as n — oo. Let

N (2) = 77(2‘2%5"‘) as in 1) and up,(2) = Ny (2)ue(z — 2,). Then u,(2) € HY(Q),
and

J(un) = J(ug) + o(1) = a(RY) + o(1)
a(uy) = b(uyn) + o(1).

By Theorem and Theorem [4.18] {uy} is a (PS)a(q)-sequence in Hg(Q) for J.
Moreover, if we let wy, = u,(z, —y), then wy, is also a (PS),(q)-sequence in Hj (L)
for J such that suppw,, Nsuppu, = 0 and {u, +w,} C H!(2). We have

a(ty, +wy) = / |V (u, + wn)|2 + (un + wn)2
Q

:/|Vun|2+ui+/\an|2+wZ
Q Q

+ 2/ Vu,Vw, + 2/ Up Wy,
Q Q

= a(un) + a(wn),

and b(up +wp) = [q|tn +wal? = [ |unlP + [olwn|P = b(u,) + b(w,). Hence,

1 1
J(uy +wy) = §a(un + wyp) — =b(uy + wy)
b
= J(up) + J(wy)
=2a(Q) + o(1).
Moreover, for ¢ € C°(§2) with y-symmetry, we have

|<J/(un +wy), v)]

= big| [ Sl +100) Vi + (4 ) = [ i+ 007+ )|
Q Q

= |/Vunv<,0+un§0+/vwnv§0+wn¢ - / |un|p_2un@ - / |wn|p_2wn§0|
Q Q Q Q

= [{(J'(un)s )| + (T (wn), ¢)]
< || () =1+ 1|7 (wn) || -1
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Therefore, |[J'(un 4+ wn)|| -1 = o(1). We conclude that {u, +w,} is a (PS)2q(0)-
sequence in H!(Q) for J. By Theorems and as () < 2a(NQ). O

We have the following symmetric Palais-Smale condition.

Theorem 6.6. Suppose that Q is a y-symmetric large domain in RN separated by
a y-symmetric bounded domain. Then as(Q) < 2a(Q) if and only if J satisfies the
(PS)a.,(0)-condition in H}(SY).

Proof. Let a(2) < 2a(€). Suppose J does not satisfy the (PS),_(q)-condition. By
Theorem a (PS)a. ()-sequence {u,,} in H} () for J exists such that {&,u,} is
also a (PS),, (o)-sequence in HL(Q) for J, where &, is as at (2.1). Let w, = &yun,

then by Lemma we obtain

J(wy) = as(Q) + o(1),
y o1 (6.1)
J'(wy) =0(1) in H ().

Since 2 is a y-symmetric domain in R¥ separated by a bounded domain Q, ng > 0,
exists such that w, = 0 in @ for n > ng and two disjoint subdomains €2, and €25 of
Q exist such that

(x,y) € Qo if and only if (z, —y) € O,
ON\Q = Q1 UQ,.
Note that, for n > ng, w, = wl +w? and w}(x,y) = w2 (z, —y), where for i = 1,2,
; wp(z) for x €y,
Z(m):{() “ for x ¢ Q.
Then w!, € H}(Q;). We obtain J(w)) = J(w?) and
as(Q) +o(1) = J(wy) = J(wl) + J(w?) = 2J(w?) fori=1,2,
or
JWwh) = —ay(Q) +o(1) fori=1,2.

By 7 we have

J(wi) =o(1) in H} () fori=1,2.
Therefore a,(R) is a (PS)-value in Hj(Q2) for J. By Theorems and

%aS(Q) > ().

Since Q and €; are large domains of RY, by Theorem we have
a() = aRY) = ().

Thus as(2) > 2a(2), which is a contradiction.

Conversely, suppose that J satisfies the (PS), (q)-condition in H}(£2). By Theorem
6.5}, we have o, () < 2a(2). Suppose that () = 2a(£2). By the definition of the
large domain in RN, we may take a domain Q = Q \ BN(0;7) for some 7 > 0 such
that Q g Q, and Q is a proper y-symmetric large domain in RY separated by a y-
symmetric bounded domain. By Theorem we have 2a(RY) = 2a(2) = a,(Q) <
as(Q). By Theorem 2s(Q) < 20(Q) = 2a(RY). Thus, 2a(RN) < 2a(RN),
which is a contradiction. (]
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As a consequence of Theorem [6.6, we have the following result.

Theorem 6.7. If Q is a y-symmetric large domain in RN separated by a y-
symmetric bounded domain, then a(Q) < as(Q).

Proof. Since © & RN, we have a,(RY) < a,(€). Assume that o (RY) = a,(9Q).
Then by Theorem J does not satisfy the (PS),,(q)-condition in H}(€2) for J.
By Theorem a(RY) = a(Q), by Theorem as(RY) = a(RY), and by
Theorem 2a(9) < a4(92). We conclude that
20(RY) = 2a(Q) < a,(Q) = a,(RY) = a(RY),

which is a contradiction. O

Consider the y-symmetric large domain Qg in RY separated by a y-symmetric
bounded domain, where Qp = [PT+(0, £)] U BN (0; R) U [P~—(0, &)]. Then we
have the following existence result.

Theorem 6.8. An Ry > 0 exists such that for R > Ry, there is a positive y-
symmetric solution of mn Qg.

Proof. By Lien-Tzeng-Wang [47], a(BY (0, R)) is strictly decreasing as R is strictly
increasing and

a(BYN(0,R)) \, «(RY) as R — oo.

By Theorem a(BN(0,R)) = as(BN(0, R)) for each R. Thus, there is a Ry > 0
such that as(Qr) < as(BY(0,R)) < 2a(RY) = 2a(Qr) for each R > Ry. By
Theorem [6.5]and Theorem there is a y-symmetric positive solution of Equation
in Qg for each R > Ry. ([

Bibliographical notes: The results of this section are from Wang-Wu [74].

7. SYMMETRIC PALAIS-SMALE DECOMPOSITION THEOREMS

In this section, we present the symmetric Palais-Smale decomposition theorem
in A",

Lemma 7.1. Let ©; C ©5 C O3 C ..., where Cle@n =A". If

fulz) = {gn(z) — hn(2), forze O,,

0, otherwise,
fn— f ae, g, >0, and h, — 0 a.e., then f > 0.

Proof. For z € A", we have z € O, for some m € N, then z € O,,,; for i =
0,1,2,.... Since gm+i(2) = fmti(2) + hmti(2), fimsi — [ ae., hypgi — 0 ace. for
i — 00, hence g, ; — f a.e., and since g,,; > 0, we have f > 0. O

Theorem 7.2 (Symmetric Palais-Smale Decomposition Theorem in A”). Let {u,}
be a (PS)s-sequence in HX(A") for J. Then there are a subsequence {u,}, a positive
integer m, sequences {Z57}°° | in A", a function i € HL(A"), and 0 # w™I €
HY(AT) for 1 <i<m, j=1,2 such that

U}Z’l(x, y) = wz’2(x? 7y)7

|00 — o0 fori=1,2,...,m,

—Au+a=|uP*a inA",
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—AwI wh = wZ=J|P*2wW in A",

and

Up = U+ ZZU}”( — 259) 4+ o(1) strongly in Hg(A"),
a(un) = a(u) + 22 a(w™) +o(1)  for some j = 1,2,
b(un) = b(@) + 2 b(w™) +o(1) for some j = 1,2,

J(un) = J(u) + 22J(wi’j) +o(1) for some j=1,2.

In addition, if u, >0, then @ >0 and w7 >0 for each 1 <i<m, j=1,2.

Proof. Step 0. Since {u,} is a (PS)g-sequence in H!(A") for J, by Lemmam
there is a ¢ > 0 such that ||u, ||z < ¢. In the following proof of this theorem, we fix
the value of c¢. There is a subsequence {u,} and a % in H!(A") such that u, — @
weakly in H(A") and @ solves

~Au+a=|aP?a in A"
Step 1. Suppose that u, - @ strongly in H(A"). Let
1

By Lemma {u}L} is a (PS)(s—(a))-sequence in H}(A") for J. Let vl = &uul,
where &, are as in Note that ul — 0 weakly in H}(A") and ul - 0 strongly
in H!(A"). By Lemma- {v }is also a (PS)(3_ j(a))-sequence in Hl(Ar) for J.
Moreover, J(u,,) = vl — 0 weakly in H}(A") and v} - 0 strongly
in Hsl(Ar). Let K = 2([ } + 1) and QK = A" N BY(0; K). Then U}L =0 in Qg for
n > 2K. Two disjoint strictly large domains Q' = A% and 92 = A" . in A" exist
such that

U u, —u forn=1,2,....

(z,y) € Q* if and only if (z,—y) € Q*,
ON\Qx = QU2
For j =1,2, let

ol () = vk (2) forzeQJ:,
0 for z ¢ Q.

Then v}7 € HY (), vlt(z,y) = v} 2(z, —y), v) = vl l14+0l2 and J(vlt) = J(vk?).
We clalm that {v} J} is a (PS)E(ﬁfj(ﬂ))—sequence in H} () for J. In fact,
Tl?) = 5Twh) = 5 Th) +o(1) = 5[5 — J@)] +o(1),
and for ¢ € C(Q7), |||z = 1, we have
(T (o), )] = (T (vn), @) < T (wp)ll -1 llpll -

Thus,
1 () -1 < 1 (o) -1 = o(1).
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Note that vl — 0 weakly in Hg(Q2) and v} - 0 strongly in H}(Q), so we have
vid — 0 weakly in H} (/) and v}7 - 0 strongly in H} ().

(1-0) fAil ) lwli(z)|2dz > 4 for some constant d; > 0,n =1,2,...,and j = 1,2,

Whel_"ye wyl (2) = vyl (2 + 2zp7) for some {z,7} C A" : for j = 1,2, since
{v}3} is bounded, J'(v17) = o(1), and viJ - 0 strongly in Hg (7). By
Lemma/[2.17} there is a subsequence {v17}, and a constant d; > 0 such that

Qrl = Sup/ 0bi (2)2dz > dy forn=1,2,....
yER J(0,y)+A”, |

Forn =1,2,..., take zy" = (0,y;,) and 2z, = (0, —y,,) in A" such that
: d
/ b7 (2)2dz > = for n=1,2,....
A 2

Let
wy? (2) = v (2 + 2,7)
then p
lwpd (2)?dz > 51 for n=1,2,....

(1-1) un(z) =a(z) + Z?Zl whi(z — z17) 4+ o(1) strongly in H}(A"). By Lemma
we have the following equalities in the strong sense in H{(A")

2 2
S wd(z = 2y7) = 3o und(2) = vn(2) = ul(2) + o(1) = un(2) ~ () + o(),
j=1 j=1
or
2
un(2) =u(z) + Z whd(z — 229) +o(1) strongly in Hy(A").
j=1
(1-2) |Jwli|| g < cforn=1,2,..., and w5 < ¢, where wld — whd weakly
in H}(A") for j = 1,2. By Lemma ii1),
. . 1 1
a7 = low? [ = Sloallz = Slluallin +o(1)
1 _
= 5 iz = ll@l) +o(1)
1
< 562 +o(1),
we have ||w}1’j||Hé(AT) < cforn =1,2,.... Then there is a subsequence

{wl} and w7 in H(A") such that w)’ — w'J weakly in H}(A"). In
addition, wi!(z,y) = w'?(x, —y). By Lemma (i), we have

lwhd || g1 < liminf [|wld || g < ¢ for j =1,2.
n—oo

(1-3) {wl} is a (PS) 15— (a))-sequence in HY(A™) for J: note that J'(vl7) =
o(1) in H=1(£7). Because (¥ is a half infinite strip, (1 — 7) below and
Theorem we have for every ¢ € H}(A"),

AT

r

(Twhi)o) = [ Tulerulip- [ ubiptulip = o).
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Therefore, J'(wl7) = o(1) in H~*(A"). Moreover, we have
1

171 =
S T(0h) = 5(8 = J(®) +o().

(1-4) —Aw' +w' — |w'J|P~2w! = 0 in A" : by Theorem [5.6] (i).
(1-5) w7 # 0 : by the Rellich-Kondrakov theorem and (1 —0), we have

J(wy?) = J (07 (2 + 2,7)) =

; ; d
[Pt [l
Azl,l nee Azl,l
thus w7 2 0.
(1-6) By (1-2), (1-4), (1-5), and Lemma [2.18] there is a § > 0 such that
||w1’j HL(A™) > ||w17j L2(AT) > 0.
Therefore,
) 1 1 . 1 1
J gy — (Z _ = 1,5 ***52:5,
(') = (5 = Da() > (5 =)
(1-7) |z7| — oo : otherwise, there is a R > 0 such that z/ + A", ; C A" &
for n =1,2,.... Then by (1-0), we have
: 1412 > T iz < G
0= lim [v;7]* > lim v, 7| > —,
n—oo Jur n—oo Zyl]/,jJrAT_l’l 2

which is a contradiction.
(1-8) a(u,) = a(u)+2a(wl’)+o(1) for j = 1,2 : since u,, — 4 weakly in H}(A"),

by Lemma [2.11)iii),
a(uy,) — a(a) = a(u, — @) + o(1)
~ a(ul) +o(1)
= a(v,) + o(1)
= a(vy') + a(v,?) + o(1)
= a(wy") + a(w,?) +o(1)

a
= 2a(wl?) +o0(1) for j =1,2,
thus, a(u,) = a(i) + 2a(wt?) + o(1) for j =1,2.
(1-9) b(u,) = b(a) + 2b(wl?) + o(1) for j = 1,2 : since u,, — @ a.e. in Q and
{un} is bounded in L?(Q), by Lemma i), we have

b(uy) — b(a) = b(u, —a) + o(1)
=b(ul) + o(1)
=b(v}) + o(1)
= b(vy") + (v, ?) + (1)
= b(wy, ") + b(wy?) + o(1)
=2b(w?) +o(1) for j=1,2

thus b(u,) = b(@) + 2b(wl7) + o(1) for j = 1,2.
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(1-10) J(u ) J(u )+2J( 7Y + 0o(1) for j = 1,2 : by (1 —8), (1 —9) and
J(wht) = J(w'?), we have
I(up) = J(@) + J(wy') + J(w,?) + o(1)
= J(@) + 2J(wi?) + o(1) for j = 1,2.
Step 2. Suppose that w7 (z) - w'(z) strongly in H}(A"). Let
vpd (2) = wy? (2) — 0™ (2).
We have v27 — 0 weakly in H}(A”) but v27 - 0 strongly in Hi(A").

(2-0) fAT |w J(2)|?dz > dQ—’“ for some constant do > 0,n =1,2,...,and j = 1,2,
Where w23 (2) = 029 (2+227) for some {227} C A": for j = 1,2, since {v27}
is bounded, J'(v27) = o(1), and v27 - 0 strongly in Hi(A"), by Lemma
2.17] there is a subsequence {v27}, a constant dy > 0 such that

Qr? = sup/ |02 (2)]2dz > dy forn=1,2,....
yGR ( »y)+Al1 1

Forn=1,2,..., take 23! = (0,y;) and z* = (0, —y;) in A" such that
; d
/ v (2)]2dz > =2 forn=1,2,....
2T HAT 2
Let wp(2) = vp7 (2 + 27), then

; d
/ |“172L’](Z)|2d22f2 for n=1,2,....
A 2

T;1,1
As in Step 1, we have the following results.
(1) wa(2) = ()4 T2, wh (2 2hI) S w3 (2 2k —229) +o(1) strongly
in Hg(A") ;
(2-2) H’U}?L’j”Hl <cforn=1,2,... and |w??| g < ¢, where w27 — w?J weakly
in H}(A") for j =1,2;

(2-3) {w? J} is a (PS) -sequence in H(A") for J;

(2-4) —Aw?I +w?I — |w?I P22 =0 in AT;
(2-5) w*7 #0;

(2-6) [lw*?| r2ary > & and J(w>7) > §';

(2-7) |229| — oc;

(2-8) a(uy,) = a(a) + 2a(w'7) + 2a(w27) + o(1) : since

vp? (2) = wy? (2) — w7 (2) = 0,
a(w?) = a(vy?) = a(w,?) — a(w™) + o(1).
Further, by (1 — 8), we have
a(un) = a(@) = a(wy") + a(w,®) + o(1)
= 2a(w"™) + 2a(w>7) 4 o(1).

(2-9) b(up) = b(a) + 2b(w™?) + 2b(w7) + o(1);
(2-10) J(un) = J(a) + 2J(w™7) 4+ 2J (w)) + o(1).
Continuing this process, we arrive at the m-th step
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(m-0) fA’_'l 1|w§f’j(z)\2dz > 4 for some constant d,, > 0, n = 1,2,...and j =

1,2, where w7 (z) = v (z + 2™7) for some {277} C AT;
un(2) = @(2)+ 35y X whI (2= 20)+ 5w (2= 277) +o(1) strongly
i=1

in HY(A), where 559 = 219 14 239 for i = 1,2, m and j =12
w1 < ¢ for m = 1,2,... and [[w™||gn < ¢, where w™I — w™J
weakly in H}(A");

{w™3} is a (PS)-sequence in HE(A") for J;

—Aw™I 4 ™I — ‘wm,j|p72wm,j =0in A™;

W™ £ 0;

o agacy > 8 and ) > 85

|20d| = |zbd — zi=LJ| — oo and |Z47| — oo, for each i = 1,2,...,m: we
show this by induction on i. For i = 1, [247] = |21 — oco. Assume that

|79 — oo, for i = 1,2,...,k, for some k < m. By Lemma we have
wh(z — 249) — 0 weakly in H}(A") for i = 1,2,..., k. We claim that
|ZE+13] — co. Otherwise, {Zf717} is bounded. Since [[w* ™| 2(ar) > 6,
R > 0 exists such that

zk+1,7 r T
Zy + AR r CAlsgar

and

, )

k41512 5 (232

[ wrrE= )
—R,R

We have
5 .
(5)2 S/ |wk+1,j|2
A’V‘

—R,R

= lim lvrd (2 + 2,’2+1’j)\2
n—o0o AT—R,R

IN

lim lvid ()2 =0,
e A12R,2R

which is a contradiction. By the induction hypothesis, we have |57 — oo
fori=1,2,...,m.

(m-8) a(un) = a(u) +2 37" a(w™) + 2a(w}?) + o(1);
(m-9) b(uy) = b(@) +2 30 b(w™) + 2b(wi) + o(1);
(m-10) J(u,) = J(@) + 23575 J(w™?) + 2J (wi7) + o(1).
By the Archimedean principle, k& € N exists such that k62 > 3. Take [ = [g] +1,
then after step (I + 1), we obtain

a(uy) = a(@) + 2a(w"?) + 2a(w??) + - - - + 2a(w"?) + 2a(wh™9) + o(1).

Since a(wltH7) > 0, a(w) > 0, and a(w™7) > 6% fori = 1,2,...,1, we have f+o(1) >
2162 > k&2 > 3, which is a contradiction. Therefore, there is an m € N, such that
w™(z) = w™I(z) + o(1) strongly in HE(A"), wii(z) = w'(z) + o(1) weakly in
HY(A™), and w7 (2) # w™I (2) + o(1) strongly in H}(A") for i = 1,2,...,m — 1.
Then we have

(sm-0) [, |wii(z)?dz > %= for some constant d,, > 0, n = 1,2,..., and
11

2
j =1,2, where w™J (z) = v (z + z™J) for some {27} C A™;
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m .. ..
(sm-1) uy(2) = a(z) + Z?:l S whi(z — Z17) 4 o(1) strongly in H}(A"), where
i=1

Fod = zbd o4 20T fori=1,2,...,mand j =1,2;
(sm-2) |[wm™I || < ¢ for n = 1,2,... and ||[w™7| g < ¢, where w7 — w™J
weakly in H}(A");

(sm-3) {wm™I} is a (PS)-sequence in HE(A") for J;
(sm-4) —Aw™J + w™J — |w™I [P72w™I =0 in A";
(sm-5) w™J % 0;
(sm-6) [|w™| r2ary > & and J(w™7) > '
(sm-T) |29 = |29 — 2:=1J| — oo and |247| — oo, for each i = 1,2,...,m;
(sm-8) a(un) = a(u) + 23 a(w") + o(1);
i=1

(sm-9) b(u,) = b(u) + 2§b(wi’j) + o(1);

(sm-10) J(up) = J(@) + 2 i T(w) + o(1).

Finally, suppose u, > 0 for n =1,2,.... Then
(i) Since u, — @ weakly in Hj(2). By Lemma i1), there is a subsequence
{un} such that u, — @ a.e. in Q. Thus, @ > 0.
(ii) For j = 1,2, let 2 € 7 — 21, then

Wh(2) = ul 4 219) = e 229 = e+ ATz + 289,

Thus,

j V), L3y i Lld
whi(z) = Enlz+ 2oy (2 4+ 2,7) ifze Q) — 2z,
0 otherwise.

Let hy(2) = &u(z + 209 a(z + 257) and g,(2) = &u(2 + 207 )un (2 + 257) > 0. Since
whi(z) = wh(2) weakly in HE(A") and h,(z) — 0 weakly in H}(A"), we have
whi(z) — wh(z) a.e. in A" and h,(2) — 0 a.e. in A”. By Lemma we have
whi > 0.

(ii7) In fact, we have w27 (z) = v29(z + 229) = wlJ(z + 227) — whI (2 + 227). By
Lemma whi (z + 229) — 0 weakly in Hi(A"). Moreover, w27 (z) — w7 (z)
weakly in Hg(A"), hence wl7(z + 227) — w?J(z) weakly in H}(A"), since

n(z+ 220yl (24 327) if 2 € QI — 217
5( n n n n

0 otherwise.

wh (= + 229) = {

Similar to (i7), w?J > 0.
(iv) Continuing this process, we obtain w*? > 0 for each ¢ = 1,2,...,m. O

Similarly, we have

Theorem 7.3 (Symmetric Palais-Smale Decomposition Theorem in RY). Let
be a y-symmetric large domain in RY separated by a y-symmetric bounded domain,
and let {u,} C HL(Q) be a (PS)s-sequence in HL(Q) for J. Then there are a
subsequence {u,}, a positive integer m, sequences {227}, in RN, a function
u€ HNQ), and 0 # w' € HYRN) for 1 <i<m, j=1,2 such that

wi71(xa y) = wi72(xa _y>7

|Z59] — oo fori=1,2,...,m,
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~Au+a=|alP?a inQ,
—AwhI 4+ whd :| ww|p—2ww n RN7
and

m m
Up =T+ Zw“( —Zhh) + Zw”( —20%) 4 o(1)  strongly in H'(RY),
i=1

i=1

a(un) = a(u) + 2Za(wi’j) +0o(1) for some j=1,2,
i1

b(un) = b(w) + 22 b(w™) +o(1)  for some j = 1,2,
i1

m
J(uy) = J(u) + ZZJ(wi’j) +o(1) for somej=1,2.
i=1
In addition, if u, >0, then @ >0 and w/ >0 for each 1 <i<m, j=1,2.
Corollary 7.4. If Q = A"\w, where w is an azially symmetric bounded set in
A" and {u,} is a (PS)s-sequence in HX(Q) for J and 0 < B < 2a(A"), then the
sequence {u,} contains a strongly convergent subsequence and there is a positive

solution w of (1.1)) in .
Proof. By Theorem we have

J(un) = J(u) + QZJ(wi’j) +o(1) for some j =1,2.
i=1

Note that J(w"/) > a(A") and J(@) > 0. If m > 1, then we have

20(A") > B+ o(1) = J(uy,) > J(@) + 2ma(AT),
which is a contradiction. Thus, m = 0. By Theorem we have

u, = @+ o(1) strongly in Hj(A").

Since J(a) = (8 and 8 > 0, we have u # 0. O
Corollary 7.5. If Q is a y-symmetric strictly large domain in RN separated by
a y-symmetric bounded domain, and {u,} is a positive (PS)z-sequence in H!()
for J, with 0 < B8 < 3a(RYN) but 8 # 2a(RY), then {u,} contains a strongly
convergent subsequence, and there is a positive solution @ of Equation (L.1)) in .

In particular, if {u,} is a (PS)g-sequence in HX(Q) for J with 0 < 3 < 2a(RY),
then {u,} contains a strongly convergent subsequence.

Proof. By Theorem we have
J(uy) = J(u) + QZJ(wi’j) +o(1), for somej=1,2.
i=1
By the uniqueness of the positive solution for Equation (1.1) in RY, we have
J(w') = a(RY) and J(u) > 0. If m > 1, then
3a(RN) > B+ o(1) = J(u,) = J(@) + 2ma(RY),

thus, m = 0,1. Suppose that m = 1, then
2a(RN) # B+ 0(1) = J(uy,) = J(@) + 2a(RY),
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which implies that J(@) # 0 or J(@) > 0, or J(#) > a(RY). Therefore,

3a(RY) > B+ 0(1) = J(u,) > J(@) + 2ma(RY) > 3ma(RY),
which is a contradiction. Thus, m = 0. By Theorem [7.3] again, we have

U, =%+ o(1) strongly in H}(RY).
Since J(u@) = B and 8 > 0, we have @ # 0. O
Bibliographical notes: The results of this section are from Wang-Wu [77].
8. FUNDAMENTAL PROPERTIES, REGULARITY, AND ASYMPTOTIC BEHAVIOR OF
SOLUTIONS

In this section we study the fundamental properties, regularity, and asymptotic
behavior of solutions of (1.1J).

8.1. Fundamental Properties of Solutions.

Theorem 8.1. Let u € H()) be a positive symmetric and radially decreasing

solution of (1.1)). Then u(0) > 1.
Proof. Since u is symmetric and radially decreasing, we have —Aw(0) > 0. Thus,
u(0) < —Au(0) + u(0) = uP~1(0),
or u(0) > 1. O
A ground state solution in X () is of constant sign.

Lemma 8.2. Let u in X(Q) be a solution of (L.1) that changes sign , and let
ax () be the index of J in Q. Then J(u) > 2ax(£2).

Proof. Let v~ = max{—u,0}. Then u~ is nonzero. Multiply (l.1) by v~ and

integrate to obtain
/VuVu_ +/uu_ :/\u|p_2uu_.
Q Q Q

frvape [p= [
Q Q Q

Thus, v~ € M(Q2) and hence J(u™) > ax(f2). Suppose that J(u~) = ax(X).
By Theorem u~ is a nonzero solution of . By the maximum principle,
u = u~, which contradicts the sign assumption on w. Thus J(u™) > ax(Q).
Similarly, J(u™) > ax (), where u* = max{u,0}. Thus,

J(u) = J(uh) + J(u™) > 2ax().

Consequently,

The positive solution of Equation (I.1]) in RY is unique.

Theorem 8.3. (i) There is a ground state solution of Equation (I.1)) in RY;
(ii) The only positive solutions of Equation (L.1]) in RN are ground state solutions;
(iii) Bvery positive ground state solution i € HY(RN) of Equation (1.1)) is spheri-
cally symmetric about some point xo in RN, @/(r) < 0 for r = |z — x|, and

lim 7“%6”2(7“) =v>0,

T—00



EJDE-2004/MON. 06 PALAIS-SMALE APPROACHES 69

limr 7 e (r) = —v;
(iv) The positive solution of Equation (1.1)) in RN is unique.
Proof. (i) By Lien-Tzeng-Wang [47]. For (i¢) and (iii) see Gidas-Ni-Nirenberg [35].
For (iv) See Kwong [46]. O

8.2. Regularity of Solutions. In addition to the study of (L.1)), we also study
Equation (1.2), a perturbation of (1.1): associated with (1.2). We consider the
energy functionals J,, for u € H} () :

In(u) = Sa(u) -

1
fb(u)—/hu.
2 p Q
We let Jy = J.

We first recall some fundamental estimates for elliptic equations. Let us first
consider the classical C®—setting: Schauder estimates.

Theorem 8.4. Let Q be a bounded C*P —domain, h € C#(Q). Then the Dirichlet
problem has a unique classical solution u € C%P(Q).

For the proof of the above theorem see Gilbarg-Trudinger [36, Theorem 6.14].
We have the following Kato regularity.

Theorem 8.5. Let Q2 be a domain in RN and let f : QxR — R be a Caratheodory
function such that for almost every z €

|f(z,u)] < a(2)(1 + [ul)

with a nonnegative function a € LN/Q(Q). In addition, let u € H} (Q) be a weak
solution of Equation . Then u € L (Q) for any 1 < g < co. Ifa € LN/2(Q)N
L2(Q) and u € H}(Q), then u € L4(Q) for any 2 < q < co.

Proof. Recall that if u € HL () is a weak solution of Equation (1.4) in €, then u

satisfies
/Vquo /f Z,u)Q
for each ¢ € C°(Q). Choose n € C°(Q) and for s >0, L > 1, let

¢ = ps., = umin{|u|**, L*}n* € Hy(Q),
with supp n = F CC (2. Note that
Vo = Vumin{|u|?*, L?}n* + 23X{|H‘SSL}|U|25_2u2Vun2 + 2umin{|u|?**, L?}nVn.
Testing Equation (1.4) with ¢, we obtain
[Ivumingiape 2y 45 [ )P
Q

{lu(z)[*<L}

/ 2uVu min{|u|**, L*}nVn
Q

= / F(uyumin{[uf?*, L2},
Q

Note that

1
2xy = 24/1/22V2y < §x2 + 292,
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if |u| <1 we have

(1 + Jul)u min{[ul*, L?} < 2,
and if |u| > 1, we have

(1 + [u)lul min{|u[*, L?} < 2|uf® min{|u[**, L*}.

Thus,
la|(1 4 |ul)|u| min{|u|**, L?}n?* < 2|a||u|? min{|u|**, L?}n? + 2|a|n®.
Hence,
/ |Vu|? min{|u|?®, L?}n? + f/ IV ([u)2) 2|22
° 2 J{jut@) <)

< —2/ uVumin{|ul**, L*}nVn + / la|(1 + |u|)|u| min{|u|?¢, L*}n?
. @ @ (8.1)
< 5 L IVul? minu, 22 42 [ Juf mingful, 22} 91
Q Q
+ 2/ alu|? min{|u|?®, L*}n? + 2/ an?.
Q Q

Suppose that u € L2*F?(Q) for some s > 0. Let

cs = / |u|?T? < 00;  d = max{1, max |Vn|?};
F

2/N
«On=([ 1) o),
{a>M}
We have

[ minu, UV < d [ oo = e,
Q F

and
[ aluf minglu, 22}
Q

- / aful? min{|u[?*, L2} + / afu® min{[u[**, L2}
{a>M}NF {a<M}NF

2/N ) . o\ (N=2)/N
<(f 1alE) (] fl minae, 22y
{a>M} F

4 [ Juf minflu, 2}
F
(N=2)/N
< e [ Jlul?minfluf, 227 /N 2) T e,
F
< (M) lumin{luf*, L2l |2 ) + Mec,

< (M) /F IV (umin{ul®, L}n)? + cea,

Jart = [ at? < ([ 1apr22 [ psosmoam
Q F F F

and
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Since [,|Vul? min{|u|**, L?}n? and %f{lu(m)lsgL}|V(|u|2)|2|u|25’2n2 are nonnega-

tive, by (8.1)), we have
/\Vu|2min{|u|23,L2}n2
Q

<4 [ Juf minfu®, Y9 + 4 [ alu? mingfuP, L2+ 4 [ ar?
Q Q Q

gce(M)/ IV (umin{ul*, L)) + ccs
Q

and

s _ . s
: / V()2 22 < ces + ce(M) / IV (wmin{lul*, L}n)).  (8.2)
{lu(z)|*<L} Q

Together with (8.2)),
4/ lumin{|u|*, L}Vn|? < 4dc,
Q
and

5?

[V (umin{lul®, L}n* < 3(1Vul* min{|ul*, L*}n* + =

X{juls <23V ([uf?) [P ul**~2n?

+ dlumin{]ul®, L} Vnl?,

we have
/|V(umin{|u|s,L}n|2 §ccs+ce(M)/\V(umin{\u|s,L}n)|2.
Q Q

Choose M so that ce(M) < % to obtain

/ IV (wmin{[uf*, L}nf? < ces,
Q
or

/ V()2 < cco.
{luls<L}

Letting L — oo, we obtain
/lV(IU|s+177)|2 <ces =c. (8.3)
Q

Since |u[**'n € H}(Q) — L*> (Q), we have u € LI(ESH)N/NQ(Q)- Letting so =
0, u € L2 _(9), then by 1) we have u € L2N/N72(Q)7 and by 1) again, we

loc loc

have u € LIQOJZQ/(N_Q)z (©). Continuing this way, let 2s,41 +2 = (2s; + 2)%, for
7 > 0 to obtain
u € Ligt (@)
for each s;. However, s; — 0o as i — oco. Thus, u € L{ () for any ¢ < oc.
If a € LN2(Q)N L2(Q) and u € H}(Q), then take n = 1. O

We have the following existence and uniqueness theorem for the Dirichlet prob-
lem for strong solutions: LP—theory.

Theorem 8.6. Let Q be a C1'1 domain in RN and h € LI(Q) for some 1 < q <
oo. Then the Dirichlet problem has a unique strong solution u € W24(2) N
W),
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The proof of the above theorem can be found in Gilbarg-Trudinger [36, Theorem
9.15].

Theorem 8.7. Let Q be a CY1 domain in RN . Then there is a constant ¢ > 0
(independent of u) such that

lullwza0) < cll — Au+ul|La(a)
for each u € W>9(Q) N W,9(Q), 1 < ¢ < co.

The proof of the above theorem can be found in Gilbarg-Trudinger [36, Lemma
9.17].

Theorem 8.8. Let k > 0 be an integer and Q be a C**11 domain in RN and
h € Wk4(Q) for some q, 1 < g < o0o. Ifu € Wf)cq(Q) solves —Au+u = h(z) in Q,
then u € Wh+24(Q).

The proof of the above theorem can be found in Gilbarg-Trudinger [36, Theorem
9.19].

Theorem 8.79. Let k > 1 be an integer and let 2 be a CHtL8 domain in RN and
h € CF=LB(Q) for some q, 1 < g < oco. Ifu € Wlicq(Q) solves —Au+u = h(z) in
Q, then u € C*1LA(Q).

The proof of the above theorem can be found in Gilbarg-Trudinger [36, Theorem
9.19]. We also have the following existence and uniqueness theorem for the Dirichlet

problem for weak solutions: L2-theory. Its proof can be found in Gilbarg-Trudinger
[36, Corollary 8.2].

Theorem 8.10. Let u € H () be a weak solution of the equation —Au+u =0
in Q. Then u=0 in Q.

Applying these results, we have the following theorem.

Theorem 8.11. Let 2 be a C1' domain in RN . Let u € HE () be a weak solution

of in §.
(i) If h € LN2(Q) N L?( Q), then u € LY() for every q € [2,00). Furthermore,

lull o) < p(llullar @),
where p(||ul| g1 (q)) s a polynomial of ||u|| g1 (q) with real powers;
(i1) Let h € LN/ N L*(Q) N L3(Q) for some s, s > N and § =2 — & —[2 - &],
then 0 < 6 < 1, u € CHY(Q)NW22(Q), and

[ullLoe @) < Nullgro@y < cllullwzs @)
(i4i) Let h € C(Q) N LN/2(Q) N L5(Q) N L2(Q) for s as defined in (ii), then u €
C?(Q).

Proof. (i) N = 1,2 follows from the Sobolev inequality. Suppose that N > 3. For
d>0,1>1,let ¢ = pg; = umin{|ul??,12}, then

Ve = min{[u*?, >} Vu + xqjuja<iy 2d|ul**Vu.
Since u € Hi (), we have

/Q|w\2 = /Q|min{|u\2d,12}Vu+X{|u‘d§l}2d|u|2qu|2
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S 2(/ | min{|u|2d, lQ}Vu|2 + |X{‘u|d§l}2d|u\2dVU|2>
Q

< 214/ |Vul? + 8d2z4/ |Vul?
Q {lul?<ty

<c | |Vu]* < 0.
Q

Clearly, ¢ € L?(2). Thus, » € H}(Q). Note that we have hy < |h||u| for Ju| <1
and he < |h||u|? min{|u|??,1?} for |u| > 1. Suppose u € L2¥*P. Multiplying and
integrating (|1.2]) with ¢, we have

/Vqup

Q

=—/wp+/IUIp_2W+/h¢
Q Q Q

= [l wminat 2y 5 [ P [ i+ [ bl mingul, 2y
Q Q Q Q

2d .
242, + ] el g2 + / o uf? min{jul®, 12}
{h<M}

IN

IN

[l mina, )
{Ihl=M}

VN
< 2458, + Al sz + M [ 252 ) ([ [l mingla, 2 757)
< ul[3%52, + Al 2 llull 2 + M ||ul[2452, + Se(M)||V (wmin{|ul?, 1})]2.,

N

2
where e(M) = (f{th}h7> Y= o(1) and S is the Sobolev critical constant. Thus

we have

/ VuVe
Q

< Null 754t + Al ull 22 + Mllull 3552, + Se(M)IIV (umind|ul, 1})]17.

Then we have

/ VuV
Q

< ull 7282, + Wollzzllull 2 + Mull7552 + Se(M)|IV (wmin{|ul, 1})][7..

Since 2 < 2d + 2 < 2d + p, write ﬁ =35+ 216;3;. Then

[l 2ave < [l Fallull 2is-
Therefore,

2d a(2d+2 1—a)(2d+2
/Q VuVe < |[ull242, + 1Bl o2 ull 2 + M |Ju]| S22 |fu)) (2 24+2) 5

+ Se(M)||V (umin{|ul?, 1})]|7
Note that

/VuVap = /|Vu|2 min{|u|??, 1%} + 2d/ | V) [ul 2. (8.5)
Q Q {lul?<i}
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Now, we have

/ vmﬁﬂﬁs/ HMWHW+E/ Vuf?
{|ul?<1} {|ul?<l} {lul?>1}
— [ 19 Cuminjatt, ) ?
Q

:/Q|min{|u|d,l}Vu+X{|u|d§l}d|u|qu|2

z;/WVMthwWF%P}+w2d+d%/" IVl
Q

{Ju|?<1}
d
<1+ *)/VUV(p.
2" Ja

In particular, we have

/|V (uwmin{|u|?,1})[? /Vquo, (8.6)
and
. 2
‘/ meﬂPs/meMMMDL (8.7)
{Juld<1} Q
Then from (8.4) and (8.6]), we have
IV (umin{[u]?, 1})]|2.
d 2d+2 1—0)(2d+2
su+5mwmﬁ&+mmwwp+Mmh<+WH;$<+U
+a+§&wmwmeM%mﬁm
Let M > 0 be such that (14 2)Se(M) < . Then we have
IV (wming|ul?, 1})[|2.
< (24 d)([ul2257, + [lhll gz lul 2 + M| s ful) (5,
By (8.7), we have

| P
{Jul¢<1}
< [ IV @mingful®, )
2d 2d+2 2d+2
< (24 d)([ul2%57, + [lhll gz lul 2 + M| s ful) (5,
Letting | — oo, we obtain
IV (Juu] 1) 2.
a(2d+2 2d 2
< @+ a) (Il 352, + bl llulzz + Ml §E4) )l 0 C42).

Since
2(d+1 d d
Il 200, = (a2 < S|V (jul™Y))12.,
we have

(d+1)
| 7 e
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< S+ d)|lull 3522, + Nl llullze + Mul 8 ul ()]
Let dy = 0 and 2d; +p = (d;—1 + 1)2* for ¢ > 1. Since p < 2*, then d; > 0 and
d; > (%)i_ldl. Hence, lim,,_.o, d; = co and
ull 2air = [Jull s +n2e < pica(llull 2aii+0).
By iterating, we conclude that
l[ull 2as+r < pi(lleell )
By the interpolation property, for every ¢ € [2,00), we have u € L? that satisfies
lullze < pq(llulla).

(i7) Let g(z,u) = |[u[P~2u + h(z), since (p — 1)s > s > N, then by (i), |u|P~%u €
L*(Q) N L2(Q). Thus, g(z,u) € L¥(Q) N L*(Q). By Theorem the Dirichlet
problem

—Av+v=g(z,u) inQ,
v e Wy (Q) N Hy (),
has a unique strong solution v € W25(€2) N W,"*(Q) N HL(Q) and
[ollw2.e @) < cllg(zw)llLs (-
Since v € H} () satisfies Equation , we have for each ¢ € C°(Q)),
/Q(VUV%O + vp) = / 9(z,u)p.

Q
Thus v and v satisfy weakly

—Av+v=g(z,u) inQ,

—Au+u=g(z,u) in Q.
Let w = v —u. Then —Aw +w = 0 in Q. By Theorem 810} w = 0, or u = v €
W25(Q) N Wy *(2) N HE(Q) and

[ullwz: @) < cllg(z,u)|
Now s > N and § = 2— & — [2— ] Then by the Sobolev embedding theorem
u € CH9(Q) and
[ullzoe ) < llullgro@) < ellullwze -

(iii) By (i1), we know that u € C*?(Q). Since u is bounded, then |u|?~2u € C?(Q).
By Theorem we have u € C9(Q)). O

Ls(Q)-

8.3. Asymptotic Behavior of Solutions. By Theorem [8.11] we obtain the fol-
lowing three results about asymptotic behavior of solutions. We define the general-
ized infinite strip 8" = B™(0;r) x R®, where N >4, m >2,n>1land m+n = N.
Let A; be the first eigenvalue of —A in B™(0;r) with the Dirichlet problem, and
¢1 the corresponding positive eigenfunction to Aj.

Theorem 8.12. (i) Let h € LN/2(S")NL*(S")NL3(S") for s > N. Ifu in HL(S")
is a weak solution of (1.2)) in S™, then u € C1(S") and

‘ l‘im u(z,y) =0  uniformly inx € B™(0;7);
Y|— 00
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(i3) Let h € LN/2(F7) N L*(F%) N L*(F%) for s > N. If u in H(F7) is a weak
solution of (1.2)) in F7, then u € C*(FT) and

lim u(z,y) =0 wniformly inz € B™(0;r);
Yy—o0

(i3i) Let  be an unbounded domain in RN, h € LN/2(Q) N L*(Q) N L*(Q) for
s > N. If u in H}(Q) is a weak solution of (1.2) in Q, then u € C*(Q) and
lim|,| o u(z) = 0.

Proof. (i) By Theorem u € CY(ST)NW?25(S™). For each t > 0, apply Theorem
8.11] (i¢) to obtain
[ull Lo (sry < cllullwen(srys
where S} = {z = (v,y) € S" : [y| >t} . Since |Julw2n~ sy = o(1) as t — oo, we
obtain
lim wu(z,y) =0 uniformly in x € B™(0;r).

ly|—o0
The proofs of (ii) and (i4i) are similar to (7). O

By Lien-Tzeng-Wang [47], there is a positive solution of (1.1 in S”. Such a
solution admits exponential decay in y.

Theorem 8.13. Let u be a positive solution of Equation (1.1 in S™. Then for
every 0 <9 <14+ A1 v >0 and B > 0 exist such that

v (@)e VMM < u(z) < By (2)e VMWL for 2 = (2,y) € 5™

Proof. By Theorem (iii), u € C%(1Q).
(i) yor (x)eVIHMHIY < y(2) for 2 = (z,y) € S” : define

ws(2) = ¢y (x)e”VIFMTOW for 2 = (z,y) € Bm(0;7) x R" = ST,

For 0 < 6 < 1+ Ay, take R > 0 such that § — Y1200 > 0 for [y > R (for
n =1, take R =1). Set

in u(.’L‘,y) .
zesT, |y|<R ws (2, )

Note that ws(z,y) and u(x,y) are radially symmetric in  and y, and decreasing
in |y| for a fixed x. Thus

U(.’L’7y) _U($7y) e\/1+>\1+5|y\ > u(m,Rel) for |y| < R, = Bm(O,T),

ws(z,y) — ¢1(z) ¢i(z)
where e; = (1,0,...,0) € R™. Therefore
y= i u(z) > u(z, Req) _ u(m,Rel)7
z€S7, |y|<R ws(z) — zeBm(0r)  ¢1(x) zeL  ¢1(x)
where L is a fixed diameter of B™(0;r). Note that
u(z, Rey)

————= >0 forxelL.

¢1(x)
Furthermore, for each g € L C dB™(0;r), take a small ball B! in B™(0;r)
such that zo € OB!. Note that ¢ (x) > 0 for z € B!, ¢1(z9) = 0, and ¢;(z) €
C?(B™(0;7)). Then by Lemmaﬂbelow, %(xo) < 0, where v is the outward unit

normal vector of B! at xg. Let u;(z) = u(x, Rey), and for each z; = (zg, Re1) €
OL x R™ C 9S", take a small ball B? in S” such that z; € B?. Note that u(z) > 0
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for z € B2 and u(z1) = 0. By Theorem u(z) € C%(S7), then by Lemma
below, 2% (zl) < 0, where 7 = (v,0) is the outward unit normal vector of B? at 2;.
Thus, %(:co) Vui(xo) - v = Vu(z) v = %( 1) < 0. By L’Hopital’s rule, we

have

. u(x, Rel) ) (550 + hl/) %(1‘0)
lim ———— = lim = 9, > 0.
weB™(0r)  P1(x) n=0- gr(wo +hv) G (x)

r—xo normally

Define
ulz, Re) -y e Rey)
¢1 (1’0) z€B™ (0;7) I ¢1(£C)
T—XT0 normally
Thus 42:E e )1) > 0 for 2 € L. Since u%fl’ige)l) : L — R is continuous, we have
(a: Rey)
> inf > 0.
S i)

Let v(2) = yws(2) for z € S™, then we have
v(z) <u(z) for 2 € S7, |y| < R.
For z € S", |y| > R, we have
—Au=v)(2) + (v = )(2) = (-Au(2) + u(2)) + (Av(2) - v(2))
VI4+ A +6(n—1)
[yl

=uP™ u(2)(6 — ) > 0.

Y

(For n = 1, we only consider the domain {z € S"| y > R}.) Since u(z) —v(z) > 0 on
0AUOS” Where A={z€8": |yl > R}, by Lemma 0.3 below, we have v(z) < u(z)
for z = (x,y) € S", ly| > R. Thus, we conclude that v(z) < u(z) for z € S, or
Jor(@)e VIR < u(2)

(i1) w(z) < By (x)eVITM=0W for 2 = (2,y) € 8" : for 0 < § < 1+ ;. By

Theorem [8.12 | l‘lm u(z,y) = O uniformly in z. Take R’ > 0 such that wP=2 <
yl—

for |y| > R', x € B™(0;r). Define

[
2+{M]
wo(2) = ¢y (x)e VITMTIWL for » = (z,y) € B™(0;7) x R"=ST;

Uu\z
b= ap O
2€87, ly|<R' W (2)

u(z) = pw’(z) for z € ST,
Fix a diameter L of B™(0;r). We have

)

u(z) _ u(z, )W|y\< u(z,0) VTN R

w(z)  du(x) ¢1(z)
for |y| < R', x € B™(0;7), and
B=  sup US(Z) < swp u@,0) rxi=sr supu(x’o)emR/.
2€87, |y|<r' W ( ) z€B™ (0;1) ¢1( ) z€L ¢1(x)
Similarly to part (2), for zg € 0L C 9B™(0;r), we have
u(z,0) ug(wo + hv) %(mo)

lim lim
weB” o) Gi(x)  n=0- Gulzo+hw) G ()

z—xo normally
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where v is the outward unit normal vector of B"™(0;r) at xp and ug(x) = u(x,0).
Define

’LL((E(),O) . . u(w,O)
Gilw)  sestom i)

r—xo normally

< 00.

Thus,

=l @) e i)

Therefore, pu(z) > u(z) for z € S™, |y| < R'. For z € S, |y| > R’ we have
—A(u—p)(2) + (u = p)(2) = (=Au(z) + u(z)) + (Au(z) — p(z2))

VI+A —d(n—1)

(< su Mem}'{/ < supu(x70)6mR’

< 00.

=uP"Nz)+ (-6 - B Yuu(z)
< (= )
=21 ] 2 )
therefore,
)
—A(u — 1— ———)(u~— <0.
(w=p)(z) + (1 =5 [)\1])(“ m(z) <0
Since 1 — ﬁ > 0, u(z) — p(2) < 0 on 0B, where B = {z € S" : |y| > R'}, by
Lemma [9.3) below, u(z) — u(z) < 0 in B. Thus, we conclude that u(z) < p(z) for
z€ 8" O

We similarly present the asymptotic behavior of each solution of (1.1 in the
interior flask domains F7, where s > r.

Theorem 8.14. Let u be a positive solution of (1.1) in F7.. Then for any 0 < § <
14+ A, v>0,8>0, and R > s exist such that for z = (z,y) € Al,

Yo1(2)e”VIERY < u(z) < By (w)em VIOV,
Proof. (i) y¢1(x)e”VIHMY < y(z) for z = (z,y) € A% : by Theorem (44),
lim u(z,y) = 0 uniformly in x, where (z,y) € F5. For 0 < § <1+ Ay, take R > s
Y—00

such that u?=2(z,y) < ﬁ for y > R. In the remaining proofs, we fix such R.
Define

w(z) = ¢p1(x)e VITMY for z = (x,y) € AT,
Set

<
—~
8

~v= inf x))
z€EAT,y=R U}(i, )

Y
Similarly to Theorem v > 0. Let v(2) = yw(z) for z € AT, then we have
v(z) < u(z) for z € A7, y = R. For z € A%, we have
CA@ = 0)(2) 4 (u— 0)(2) = (~Au(z) + u(=)) + (Av(z) — o(2)) = ! 20,
Since w — v > 0 on JAY, by the strong maximum principle, we have v(z) < u(z)
for z = (z,y), z € AF,.
(i) u(z) < By (w)e VITM=Y for z = (z,y) € Al : define
ws(2) = ¢ (x)e” VIOV for z = (2,y) € AL
8= sup uz) > 0;

zEAT,y=R w5<2’)
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w(z) = Bws(z) for z € AT.

Similarly to Theorem B < co. Therefore, u(z) < u(z) for 2 € A7, y = R. For
z € AL,y > R, we have

—Au—p)(2) + (u = p)(2) = (=Au(z) + u(2)) + (Au(z) — p(2))
=u""(2) — op(z)

1
< _ .
< g3 e
therefore,
0
_ _ - _ <0.
Alw—p)(2) + (1= 5= [)\l])(u m)(z) <0
Since 1 — [ 1> 0 and u — p < 0 on A%, by the strong maximum principle, we
obtain u(z ) < p(z) for z € A, O

Bibliographical notes: Theorem is from Benci-Cerami [I1]. Theorem is
from Lien-Tzeng-Wang [47] and Gidas-Ni-Nirenberg [35].The asymptotic behavior
results are from Wang [71] and Chen-Chen-Wang [23].

9. SYMMETRY OF SOLUTIONS

We use the asymptotic behavior of solutions developed in Section 8 and apply the
“moving plane” method to prove the symmetry of solutions to in the infinite
strip A". Our approach is similar to those in Gidas-Ni-Nirenberg [34, Theorem 1]
and [35, Theorem 2] but is more complicated. Before proving our main results, we
first establish a version of the Hopf boundary point lemma and the strong maximum
principle that will be used in our case.

Lemma 9.1 (Hopf Boundary Point Lemma). Let Q be a domain (possibly un-
bounded) in R™. Let L be a differential operator given by
n
Lu= ), a" D”“sz ) Dyt + c(a)u, o' (z) = ali(z),

i,j=1

which is uniformly elliptic, | Al((f)) L and f\((z)) are uniformly bounded, where \(z) is
the minimum eigenvalue of [a” (z)]. Assume Lu < 0. Let zg € 9 satisfy:

(1) u is continuous at xo;

(1) u(zo) < u(x) for all x € Q;

(75i) A ball B C Q ewxists with xg € 0B.

Suppose that one of the following conditions holds:

() u(zo) < 0 and c(x) <0;

(#3) u(xo) = 0;

(1) c¢(x) = 0.

If the outer normal derivative 9%(xo) of u at o exists, then 3% (zg) < 0.
For the proof of the above lemma, see Gilbarg-Trudinger [36] Lemma 3.4].

Lemma 9.2 (Hopf Boundary Point Lemma). Let Q be a domain (possibly un-
bounded) in R™. Let L be a differential operator given by
Lu = Z D”u—kE:bZ YDju + c(z)u, a(x) = a’’(z),
ij=1
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which is uniformly elliptic, ‘b)f((f))l and f\((?) are uniformly bounded, where \(z) is the

minimum eigenvalue of [a% (x)]. Assume Lu > 0. Let zo € 0 satisfy:
(1) u is continuous at xo;

(1) u(xo) > u(x) for all x € Q;

(79i) A ball B C Q ewxists with xg € 0B.

Suppose that one of the following conditions holds:

(1) u(zo) > 0 and c(z) <0;

(#3) u(xo) = 05

(1) c¢(x) = 0.

If the outer normal derivative 9%(xo) of u at o exists, then 3% (z) > 0.

For the proof of the above lemma, see Gilbarg-Trudinger [36] Lemma 3.4].

Lemma 9.3 (Strong Maximum Principle). Let L be uniformly elliptic, c =0 and
Lu > 0 (< 0) in a domain Q (not necessarily bounded). Then if u achieves its
mazimum (minimum) in the interior of Q, w is constant. If ¢ < 0 and c/X is
bounded, then u cannot achieve a nonnegative mazimum (nonpositive minimum) in
the interior of Q0 unless it is constant.

For the proof of the above lemma, see Gilbarg-Trudinger [36, Theorem 3.5].
We define the generalized infinite strip by S = B™(0;7) x R™, where m > 2,
n > 1, and m +n = N, and suppose that
(91) g(u) > 0 as u > 0;
(92) g(u) = O(uP) as v — 0 for some p > 1.
Now we consider the equation
—Au+u=g(u)+ h(z) inS",
u>0 inS",
=0 on9S",

lim |y| — oou(z,y) =0 uniformly in x € B"™(0;7).

(9.1)

We apply the “moving plane” method to prove the symmetry of solutions of (9.1).

Theorem 9.4. Assume that g € C' satisfies (g1) and h is radially symmetric
in x and y and strictly decreasing in |x| and |y| . Let u(z,y) be a C? solution
of Equation (9.1). Then u is radially symmetric in x and in y; that is to say,

w(@,y) = ullzl, |y])-

Part I: u is radially symmetric in y.
Notation:

So ={(x,y1,92,...,yn) €S" | x € B™(0;71), y1 = 0};
Ty ={(z,y1,92,...,yn) €S" |z € B™(0;r), 11 < 6}.
For any (x,y) € S7, set (z,y%) = (2,20 — y1,¥2,...,yn); that is, (z,7%) is the

reflection of (z,y) with respect to Sp;
Let © be the collection of all € R such that the following statements hold:

u(z,y) <u(z,y’) forall (z,y) € T,
Uy, (z,y) >0 on Sy.

Lemma 9.5. There exists 6y > 0 such that either (—oo,—6y] C © or u(z,y) =
u(z,y=%) in T _y,.
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Proof. Given 0 < 0, set w’(z,y) = u(z,y) — u(z,y’) for (x,y) € 'y, and w’(z,y)
satisfies
Awe(l'vy) + cg(x,y)we(x,y) = h(xaye) - h(l'vy) > 07 (92)

g(u(z,y)—g(u(=,y®))
u(z,y)—u(z,y?)

where cy(z,y) = —1=¢(&) — 1 and & is in between u(z,y)
and u(z,y?).

We claim that 6y > 0 exists such that if § < —fp, then w’(z,y) < 0 in Ty.
Otherwise, suppose w?(z,y) > 0 for some (z,y) € T'g. Since lim |y| — cow?(z,y) =

0 uniformly in 2, w?(x, y) achieves its maximum at (2g,ys) € T'g. Then
vwﬁ (.’IJQ, y@) = 07 quad{wfj (.’IJQ, y@)} S 0.

Note that by (¢2), limt — 0T¢’(t) = 0. Take to > 0 such that if 0 < t < ¢,
then ¢'(t) < 1. Since limy; — —oou(z,y) = 0, we can choose 6y > 0 such that if
y1 < —bp, then u(z,y) < ty, therefore, ¢’'(u(x,y)) < 1. For 8 < —by, (xg,y0) € To,
then

Aw(zg,y9) <0, colz,y)w’ (zo,y0) = (¢'(€0) — 1)w’ (zg,y9) < O,

contradicting (9.2). As a consequence of the maximum principle and the Hopf
boundary point lemma, either w=%(z,y) = 0 in T_g, or w?(x,y) < 0 in I'y and
wgl (x,y) > 0 for (z,y) € Sy for 8 < —bp, or uy, (x,y) > 0 for (z,y) € Sp. O

Lemma 9.6. If (—o0,0] C O, then there exists € > 0 such that [0,0 +¢) C O.

Proof. Suppose instead that a decreasing sequence 6}, — 6 and a sequence {(z*,y*)}
of points in Ty, exist such that w' (z¥, %) = u(z*, y*) — u(z*, %) > 0, where
(2%, y%) is the reflection of (z*,y*) with respect to Sp,. There is a subsequence
{(z*,9*)} such that 2% — T as k — oo. Two possibilities may arise, as shown in
Case 1 and 2.

Case 1. |y*| — co. As shown in Lemma we assume

w’ (2%, y*) = max (z,y) € T, 0’ (2, y),

Vot (@h,y*) = 0, {wif («%,y%)} <. (9-3)
From lim |y| — cou(x,y) = 0, as in Lemma 0.5 we obtain a contradiction.
Case 2. y* — 7. We have (z%,4%) — (z,7) € Ty , thus w’(z,7) > 0. Clearly
(Z,7) ¢ Ty. If (Z,7) € Sp , then u,, (Z,7) < 0, which contradicts § € ©. Moreover,
(7,7) ¢ 0S" NTy. Note that w?(z,y) satisfies Equation , and by the Hopf
boundary point lemma, we obtain %we(f, y) > 0. On the other hand, by taking
limits in (9.3)), we obtain Vw?(Z,%) = 0, which is a contradiction. We conclude
that either Case 1 or Case 2 is impossible. O

Proof of Part I. Let 0 = sup{f € R : (—00,0) C O}. Then o ¢ O. If not,
by Lemma we would have [0,0 + €) C ©, which contradicts the definition of
0. We claim that ¢ = 0. Suppose instead that ¢ € (—o00,0). By continuity,
u(z,y) < u(z,y?) for all (x,y) € 'y, then by the maximum principle, we have
u(z,y) = u(z,y?) for all (x,y) € T'y. This implies that h(z,y) = h(z,y?) for all
(z,y) € T'y, which is a contradiction. This proves u(z,y) is symmetric with respect
to the hyperplane y; = 0 for all (z,y) € S". By reversing the y; axis, we conclude
that u(z,y) is symmetric with respect to the hyperplane Sy. Since the y; direction
can be chosen arbitrarily, we conclude that u(z,y) is radially symmetric in R”. O
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Part II: v is radially symmetric in B™(0;r).
Notation:

T>\ = {(lf,y) = ($17x27~ . -azN—hy) es": Ty = A}v

E)\ = {(xay) = (1'1,1'2, cee afolay) €es": T < )‘}

For any (x,y) = (z1,22,...,2n_1,y) € S™, set (z),y) = (2A — 21, 22,...,ZN_1,¥),
that is, (z*,y) is the reflection of (z,y) with respect to Tj.
Let A be the collection of all A € (—r,0) such that the following statements hold:

u(z,y) < u(z,y) for all (z,y) € T,
Uy, (z,y) >0 on Ty.
Lemma 9.7. For some § such that 0 <6 <r, (—r,—r+7J) C A.

Proof. Given A € (—r,0), set v*(z,y) = u(z,y) — u(z?,y) for (z,y) € Ty, then
v (x,y) = 0 for (x,y) € Ty, and v (z,y) satisfies
ANz, y) + ex(,y)o (@, y) = bz, y) — h(z,y) >0, (9.4)

where e (r,y) = Se{EA 2Tl

—1=¢'({\) — 1 where ¢, is in between u(z,y)
and u(z?*,y).

We claim that if —r < A < —r + 4, then v*(z,y) < 0 in X). Otherwise,
suppose \ exists such that —r < A < —r + 4§, v*(x,y) > 0 for some (x,y) € .
Since lim |y| — cov*(z,y) = 0 uniformly in x, v*(z,y) achieves its maximum at
(zx,yx) € Xx. Then

Vor(za,ya) =0, {v)(xx,y2)} <0.

Note that by (¢2), limt — 0%¢/(t) = 0. Take to > 0 such that if 0 < ¢ < t¢, then
g'(t) < 1. Since lim |x| — r~u(x,y) = 0, we can choose 4, 0 < § < r such that
u(z,y) < tg whenever r — ¢ < |z| < r. For —r < A < —r + ¢, we have

AvMza,y0) <0, ex(z, y)o (@, yn) = (9'(6) — Dot (aa,ya) <0,
which contradicts (9.4). Therefore, for —r < A\ < —r + 6, v*(x,y) < 0 in ¥). By
applying the maximum principle and the Hopf boundary point lemma, for —r <
A < =7+ 4, we obtain v*(z,y) < 0 in ¥y and v} (z,y) > 0 for (z,y) € Tx. Hence,
Ug, (z,y) > 0 for (z,y) € T\. Then (—r,—r +0) C A. O

Lemma 9.8. If (—r,\] C A, then there is a 7 > 0 such that [\, A+ 7) C A.

Proof. Suppose that a decreasing sequence \;, — A and a sequence {(z*,y*)} of
points in X, exist such that v (2% y*) = wu(zk y*) — u(@™, y*¥) > 0, where
(x™+,y%) is the reflection of (z¥,y*) with respect to Ty. There is a subsequence
{(z*,4*)} such that ¥ — T € B™(0;r). Two possibilities may arise as shown in
Case 1 and 2:

Case 1. |y*| — oo. As shown in Lemma we assume

M (2k y*) = max (z,y) € By, 0™ (2, 1),
Vo (k,gh) =0, (vl (a5 )} <0,
From lim |y| — oo u(z,y) = 0, as in Lemma we obtain a contradiction.

Case 2. y* — 7. We have (2% ¢y*) — (Z,7) € Zx. Thus, v)(7,7) > 0. Clearly
(Z,9) ¢ Ex. If (T,7) € Ty then uy, (Z,7) < 0, which contradicts A € A. Moreover,
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(T,7) ¢ 0S" N Xy, since if (Z,7) € 0S" N Xy then 0 = u(Z,7) > u(z",7) > 0, a
contraction. We conclude that either Case 1 or Case 2 is impossible. d

Proof of Part II. Let p = sup{\ € (—,0) : (—r,A\) C A}. Then u ¢ A. If not,
by Lemma we would have [u, u + €) C A, which contradicts the definition of
p. We claim that g = 0. Suppose instead that p € (—r,0). By continuity we
have u(x,y) < u(z*,y) for all (z,y) € ¥,. Then by the maximum principle we
have u(z,y) = u(z*,y) for all (z,y) € ¥, which is impossible. Thus p = 0. By
reversing the z; axis, we conclude that u(z,y) is symmetric with respect to the
hyperplane Ty and ug, (z,y) < 0 for 7 > 0. Since the z; direction can be chosen
arbitrarily, we conclude that u(z,y) is radially symmetric in B™(0;r). O

Corollary 9.9. Assume that g € C' satisfies property (g1) and h(z) = 0. Let
u(z,y) be a C? solution of Equation (9.1)). Then u is radially symmetric in x and
in y; that is to say, u(x,y) = u(|zl|,|y|).

Proof of Part I. w is radially symmetric in y. Similarly to Theorem [9.4] let oy =
sup{f € R | (—00,8) C ©}. Note that oy is not necessarily zero. Similarly, u(z,y)
is symmetric with respect to the hyperplane y; = o7 for all (z,y) € S". The
same conclusion holds for the other coordinate direction, and we conclude that u
is symmetric about each of n planes y; = 0; and Vu = 0 only at their intersection.
We may now take their intersection as the origin.

The same argument may be applied to any unit direction v and we infer that u
is symmetric about some plane

B™(0;r) x {y e R:y v =c(y) = const.}

At the point on this plane where u achieves its maximum we have Vu = 0 (since
the derivative normal to the plane is zero at every point of the plane). It follows
that ¢(v) = 0. Thus u is symmetric about every plane through the origin, that is, u
is radially symmetric in y. In addition, we also conclude that u, < 0 where p = |y|.
Proof of Part II: Since u is radially symmetric in B™(0;r): the proof is similarly
to the proof of Theorem O

9.1. Open Question: Are positive solutions of (|1.1)) in the generalized infinite
strip by S” unique up to a translation?

Bibliographical notes: The results of this section are from Chen-Chen-Wang
[23].

10. NONACHIEVED DOMAINS AND ESTEBAN-LIONS DOMAINS

In this section we also characterize Esteban-Lions domains. We prove that
proper large domains, Esteban-Lions domains, and some interior flask domains
are nonachieved.

Theorem 10.1. Let 5 be one of A", A", and RN, and Q1 a proper large
domain of Qa. Then oy = aa, J does not satisfy the (PS)a, -condition, and Equation
does not admit any ground state solution in Q1. In particular, a proper large
domain 0y of Qs is nonachieved.

Proof. Since € is a proper large domain of 3, by Theorem a1 = ap. Then
by Theorem [5.7) (¢) and (i7), J does not satisfy the (PS),,-condition, and Equation
(1.1) does not admit any ground state solution in ;. O
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The only solution in an Esteban-Lions domain is trivial. The following lemmas
are required. The first lemma is from Protter [62].

Lemma 10.2. Let u be a C? real-valued function in Q. Suppose that 5y, po > 0
and zy € Q) exist such that 0 < 0y < pg < 1 and
u(z) =0 in{z € RN : 5y < |z — 20| < pol}©.
Then mgo > 0 and ¢ > 0 exist such that if m > mg, then
/ pIm=2207 "2 < %/ 2620 (A,
Q m=Ja
where p = |z — zg|.

Proof. Without loss of generality, we assume that zg = 0, so that p = |z|. Let
v =e” "u. By the inequality (A + B+ C)? > 2B(A + C), we have

(Au)? = [e*p_mAv +2VoV(e ™ ") + vA(e*p_m)}
B B N

=le” "Av+2me P " pm2 Z Zi—

i=1

+mop ™ 2" " (mp™™ —m — 2+ N))?

N

> 47716_2"7mp_m_2 Z Zi
i=1

2

and

pm+2e2p_’"(Au)2

N g
>4 § i— [A ZppT2m=2 _ 2—-N —m=2]
> mi:1282i[ v+ mup (m+ Ymup ]

Thus,
/ p 22" (Au)dz > (1) + (IT) - (I11),
{00<]21<p0 }

where

(I):4m2i:1N/ »@Avdz,

Z
(o<l2l<po} O

(II) = 4m32i = 1N/ p M2y gv dz,

{80<|z[<po} Zi

v
(ITT) = 4m*)» i= 1N/ p " EH(m +2— N)vzi—dz.
Z {d0<]2|<po} 9z

We claim that (4)
(I) =2m(N — 2)/ |Vo|?dz > 0;
{60<|2I<po}
(#7) There exists my > 0 such that

(II) > m4/ p 2 20%dz  for m > my;
{00<]2|<po}
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and (i4i) for 0 < € < 1, there exists mgy > 0 such that

(II1) < 5m4( p_2m_2v2dz) for m > ma.
{60<]21<po}
(i) Since 2~ =0 on 0{0y < |2| < po} for all i = 1,2,..., N and
N 2
Z/ Zi v Avdz = Z / zzﬁa—;}dz
=1 {6U§|Z|SPU} azl i= 1] 1 {50<‘Z‘§p0} azl aZJ

For i # j, by integration by parts

/ Lo _/ @i(,z‘@)dz
(8o<lzl<po} 0% 0] (s0<|21<po} 025 0z 0z

__/ L 0 ;
(s0<lzl<po}  0%j 02i0z;

_ / Oy, 00 P g
(S0<]zl<po}  0%j '02j 020z

we have 5 o2 5
1
/ zi—vivdZ:—f/ ( v)Zdz
(S0<l21<poy 0% 02i0z; 2 J{s0<I21<p0) 9%
Thus,
N 9 N
1
= Josizl<poy 07 975 2 = Jiso<izi<po) 0%
J#i J?él
1 0
- f/ Vol — (22)24s.
2 J(50<121< 0} 9zi
For ¢ = j,

2 2
/ Zi@v%dzz_/ [ Ov 0%v —|—(6v)2]dz,
(60<|21<po} 0% 075 (Go<lel<p} 02027 0z

then we have
Ov 02 1 0
/ zi—v—gdz:—f/ ( U)de
{60<l2<po} 07 075 2 J(so<|21<po} 0%

N
Z/ 8 —Avdz
i=1 Y {60<]2|<po} 822

N

1
> (3/ Vopd: - [ (2 y2q:)
2 (50<)51< 0} {60<|21<po} O%i

i=1

(g —1) / |Vol? > 0.

(i) my > 0 exists such that 4m* +4m3 — 2m3N > m* for m > m;. Since v = 0 on
0{do < |z| < po}, we have

0
/ P2 v d
{80<121<p0} 9z

Hence,
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= —/ 4 (p™ 2™ 20z )vdz
{

50<|z1<po} 0%

=(2m + 2)/ p 22 22dz
{80<[z]<po}

0
_/ P2y Udz—/ P22,
{80<2I<po} 9z {80<|2I<po}

0
/ p M2z, Y dx
{60<|21<po} 9z

=(m+ 1)/ p 2?2 2dy — / p 2 2% dz.
{d0<|z|<po} {80<]2|<po}

Thus, for m > my we have
N

: ov
(IT) = 4m? / pm2m=2,,, OV
; {80<21<po} 0z;

and

N N

= 4m>(m + I)Z/ p 24?22 dy — 2m32/ p A 202dz
i—1+ {00<|2|<po} i—17{60<|2[<po}
= (4m* +4m® — 2m3N)/ p 22 dy
{80<|z|<po}
> m* p72m721)2dz for m > mq.
{80<|z|<po}

(#41) Since pg < 1, for 0 < € < 1 there is an mg > 0 such that
2m2(m +2— N)2 <2m* for m > mo,

e
/p—m—Z,UQdZ < 5 /p_Qm_Q'UQdZ for m > Mma.

Similarly to part (i¢), we have

/ p*m*%zi@dz
{d0<21<p0} Oz

=(m+ 2)/ p 22 d
{60<|zI<po}

0
—/ p_m_szi—vdz—/ p M 2%dz
{60<]2|<po} 9z {o<|z|<po}

and
N

1
Z/ mefoZi@dZ =-(m+2- N)/ p~ "2 dz.
— J{50<121<00} 0z 2 (60<]21<po}

Thus, for m > mo we have

N
v
1'2:; {60<|2|<po} "0z

=2m?(m +2 — N)? o~ 202dz
{60<|2I<po}
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S m4 p7m72,u2dz
{60<]2]<po}

<em? p iM%z,
{60<]2|<p0}

Take mo = max{mj,ma}. For m > mg, since u € C? and u = 0 on the set
{z € RN : 6y < |z| < po}¢, we have

/pm+262p7m (Au)?dz
Q

= / P2 (Au)?dz
{80<]2[<po}

> I)+ (1) - (III)
> m4( p_2m_21}2d2) _ €m4(/ p_2m_2112d2)
{60<]2[<po} {60<|2[<po}

=(1—e)ym*( p~ 2 202dz)
{00<]2<po}

=(1- 5)m4(/ p 2 202d2).
Q
Hence, for m > mg, we have

/p—zm—zer*muzsz %/pm+262p*’”<Au)2dz.
m
O

Recall the uniqueness of the analytic function: suppose that f is analytic in
a domain Q in R%. If f(z,) = 0 for some sequence {z,} of distinct points such
that z, — z9 € Q, then f =0 in Q. We know that f = u + iv, where v and v are
harmonic functions, but the uniqueness of harmonic functions is not elegant, taking
the form below. Let §(zg) = dist(zg, Q). Then we have the following uniqueness
result (see Heinz [39]).

Theorem 10.3. Let u be a C? real-valued function on 2. Suppose that u(z) = 0
is in the neighborhood of a point zg €  and that M > 0 exists such that

(Au)? < Mu?  for any z € Q.
Then u(z) =0 for any z € Q.
Proof. Let R =min{3, 16(z0)} and ®(t) € C2([0,00)) satisfy

<t <
@(t){l for0<t<R,

0 for %R <t <oo.
Let u(z) = u(2)®(|z — 20]). Note that 2R < 6(z) and B (20;2R) C Q. Thus, u(z)
is well-defined on B" (zp; 2R) and (z) € C%(BN (z0;2R)). We also have
a(z) uw(z) in {z € RN : |z — 2| < R},
u(z) =
0 in {z € RN :|z— 2| > 3R},
with %R < 1. By Lemma mg > 0 and ¢y > 0 exist such that

R™2M72 — coMm™*R™? >0,
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and for all m > my
/pfszzezp_mﬁdz < %/perze%_m(Aﬂfdz.

‘We have

Pf?m*?/ e " udz

{lz—z0|<R}

< / p72m7262p_mu2dz
{lz—20|<R}

< / p72m72e2p7ma“2dz
{lz=20|<2R}

< com™* P22 (AT)2dz
{lz—z0|<2R}

S COMm_4 pm+262pfmu2dz + Com_4/ pm+262p*m(Aa)2dz
{lz—20|<R} {R<[z—20|<2R}

< CoMm_4Rm+2/ 2P " uldz
{lz=20|<R}

+ com T (2R)T22ETT / (AW)?dz,
{R<|z—2z0|<2R}
or

(R72m2 — cOMm_4Rm+2)/ e " uldz
{lz—z0|<R}

< com—(2R)™H2e2R " / (AT)2dz.
{R<|z—20|<2R}

Since u(z) € C2(BN (20;2R)), we have

(R—Qm—Q _ COMm—4R7rL+2)e2R””/ u2dz
{lz—z0|<R}

< (R72m72 — coMm_4Rm+2)/ e " uldz
{lz—z0|<R}

< com*4(2R)m+262R_m/ (AT)%dz
{R<|z—20|<2R}
< com 1 (2R)" T2
Thus,

~4(2R)ym+2(C
2 \ds < com™( -
/{Z_a|§R}u (2)dz < R—2m=2 _ co Mm—4Rm+2

Let m — oo, then u(z) = 0 for any z € B (20; R). We claim that u(Z) = 0 for any
z2eQ. For z€Q,let h:[0,1] — Q be a path satisfying h(0) = zg, (1) = Z. Since
h and ¢ are continuous functions, then

A:min{%,i inf 8(h(t))} > 0.

0<t<1
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Since {h(t) : 0 <t < 1} is a compact set, 0 = tg < t; < to < -+ < t, = 1 exist

such that

{h()o<t<1}C iQOBN(h(ti); %A)

and
BN (ht,); éA) A BN ((tis); %A) 4.

Fori=1,2,...,n,let z; = h(t;) and R; = min{%, i&(zi)}, then z; € BN (z;_1; A) C
BN(zi,l;Ri). Applying the same process to zg, 21 ,..., zn, we conclude that
u(z) =0 on U, BN (2;; R;), in particular, u(Z) = 0. O

Let us denote the linear space of k times weakly differentiable functions by
Wk(Q). Clearly C*(Q) C Wk(Q). For p > 1 and a nonnegative integer k, we define
WkEP(Q) = {u € WF(Q) : D € LP(Q2) for all |a| < k}. We have the following
lemma.

Lemma 10.4. Let 1 <p < oo, R >0, and u € W*P(Q N BY(0; R)) be a solution
of
—Au = f(u) inQ;
u=0 on d9,
where f is locally Lipschitz continuous on R, and 2 is a smooth unbounded domain.
Let F(t) = fot f(s)ds, and assume that Vu € L?(Q) and F(u) € L*(Q). Then a

sequence {Ry} /" oo exists such that
(i) (Pohozaev identity)

(10.1)

/{NF(u) +(1- E)|Vu|2}dz = lim 1 (z-v(2))|Vul*ds
Q 2 k=00 2 JoanBN (0;Ry)
(i)

lim vi(2)|Vul?ds =0 for each 1 <i < N,

k—co JaQnBN (0;R;,)
where v(z) = (V1(2),v2(2),...,vn(2)) is the outward unit normal vector at z.

Proof. (i) See Esteban-Lions [33, Proposition 1.1] .
(ii) Let B = BY(0; R). Then we multiply 1' by g—Z and use integration by
parts over €2 N Bg to obtain

ou / ou OF (u)
—Au = flu :/
x/QﬁBR( )8271 QNBgr ( )8Z1 QNBgr azl
:/ F(u)v;ds
S(QOBR)

= / F(u)ﬁds.
QNOBRr ||

Note that Vu = %V on 9N and v = é on 0Bgi. We use the Green first identity
and integrate by parts to obtain

| cougt- [ vt - [ St
QNBr 0z; QNBr 0z; 9(QNBR) v 0z;

, N/ ou  0*u / Ou Ou
S e e
QNBr aZ] 522323 d(QNBR) ov ({921
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1 J ,0u ou Ou
DO R Rl L -t
Z 2 QNBr 321(62’]) 8(QNBR) 81/ 62’2

1
:Zﬂ'le*/ (%)des—/ Qu Ou
2 Jotonpg) 9% a(QnBg) OV 0z

1 1 i

= f/ |Vul|?vids + f/ |Vu\2z—ds
2 JoanBr 2 JonoBr |2

- / (@)zuids - / Ou Ju ds
oonBr OV anoBy OV 0z;

1 1 i
= ”/ V| 2v;ds + 7/ Va2 2 ds
2 JaonBx 2 JonoBx |2|

/ ou Ou
— — ds.
QNOBR ov 822
zi 1 z ou Ou

1 2, 1] _ Z 1o 0z Oudu
| 2 /amBR [Vulvids| =| QNOBx [F(u)\z| 2|Vu| |2] * ov 3Zi]ds|

1
< / (|F(u)| + §|Vu|2 + |Vu|2)ds.
QNOBr

Thus, we have

Since F(u) € LY(Q) and Vu € L3(9),

00 > /(|F(u)| + 3 1u)dz = 1im (F () + 2|Vul)dz
9] 2 R—o0 QﬂBR 2

= Ooerl U § u|?)ds|dr
-/ [/maBT(IF( )|+ 5 IVul)ds]d

o
:/ rN=IM(r)dr,
0
where M(r) = [nop5. (1F(w)| + 3|Vul?)ds. Suppose that for every sequence Ry —
oo we have M (Ry,) - 0 as k — oo, that is, a subsequence { Ry} and ¢ > 0 exist such
that M (Ry) — casn — oo. Then for sufficiently large k we obtain M (Ry) > § > 0.
Thus,
oo c oo
/ rNTIM(r)dr > f/ N ldr = oo,
0 2 Jk
This is a contradiction. We conclude that R; — oo exists such that

3
lim (|F(u)| + =|Vul*)ds = 0,
k=0 JonoBg, 2

that is,

lim |Vul|?vids =0 for 1 <4< N.
k=00 JonaBg,

O

Lemma 10.5. Let Lu = a¥(2)Diju + b'(2)Diu + c(2)u and u € W2P(Q) be a
solution of the elliptic equation Lu = f in a domain ), where the coefficients of L
belong to C*~12(Q), f € CFL2(Q) with 1 <p < o0, k>1,0< a < 1. Then

u € Ck+a(Q).
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The proof of the lemma above can be found in Gilbarg-Trudinger [36, Theorem
9.19].

Theorem 10.6. Let Q be an Esteban-Lions domain in RN with x as in Definition
and let f be a locally Lipschitz-continuous functional on R with f(0) = 0. If
u € C%(Q) is a solution of
—Au = f(u) in
u=0 on 09,

and satisfies Vu € L*(Q), F(u) € LY(Q) (with F(t) = [, f(s)ds), then u =0 in Q.
Proof. By Lemma (1), a sequence Ry — oo as k — oo exists such that

lim (v(2) - x)|Vul*ds = 0.

k—oo JoanBN (0;Ry,)

This immediately yields (v(z) - x)|Vu| = 0 on 9. Since Q2 is an Esteban-Lions
domain, then zy € 9 exists such that v(zg) - x > 0. Thus, § > 0 exists such that
v(z) - x >0 for 2 € QN BN (20;8). Then we have Vu = 0 on 9Q N BN (2¢; ). Let

() = u(z) for z € Q;
o for 2 € BN (20;6)\Q.

) =

FIGURE 7. Esteban-Lions domain with a small ball.

We claim that 4 is twice weakly differentiable. Since u € C%(Q) and u = 0 on
09Q, for each ¢ € CH(Q U BN (20;6)), we have

/ _0yp dy
U—= [ u
QUBN (z0;0) 0% Jo 0z
k=20
=— w+ wpv;ds
o 07 o9

= 7/ Vi,
QUBN (z0;6)

Ou .
vi(z) = 4 7= for z € {;
0  for z € BN (20;0)\Q.

where
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~ . . 2
Thus, v; = 2%. Similarly, we have w;; = where
’ Oz; Y J Bz 82 ’

(s — %{;sz for z € Q;
wij(z) = .
0 for 2 € BN (20;6)\Q.

Therefore, u € Wlif (€2). Next, since u € C%(Q) and by the Green first identity, for
each ¢ € C°(Q U BY(2;9)), we have

/ VﬂVgo:/Vquo
QUBN (20;9) Q

ou
=— [ (Au <,0+/ —pds
/Q< ) a0 OV
0 0
:/f(U)<p+/ lwd8+/ ods
Q AQNBN (20;6) ov OO\ BN (z0;6) ov
- [ f)e.
QUBN (20;0)

Hence, u is a weak solution of
—AT = f(@) in QUBN(2;6);
=0 ond(QUBY(29)).
We claim that f o is locally Holder continuous with exponent o in QU BY (2; ),

where 0 < o < 1. That is, for each compact set K C QU B¥(2y;6), we must show
that a constant C'(K) > 0 exists such that

|[fou(z) — fou(z)] < C(K)|z —=z|* (10.2)

for all 2,Z € K. Since f is locally Lipschitz with f(0) = 0, and u € C?(Q), for
z,Z € K, we have

(7) holds for 2,z € {BN (20;0)\Q} N K ;

(ii) if z € Qand Z € {BN (20;6)\Q}INK, then Z € 99 exists such that [z—2| < |z—Z|.
Thus,

[fou(z) = fou@)| < [foulz) = foul@)|+|feoulz) - fou(z)|
< Cu(K)u(z) —u(?)]
< Cy(K)|z — 2] < Co2(K)|z —Z|
< Co(K)|z =2z — 2"
< Gs(K)|z —=[%

(#41) it is clear that both z and Z are in QN K.

By Lemma we have u € CQ(QUBN(zO; 9)). Finally, since f is locally Lipschitz
and f(0) = 0, then (Au)? = |f(u C(K)(u(2))? on each compact subset K of
QU BN(zo,é). By Theorem %=0on K,and u = 0 on QU BV (zp;0).
Otherwise, if there is a z € ) such that u(z) # 0, then a bounded domain §; exists
such that z € Q; C Q) € QU BV (2;6), and by the previous argument, % = 0 on
Q1, which is a contradiction. Hence, u = 0. O

Esteban-Lions [33] Theorem I.1] proved the following result.
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Theorem 10.7. Equation (1.1) in an Esteban-Lions domain Q does not admit
any nontrivial solution. In particular, an Esteban-Lions domain is a nonachieved
domain.

We have the following lemma.

Lemma 10.8. (i) Esteban-Lions domains are invariant under any rigid motions;
(ii) If Q is an Esteban-Lions domain, then Q° is also an Esteban-Lions domain.

Proof. (i) Clearly.
(27) Note that n(z) - x = —n(z) - —x. 0

In fact, in a star-shaped domain Q C R” there is a fixed point zy €  such that
the segment ZZj is contained in € for each z € 2. We assert that an Esteban-Lions
domain 2 is an infinite star-shaped domain in the sense that it is v—convex for
some direction v: if 21,20 € Q with 21— 29 = tv for some ¢t € R, then the segment
Z123 is contained in §2. This is a consequence of the following lemma.

Lemma 10.9. An Esteban-Lions domain Q) with x as in Definition in RV s
X— convez.

Proof. Let Q be an Esteban-Lions domain in RY. Without loss of generality, we
may assume that x = (0,...,0,—1) € RY satisfying n(z) - x >0, and n(z) - x Z0
for each z € 90. For each z; € Q, we claim that {z; — Ax|A > 0} C . Otherwise,
set Ag = inf{\ > 0|21 — A\x € Q}. Then A\g > 0 and the point zy = 21 — Ag)x € .
There are only two possibilities:

(7) the curve 09 is transverse with the xy—axis at 2o, and then n(zg) - x < 0;

(1) the curve 9 is tangent with the x y—axis at zg, and then z € 9 near zj exists
such that n(z) - x <0.

Both (7) and (i7) contradict the definition of y. We conclude that an Esteban-Lions
domain Q in RY is y—convex. O

In R2?, let an upper semi-strip Q, a first quadrant Qs, a second quadrant s,
and an upper half plane Q4 be defined as follows:

Y ={z=(z,y) eR?:a<z<b fi(z) <y}

D ={z=(r,y) eR?*:a <z < o0, folz) <y}
Q3 ={z=(2,9) €ER?: —co <z < b, f3(x) < y};
Q={z=(2,y) €R?: —00 < x < 00, fu(z) <y},

where f1 : (a,b) = R, fo:(a,00) = R, f3:(—00,b) = R, and f4 : (—o0,00) — R
are smooth functions with single values.

FIGURE 8. Esteban-Lions domains 1.

As a consequence of Lemma [10.9] we have the following two lemmas.
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FIGURE 9. Esteban-Lions domains 2.

Lemma 10.10. An Esteban-Lions domain in R? must be one of the following types:
an upper half strip Q1, a first quadrant Qs, a second quadrant Q3, or an upper half
plane Q4.

Lemma 10.11. An Esteban-Lions domain @ with x as in Deﬁm'tion in RV s
a large domain if and only if the projection Q of 0 in the hyperplane RN=1 that is
perpendicular to x, is a large domain in RN T,

Proof. Suppose that € is a large domain in RY. Then for r > 0, z €  exists
such that BN (z,7) C Q which implies BN (z,7) C Q, where BN (z,7) and Q are
the projections of BN (z,r) and €, respectively. On the other hand, suppose € is
a large domain in RVN~!. Then for r > 0, 2 € Q exists such that BN(x,r) c Q,

which means that for any § € BN (z,r), y € Q exists and 7 is the projection of .
By Lemma A > 0 exists such that {g — xt: ¢t > A} C Q. Let

A=infge BN(z,r){A>0:5—xteQ fort>\},
then BN (z,7) C Q, where z = & — (r + 1+ A)x. Thus, Q is a large domain in
RV, O
In R3, there is an Esteban-Lions domain that is not a large domain.

Example 10.12. Let  be a domain in R? such that 2 contains the point (0,0,1)
with the boundary

00 ={((u+2)cosv, sinv, u)eR¥>|0<v<2r, u>0}
Then 2 is an Esteban-Lions domain in R3 with xy = (0,0, —1), but it is not a large
domain in either R? or A".

< v

FIGURE 10. Esteban-Lion domain but not a large domain.
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Proof. Let p(u,v) = ((u+ 2) cosv,sinv,u). Then
Py = (—(u + 2)sinv, cosv, 0)

and p, = (cosv,0,1). For z € 99, we have the outer normal vector n(z) =
Po X pu = (cosv, (u+ 2)sinv, —cos?v), and x - n(x) = cos?v > 0. Therefore, we
have x - n(z) > 0. Clearly, B(x;2) € Q for any z € Q, and thus, Q2 is not a large
domain in R3. [l

Let FT = A} U BN (0;s) be an interior flask domains. Interior flask domains are
achieved for large s, but are nonachieved for small s. By Theorem below, we
have the following result.

Theorem 10.13. so > 0 exists such that the interior flask domains F7, nonachieved
if s < sg.

Bibliographical notes: Theorem is from Esteban-Lions [33].

11. HIGHER ENERGY SOLUTIONS

Nonachieved domains may admit higher energy solutions. The Berestycki con-
jecture states: there is a positive solution of Equation in an Esteban-Lions
domain with a hole. We answer this conjecture affirmatively.

The Berestycki conjecture is based on some historical and physical reasons: sup-
pose that no solution of an equation exists in a domain @. If we break the symmetry
of the domain ® by adding a ball to it or by removing a ball, then the same equa-
tion in the perturbed domain admits a solution.

(i) Pohozaev [61] proved that the Dirichlet problem Au + u™"2 =0 in a ball does
not have any nontrivial solution. However, if we remove a small ball, then Coron
[28] proved that there is a positive solution.

(#4) Some turbulence equations in a ball do not admit any nontrivial solutions.
Lions-Zuazua [48] added a small ball on the boundary to break the symmetry, and
proved that the equation then has a nontrivial solution. One description of the
phenomenon is that if we add a small bump to the surface of a plane, then the
turbulence will be controlled.

We assert the existence of higher energy solutions of Equation in €, thus
answering the Berestycki conjecture affirmatively. Then we study the dynamic
systems of solutions.

Our results in this paper are still true for any one of the above known four
Esteban-Lions domains. For simplicity, however,we study only the upper half strip
with a hole 2. We also believe that the analyses and the results in this paper will be
helpful for studying the existence of solutions of equations in unbounded domains.

11.1. Existence Results. For h > r and B =BY((0,h);r/2), let Q = Q) =
(A5 U BY(0;7))\B be the upper half strip with a hole. By Theorem there
are no ground state solutions of Equation in 2. However, in this section, we
prove that a positive higher energy solution of Equation exists in Q.

Let @ be a ground state solution of Equation in A", h = (0,h) € A" and
¢:A"—[0,1], a C*° cut-off function such that 0 < ¢ <1 and

0 textforz € BU(A™\(AL U BY(0;7))),
P(z) =q1 for z € (AFUBN(0;7))\(BN(0; 2r)
U{z = (z,y) € A"|y < r}),
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T —
I={0 In=h+1I
O %[00 L=F+L
vi(2) = ¢(2)u(z —t —2h) for z€ A", tel
Then v, € H}(Q). Furthermore, we have the following lemma.

Lemma 11.1. Fort € I ort € I}, wheret = h +t, then
(3) N (=) — (= — £ — 3R)]| ogary = (1) as h — oo;

(i1) |Jve(z) — a(z — t — 2R) || g1 ary = o(1) as h — oo;

(7i) J(ve) = a(A") 4+ o(1) as h — oo.

Proof. (4)

—1P|u(z —t — 2h)|P

J ot
/ u(z —t — 2h)|P

lon(=) = a(z = t = 2B)|[% vy =

IA

7‘

as h — oo.

(i1) We have

lor(z) — @z — ¢ — 27 s gary
= (6(z) — Dz — ¢ — 203 ary

(1 +1)/ (|Va(z —t — 2h)|? + |a(z — t — 2h)|?)
(A

T2 o e
h+r
=o0(l) ash— oo.
(#4i) This follows from (4), (i7), Theorem and
1 1 1 1

al(A") = J(@) = 5(1(12) — ];b(ﬂ) = ia(vt) — ;b(vt) +0(1) = J(vt) + o(1).

From Lemma since [[@]3: ary = 1Tll7(ary> we have
Hvt”?ill(A"') = HH”HI(Ar) +o(l) ash — oo,
||UtH1[),p(AT) = HUH]I)/p(Ar) + 0(1) as h — oo.

Therefore, Hvt||%11(Ar) = ||vt|\’£p(Ar) +o0(1) as h — co. By Lemma there exists
A+ > 0 such that uy = Aoy in M: ||ut||§{1(A7,) = ||ut||’£,,(AT). Therefore, \; — 1 as
h — oo, or J(ut) = a(A”) + o(1) as h — oc.

For u € H}(Q), define the center of mass function by

50 = el Zany [ (B4 5 Zlute )P dod.
a2

Let
Bo = inf{J(u) : u € M(Q), u >0, j(u) = h}.
Proposition 11.2. «(A") = a(Q2) < fo.
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Proof. By Theorem a(A") = a(Q). Clearly a(A") < [y. Suppose a(A") =
Bo. By Theorem there is a sequence {ug} in M(Q), ug > 0, j(ux) = h for each
k, such that

J(ug) = a(A")+0(1) as k — oo,
J'(ug) = o(1) strongly in H () ask — oo.
By Theorem there is an unbounded sequence {(0,yx)} in A" such that
ug(z,y) =a(x,y — yr) +o(1) strongly in H}(A"),
r (O,yk) ) =

2 [(0,yx)|
¢+ o(1) as k — oo, where ¢ € 9I;,. Then by the Lebesgue Dominated Convergence

Theorem, we have

B = ) = el [ G et Pdady

where w is a ground state solution of Equation 1) in A”. Assume (h+

- = T (Tytye)
= ||u 5 T/ h"r*i u\xr, Pdxd +o(1

=¢+4o(l) ask— oo,
which is a contradiction. Therefore a(A”) = a(2) < Bo. O

Let
V={ueM(@):u>0}
I'={k: I, — V continuous : k(t) = u; for t € dI};
B1 = inf max J(k(1)).

keT ter,
Proposition 11.3. There is an hg > 0 such that for h > ho,
(1) a(A") < J(u) < %2(,;) < Bo, forteI;
(ii) a(A7) < J(u) <27 a(A"), fort e I;
(i) (j ow, t) >0, fort € OI.

Proof. (i) and (ii) follow from Theorem [10.1} Proposition [[1.2} and Lemma [11.1}
(1) c1, o > 0 exist such that ¢; < ||¢(z)a (z—t—2h)||Lp (ary < c2. For t € OI with
z+t+2h # 0, we have
t+2h - 1 _ _
(i,t) =|z4t+42h| — ———— (2 +t+2h, 2+ 2h)
|z 4+t + 2h| |z +t + 2h)
> |z +t+2h| — |z +2h| > |t| — 2|z +2h| = = —2|z+2h|

Then there are constants cs, ¢4, c5, cg, hg > 0 such that for h > ho
(i) i+ 1) = () ar, / (it g ot )Pz

:cg/r(ﬁ 2| i Do)z — 1 - 2P
rz+t+2h — —

= 7777}} t t 2h7 Pd
af ¢ g Il )

> c3(h*cs — heges — hes — 2c — 4hes) > 0 since h > hg,

=
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where [,,|¢(z +t + 2h)u(2)|Pdz > c5 and [, |z]|¢(z + t + 2h)u(z)[Pdz > cg. By
Theorem [8.13] ¢4 < 0. [l

Proposition 11.4. For h > hg, we have a(A") < By = 1 < Q%a(AT).
Proof. We claim that: (i) By = 1 : for any k € T, consider the homotopy H (), ) :
[0,1] x I, — RY defined by

H(A 1) = (1= N)j(k(1) + (),

where i denotes the identity map. Note that j(k(f)) = j(u;) for ¢ € 9I,. By
Proposition (#9i), H(\,t) # h for ¢ € Ol and A € [0, 1]. Therefore

deg(j o k, In, o) = deg(i, I, ) = 1.
to € I}, exists such that

j(k(to)) = h.
Hence, for each k € T,
Bo=1inf{J(u):u €M, u>0, j(u)=h}
< J(k(to))
(

< max J(k()).
tely,

We have 8y < 1. On the other hand, by Proposition m (1), for t € I, we have
u; € V and J(Ut) < ﬂo. Thus, maXieg J ut) < ﬂo, or 51 < ﬂo.
(ii) B1 < 2°7 a(A") : by Proposition (ii), J(u) < 27 (A7) for t € I. Thus

p=2 r
I?EaIXJ(Ut) <277 alA").

We have 3; < 217%204(A”). By Proposition m (1), we have
a(AT) < fo = B < 27 a(AT).

Now we assert that there is a higher energy solution of Equation (L.1)) in Q.

Theorem 11.5. Suppose that the positive solution of Equation (1.1)) in the infinite
strip A" is unique up to y-translations. hg > 0 exists such that if h > hg, then
there is a positive higher energy solution v of Equation (1.1)) in the upper half strip

with a hole Q2 such that a(A") < J(v) < QPTJa(AT).

Proof. Note that By = inf{J(u) :u € M, u >0, j(u)=h}. Take a minimizing
sequence {ug} in M: J(ux) — Bp as k — oo. By Theorem [£.4] {ux} is a (PS)g,-
sequence for J : J(ug) — B and J'(ug) — 0 as k — oco. By Theorem an
integer ¢ > 0, and sequences {2} }, where 2, = (0,y%) € A" for 1 < i </ exist, such
that for some subsequence {uy}, there are u® € H}(Q), u® > 0in Q, v’ € H(A"),
and u® > 01in A", 1 < i < ¢, satisfying

up(2) = u’(2) + [ul(z — 2p) +u(z — 23) + ...

+ub(z — 2)] + o(1) strongly inH}(A"),
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4
J(u) = J(W®) + )" J(u') +o(1) as k — oo
i=1

Suppose that the solution of (1.1) in the infinite strip A" is unique up to y-
translations. From Theorems and we find that u' are the same and
J(u?) = a(A") for i = 1,2,...,1. Therefore

Bo = J(u®) + la(A").

Since a(A") < By < 2%204(A’"). We conclude that u° is nonzero and [ = 0. Thus,
there is a positive higher energy solution v = u° of Equation ([1.1]) in the upper half

strip with a hole Q such that a(A”) < J(v) = Gy < 2%204(A7'). O

11.2. Dynamic Systems of Solutions. As in Subsection 1, for k& = 1,2,...,
define Q = (Af U BN (0;7)) \ BN((0,h); 1), where h > 2hg, + < r. Then €, is an
increasing sequence such that

(AfUBY(0;7) \ {0} = URZ, Q.
By Theorem we have, for each k, a positive solution uy € H}(Q) of —Auy +
u, = ub~" in Q satisfying
a(AT) < J(ug) < 257 a(AT).
Lemma 11.6. If up — u weakly in H}((AyU BN (0;7))) as k — oo, then u = 0.
Proof. For ¢ € C§°((Af U BN (0;7))), we have

/ up(—Ap + @) =/ (—Auy + ug)p
(AZUBN (03r)) (A5UBN (0;r))

_ / p—1
= Uy, .
(AFUBN (0;7))

Let k — 00, and we obtain

/ u(—Ap + ) = / uP .
(AZUBN (057)) (AZUBN (051))

Thus, —Au +u = wP~! in (A5 U BY(0;7)). By Theorems and u=0,or
uy, — 0 weakly in Hi((Ap U BN (0;7))) as k — oc. O

We have the following dynamic systems of solutions {uy}:
Theorem 11.7. |Vuy|*dz = ¢y + o(1) for some positive number c.

Proof. Let up — u weakly in H} ((AFUBY (0;7))) as k — oo, pu, = |Vug|?dz = p+
o(1) weak*, and vy, = |ug|Pdz = v + o(1) weak*. Then by the second concentration
lemma (see Lions [50, Lemma I.1, p.24]), there exist {a;}32,,{b;}52, in R+ such
that

mP/ =2+ o(1) = |luk 3 g

I

> JlullF o) + Zaj +o(1)
J

dﬂk = / dM + 0(1)
UBN (0;7)) (AFUBN (051))
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m(lullzs + Zbﬁ) +o(1)
([ +Zb% ()

2/p
:m(/ dz/) +o(1) = mP/P=2 4 o(1).
(ALUBN (0;51))
By Lemma u = 0. Thus, only one of the a; is different from 0, say a1 = ¢ > 0,
aj =0, j=2,3,.... Thus, |[Vug|?dz = ¢d,, + o(1). Clearly, z; = 0. O

Similarly, let {wg} be the solutions of Equation ([1.1]) in the interior flask domains
F7, where s > sp. Then we have dynamic systems of {wy} as follows:

Theorem 11.8. Let w be a ground state solution of Equation in RN. Then
wy — W strongly in H*(RY) as k — oco.
Proof. Note that
J(wy) = a(®Y) + o(1),
J'(wg) =o0(1) as k— oo.
By Theorem we prove that an integer £ > 0 and sequences {z}} C RV for 0 <

i < £ exist such that for some subsequence {wy}, there are w® € HY(RY), w! > 0
in RN for 0 <4 < ¢, satisfying
wy,(2) = W’ (2) + [w'(z — 2z3) +w?(z — 28) + ...
+w'(z — zf)] +o(1) strongly inH*(RY),

—Aw' +w' = (wi)p*1 textinRY, 0 < i <,

¢
Z J(w as k — oo.
=0
Then, since J(wg) = a(RY) + 0(1), we conclude that wy,(z) = W(z) + o(1) strongly
in HI(RN). O

Bibliographical notes: The results of this section are from Wang [71].

12. ACHIEVED DOMAINS

In this section we assert that the bounded domains, the quasibounded domains,
the periodic domains, some interior flask domains, some flat interior flask domains,
some canal domains, and some manger domains are achieved.

We begin with the following lemma.

Lemma 12.1. y(Q) is achieved if and only if a(Q) is achieved.

2p

Proof. Recall that a(Q) = (3 — %)v(ﬂ)rp Suppose that there is a u € H}(Q)
such that

J(u) = a(Q), (J'(u),u) = a(u) — b(u) = 0.
Then we have a(u)(%_%) =v(Q). Let v = Tl Then
u 1/ 1_1
lollir = 2tz = alw?~H = 2(9)
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Thus, () is achieved by v. On the other hand, let v(2) be achieved by some
function u where a(u) = |Jul|%: =1 and b(u) = |ul|}, = v(Q)P. By the Lagrange
multiplier theorem there is a A such that b'(u) = Aa’(u). It is easy to see that
= £~(Q)P, so we have
b (u) = £4(Q)7d (w).
This implies
@2 [l 2up) = ([ VT + up).
Thus, u is a weak solution of
—Au+u = ~y(Q)P|ulP2u.

Let v = () *7 u. Then
—Av 4o = [v]P0.

We have a(v) = b(v) = W(Q)%7 (J'(v), ) =0 for each ¢ € C (), and
1

Jw) = (2 - L@ = a@)

2 p

O

Remark 12.2. Note that if u is a ground state solution for J in €2, then u solves the

semilinear elliptic (1.1)) and J(u) = a(2). By the Kato regularity, LP—regularity
and Schauder regularity, the ground state solution u of (1.1)) is classical.

Theorem 12.3. A bounded domain §) is an achieved domain.

For the proof of this theorem follows from Theorem 5.1
An unbounded domain may be achieved.

Theorem 12.4. A C' quasibounded domain is achicved.

The statment of this theorem follows from Theorem [5.41

A periodic domain in RY is achieved. In Theorem we proved that if a (PS),-
sequence for J admits a nonzero weak limit u, then u is a ground state solution for
J. However, even though the weak limit is zero we can still obtain a ground state
solution for J if the domain is periodic.

Theorem 12.5. A periodic domain in RN is achieved. In particular, there is a
ground state solution of Equation (L.1]) in A", A™"2, and RV,

Proof. Tt suffices to prove the case Q = A". Let {u,} be a (PS),(ar)-sequence such
that
J(un) = a(A") +o(1), J'(un) = o(1).
By Lemma there are a subsequence {u,} and a u € Hi(A") such that
u, —u weakly in H}(A").

Suppose that u is nonzero, then by Theorem [5.6, we are done. Suppose that u,, — 0
weakly in H}(A"). Since () is positive, we have u,, - 0 strongly in H}(Q). By
Lemma there is a subsequence {u,}, and a constant a > 0 such that for
n=12,...,

Qn = sup/ lun (2)[2dz > o > 0.
yeER J(0,y)+AT, ,
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Take {z,} in A", where z, = (0,¥,) such that fzn+A"‘2 . |un(2)]?dz > /2, and let
wp(2) = up(z + 2z,). Then forn=1,2,..., 1

/ o (2)[2dz = / lun(2)[2dz > /2,
AT Znt+AT,

so w € H}(A") exists such that w, — w weakly in HJ(A"). Clearly, {w,} is a
(PS)-sequence in H{(A") for J. By Theorem [2.31]

/ lw|* = lim / lw,|? > /2,
Ar_v n—oo A’r_v2y2

2,2

so w Z 0. By Theorem there is a ground state solution of Equation (|I.1]) in
HL(Q). O

2,2

||wn||H1(A7) = HunHHl(AT) < c,

Moreover, R is an achieved domain: there is a classical solution u of the Equation

u' =u—y(R) ulP2u. (12.1)
By Berestycki-Lions [13], such a solution is unique. The solution can be constructed
as follows by routine computations.

Theorem 12.6. With u=2/(p — 2), we have

u(r) = (L)% feosh (/)

(2p + 1) (214) 11

YR) = |———~
(R) = [ E }
to solve Equation . In particular, R is an achieved domain.

b

ROt

Next we present achieved domains from the perturbations of nonachieved do-
mains. By Theorem [10.7] the upper half strip Af and the upper half hollow strip
A{""™ are nonachieved. However, the perturbed domains of A and A" may
be achieved. Let F7 = A% U BY(0;s) be an interior flask domain. Interior flask
domains are achieved for large s, but are nonachieved for small s.

Theorem 12.7. sy > 0 exists such that Equation (L.1)) has a ground state solution
in F} if s > so, but does not have any ground state solution if s < sg. In particular,
the interior flask domains F7}, are achieved if s > so, while F', are nonachieved if
s < Sg.

Proof. By Theorem- 112.5] the infinite strip A™ admits a ground state solution. Then
by Theorem [5.7] . (i%) Ar) > a(RY). By Theorem (#1), we have o(A") =
a(Af) and by Theorem 7L lim,_ o a(BN(0;8)) = oz(]R ). Take s large enough
so that
a(BN(0;5)) < a(A") = a(AD).
By Theorem there is a ground state solution of Equation in BN(0; ).
Then by Theorem (i), we have

a(F7) < a(BN(0;5)).
We conclude that
a(F%) < a(BN(0;5)) < a(Ap),
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or
a(FT) < min{a(BN(0;5)), a(A])}.
By the equivalence of (i) and (vi) in Theorem Equation (1) has a ground
state solution in F7, for large s. If Equation has a ground state solution in F7,
and s1 < sg, then F = F7 U BY(0;s2). By Theorem and Theorem (i),
a(F7,) < a(BN(0;52)) and a(F%)) < a(F%,). By the equivalence of (i) and (vi) in
Theorem Equation has a ground state solution in F7,. Let
so = inf{s > r : Equation has a ground state solution in F7}.

We then conclude that Equation ([1.1)) has a ground state solution in F7 if s > sq,
and Equation (L) does not have any ground state solution in F7 if s < sq. O

Remark 12.8. In Theorem [I2.7] we have asserted that the interior flask domains
F7 = A5 U BN (0;5) are achieved if s > sg. In fact, if we replace A% U BY(0;s) by
AL UQ, where Q is a bounded domain containing BY (0; s), the theorem still holds.

For 6 > 0, there is a £(§) > 0 such that a flat interior flask domain Q. is an
achieved domain, where

E.={(z,y) €RY : (z,ey) € B(0;r +8)}; Q. =AJUE..

Theorem 12.9. Given § > 0, €9 > 0 exists such that if € < €g, then the flat
interior flask domain €. is an achieved domain.

Proof. By Theorem[I2.5] the infinite strip A” admits a ground state solution. Since
A" C A" by Theorem we have a(A™°) < a(A"). Since E. C A+ and
lim. o a(E.) = a(A"™9), there is an g > 0 such that if ¢ < g9, then a(E.) <
alA"). If e, e < g is fixed, a large N € N exists such that

a((2)n) = a(Aly) = a(AT).
Thus,

a(e) < a(E.) < a(A") = a((Q:)n).
By Theorem a ground state solution w of ([L.1)) exists. By Theorem Q. is
an achieved domain. O
Fix a number 1 <7 < N — 1 and write RY = R! x R¥~!, 5o that a generic

z € RY is written as z = (7, y) with € R! and y € RV~!. Let Q be a domain in
RY. For y € RV~ we denote by QY C R the y-section of 2, that is,

QY ={zcRY (2,y) €}
We consider the following canal properties:
(1) Q is a smooth domain in RY and the sections Q¥ are contained in a bounded
set for each y € RN~
(€22) there is a smooth domain O in R! such that

O cC QY foreachyec RNV
(Q3) for each ¢ > 0 there is an M > 0 such that
QY C {z € RY|dist(z,0) < 8} for each |y| = M.

Theorem 12.10. Assume that Q satisfies (1), (Q2) and (Q3). Then Equation
(1.1) admits a ground state solution in the canal domain €.
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w\/

FIGURE 11. perturbed infinite strip domain.

Proof. (i) N —1=1:(2) gives
O=0 xRN S Q.

By Theorem there is a ground state solution of ( in O. By Theorem |5 .
(i), we have

a(©) < a(0). (12.2)
Let
Q ={z=(z,y) €Q:y>-1},
Q_={z=(z,y) €Q:y <1},
Oy ={z=(x,y) €0 :y> -1},
O_={z=(z,y)€0:y<1}.
Then Q =0, UQ and_ 0= 6+ uO. Moreover, both Q+ NQ_ and T, 6+ NO are
bounded. Since Oy C €, then () < a(0+) = a(O)

(a) Suppose that a(24) = a(0+) = a(0). By (12.2), we have () < a(€2).
(b) Suppose that a(Q) < a(O4) = a(0). By Theorem

~

hm a(60) = a(0),

and a §y > 1 exists such that o () < a(6,0). From (Q3), there is ng > 0 such that
Q. \BN(0;n9) C §p0. Thus, a(6p0) < a(Q\BN(0;n)) for n > ng. Therefore,
() < a(Q\BN(0;n)) for n > ng. From the proof of Theorem [5.12] if we
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assume that (v) holds for each n > ng, then we obtain (¢). Thus J satisfies the
(PS)a(e,)-condition. By Theorem (1), a() < a(4).

From Case (i) and Case (ii), we conclude that a(?) < «(924). Similarly, we have
a(Q) < a(9-). Finally, we have

a(Q) < min{a(Q4), ()}

By the equivalence of (i) and (vi) in Theorem J satisfies the (PS)qq)-
condition. By Theorem [5.6] (i74), (1.1)) admits a ground state solution in 2.
(ii) N —=1>2:(Q2) gives
O=0xRN! S Q,
and by Theorem and (4), we have a(Q) < 04(5). By Lemma

lim a(y0) = a(O).
y—1

Thus, take a ~ close to 1 such that () < a(v0). By (93), there is an ng > 0
such that Q\BY (0;n) C 7O for n > ng. Hence, a(y0) < @&, for n > ng. Thus
a(Q) < &y, for each n > ng. The result follows from the proof of (v) to (i) in
Theorem (.12 O

Assume z = (z,y) € RN"! xR for N > 3. Forro > 7 > 0 and t > 0, we
consider a manger domain D; = Aj""™ U Ag%. We have the following result.

Theorem 12.11. ¢ > 0 exists such that FEquation lD admits a ground state
solution in the manger domain Dy if t > ¢, and does not admit any ground state
solution in Dy if t < t.

Proof. (i) We claim that there is a to > 0 such that Equation admits a ground
state solution in D if t > tg.

Method (I): let {u,} be a (PS)y(p,)-sequence in Hj(Dy) for J. By Lemma
(7i1), we have oo = boo and Joo < a(Dy), where Joo = %bw. We claim that
there is a tg > 0 such that Jo, < a(Dy) for t > tg. On the contrary, suppose that
Joo = a(Dy,)) for a sequence {t,} such that t,, — 0o as t — oo. Then J = a(D;)
for each t > t1. Let £(z) be as in and Er(z) = f(%)‘ Then there is an Ry > 0
such that Epu,, € Hj(Ay'"™) for R > Ry. Let

(a(fRun) )1/(p72).
b(gRun)
Then we have a(\,{ru,) = b(A€ruy). For R > Ry, we have

J(AnéRrun) > a(Agl’w)a

An =

or

1 1 a(éguy, )P/ P2 _—
G~ D bEqune = Ao

Letting R — oo and n — oo and using a., = by, we obtain

p— 2 T1,T
Oé(Dt) = JOO = Wboo Z O[(AOI 2).
Thus we have

a(Dy) > a(AGH"™)  for each t > ty. (12.3)
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Since A{? and A" are a large domain of A" and A" "2, respectively, then by
Theorem [4.18) we have a(Aj?) = a(A"™) and a(A[""?) = a(A""2). Moreover, by
Theorem [12.5) a(A™) < a(A™:"2). We conclude that

a(AP) < a(AGN"™). (12.4)

By Theorem we have a((A(?)n) = a(A{?) + o(1). Hence, there is an ng > 0
such that

a(AR) < a((A)n) < a(Ay-"™)  for n > no.
Then we have

a(Dy) < a((AP)n) < a(Agh"™)  for n > n.
This contradicts (12.3)). Thus, there is a tg > 0 such that Jo < a(D;) for t > 1.
By the equivalence of (i) and (vii) in Theorem Equation (I.1)) admits a ground
state solution in D; for ¢t > t.
Method (II): Since A¢* and Ag""™ are large domains of A" and A™ "2, respec-
tively, then by Theorem 4.18] we have a(A[?) = a(A"2) and a(Ay"") = a(A™1.72),
Moreover, by Theorem [12.5] a(A"™) < a(A™ "2). We conclude that

a(AP) < a(AgH"™).

By Theorem we have a((A{?)n) = a(AF?) + o(1). Hence, there is an ng > 0
such that

a(AY) < a((AP)n) < a(Agh™)  for n > ng.
Then we have

a(Dy) < a((AP)n) < a(Agh"™)  for n > ny.
By the equivalence of () and (vi) in Theorem Equation (1.1) admits a ground
state solution in D,, for n > ng.
(#) If Equation (L.1) admits a ground state solution in Dy, and t2 < t3, then
Dy, = Dy, UAP,,. By Theorem and Theorem (4), a(Dyy) < a(Ag?,,) and
a(Dy,) < a(Dy,). By the equivalence of (i) and (vi) in Theorem Equation
(1.1) admits a ground state solution in Dy,. Let

t= inf{¢ > 0 : Equation (I.1) has a ground state solution in D;}.

Then ¢ > 0 such that Equation (T.1)) admits a ground state solution in D; if ¢ > ¢
and does not admit any ground state solution in Dy if ¢ < ¢. ]

12.1. Open Question: in Theorem is sg = r?

Bibliographical notes: Theorem is from Lien-Tzeng-Wang [47]. Theorem
is from Chen-Lee-Wang [24] and Chen-Wang [26]. Theorem is from Lien-
Tzeng-Wang [47], Chen- Lee-Wang [24) Lemma 19], and Chen-Wang [26, Propo-
sition 2.10]. Theorem is from del Pino-Felmer [31]. Theorem is from
Chabrowski [20].

13. MULTIPLE SOLUTIONS

In Section 12 we prove that there is a ground state solution in an achieved
domain. In this section we prove that if we perturb (|1.1)) or perturb the achieved
domain by adding or taking out a domain, then we obtain multiple solutions.

13.1. Multiple Solutions for a Perturbed Equation.
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13.1.1. Introduction. Let N > 2 and 2 < p < 2%, where 2* = % for N > 3, and
2* = 0o for N = 2. Consider the semilinear elliptic Equation ((1.2)

—Au+u=|ulP2u+h(z) inQ;
u € Hy(9),

where Q is a domain in RN and 0£h(z) € L2(Q). Associated with (T.2)), we
consider the functionals a, b, and Jy,, for u € HJ (),

a(u) =/<\Vu|2+u2>;

Q
b = [ Jul”
1

1
Jn(w) 2a(u) pb(u) /Qhu
By Rabinowitz [64, Proposition B.10.], a, b, and J;, are from C?. It is well-known
that the solutions of and the critical points of the energy functional J, are
the same.

When Q is bounded, Equation has been studied by many mathemati-
cians: see, for instance, Bahri-Berestycki [7], Bahri-Lions [I0], Rabinowitz [63],
and Tanaka [69]. Suppose that h is nonnegative, small and exponential decay. Us-
ing the concentration-compactness principle of P. L. Lions [49] and [50] to prove
that Equation has at least two positive solutions, Cao-Zhu [I7], Hirano [40],
and Zhu [80] studied Equation in RY, Hsu-Wang [41] in an exterior strip
domain, and Wang [71] in an upper semi-strip with hole.

In this section, we generalize the results of Zhu [80] and Cao-Zhu [I7], by relaxing
the assumptions of the function h and the domain 2, to obtain two nonzero solutions
of . By adding the exponential decay of the function h, we obtain three nonzero
solutions of . The main ingredients of the proofs are from Adachi-Tanaka [I],
Cao-Zhu [17], Tarantello [70], and Wang [71].

13.1.2. Emistence of (PS)-Sequences. We define the Palais-Smale (denoted by (PS))
sequences, (PS)-values, and (PS)-conditions in HE () for Jj, as follows.

Definition 13.1. (i) For 3 € R, a sequence {uy,} is a (PS)g-sequence in H} () for
Jp if Jp(un) = B+ o(1) and J} (u,,) = o(1) strongly in H=1(Q2) as n — oo;

(ii) B € R is a (PS)-value in H} () for J, if there is a (PS)g-sequence in H} ()
for Jp;

(iii) Jp, satisfies the (PS)g-condition in H{ () if every (PS)g-sequence in H}(€2)
for J, contains a convergent subsequence;

(iv) Jj, satisfies the (PS)-condition in H}(Q) if for every 8 € R, J, satisfies the
(PS)g-condition in H}(Q).

Lemma 13.2. If u € H}(Q)\{0}, then
p/2\ L5 )
(M) = C2y) a2

Proof. By Lemma we can take A > 0 such that Au € M(Q), and then the
computations is routine. [
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Throughout this section, we assume that h(z) satisfies 0 < ||h||r2 < d(p, @),

where . )
g—:l P 1/2 QI/Q 13.1
) () () 2 (13.1)

d(p, @) = (p = 2)(
Let
My, = {u € Hy(\{0} : (J;,(u),u) = 0},
and My = M. Define ¢(u) = (J},(u),u) = a(u) — b(u) — [, hu. Then
Lemma 13.3. For each u € My, we have (' (u),u) = a(u) — (p — 1)b(u) # 0.
Proof. For u € My, we have a(u) — b(u) — [, hu = 0. Then (¢'(u),u) = 2a(u) —

pb(u) — [ hu = a(u) — (p — 1)b(u). We claim that (¢'(u),u) # 0 for u € M. Let
I :M;, — R be given by

1) = K ") = [

where K(p) = (p — 2)(pi1)5%. Then by Lemma , we have

a(u)P=1t, 1
I(u) = K(p)( (b()u) )pfz—/ﬂhu

1
)72 = el

a(u)P/?
b(u)

> s (K(0) (- 25) (@)% = ]2

= ||u|| g2 (d(p, @) — ||h||r2) for u € M.

= lJull s (K (0) ( )72 — [[h] 1)

Thus,

I(u) > ||ul|l g (d(p, &) — ||h||z2) > 0 for each u € My,. (13.2)
Suppose that there is a w € My, such that (¢'(w),w) = 0. Then we have a(w) =
(p— 1b(w) and [ hw = a(w) —b(w) = (p — 2)b(w). Now

a(w)P~1, L
0 < I(w) = K(p)( (b(zu) )P*Zf/ghw

=1 (P — P b(w)P |
—(— )2 (p—2 7 (p—2
(27— ()T — - 2p)
= O’
which contradicts (13.2). Thus, we conclude that (¢'(u),u) # 0 for each u €
M. O

By Lemma we can decompose My, into MZand M, , where
M, = {u € My, : a(u) — (p — 1)b(u) > 0};
M, ={ue M, :a(u) — (p—1)b(u) < 0}.

Consider the Nehari minimization problems for Equation . Let

an(Q)) = ugll\flh Jn(u);
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b (Q) = inf Ju(u);
h - r(U
uEM

a;, () = ugﬁ* Jp(u).

Let ap(2) = a(2), My = M(Q) and Jp(u) = J(u) for h = 0. For each u €
HE(Q2)\{0}, we write

Clearly, tmax > 0. Note that

T (tu) = 7t2 (u )—ft”b —t/ hu;
%Jh(tu) = ta(u) — "~ 'b(u) — /Qhu;

2
Sl = alw) = (p — 1) 2b(w);

(J} (tu), tu) = t*a(u) — tPb(u) — t/ hu.
Q
The following lemma is required.

Lemma 13.4. For each u € H}(Q)\{0},

(i) there is a unique t~ =t~ (u) > tmax > 0 such that t—u € M, and Ju(t"u) =
maxy>q,... Jn(tu);

(#i) t~(u) is a continuous function for nonzero u ;

(iii) M, = {u € Hs(Q)\{0} : HuHHl () =

(iv) if [ hu > 0, then there is a unique 0 < t+ = t*(u) < tmax such that t*u € M;
and Jy,(tTw) = ming<,<;- Jp(tu).

Proof. (i) Fix u € H}(2)\{0}. Let
s(t) = ta(u) — P~ b(u) for t > 0.

Then s(0) = 0, s(t) — —oo as t — oo, and s(t) is concave and achieves its maximum
at tyax. Furthermore, by Lemma we have

(13.3)

a(u)P=t 1 a(u) =
S$(tmax) = | —7—~)7 % — . 1
(b ((p - 1)b(U)) ((p - 1)b(u)p—1)
_ 1oy [a(w)$]7
~ - 215 | S
L oye=t  2p 1 1/2
> 1 — p—2 2
>l (- D) ) a@)
= [Jullmd(p, o),
or
8(tmax) > |lull g2 d(p, @) (13.4)
Case (a) : thu < 0. There is a unique t~ > tyax such that s(¢ fg hu and

§'(t7) < 0. Now,

a(t™u) — (p = 1)b(t"u) = (t7)*|a(u) — (p — 1)(757)]”*217(%)}
=(t7)%'(t7) <0,
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and

(™ w), ) = (1) 2a(u) — (£)Pb(u) — £ /Q
_— [t*a(u) — ()P () — /Q hu}
=t {s(t*) - /Q hu] = 0.

Thus, t~u € M, , since for ¢ > tnax, we have
a(tu) — (p — 1)b(tu) < 0;

(i) = 5 laltu) — (p — 1b(r)] < 0
%Jh(tu)—m( ) — P b(u /hu-O ift=t".

Thus, Jp(t~u) = maxy>y,,,. Jp(tw).
Case (b) : [,hu > 0. By (13.4),

s(0)=0< / hu < ||h||zzl|ull g < ||wllgrd(p, @) < $(tmax),
Q

there are unique t* and ¢t~ such that 0 < tT < tja < t7,

s(tt) = /Qhu =s(t

ST >0> ().
This case is similar to Case (a): We have ttu € M, t-u € M, , and J;,(t"u) >
Jp(tu) > Jp(tTu) for each t € [tT,¢7], and Jy,(t1Tu) < Jy(tu) for each ¢t € [0,¢7].
Thus,

Jp(t"u) = max Jp(tu),

Ztmax

Jp(ttu) = min Jy(tu).
n(tTu) o in n(tu)

(i) By the uniqueness of ¢t~ (u) and the extremity property of ¢~ (u), t~(u) is a

continuous function for nonzero w.

(i13) For u € M, , let v = Talr- By part (), there is a unique t~(v) > 0
H

such that t~(v)v € M, or ¢t~ ( u € M, . Since v € M, , we have

—(_u 11 .
t (W)W =1, implying

- U
Conversely, let u € H}(Q)\{0} such that HUHHl t—(m) 1. Then

u u

M;, .
[l e ™l "

u ) 1
HuHHl H"”Hl

Thus,

M, = {u € H}(\{0} : () = 1}.

||u||H1 [ 221
(iv) By Case (b) of part (7). O
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We have the following results.

Lemma 13.5. (i) For each u € M, we have [, hu > 0 and Jy(u) < 0. In
particular, ay () < ajf (Q) < 0;

(i1) Jp is coercive and bounded below on My;

(#3i1) For each minimizing sequence {un} in My, for Jp,, we have

0 < limsup [{(¢' (un), un)| < 0.
Proof. (i) For each u € M}, a(u) — (p—1)b(u) > 0 and a(u) = b(u) + [, hu. Thus,

/Q hu = a(u) = bu) > (p— 2)b(u) > 0,

and
1 1
Jp(u) = §a(u) - 5b(u) - /Qhu
1 1 1
p—2 p—2
< B = 2o
__=DE-2)
= 2% b(u) <0
Then o () = uierll\fIth(u) < érli/fﬁJh(u) = a; () <0.
(i7) For u € My, we have a(u) — g(u) — Jo hu = 0. Then
I = (5 = Datw) = (1= 3) [ hu
> (5 =l = (= ) elzalfaln
1 1 p—1 2 1 2
= (G~ Dluls = E=31112)’ = 5o (0= Dl
> — g = Dl

Thus, J, is coercive and bounded below on Mj,.

(i4i) Let {u,} be a minimizing sequence in My, for J,. Since Jj is coercive on
My, we can assume {u,} is bounded in Mj. By the Sobolev embedding theo-
rem, a ¢ > 0 exists such that [(¢'(un),un)| = |a(u,) — (p — 1)b(uy,)| < ¢. Thus,
limsup,, oo [{¥'(un), un)| < co. Suppose that there is a minimizing sequence {wy,}
in My, for Jj such that (¢'(wy), w,) = o(1). Since Jj, is a continuous function
with Jp(0) = 0, by part (i), an(2) < 0. We claim that there is a § > 0 such
that ||wy|| g > 6 for each n. Otherwise, a subsequence {w,} exists such that
lwn|| g = o(1). Then Jp(wy,) = o(1), which is a contradiction. Since ||wy|| g1 > &
for each n and

o(1) = (¥'(wn), wa) = a(wn) — (p — 1b(wn), (13.5)
there is a 7y > 0 such that b(w,) > ~ for each n, and
(a/(wn>p_1)plf2

b(wn) = (p - l)pjb(wn) + 0(1)
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Since w, € My, by and (13.5)), we have

I(wn) = [lwn||m (d(p, @) = ||Allz2) = 6(d(p, @) — ||| 2)
and

/Qhwn = a(wy) — b(w,) = (p — 2)b(wy,) + o(1).
Now we have
0 < d(d(p, @) — [|h][z2) < I(wy)

b e gyl

- PP e- ()™ - [ b,

= () (p - 2)(p— 15 b(w,) — (p — Db(wn) +o(1)

— o),

p—1
which is a contradiction. O

Lemma 13.6. Let u be in My, such that Jp(u) = min Jp,(v) = an(Q). Then

veMy,
(1) fQ hu > 0;
(ii) w is a solution of Fquation (1.2]) in Q.

Proof. (i) By Lemma (i), we have

0> Ju(w) = (5 — alu) — (1 - %)/Qhu.

/ hu > 0.
Q
(ii) By Lemma[13.3]
(' (v),v) = a(v) — (p— 1)b(v) #0 for each v € Mj,.

Since Jp,(u) = minyem, Jn(v), by the Lagrange multiplier theorem, there is a A €
RY such that J'(u) = A’ (u) in H=1(Q). Then we have

0= (Jp(u),u) = A’ (u), u).
Thus, A = 0 and J;, (u) = 0 in H~*(Q2). Therefore, u is a solution of Equation (1.2)
in Q with Jp(u) = ap(9). O

Thus,

The following Lemma is required to prove the existence of the (PS),, )- se-
quence for Jj.

Lemma 13.7. Given u € My, then a § > 0 and a differentiable functional [ :
B(0;8) C H}(Q2) — RT exist such that 1(0) = 1, I(v)(u —v) € My, for v € B(0;4)

and
(¢’ (u), ¢)

<l/<v)a (’OM(LU):(LO) = W for o € CSO(Q)

Proof. For u € My, let G : R x H}(Q) — R be given by
G(l,v) = y(l(u—v)).
Note that G(1,0) = ¢(u) = (J},(u),u) = 0. Then by Lemma [13.3]

DiG(1,0) = %[Zza(u —v) — [U[Pb(u —v) — I/Qh(“ - v)] ‘(1,0)
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[2la(u —v) — p|l|P2lb(u — v) / h(u —v)] ’(1,0)

2a(u) — pb(u) — (a(u) — b(u))

a(u) = (p—1)b(u) # 0.

By the implicit function theorem, there exist § > 0 and a differentiable functional
B(0;0) C H}(Q) — R such that [(0) = 1 and

G(l(v),v) = 0 for v € B(0;0),
Thus, [(v)(u —v) € My, for v € B(0;6). Moreover, ¢ € C(2)

Gy(l,v
Dyl(v)](1,0) = (I'(v), )| (1,0) = _G’l((lv))|(1’0)

B —QIQVUVQO + up + pr|u|p*2ug0 + thgo
a(u) — (p — 1)b(u)

(¥ (), )

Proposition 13.8. (i) A (PS),, «)-sequence {uy} exists in My, for Jp;
(75) A (PS)aZr(Q)—sequence {un} exists in M} for Jy;
(zi1) A (PS)QZ(Q)—sequence {un} exists in M, for Jp,.

Proof. (i) Let {v,,} be a minimizing sequence in My, for .Jj,. Since Jj, is continuous
and bounded below on My, by the Ekeland variational principle we have a mini-
mizing sequence {u,} in My, such that

(@) Jn(un) < Jn(vn) < an() + 5;

(8) tn — vl = o(1):

(c) Jn(w) = Jn(up) — 2||uy — w| g for each w € My,.

Assume that there is an ng > 0 such that ||J; (up,)|| g-2 > 0 for n > ng, otherwise we
are done. For n > ng, by the Riesz representation theorem, a unique ¢,, € HE(Q)
exists such that ||¢, || g1 = 1 and

J7 (u,
(St ) = (g for each o € HY().

Let t,(¢) = l,(edn). Applying Lemma we have
We = tn(a) [Un - 5¢n] € My,

Now,
: ln(s(bn) — ln(o) <¢’(Un) ¢n>
/ — 1 _ / n) = i .
By Lemma [13.5 (iii), we have 0 < limsup,, .. [{(¢/(us), tn)| < 00. Thus there is a
subsequence {u,} and ¢; > 0 such that

(¥ (un), un)| = 1.
By the Holder inequality and ||¢y, || g1 = 1, we obtain

[ (), 60| = [2{ttms ) a1t — P / P2t — / h]

< 2lunllr + pllunlZat [ dnllze + 1] 22
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<c 4—||hﬂ|L2.

Thus, |t),(0)] < cg for each n > ng. Moreover, g and ¢3 > 0 exist such that for
e<e¢gg

[un — well g

1
= 1—1t, n tn n||H?!
Ll _ Ly @)+ etal@oull
t

< (O =t s 410 ]

= [t (O)[unllzr +1+0(1)  ase— 0.
S C3.
Note that {u,} is bounded in H}(Q), so
ltotn + (1 — to)we — wp || g1
= [[(1 = to)(tn(e) = Dun — (1 — to)tn(e)dn | m
< (1 —to)[tn(e) = Ullunllgr + (1 —to)tn(e)
=o0(l) ase—0,

Since Jj, € C!, we have

ST totn + (1= to)uwe), (= w2)) = (T (), (= 02))

l|tn — well g

< ”Jflz(tOun + (1 —to)we) — J}/z(un)”H—l -

=o0(l) ase—0.
Thus,
(T (toun + (1 = to)we), (un — we)) = (Jp(un), (un — we)) + ofe),

o(s)

where — 0 as € — 0. By condition (¢) and the mean value theorem, we have

1
gHun —we|lgr > Tp(un) — Jn(we)

= (Jp(toun + (1 — to)we), (un — we)),
where ¢y € (0,1). Then we obtain

1
Sl = well s = (T (un), (un = we)) + ofe). (13.6)
We divide (|13.6]) by € > 0 and obtain

¢

= > *Hun — wellm

n
1—t,(e o(e

> %u;(un),w &) ). 00 + 2

= 2l ) ) ) ) s+ 2

Since {u,} C My, let € — 0 to obtain

0= =, (0){Jp(un), un) + |4 ()| =1 = [T, (un) [ -1,

which is a contradiction. Therefore, ||.J} (uy)||g-1 — 0 as n — oo.
(#4) and (4i7) can be proved similarly. O
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13.1.3. Euistence of a Local Minimum. By Proposition|13.8|(4), there is a (PS)4, o)
sequence {u,} in My, for J,. Then we have the following (PS),, ()-condition.

Proposition 13.9. Let {u,} in My be a (PS),, )-sequence for Jy,. Then a sub-
sequence {u,} and ug in H}(Q) exist such that u, — ug strongly in H}(Q). Fur-
thermore, ug is a solution of Equation (1.2)) such that Jn(uo) = an(2).

Proof. By Lemma (i1), {u,} is bounded in H{(£2). Take a subsequence {u,,}
and ug € Hg(Q) such that u, — ug weakly in H}(Q). By Lemma up is a
nonzero solution of Equation (|1.2) in . Since

Jn(ug) = %a(un) — %b(un) — /Q hu, = ap(2) +o(1),
(Jh(tn), un) = alun) — blun) — /Q hu, = o(1).

By (13.7)), we have
(5~ atun) = (1= 1) [ hu = 0(@) +o(0)

p

Since the functional a is weakly lower semicontinuous and fQ hu,, — fQ hugy as
n — 0o, we have

an(2) < Jn(uo) = (% - %)G(UO) - (1= %) /Q hug

(13.7)

1 1 1
< (= — ) liminfa(u,) — (1 — =) lim hu,,
< (5~ )liminfa(e,) = (1= )l [
L. 1 1 1
= liminf [(5 — “Ja(un) = (1= ) /Q i
= o ()

or Jp(up) = ap (). Let p,, = up — up. By Lemma and [2.14] we have

1
Jn(pn) = 5 a(pn) — =b(pn) /hpn

1 1 1

Ja(un) — 3 a(uo) pb(un)—i—pb(uo) /Qhun+/ﬂhuo+o( )
= Jn(un) — Jn(uo) +o(1) = o(1)

By Lemma, 2.14] [, hpn = o(1) and uy is a solution of Equation (1.2)), so

(T4 (D)D) = (p) — bpn) — /Q o

a(un) - a(u()) - b(un + b UO /(;hun + /Q hug + 0(1) (139)
o(1)

= (Jh(un), un) = (Jh(uo), uo) =
Thus, by (13.8), (13.9) and [, hp,, = o(1), we have
-2
Loy pn) = ol)
or u, — ug strongly in H} (). O
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The following result is required to prove that ug is the unique critical point of
Jr(w) in B(rg).
Lemma 13.10. Let ro = (ﬁ)ﬁ(%)l/ga(ﬂ)%. Then
(i) My C B(ro) = {u € Hy(Q) : [[ullm <ro};
(#1) Jp(w) is strictly convex in B(ro).

Proof. (i) If u € M, then a(u) > (p — 1)b(u) and a(u) = b(u) + [, hu. Thus,

1
a(u) < S aw) + [IAllcz ull -

1
This implies

R

<= Ty (@)
1 1 2p _
= ()P ) @) =

(#4) Similarly to Adachi-Tanaka [I], we have
Ji (u)(v,v) = a(v) — (p — 1)/ lulP~2v?  for all v € H}(RQ).
)

Thus, by Lemma for u € HE(2)\{0}
a(w)P/?, 1 2p 12 1
P=2 > () /2
) 2 (2 a2

then

i (w)(v,0) = a(v) = (p = Dullz, o)1 Z,

> afo) - (p = Da( T (77 (@)
< fa)(P52)F a@) ")
> o)1 - (= D(-50(0) F Jull’]

>0 for u € B(rg).
Thus, J}/(u) is positive definite for u € B(rg) and Jj, is strictly convex in B(rg). O

By Proposition a solution ug € My, of Equation (|1.2) exists such that
Jn(ug) = ap (). Furthermore, we have the following theorem.

Theorem 13.11. (i) ug € M} and Jy(uo) = a;f () = ap(Q);
(43) ug is the unique critical point of Jy(u) in B(ry), where v is as in Lemma|15.10;
(ii3) Jn(uo) is a local minimum in Hg(£2).

Proof. (i) By Lemmam (i), [ huo > 0. We claim that ug € M. Otherwise, if
up € M, , then by Lemma a unique ¢~ (ug) =1 > " (ug) > 0 exists such that
t(uo)ug € M and

an(€) < a (@) < Jn(t+ (uo)uo) < Jn(ug) = an (),



EJDE-2004/MON. 06 PALAIS-SMALE APPROACHES 117

which is a contradiction. Since ug € M, af (Q) < Ju(ug) = () < o (Q), that
is, Jn(uo) = a;f ().
(#4) By part () and Lemma
(#41) Since ug € My, by Lemma(13.7, 6; > 0 and a differentiable functional I(w) > 0
exist such that [(0) = 1 and

l(w)(ug +w) € My, for ||w||m < 7. (13.10)

By Lemma [13.4]
1= 1" (up) < tmax(uo), (13.11)

[(0) = 1, and the continuity of t;ax, d2 exists with d; > d3 > 0, such that
l(w) < tmax(up +w) for ||w| g < da. (13.12)
By ([310) and (I312), we have [(w)(ug + w) € M} for [w|/ g < d5. By Lemma
for 0 < 8 < tmax(uo + w), we have
Jn(uo) = a;f () < Jn(I(w) (ug + w)) < Jn(s(uo + w)).
By the continuity of tymax and (I3, ¢ exists with d3 > § > 0 such that
1 < tmax(ug +w) for ||w||g < 4.

Thus, we can take s = 1 to obtain Jy(ug + w) > Ji(ug) for ||w||g: < ¢. Hence,
Jn(uo) is a local minimum in H}(Q). O

Theorem 13.12. (i) If [, hlug| > 0, then ug is a nonnegative solution of Equation
in Q. Moreover, a positive solution of equation (L2 ) exists for h 2 0;

(i) If [ohluol < O, then ug is a nonpositive solution of Equation (LZ) in .
Moreover, a negative solution of Equation (I3) exists for h < 0;

(i03) If [, hlug| = 0, then ug is a solution of Equation (L2) in QX that changes sign.

Proof. (i) If [, hluo| > 0, then by Lemmam tmax(Juol) > tT(Jug|) > 0 exists
such that ¢+ (Jug|)|uo| € M} . Since tmax(|to|) = tmax(uo) > 1, we have

an(Q) = aj (@) < Ja(t* (Juo|)|uol) < Jn(luol) < Jn(uo) = an(%),

or Jp(|uo|) = (). By Lemma [13.6] (i4) and Lemma [I3.11] (i4), uo = |uo|. Thus,
we can take ug > 0. Moreover, if h 2 0, we apply the maximum principle and
obtain ug > 0.

(#7) The proof is similar to (i).

(iii) Let uj = max{ug,0} and uy = max{—ug,0}. Since [, h|uo| = 0, then

/huar—i—/huazo.
Q Q

By Lemma|13.6| (i), we have [, hug > 0and [, hug < 0. Thus, uj Z 0and uy Z 0.
Hence, ug is a solution of equation (|1.2) in € that changes sign. O

13.1.4. Ezistence of Two Solutions. Let ug be the local minimum for Jj, in HE(Q)
in Theorem [13.11} Then we have the following restricted (PS)-condition.

Proposition 13.13. If {u,} is a (PS)z-sequence in H} () for Jy, with 8 < o (Q)+
a(Q), then a subsequence {u,} and u® in H}(Q) exist such that u, — u® strongly
in H}(Q) and J,(u®) = .
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Proof. Let {u,,} be a (PS)g-sequence in H§(Q2) for J,. By Lemmal[13.5] (1), {u,} is
bounded. As in the proof of Proposition a subsequence {u,} and a solution uO
of Equation exist such that u,, — u® weakly in Hg (). Suppose that u,, - u°
strongly in H}(Q). Let p, = u,, — u® for n = 1,2,.... By Lemma [2.11] and [2.14] .
we have

(13.13)

Since a(un) — b(un) — [ hun = o(1), a(u®) — b(u’) — [, hu® = 0 and u,, — u°
weakly in H}(Q), we have

Since p,, - 0, we have
1 1 1 1
J(pn) = a(pn) pb(pn) (5 p)a(pn) +0(1) >0

By Theorem a sequence {s,} in RT exists such that {s,p,} in M(Q) and
J(8npn) = J(pn) +o(1). Thus, by (13.13)) and u,, — u® weakly in Hg(£2), we have

a(Q2) < J(snpn) = J(pn) +o(1)
= Jn(pn) +o(1)
= Jn(un) — Jn(u®) + 0(1)
= — Jn(u®) +o(1)
< an(Q) + a(Q) — Jn(u®) + o(1).

Then ap(Q) > Jp(u’) > a,(Q), which is a contradiction. Thus, u,, — u° strongly
in HE(Q). O

Throughout this section, let © be an achieved domain in RV .

Lemma 13.14. Let @ be a positive solution of Equation ( in Q such that
J(@) = a(Q) and ug is the local minimum in Theorem|13.11} Then
(¢) If Jo hlug| > 0, then we have

supJp (ug + 1) < Jp(ug) + ().
>0

(i) If [o, hluo| <0, then we have

il;.}th(uO +t(—w)) < Jn(uo) + ().
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Proof. (i) Slnce Jo hluol > 0, by Theorem ), ug is a nonnegative solution of
Equation (1.2)). Let f(s) = s?~! and F(u fo s)ds = 1b (u), then

I (ug thﬂ)

= %a(uo +tw) — —b(ug + tu) — /Q h(ug + tu)

_ % la(uo) + a(#) + 2(uo, £10) 1] — ~b(uo + 1) / h(uo + t7)
Q

= Jn(uo) + J (1) + (uo, ) g1 + % [b(uo) + b(tw) — b(uo + tw)] — /Q T 13 14

— Jn(uo) + J(7) +t(/

ub™ ' + ha) — / htu
Q Q

n 219 [b(uo) + b(t1) — b(ug + )]

= (w0 + 70w ~ [ { [ Tfw0+9) = 1(6) = Fun)lds}.
For v > 0 and w > 0, we have

flo+w) = w+w)P ™t = w+w)P 2o+ (v+w)P 2w > P+ wP™t = f(v) + f(w).

(13.15)
Thus, Jp,(ug+tu) < Jp(ug) + J(tw). Since J(tu) — —oo as t — oo, thereis a tg > 0
such that Jy,(uo + tu) < Jp(uo) for t > to. Hence,

sup Jp(ug + tu) = sup Jp(ug + tu).
>0 0<t<to

Let g1(t) = Jy(uo + tu) for t > 0. By the continuity of g1 (t), given e = $a(Q) > 0
there is a tg > t1 > 0 such that g (t) < g1(0) + $c(2) for 2¢t; > ¢ > 0. Then

1
sup Jp(uo + tu) < Jp(ug) + () < Jp(ug) + ().
0<t<t; 2
Now, it only remains to show that

sup Jp(up + ta) < Jp(ug) + ().
t1<t<to

Let go(t) = J(tu) for ¢ > 0, then

95(t) = ta(w) — '~ b(w) and g5 (t) = a(@) — (p — D'~ *b(w).
There is a unique t = [Zg))}l/(p ?) — 1 such that g5(t) = 0 and ¢4 () < 0. Thus,
g2(t) has an absolute maximum at t = 1. Therefore,

sup J(tu) = J(u) = a(€2).

t>0

By (13.14)), (T3.15), we obtain

sup Jp(uo + tu)
t1<t<to

< Jp(ug) + () — inf /{/ fluo +s) — f(s) — fluo)]ds}

t <t<to
< Jn(uo) + a(f2).
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Thus, supJy, (ug + t7) < Jp(ug) + ().
>0

(#) Since [, hlug| < 0, by Theorem () uo is a nonpositive solution of
Equation . Let f(s) = |s|P~2s and F = [, f( = %b(u). Then
Jn(ug — tu) = %a(uo —tu) — %b(uo —tu) — /Q h(ug — tu)
= 3 la(uo) + a(t®) + 2{uo, ~17) ]

- 1b(—uo + tu) — /Q h(up — t)
= Jn(uo) + J(tu) + (ug, —tw) g

+ L b(uo) + b(t) — b(—uo + )] + /Q hta

uo) + J(ta) — t( [ |uo|P"*uow + hu) + | htu
Q Q

= Jn(—up) + J(tu) + /|—u0|p ug)tu

= Jn(uo) + J(t7) — /{ / —ug+5) — [(5) ~ f(~uo)] ds}.

Similarly to part (¢), we have supJp(ug + t(—a)) < Jp(uo) + a(£2). O
>0

Theorem 13. 15 If th|u0| # 0, where ug is the local minimum in Theorem|13.11

then Equation (1.2) has two solutions ug € M ,ud e M, such that Jn(ug) =

af <a; = Jy(u ) Moreover ifh20(50), then Equation (1.2)) has at least two

positive (negative) solutions in €.

Proof. For u € H}(Q) with |Jul/z: = 1, by Lemma there is a unique ¢t~ (u) > 0
such that ¢t~ (u)u € M, and

Jrp(t” (w)u) = max Jp(tu).

Z tmax

By Lemma m (#i) and (7i7), we have that ¢~ (u) is a continuous function for
nonzero u and

M, = {u e Hi(@\(0}: s ||H1 ) =1
Let
Ay = {ue HY(Q)\{0} : = (——) > 1} U{0}
HunHl HunH
Ay = {u e HY(Q)\{0} : t () < 1}.
||uHH1 lullars

Then H}(2)\M;, = A; U A,. For each u € M, we have
1 < tmax(u) <t (u).
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Since t~(u) = mt’(L), then M, C A;. In particular, ug € A;. We claim

llell g1

that a to > 0 exists such that ug + tou € A,. First, we find a constant ¢ > 0 such
that 0 < ¢~ (-2t ) < ¢ for each ¢t > 0. Otherwise, a sequence {t,} exists such

lwo+tall g1

that ¢, — oo and t_(%) — oo asn — oo. Let v, = % Since
n H n H
t~ (vn)vn € M, C My, and by the Lebesgue dominated convergence theorem,
1
b(vn :7,/ uo + tpu)?
) = g+ gy Jo 0t
1 / () _
= Tae = —_— + u p
Ml Jo'ta "
uP
— Jé p asn — oo
il
We have
_ 1, _ 2 1. _
Jn(t™ (vp)vn) = 3 [t (va)]" = = [t (vn)]pb(vn) —t (vn)/ hvy,
p Q
— —00 as n — o0o.
However, .J;, is bounded below on My, which is a contradiction. Let
2]) 2 1/2
to=(———|c* —alug + 1.
Then
_ 2
_ p—2 9 _ ug + tot
t 2, = 2(—)a(0 H>c > |t (———
oo+t = afus) + 2 2)als) + of1) > & > |1 (220

that is, ug + tou € Aa. Define a path v(s) = ug + stou for s € [0, 1] where ¢ty > 1,
then

’Y(O) =up € Ala ’Y(l) = ug + toU € A2.
: 1 - . . . _
Since Tallr ¢ (HuﬁHl) is a continuous function for nonzero u and ([0, 1]) is con-

nected, a sg € (0,1) exists such that ug + sototu € M, . Thus, by Lemma |13.12| and
Theorem [[3.14] we have

a;, < Jp(uo + sotou) < m[g)i]Jh(v(s)) < Jp(ug) + a(Q2) for /h|u0| > 0.
se|0, Q

Similarly, we also have
a, < Jp(uo) +(Q) for /h|u0\ < 0.
Q

By Proposition m (i44), a sequence {uy} in M, exists such that
In(un) = ap (@) +o(1),
J} (u,) = o(1) strongly in H™*(Q).

Then by Proposition [13.13] a subsequence {u,} and u® € M, exist such that
u,, — u? strongly in H{ (), u® is a solution of Equation (1.2)), and J;(u°) = «a;, (Q).
By the Sobolev continuous embedding theorem, we have u,, — u° in LP(§2). Thus,

a(u®) — (p — 1)b(u®) < 0.
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Then u® € M; . This implies u" # ug. We must now show that
Jp(uo) = ap < o = T (u0).

Otherwise, assume that Jj,(u®) = a;; = Jj,(ug) = ap. By Lemma (7) we have
hu® > 0. By Lemma [13.4] ¢t (u®) > 0 exists such that t*(u®)u® € M;" and
Q h

af (Q) < Tt (W)u’) < Jp(w?) < ap < oy,

which is a contradiction.
Finally, if h Z 0, by Lemma t=(|u®]) > 0 exists such that

= (JuDIu’] € My, 7 ([u”]) > tmax(Ju’]) = tmax(u®)

and
a;, (Q) < Jn(t™ ([u®D]u’]) < Jn(t™ (Ju’)u’)
S oIy 00 = T0) = 03 (),
Thus,

It ([u®)]a’]) = Jn(t™ (Ju"Nu’) = o, ().
We conclude that [, hu® = [, hlu"]. Let uf = max{u®,0} and u® = max{—u°,0},
then fQ hu® = 0. Since h 2 0 and u® > 0, we have u® = 0. Hence, u® > 0. By the
maximum principle, u° > 0. (]

Remark 13.16. By Theorems [13.11] and [13.15] there is a unique solution wug of
Equation (1.2) in € such that Jj,(ug) = a; () = an ().

Bibliographical notes: The results of this section are from Lin-Wang-Wu [55].

13.1.5. Three Solutions. Throughout this section, we consider a CY! domain Q to
be A", RN, A"\D, or R¥\D, where D is a bounded domain in RY and assume
that h € L= (Q) N L5(Q) N L2(Q) for some s > N, 0 < ||||z2 < d(p, a), and

0 < h(z) <cexp(—(1+¢)lz|]) forany z € Q,

for some positive constants ¢ and e, where d(p, @) is defined as in (13.1). Then we
have the following lemma.

Lemma 13.17. Let u be a positive solution of the Equation (I.2). Then for any
0 < 6 < min{e, 1}, positive constants c}, ¢3 and R exist such that for |z| > R

ey exp(—(1+0)|z]) < u(2) < cf exp(—(1 - §)|z]).

Proof. By Lemma and we have u € W25(Q) N CH9(Q) for some 0,
0 <6 <1and lim u(z) =0. Take R; > 0 such that D C B™(0; R;). For any

|z|—o00
0 < § < min{e, 1}, we choose Ry > R; > 0 such that
(140) — ”1+(|S(N_1) >1 for |z| > Ry. (13.16)
z

Let = V146 and v1(z) = pexp(—p(|z| — R2)), where p = min|,|—g, u(z) > 0.

Then min|,—g, (u — v1)(z) > 0. By (13.16)), for 2| > R
A= v1)(2) = u — fulp~2u — h(z) — (g — ZE =D

ER
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|2l
< (u—wv1)(2).
By Lemma [0.3] for |z| > Ry,

u(z) —v1(z) > ‘Zr‘nzigz(u —v1)(z) > 0.

Jor

Thus, we have
u(z) = v1(2)

= pexp(—=f(|z] - Ry))

13.17
= pexp(R2v'1 4+ 6) exp(—p|z) (13.17)
> chexp(—(1+9)|z|) for |z| > Ro.
We know that there exist positive numbers ¢, ¢ such that
0 < h(z) <cexp(—(1+¢)|z|]) for any z € Q.
For any 0 < 6 < min{e, 1}, by (I3I7), there is R3 > Ry > 0 such that
0
§u(z) > h(z) for|z| > Rs. (13.18)
Since lim|,|_,o u(2) = 0, there is R > Rz > 0 such that
1—uP™2>1— g for |2| > R. (13.19)

Let v = v/1 -0 and va2(2) = vexp(—y(|z| — R)), where v = max,;—_gu(z) > 0.
Thus min |z] = R(ve —u)(z) > 0. By (I3I8) and ([I319), for |z| > R

Ay —u)(z) = (72 - V(N|Z|‘”>v2<z> ot P2+ h(2)
<720 — (1= Duth(2)
= (1= 8)(02(2) — u(2)) — Ju+h(2)

By Lemma[9.3] for |z| > R

va(z) —u(z) > ‘I;I‘lil}:é(’l)g —u)(z) > 0.

Thus, we have
u(z) < va(2) = vexp(—y(|z] — R))
vexp(RV1 — §) exp(—lz])

cexp(—(1 —8)|z|) for |z| > R.

IN

O

By Lien-Tzeng-Wang [47], there is a positive ground state solution @ of the

Equation (T.1) in RY such that J(@) = o(R"Y). By Gidas-Ni-Nirenberg , We
have that % is radially symmetric about 0 in RY. Similarly to Lemma [13.17, for
any 0’ > 0, positive constants ¢}, and ¢2, exist such that

ctrexp(—(1+0)|z]) <T(z) < exp(—(1 —8)|z|) for z € RV,
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By Lemma there is a R > 0 such that D C B(0;R). For such R, let
Yr : RN —[0,1] be a O —function on RY such that 0 < ¢ < 1,

)1 for [z > R+1;
Vr(z) = {0 for |z| < R.

For zZ € RN, we define

vz(2) = Yr(2)u(z - 2).
Clearly, vz(z) € H}(Q).
Lemma 13.18. (i) a(vz) = b(vz) + o(1) as |[Z| — oo;
(7) J(vz) = a(2) +0o(1) as |z] — oo;
(iii) vz — 0 weakly in HE(Q) as |z| — oo.
Proof. (i-1) a(vs) = a(i) + o(1) as |z| — oo : since u € H} (RY), we have

lv=(2) — (2 = 2) |7

|V[(1/)R( ) —Da(z —2)]| dz—|—/ \(Yr(2) — Da(z — 7)|2dz
< 2/RN|V Yr(2) — D ?|a(z — 2)] dz+2/RN| Vr(z) — D?|Va(z — 7)[2dz

—|—/ |u(z — Z)|*dz

{lz|<R+1}

< 2/ |a(z—z)\2dz+2/ (|Va(z —2)]* + |u(z — 2)[*)dz = o(1).
{R<|z|<R+1} {|z|<R+1}

Thus, a(vz) = a(u(z — 2)) + o(1) = a(a) + o(1) as |Z| — oo.
(i-2)  b(vs) = b(@) + o(1) as |z| — oo: since u € HE(Q), we have

lvz(2) — a(z = 2)IIL, = /RN ((Yr(2) = DP|a(z = Z)[Pdz

< / |u(z — 2)|Pdz = o(1).
{lz|<R+1}

Thus, b(vz) = b(a(z — z)) + o(1) = b(a) + o(1) as |Z] — oo. By (i-1), (i-2)and that
@ is a solution of the Equation (1.1]), we have

a(vz) = a(a) + o(1) = b(a) + o(1) = b(vs) + 0o(1) as |Z]| — oc.
(ii) By Lemmal4.18] J(vz) = J(a)+o0(1) = a(RY)+0(1) = () +0o(1) as [Z] — .
(iii) For ¢ € C1(Q) with K = supp ¢, then K C Q is compact.
(o bhanl = | [ Vo) Vo()dz + [ ox(:)(z)az]

‘/V?/JR u(z —2)] V(2 dz+/¢R u(z — z)p(2)dz|

< |V [¥r(2)u(z = 2)] |2 IVl L2 (k)
+ 1R (2)ulz = 2) L2010l L2 (k)
=o(l) as|Z] — occ.
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By part (i), there is a ¢ > 0 such that |Jvz||z: < c. For e > 0 and ¢ € H}(Q), there
exist ¢ € C1(Q) and Iy > 0 such that

e — ollm <e/2¢
[{(vz, )| < /2 for |Z| > lo.

Thus,
(v, o) = vz, 0 — P + (vz, @)
< vzl lle = @l + (v, o)
<clle =l + 3
< ¢ for 2| > lo.
Therefore, vz — 0 weakly in HJ () as |z| — oc. O

Lemma 13.19. Let D be a domain in RN. If f : D — R satisfies
/ |f(2)e#l|dz < 00 for some o > 0,
D

then
(/D f(2)e 717 2ldz) e 17 = /Df(z)ea%dz +o(1) as|z] — oco.

Proof. Since o|z| < o|z| + 0|z — Z|, we have
|f(z)e™ 7=l Fl| < | (2)e ).
(2,Z)

Since —ol|z — Z| + 0|Z| = O+ o(1) as [Z| — oo, then the lemma follows from

Theorem 2201 O
Since €2 here is nonachieved, we need a delicate result.
Lemma 13.20. [y > 0 exists such that for |Z| > o

sup Jp, (uo + tvz) < Jp(ug) + (),
>0

where ug is the local minimum in Theorem [13.13.
Proof. Since Jj, is continuous in H}(Q) and {vs} is bounded in H}(Q), there is
top > 0 such that for 0 < ¢ < t and each v € H}(Q)
In(ug + tvz) < Jp(uo) + a(92).
Thus, we only need to show that there exists Iy > 0 such that for [z] > Iy

supJp (ug + tvz) < Jp(ug) + a(£2).
t>to

First, we observe that if @ > 0 and b > 0, then there is ¢ = ¢(p) > 0 independent of
a and b such that

(a+b)P > aP 4+ P + p(aP~'b + abP~t) — ca?/2pP/2.

Hence, we get
/ (up + tvz)Pdz
Q

> /(ug + (tvs)? + ptul ™ vz + pug(tvz)P 1) dz — c/ ug/Z (tvz)P/%dz.
Q Q



126 HWAI-CHIUAN WANG EJDE-2004/MON. 06

By Lemma and Theorem there exists a t%(vz) > 0 such that t°(vz)vs €
M(Q) and

maxt > 0.J(tvz) = J(t°(vz)vs) = a(Q) + o(1) as |2 — oo. (13.20)
By (13.20) and Lemma |13.18] we deduce for t > tq

1
Jn(uo + tvg) = 3 / [V (uo + tvz)|* + (uo + tvz)?]dz
Q

1
J— / (uo —+ t'[)g)de — / h('LLO + t'[}g)dz
PJa

Q

P p—2 _ P
< Jnluo) + () — 2 (¢, 2 / vl ugdz — ;C)/ ug/2v§ dz) + o(1).
Q

Q
Let 0 < ¢’ < min{e, %}, then W —(14¢") > 0. We choose

0<d<d <(p—2)+(p—1)4.
By Lemma [13.17} [13.18 and wq is a positive solution of the Equation (|1.2)), we have

/ P ugdz = / (VuzVug + vzug)dz + o(1)
Q Q
= / (vzuh ™' + hoz)dz + o(1)
Q
= / vzub ' dz + o(1)
Q
> o / o(~(1+8)|=21) (=D (= (14+0) 2D) g 4 (1),
{lz=R+1}
and

/ WP/ s < 02/ o~ |3 (- 9522 =) g,
Q {lz1>R)

where ¢1 = ¢1(6,0") and c2 = ¢2(6,9’). Since

/ == (146)|2) L (1+6) 12l 7, < oo
{I2[>R+1}

and
_ _5!
/ eI SR g < o0,
{Iz|>R}

by Lemma |13.19} we deduce that as |Z| — oo
/ W lugdz > 61/ o(~(1+8)|2=2D) (=D (=(1+D) ) g 4 (1)
Q {lz|=zR+1}

= / P+ VG g | (7))o= (14813
{lz|>R+1}

and

/ up*2?dz < 02/ o~ R o (- O D) g
Q {lzI=R}

1-86")p =
_( 2)p|z|.

—)p A-8"p (2.7)
:Cz{/ o2 I ED 4 L o1 e
{I=1>R}
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Thus,

fQ VY “Lugdz

Joug UB/2

1) (— 82
> 1 {[{aympyry €7D TR 4z 4 o(1))

B _ Qo 4=80p =2
c2{ (o2 € e = dz + o(1)}

which approaches co as |Z] — oo. Then [y > 0 exists such that for [z] > Iy

p=2
to? /vg 1uodz—E/ug/Qvg/de>0.
Q D Ja

Hence, we have that for |Z| > I,

(B2 —(148") 2]

sup Jp (ug + tvz) < Jp(ug) + a(Q).

t>to

]

Take the sequence {t,} C R such that |t,| / +00 as n — 4o00. For n € N, we
define

un(2) = Yr(2)u(z — tnz),

where 7 is a unit vector in RY. Clearly, v, € Hg(Q).
Remark 13.21. There exists ng > 0 such that for n > ng

supJy (ug + tvn) < Jp(up) + @(2) uniformly in Z,
>0

where ug is the local minimum in Theorem
We use the notation: For ¢ € R,
I <c={ueM, : Jy(u) <c}.
In this section, we show for a sufficiently small o > 0
cat([Jn, < an(Q) + a(RY) —a]) > 2. (13.21)

To prove (|13.21)), we need some preliminaries. Recall the definition of Lusternik-
Schnirelman category.

Definition 13.22. (i) For a topological space X, we say a non-empty, closed
subset A C X is contractible to a point in X if and only if there exists a continuous

mapping
n:[0,1]]x A—X

such that for some zg € X
n(0,z) =z forall x € A,
n(l,z) =z¢ forall z € A.
(i1) We define
cat(X) = min {k € N : there exist closed subsets Ay, ..., A; C X such that
A; is contractible to a point in X for all j and U§:1 A =X}
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When we do not have finitely many closed subsets Ay, ..., Ay C X such that A;
k
is contractible to a point in X for all j and 'U1Aj = X, we say cat(X) = oo.
J:
For fundamental properties of Lusternik-Schnirelman category, we refer to Am-

brosetti [2] and Schwartz [66]. Here we use the following property:

Theorem 13.23. Suppose that X is a Hilbert manifold and ¥ € C1(X,R). Assume
that there are co € R and k € N,
(1) U(x) satisfies the (PS).-condition for ¢ < cp ;
(i) cat({z € X : ¥U(z) < ¢o}) > k.
Then U(x) has at least k critical points in {x € X;¥(z) < co}.
Theorem 13.24. Let N > 1, S¥=1 = {z € RV;|z| = 1}, and let X be a topological
space. Suppose that there are two continuous maps
F: N1 X, G:X— sVt
such that G o F is homotopic to the identity map of SN 1, that is, a continuous
map ¢ : [0,1] x SN=1 — SN=1 exists such that
¢(0,z) = (Go F)(x) for each x € SN
¢(1,z) =z for each x € SN~1.
Then cat(X) > 2.
Proof. We argue indirectly and suppose that cat(X) = 1, that is, that X is con-
tractible to a point in itself. Thus, a continuous map 7 : [0, 1] x X — X exists such
that for some xg € X
n(0,z) =z forallx € X,
n(l,z) =z¢ forallz e X.

Consider a homotopy £3: [0,1] x SV~ — SN=1 defined by
B(s,x) = G(n(s, F(x))).
Then
B(0,z) = (Go F)(x) forall z € X,
B(1,z) = G(xg) forallx € X.
Thus G o F' is homotopic to a constant map. However,by assumption, G o F is

homotopic to the identity. Thus SV ! is contractible to a point in SN ~! which is
a contradiction. Therefore cat(X) > 2. O

Let
A= {u e HY@N0} : 1t (——) > 1} U{0}
' Tl

1 1w
A = {u € BN o (i
Lemma 13.25. We have the following results:
(i) Hy(2)\M;, = A1 U Ay;
(ii) M} C Aq;
(#i1) to > 1 and nq > ng exist such that ug + tov, € As for each n > ny, where ng

is defined as in Remark [13.21);

(iv) a sequence {s,} C (0,1) exists such that ug + sptov, € M} for each n > ny.

) <1}
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Proof. (i) By Lemma[13.4] (iii), we have

M;, = {u e HY(@Q\0} s ot (i) = 1},
Then H(Q)\M,;, = A; U As.
(ii) For each u € M}, we have
1 < tmax(u) <t~ (u).
Since t~(u) = mt_(L), then M;” C A;. In particular, up € A;.

el e

(#ii) There is a constant ¢ > 0 such that 0 < ¢~ (%% ) < ¢ for each ¢ > 0 and

lwo+tvnll 1
each n € N. Otherwise, a sequence {t,} and a subsequence {v,} exist such that

— Ug+tnUn _ U +tnvn 3 3
t (7Huo+tnvnHH1) — 00 as n — 0. Let w, = oot We claim that b(w,,) is

bounded below away from zero.
Case (a) : t, = co + o(1) as n — oo, where ¢g > 0. By Lemma [13.18] we have

a(vn) = b(vn) + 0(1) = —2P— () + o(1).

p—2"
Thus,
1 (%)
b(wy) = ui/ (= +vn)”
172+ vnllfn Jo ta
b(vn)
2 (1 g+ lvallBn)
B s a(9) :
= —
2p71(H Oclg"Hl 4 (%a(m)pﬂ)

Case (b) : t,, — 00 as n — oo. The proof is similar to Case (a).
Case (¢) : t, = 0(1) as n — oo. By Lemma [13.18] we have
luo + tavn i = lluollfn + 5 llvalli + 2tn (vn, uo) i = [luoll3n + o(1).

Thus,
1

1
b(w Z—/upzi/up—kol.
() 2 e o Jo™® = TaolPn J0 7o)

From Case (a), (b) and (¢), b(wy,) is bounded below away from zero.
Since t~ (wp)w, € M, C My, we have
1
Jn(t™ (wn)wn) = 5[t (wn)]2 - ;[t_ (wn)Pb(wy) — (wn)/ hw,
Q

which approaches —oo as n — oco. However, J;, is bounded below on My, which is
a contradiction. Let

P—2 1/2
= - 1
to (2pa(Q)\C a(uo)|) /= +1,

then
2p
p—2

o + tovnll3s = a(ug) + ta( Ja(2) 4+ o(1)

ug + tovy,

2
_ 1).
o + tovnll) HoW

>c2+o(l) > [t (
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Thus, there is an ny > ng, where ng is defined as in Remark [I3:21] such that, or
n > ni,
1 _ ug + toUn
||U0 +tOUnHH1 ||’U,0+t0’Un||H1

or ug + tov, € As.
(iv) Define a path v, (s) = ug + stov, for s € [0, 1] and each n > nywhere ¢y > 1,
then
T (0) = uo € A1, V(1) = uo + tovn € As.
1

Since Wt’(nu‘#) is a continuous function for nonzero u and v, ([0, 1]) is con-
H H

nected, a sequence {s,} C (0, 1) exists such that ug + sptov, € M} . O
Define a map F, : SN~ — H}(Q) by, for z € SN—1
Fo(Z)(2) = up(2) + sntovn(z) for n > ny,

where v, (2) = Yr(2)u(z —t,%) and ng is defined as in Lemma [13.25] Then we have
the following proposition.

Proposition 13.26. A sequence {o,} C R exists such that
E (SN C [Jh € an() + aRY) —0,] .

Proof. By Lemma [13.25| (iv) and Remark [13.21] we have that for each n > ny
up + Sntovn, € M; and Ji(uo + sntovn) < an(Q2) + a(RY) — 0, the conclusion
holds. O

bo(w) = [ elul”

To(u) = a(w) = be(u);

M;, = {u € Hy()\{0} : (Iz(u),u) = 0}.

For ¢ > 0, we define

Recall that a unique ¢~ =t~ (u) > 0 and ' = t*(u) > 0 exist such that t"u € M,
and ttu € M(Q).

Lemma 13.27. For u € ¥ = {u € H}(Q) | ||ullgx = 1}, we have the following
results:
(1) a unique t°(u) > 0 ezists such that t°(u)u € My, and

1 1 2

g Let) = L) = (5 = el 7%

(i7) for 0 < p <1, dy(u) > 0 exists such that for ||h||pz < di(p)
P 1
In(t7u) = (1= p)7=2 J (%) — @Hh\\%z-

Proof. (i) For each u € ¥, let f(t) = I.(tu) = $t* — Il;tpbc(u), then f(t) — —oc as
t — o0, f'(t) =t —tP~tb.(u) and f’(t) =1 — (p — 1)tP~2b.(u). Let
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Then f'(t°(u)) =0, t°(u)u € My, and
(t°(u)* £ (t°(w)) = a(t(w)u) — (p — 1be(t*(u)u)
— (2 p)(E(w)?a(u) < 0.
Thus, a unique ¢°(u) > 0 exists such that t°(u)u € My, and

1 1 2

max Jo(tu) = Lo(t°(u)u) = (5 — z;)bc(u)*ﬁ-

ii) Let ¢ = ——, t° =75 > 0 and t' = t'(u) > 0 such that t°u € M;, and
1—pn c
tlu € M(Q). For u € (0,1), we have

1
[ el < eal ol < Bl + ol
@ Iz
Then by part (3),

1-— 1 1
SW%WDZhWMZAEAWW%**W%%~4W@

t>0
1 c, |12 CP
= (1= gleullin - 5= [ Jesul?] = 5l
c 1
:u—ma;aw—zﬂwm
1 1 _ 1
= (1= )7 (5 = ()77 — o [[blE
= (1= )72 () = 5l
1
> (1= )77 a(Q) = - [|hll3

For p € (0,1), there exists dy(u) > 0 such that for ||h]|z2 < dq(p)

supJp, (tu) > 0.
>0

By Lemma [13.4] there exists ¢t~ = ¢ (u) > 0 such that t~« € M, and
supJy, (tu) = Jp(t" ).
>0
Thus, for [|h|z2 < di(p),
Tu(t0) 2 (1= 72T ) = 5
([l

Lemma 13.28. A & > 0 ewists such that if u € M(Q) and J(u) < a(RN) + dy,
then

/ Z(IVul? + u?)dz £ 0.
R~ |2]
Proof. 1f not, a sequence {u,, } C M(Q) exists such that J(u,) = a«(RY) +0(1) and

/ %(lwnl2 +y)dz = 0.
RN
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By Theorem {un} is a (PS),(r~)-sequence in Hj(Q) for J. By Theorem
inf,em) J(v) = a(Q) = a(RY) is not achieved. Let @ be the unique positive
solution of Equation in RY. Tt follows from Theoremthat a sequence {z, }
exists in RY such that |z,| — co as n — oo and

un,(2) = (2 — 2,) + 0o(1) strongly in H'(RV).

Assume é—”‘ — 2y as n — 00, where 2y is a unit vector in RY. Then by Theorem

[2:20] we have

0= / SV + ul)de
R

~ 2]

Z+ zp _ _
:/RN Fr ‘(|Vu|2+u2)dz+o(1)

_ (pQ_Y’Q)ZOQ(RN) +o(1),

which is a contradiction. O

Lemma 13.29. dy > 0 exists such that for ||h||L2 < do, we have

/ 2 (Vuf? + u2)dz £ 0,
R

N |Z|
foru e [J, < an(Q) + a(RY)].

Proof. For u € [J < ap() + a(RY)], then u/|lul[g:1 € E. There exists a t® > 0
such that t%u/||lul|gn € M. By Lemma (i), we have for any u € (0,1) and
[hllz2 < di(p)

tOu

J -
T

)< (1— p)~ 7 () + inhniz)- (13.22)

Since () < 0, we have [J, < an(Q)+a(RY)] C [Jyn < a(RY)]. Thus by
(13.22), we have, for u € [J; < () + a(RY)],

J( 9
l[wll

Take p € (0, 1) such that dy(p) > do > 0 and dp > 0 exist such that for ||h||r2 < do

)< (11— N)_# (a(RN) + %H}L”%?)

O
[[wll 1
Since t°u/||u|| 1 € M, by Lemma [13.28 and (13.23))
z 9% 9%
[ G0V + () 2.0,

ozl lul ]l a1

) < a(RN) 4 6. (13.23)

or,

/ 2 (Vul? + ()= 0.
RN

2|
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By Lemma [I3.29]
[
a(R

+
G:[J

Vel + )= # 0

|2
for all u € [J, < an(Q) N)]. We define

< () + a(RY)] — SN1
by

Glu) = [ TVl + oz [ ST + )l

Proposition 13.30. For n > ny and ||h||12 < do, the map
GoF,:8N-1  gN-1
is homotopic to the identity.
Proof. We define ¢, (0,%) : [0,1] x S¥N=1 — §N~=1 by
G((1 —20)F,(Z) + 20u(z — t,z)) for 6 € [0,1/2);
(n(0,2) = S G(u(z — ﬁ?)) for 0 € [1/2,1);
zZ for 6 = 1.
Since h € L(Q) N L= () N L*(Q) for some s > N, then by Theorem we have
ug € CH9(Q). First, we claim that limy_,- (,(0,Z) = Z and hmeH%f ¢n(0,2) =

G(u(z — t,z)).

(a) olim ¢n(0,Z) = Z : since
—1-

t W2
/RN |z|<|v“( 2(1— )| (s - 2(1—9)Z) )dz

:/ z+ 2(1 ok
Ry |2+ 5127l
2p

= (?

then elim ¢n(0,2) =Z.
—1-
(b) lim (,(0,%) = G(u(z — t,Z)) : since @ and ug € CH?(Q), then
9%%7

(V)| + (=)

Ja(RM)Z+0o(1) asf — 17,

1
||(1 - QG)FH(E) + 20@(2; - tnz)”Hl = ||ﬂ(z - tnz)H + 0(1) as 6 — 5 :
By the continuity of G, we obtain lim (,(0,Z) = G(u(z — ¢,%)). Thus, (,(0,%) €

0—1-

C([0,1] x SN=1 SN=1) and
¢n(0,2) = G(F,(2)) forallze SN~
(n(1,Z) =% forallze SN™1,
provided n > ny and ||h||z2 < dp. This completes the proof. O
Thus we have the following theorem.

Theorem 13.31. J,(u) has at least two critical points in
[Jh < ap(Q) + Oé(RN)} .
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Proof. Applying Theorem[13:24]and Proposition[I3.30] we have for sufficiently large
n > ny and ||hl|z2 < do,

cat([Jn < an(Q) + aRY) —0,]) > 2.
By Proposition [13.13| and Theorem [13.23] the theorem holds. (]

By Theorem |13.11} there is a nontrivial solution in Mz and by Theorem [13.31
there are two nontrivial solutions in M, . Therefore, we have

Theorem 13.32. Let the domain Q to be A", RN, A™\D, or R¥\D, where D is
a CV1 bounded domain in RN and assume that h € L (Q) N L*(Q) N L2(Q) for
some s > N, 0 < ||h| 2 < d(p,a), and h 2 0

0 < h(z) <cexp(—(1+¢)lz|)

for any z € Q and for some positive constants c,e, where d(p, ) is defined as in
113.1)). Then there are three positive solutions of equation .

Bibliographical notes: The results of this section are from Adachi-Tanaka [IJ.

13.2. Symmetry Breaking in a Bounded Symmetry Domain. The main
purpose of this sectionis to present the breaking of symmetry by a perturbation of
the finite strip A”, ;. Let 0 < r; <r and consider the finite strip with a hole,

Q= Ar—t,t \ BY((x,0);71).

We prove that ¢y > 0 exists such that for ¢ > ¢y, Equation (1.1)) on Q; has three
positive solutions, one of which is y-symmetric while the other two are nonaxially
symmetric.

13.2.1. Ezistence of Three Solutions.

Example 13.33 (y-symmetric large domain). (i) For 0 < r; < r and z in
BN=1(0;7 + 1), consider the infinite strip with holes

O = A" \[BN((z,1);r1) UBN((w,—1);r1)] for some > 0.

Then €; is a y-symmetric large domain in A";
(1) Let 0 < 7y < rand 0 < yp4+1 = ny, for n =1,2,.... Consider the infinite strip
with infinite holes

D=\ { T [B¥(0,50)im) U B0, )]}

Then D is a y-symmetric large domain in A".
Proposition 13.34. a,(A”, ;) = a(A”,,) and as(A") = a(A").

Proof. By Gidas-Ni-Nirenberg [34] and Chen-Chen-Wang [23], every positive solu-
tion of (L.1)) in a finite strip A", ; and in an infinite strip A"is y-symmetric. (I
The following symmetric results are required to assert our main result.

Theorem 13.35. (i) Suppose that § is a proper y-symmetric large domain in A"
and J does not satisfy the (PS), q)-condition in H(Q). Then as(Q) > 2a(A");
(i3) If Q is a proper y-symmetric large domain in A", then a(A") < as(Q).
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Proof. (i) Suppose that J does not satisfy the (PS),, (q)-condition in H(2). By
Lemma a subsequence {u,} exists such that J(£,u,) = as(Q) + o(1) and
J'(&nun) = o(1) in H;1(Q2), where &, is defined as in (2.1)). Let w, = &,u,. Then
by Lemma we obtain

J(wn) = as(Q) + o(1),
J (w,) =o(1) in H1(Q).
Since 2 ; A", K > 0 exists such that w,, = 0 in Qg, and two disjoint large
domains Q! and 92 in A" exist such that
(z,y) € Q* if and only if (z,—y) € QF,
N\Qx = Q'UQ? where Qx = QN BY(0; K).

(13.24)

Let _
() = wp(z) forxz € Q",
0 for x ¢ O,
for i = 1,2. Then w!, € H}(QY), wi(z,y) = wi(z,—y), w, = w} + w2, and
J(wk) = J(w2). Moreover, we have
as(Q) +o(1) = J(w,) = J(w)) + J(w?) = 2J(w},) fori=1,2,
or

By ([13.24), we have J'(w?) = o(1) in H=(Q) for i = 1,2. Therefore, 2a5() is a
positive (PS)-value in Hg (92) for J. By Lemma Theorem and Definition

A.14

J(w') = %as(ﬂ) +o(l) fori=1,2.

%Ozs(ﬂ) > anm(QY) = ().
Since Q' is a large domain in A", by Lemma (i7), we have
() = a(A").
Thus, as(2) > 2a(A").
(73) Clearly, we have a(A") < as(f2). Assume that a(A") as(Q), then by

Theorem 5.7, J does not satisfy the (PS),, o)-condition in H} () for J. By Lemma
13.35] 2a(A") < a(Q) = a(A"), which is a contradiction. O

Theorem 13.36. Let 0 < ry <7, and for each t > 0
O, =A"\ [BN((x,t +7r1);r1) UBN((z, —(t + 7“1));7“1)} )

Then to > 0 exists such that as(0y) < 2a(A") for all t > to. In particular, there is
a y-symmetric positive ground state solution of Equation (1.1) in Q.

Proof. By Lien-Tzeng-Wang [47], a(A”,,) is strictly decreasing as t is strictly
increasing and

a(A”, ) N a(A") ast— oo.
Thus, there is a tg > 0 such that a(A”, ;) < 2a(A") for each t > t. By Proposition
(A", ) = as(A”, ;) for each t. Thus, as(A”, ;) < 20(A") for each ¢ > to.
Since ©; D A", , for each t > to. Therefore, we have a,(0;) < a (A", ) for each
t > tg. We then conclude that

as(01) < as(A”, ;) <2a(A") for each t > tg.
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Since ©; is a y-symmetric large domain in A", by Theorem [I3.35] J satisfies the
(PS)q, (0)-condition in H!(Q), or telse here is a y-symmetric positive ground state
solution of Equation (|1.1)) in ©; for each t > ¢. O

FIGURE 12. the finite strip with a hole

Let 0 < r; < r and consider the finite strip with a hole
0, = AT, NG 0]
Then we have the following assertion.

Theorem 13.37. ¢y > 0 exists such that fort > to, Equation (1.1)) on € has three
positive solutions of which one is y-symmetric and the other two are nonazially
symmetric.

Proof. Let Q = A" \ BN¥((x,0);7r1). Then Q is a y-symmetric large domain in

A". By Theorem [13.35] we have a(A") < a,(€2). By Lien-Tzeng-Wang [47], (L.1)
admits a ground state solution in A, and in A", and a(Ag ,) is strictly decreasing

as t is strictly increasing and
a(Agy) \a(A") ast — oo.
Take t; > 0 such that for ¢ > ¢4,

a(A”) < a(Ag,) < as(Q). (13.25)
l\Lote that A7, ., S % G A" fort >tg =1t +7r1. By Theorem we conclude
that

a(A") < () < a(A7 4 4m)- (13.26)

By Lien-Tzeng-Wang [47], if 2 is a domain of RY, then () is invariant by rigid
motions. Thus,
a(A:17t1+7‘1) = a(Ag,tl)' (1327)
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Therefore, by (13.25)-(13.27)

a(A") < a(f) < a(Ag,,) < as(Q). (13.28)
Since ; C 2, we have
() < (). (13.29)
By and , we obtain
a(Q) < as(). (13.30)

By Theorem there are a y—symmetry solution u; and a solution us of Equation
(1.1) in domain €, such that

J(u1) = as (),
J(uz) = o).
By Theorem we may take u; and uy to be positive. Let

UB(xa y) = UQ(xv _y)
Then ug is the third solution. By (13.30f), u1,us and ug are different. Moreover, u,

is a y-symmetric solution while both us and us are nonaxially symmetric solutions
of Equation (|1.1)) in domain ;. O

Bibliographical notes: The results of this section are from Wang-Wu [74].

13.3. Multiple Solutions in Domains with Two Bumps. That the existence
of solutions of is affected by the shape of the domain €2 has been the focus of
a great deal of research in recent years . By the Rellich compactness theorem, it
is easy to obtain a solution of in a bounded domain. For general unbounded
domains €2, because of the lack of compactness, the existence of solutions of Equa-
tion is an important open question. Recently, there has been some progress in
determining the existence and multiplicity of solutions as follows: Bahri-Lions [13],
Coti Zelati [28], Chabrowski [20], Chen-Lee-Wang [24], Chen-Wang[26] , Chen-Lin-
Wang [25], Lien-Tzeng-Wang [47], del Pino-Felmer [30], [31], and Wang [71] used
the (PS)—theory to treat the existence of solutions of (L.I)). Byeon [16], Chen-Ni-
Zhou [22], Dancer [29], and Wang-Wu [74] asserted the existence of three positive
solutions of semilinear elliptic equations in a dumbbell domain. Jimbo [43] and [44]
asserted the existence of solutions depending on the width of the corridor of the
dumbbell.

In this section we assert that there is a Ry > 0 such that for R > Ry Equation
on the two bumps domain Dpg has three positive solutions in which one is
y-symmetric and other two are nonaxially symmetric. (see Theorem . Since
finite dumbbell is a two bumps domain, the results of Byeon [16], Chen-Ni-Zhou
[22], and Dancer [29] are the consequences of our Theorem

13.3.1. Existence of Three Solutions. We have the following results.

Theorem 13.38. (i) The bounded domains in RN are the achieved domains in
RN ;

(ii) The C' quasi-bounded domains are the achieved domains in RY;

(iii) RY is an achieved domain in RY ;

(iv) The periodic domains in RN are the achieved domains. In particular, the
infinite strip A is an achieved domain in RY;

(v) so > 0 exists such that F” is an achieved domain in RY if s > sq.
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Proof. (i) By Theorem [12.3]

(#4) By Theorem 5.4

(i7i) and (iv) follows from Lien-Tzeng-Wang [47].

(v) By Theorem [12.7 O

Throughout this section, let © be a proper achieved y-symmetric domain in RY
bounded in the z—direction, such as bounded domains and the infinite strip A".
For R > 0, let Q% and Q% be two bounded domains in RY such that

R = dist{0, Q%},
0% = {(z,y) : (z,—y) € Q}.
and the y-symmetric domain
Dr=Q,U0UQ%.
We call Dg a two-bumps domain. Here are some examples of two-bumps domains.

Example 13.39. (i) For t > R > r > 0. The bounded dumbbell domain Dp is a
two-bumps domain, where

Dg = BY((0,~t),r) UAT, ;U BY((0,t),7);

(#5) For t > R > r > 0. The unbounded dumbbell domain Dpg is a two-bumps
domain, where

Dr = BY((0,—t),r) U A" U BN ((0,t),7);
(iii) For t > R > r > 0. The curved dumbbell domain Dr = Q%L UO U Q% is a two
bumps domain, where Q}, and Q% are two bounded domains in RN such that

R = dist{0, Q%},
0% = {(x,y) : (2, —y) € U}
and O is a curved bounded y-symmetric domain in RV,
Then we have the following assertion.

Theorem 13.40. Let Dy be a two-bumps domain, where Dp = QL UOUQ%, and
let © be a proper achieved y-symmetric domain in RN bounded in the x— direction.
Then we have, for all R > 0,

(i) a(©) > a(Dg) > a(RN);

(ii) J satisfies the (PS)q (Dg)-condition in X (Dg).

Proof. By Theorem [5.7] and Theorem [12.3] it suffices to assume that © is un-
bounded.

(i) Since © C Dr S RY, we have a(0©) > a(Dgr) > «(RY). Suppose that
a(Dgr) = a(RY), by Theorem J does not satisfy the (PS)y(p,)-condition.
By Theorem [5.11] a sequence {u,} in H{}(Dg) exists such that {u,} and {&,u,}
are the (PS),(py)-sequences for J, where &, is defined as in . Let w,, = & uy,.
Then

J(wn) = a(Dr) +o(1),
J (w,) =o(1) in H '(Dg).
Since Dp = QL UO U Q% is a y-symmetric domain in RY separated by a bounded

domain, ng > 0 exists such that for n > ng, w, € H}(0), J(w,) = a(Dg) + o(1),
and a(w,) = b(wy,) + o(1). By Theorem there is a sequence {s,} in RT such
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that {s,wy} is in M(Q) and {spw,} is a (PS)q(p,)-sequence in X (§2) for J. Thus
a(0) < a(Dg). We then conclude that a(©) = a(Dr) = a(RY). However, since ©
is a proper achieved y-symmetric domain in RY, by Theorem [5.7, a(©) > a(RY).
This is a contradiction. Thus, a(©) > a(Dg) > a(RY) for all R > 0.

(ii) It suffices to prove the case X (Dgr) = H}(Dg). Since Qk, O, and Q% are
achieved, by Theorem

a(Dgr) < min{a(Q}%), a(©), a(Q%)}.

By Theorem J satisfies the (PS)q(py)-condition in Hj(Dg). O

We apply Theorems and to prove the following result.

Theorem 13.41. There is an Ry > 0 such that for R > Ry Fquation (1.1) on
Dpg has three positive solutions, of which one is y-symmetric and other two are
nonaxially symmetric.

Proof. Take p > 0 such that Q = (RV \ RY, ) U © is connected. Then Q is a

y-symmetric large domain in RY separated by a bounded domain. By Theorem
we have a(RY) = a(Q) < as(Q). By Lien-Tzeng-Wang [47], o(B™ (0, R)) is
strictly decreasing as R is strictly increasing and
a(BN(0,R)) \, a(RY) as R — oo.
Take Ry > 0, such that for R > Ry
a(RY) < a(BYN (0, R)) < as(Q). (13.31)

Since BN ((zr,yr),R) S Dr & RY, by Theorem [5.7| and Theorem [13.40, we con-
clude that

a(RY) < a(Dg) < a(BY((xr,yr), R)) = a(BY (0, R)). (13.32)
Therefore, by and and Dy C Q, we have
a(Dr) < a(BY(0,R)) < as(R) < as(Dg). (13.33)
Thus,
a(DR) < ag(Dg). (13.34)

By Theorem [12:3] there are a y—symmetry positive solution u; and a positive
solution ug of Equation (1.1)) in domain Dg for R > Ry such that

J(u1) = as(Dr),
J(uz) = a(DRg).

Let us(z,y) = ua(z, —y), then usg is the third positive solution. By ((13.34), w1, ua,
and ug are different. Moreover, u; is a y-symmetric positive solution while both
ug, and ug are nonaxially symmetric positive solutions of (1.1]) in domain Dg. O

Bibliographical notes: The results of this section are from Wang-Wu [74].
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