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AN ALGORITHM FOR CONSTRUCTING
LYAPUNOV FUNCTIONS

SIGURDUR FREYR HAFSTEIN

Abstract. In this monograph we develop an algorithm for constructing Lya-

punov functions for arbitrary switched dynamical systems ẋ = fσ(t,x), pos-
sessing a uniformly asymptotically stable equilibrium. Let ẋ = fp(t,x), p ∈ P,

be the collection of the ODEs, to which the switched system corresponds. The

number of the vector fields fp on the right-hand side of the differential equa-
tion is assumed to be finite and we assume that their components fp,i are C2

functions and that we can give some bounds, not necessarily close, on their
second-order partial derivatives. The inputs of the algorithm are solely a finite

number of the function values of the vector fields fp and these bounds. The

domain of the Lyapunov function constructed by the algorithm is only limited
by the size of the equilibrium’s region of attraction. Note, that the concept of a

Lyapunov function for the arbitrary switched system ẋ = fσ(t,x) is equivalent

to the concept of a common Lyapunov function for the systems ẋ = fp(t,x),
p ∈ P, and that if P contains exactly one element, then the switched system

is just a usual ODE ẋ = f(t,x). We give numerous examples of Lyapunov

functions constructed by our method at the end of this monograph.
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1. Introduction

Let P be a nonempty set and equip it with the discrete metric, let U ⊂ Rn be
a domain containing the origin, and let ‖ · ‖ be a norm on Rn. For every p ∈ P
assume that fp : R≥0 × U → Rn satisfies the local Lipschitz condition: for every
compact C ∈ R≥0 × U there is a constant Lp,C such that (t,x), (t,y) ∈ C implies
‖fp(t,x)− fp(t,y)‖ ≤ Lp,C‖x− y‖. Define B‖·‖,R := {x ∈ Rn : ‖x‖ < R} for every
R > 0. We consider the switched system ẋ = fσ(t,x), where σ is an arbitrary right-
continuous mapping R≥0 → P of which the discontinuity-points form a discrete set.
In this monograph we establish the claims made in the abstract in the following
three steps:

First, we show that the origin is a uniformly asymptotically stable equilibrium
of the arbitrary switched system ẋ = fσ(t,x), whenever there exists a common
Lyapunov function for the systems ẋ = fp(t,x), p ∈ P, and we show how to derive
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a lower bound on the equilibrium’s region of attraction from such a Lyapunov
function.

Second, we show that if B‖·‖,R ⊂ U is a subset of the region of attraction of the
arbitrary switched system ẋ = fσ(t,x) and the vector fields fp, p ∈ P, satisfy the
Lipschitz condition: there exists a constant L such that for every p ∈ P and every
(s,x), (t,y) ∈ R≥0×B‖·‖,R the inequality ‖fp(s,x)− fp(t,y)‖ ≤ L(|s− t|+‖x−y‖)
holds; then for every 0 < R∗ < R, there exists a common Lyapunov function
V : R≥0 × B‖·‖,R∗ → R for the systems ẋ = fp(t,x), p ∈ P.

Third, assuming that the set P is finite and that the second-order partial deriva-
tives of the components of the vector fields fp are bounded, we write down a linear
programming problem using the function values of the vector fields fp on a dis-
crete set and bounds on the second-order partial derivatives of their components.
Then we show how to parameterize a common Lyapunov function for the systems
ẋ = fp(t,x), p ∈ P, from a feasible solution to this linear programming problem.
We then use these results to give an algorithm for constructing such a common
Lyapunov function for the systems ẋ = fp(t,x), p ∈ P, and we prove that it always
succeeds in a finite number of steps if there exists a common Lyapunov function
for the systems at all.

Let us be more specific on this last point. Consider the systems ẋ = fp(t,x), p ∈
P, and assume that they possess a common Lyapunov function W : R≥0 ×V → R,
where V ⊂ U is a domain containing the origin. That is, there exist functions α, β,
and γ of class K such that

α(‖x‖) ≤W (t,x) ≤ β(‖x‖)
and

∇xW (t,x) · fp(t,x) +
∂W

∂t
(t,x) ≤ −γ(‖x‖)

for every p ∈ P, every t ∈ R≥0 and every x ∈ V. The second inequality can
equivalently be formulated as

lim sup
h→0

W (t+ h,x + hfp(t,x))−W (t,x)
h

≤ −γ(‖x‖).

Now, let t1, t2 ∈ R be arbitrary constants such that 0 ≤ t1 < t2 < +∞ and let C
and D be arbitrary compact subsets of Rn of positive measure such that the origin
is in the interior of D and D ⊂ C ⊂ V. We will prove that the algorithm will always
succeed in generating a continuous function V : [t1, t2]× C → R with the property,
that there exist functions α∗, β∗, and γ∗ of class K, such that

α∗(‖x‖) ≤ V (t,x) ≤ β∗(‖x‖)
for all t ∈ [t1, t2] and all x ∈ C and

lim sup
h→0

V (t+ h,x + hfp(t,x))− V (t,x)
h

≤ −γ∗(‖x‖)

for every p ∈ P, every t ∈ [t1, t2], and every x ∈ C\D. Note, that the last inequality
is not necessarily valid for x ∈ D, but because one can take D as small as one wishes,
this is nonessential.

It is reasonable to consider the autonomous case separately, because then there
exist common autonomous Lyapunov functions whenever the origin is an asymptot-
ically stable equilibrium, and the algorithm is then also able to construct common
autonomous Lyapunov functions for the systems ẋ = fp(x), p ∈ P.
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2. Outline and Categorization

This monograph is thematically divided into three parts. In the first part,
which consists of the sections 3, 4, and 5, we develop a stability theory for ar-
bitrary switched systems. In Section 3 we introduce switched dynamical systems
ẋ = fσ(t,x) and discuss some elementary properties of their solutions. We further
consider the stability of isolated equilibria of arbitrary switched systems and we
prove in Section 4 that if such a system possesses a Lyapunov function, then the
equilibrium is uniformly asymptotically stable. These results are quite straightfor-
ward if one is familiar with the Lyapunov stability theory for ordinary differential
equations (ODEs), but, because we consider Lyapunov functions that are merely
continuous and not necessarily differentiable in this work, we establish the most
important results. Switched systems have gained much interest recently. For an
overview see, for example, [33] and [31].

In Section 5 we prove a converse theorem on uniform asymptotic stability for
arbitrary switched nonlinear, nonautonomous, continuous systems. In the litera-
ture there are numerous results regarding the existence of Lyapunov functions for
switched systems. A short non-exhaustive overview follows: In [48] Narendra and
Balakrishnan consider the problem of common quadratic Lyapunov functions for
a set of autonomous linear systems, in [15], in [46], in [32], and in [2] the results
were considerably improved by Gurvits; Mori, Mori, and Kuroe; Liberzon, Hes-
panha, and Morse; and Agrachev and Liberzon respectively. Shim, Noh, and Seo
in [57] and Vu and Liberzon in [61] generalized the approach to commuting au-
tonomous nonlinear systems. The resulting Lyapunov function is not necessarily
quadratic. Dayawansa and Martin proved in [41] that a set of linear autonomous
systems possesses a common Lyapunov function, whenever the corresponding arbi-
trary switched system is asymptotically stable, and they proved that even in this
simple case there might not exist any quadratic Lyapunov function. The same
authors generalized their approach to exponentially stable nonlinear, autonomous
systems in [7]. Mancilla-Aguilar and Garćıa used results from Lin, Sontag, and
Wang in [35] to prove a converse Lyapunov theorem on asymptotically stable non-
linear, autonomous switched systems in [38].

In this work we prove a converse Lyapunov theorem for uniformly asymptotically
stable nonlinear switched systems and we allow the systems to depend explicitly
on the time t, that is, we work the nonautonomous case out. We proceed as
follows: Assume that the functions fp, of the arbitrary switched system ẋ = fσ(t,x),
σ : R≥0 → P, satisfy the Lipschitz condition: there exists a constant L such
that ‖fp(t,x) − fp(t,y)‖2 ≤ L‖x − y‖2 for all p ∈ P, all t ≥ 0, and all x,y
in some compact neighborhood of the origin. Then, by combining a Lyapunov
function construction method by Massera for ODEs, see, for example, [42] or Section
5.7 in [60], with the construction method presented by Dayawansa and Martin in
[7], it is possible to construct a Lyapunov function V for the system. However,
we need the Lyapunov function to be smooth, so we prove that if the functions
fp, p ∈ P, satisfy the Lipschitz condition: there exists a constant L such that
‖fp(t,x) − fp(s,y)‖2 ≤ L(|t − s| + ‖x − y‖2) for all p ∈ P, all s, t ≥ 0, and all
x,y in some compact neighborhood of the origin in the state-space, then we can
smooth out the Lyapunov function to be infinitely differentiable except possibly at
the origin.
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By Lin, Sontag, and Wang, in [35, Lemma 4.3], this implies for autonomous
systems that there exists a C∞ Lyapunov function for the system. This has been
stated in the literature before by Wilson [66], but the claim was incorrect in that
context as shown below. In this monograph, however, we do not need this to hold
true, neither in the autonomous nor in the nonautonomous case.

Wilson states in [66] that if N ⊂ Rn is a neighborhood of the origin
and W ∈ C(N ) ∩ C∞(N \ {0}) is Lipschitz at the origin, that is
|W (x)| ≤ L‖x‖ for some constant L, then

x 7→W (x) exp(−1/W (x))

is a C∞(N ) function. In [47] Nadzieja repairs some other parts of
Wilson’s proof and notices also that this is by no means canoni-
cal. He, however, argues that this must hold true because x 7→
W (x) exp(−1/W (x)) converges faster to zero than any rational
function in ‖x‖ grows at the origin. Unfortunately, this argument is
not satisfactory because some arbitrary derivative of W might still
diverge to fast at the origin. As a counterexample one can take a
function that oscillates heavily at the origin, for example

W : R → R, W (x) = x sin(exp(
1
x2

)).

It is not difficult to see that
d

dx

[
W (x) exp(−1/W (x))

]
= W ′(x) exp(−1/W (x))

W (x) + 1
W (x)

does not have a limit when x approaches zero.
In the second part of this monograph, which consists of the sections 6, 7 and

8, we give an algorithmic construction scheme of a linear programming problem
for the switched system ẋ = fσ(t,x), σ : R≥0 → P, P 6= ∅ finite, where the fp
are assumed to be C2 functions. Further, we prove that if this linear programming
problem possesses a feasible solution, then such a solution can be used to param-
eterize a function that is a Lyapunov function for all of the individual systems
and then a Lyapunov function for the arbitrary switched system. We then use
this fact to derive an algorithm for constructing Lyapunov functions for nonlinear,
nonautonomous, arbitrary switched systems that possess a uniformly asymptoti-
cally stable equilibrium.

In Section 6 we introduce the function space CPWA, a set of continuous functions
Rn → R that are piecewise affine (often called piecewise linear in the literature)
with a certain simplicial boundary configuration. The spaces CPWA are essentially
the function spaces PWL, presented by Julian, Desages, and Agamennoni in [26],
Julian, Guivant, and Desages in [27], and by Julian in [25], with variable grid
sizes. A function space CPWA defined on a compact domain is a finite dimensional
vector space over R, which makes it particularly well suited as the foundation
for the search of a parameterized Lyapunov function. Another property which
renders them appropriate as a search space, is that a function in C2 can be neatly
approximated by a function in CPWA as shown in Lemma 6.6.

In Section 6 we further define our linear programming problem in Definition 6.8
and then we show how to use a feasible solution to it to parameterize a Lyapunov
function for the corresponding switched system. We discuss the autonomous case
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separately, because in this case it is possible to parameterize an autonomous Lya-
punov function with a more simple linear programming problem, which is defined
in Definition 6.12. These results are generalizations of former results by the author,
presented in [39, 40, 17, 16, 18].

In Section 7 we prove, that if we construct a linear programming problem as
in Definition 6.8 for a switched system that possesses a uniformly asymptotically
stable equilibrium, then, if the boundary configuration of the function space CPWA
is sufficiently closely meshed, there exist feasible solutions to the linear program-
ming problem. There are algorithms, for example the simplex algorithm, that
always find a feasible solution to a linear programming problem, provided there
exists at least one. This implies that we have reduced the problem of constructing
a Lyapunov function for the arbitrary switched system to a more simple prob-
lem of choosing an appropriate boundary configuration for the CPWA space. If
the systems ẋ = fp(t,x), p ∈ P, are autonomous and exponentially stable, then
it was proved in [17] that it is even possible to calculate the mesh-sizes directly
from the original data, that is, the functions fp. This, however, is much more re-
strictive than necessary, because a systematic scan of boundary configurations is
considerably more effective, will lead to success for merely uniformly asymptotically
stable nonautonomous systems, and delivers a boundary configuration that is more
coarsely meshed. Just as in Section 5 we consider the more simple autonomous
case separately.

In Section 8 we use the results from Section 7 to define our algorithm in Procedure
8.1 to construct Lyapunov functions and we prove in Theorem 8.2 that it always
delivers a Lyapunov function, if the arbitrary switched system possesses a uniformly
asymptotically stable equilibrium. For autonomous systems we do the same in
Procedure 8.3 and Theorem 8.4. These procedures and theorems are generalizations
of results presented by the author in [17, 16, 18].

In the last decades there have been several proposals of how to numerically con-
struct Lyapunov functions. For comparison to the construction method presented
in this work some of these are listed below. This list is by no means exhaustive.

In [59] Vandenberghe and Boyd present an interior-point algorithm for construct-
ing a common quadratic Lyapunov function for a finite set of autonomous linear
systems and in [34] Liberzon and Tempo took a somewhat different approach to
do the same and introduced a gradient decreasing algorithm. Booth methods are
numerically efficient, but unfortunately, limited by the fact that there might exist
Lyapunov functions for the system, non of which is quadratic. In [23], [24], and
[22] Johansson and Rantzer proposed construction methods for piecewise quadratic
Lyapunov functions for piecewise affine autonomous systems. Their construction
scheme is based on continuity matrices for the partition of the respective state-
space. The generation of these continuity matrices remains, to the best knowledge
of the author, an open problem. Further, piecewise quadratic Lyapunov functions
seem improper for the following reason:

Let V be a Lyapunov function for some autonomous system. Ex-
panding in power series about some y in the state-space gives

V (x) ≈ V (y) +∇V (y) · (x− y) +
1
2
(x− y)THV (y)(x− y),

where HV (y) is the Hessian matrix of V at y, as a second-order
approximation. Now, if y is an equilibrium of the system, then
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necessarily V (y) = 0 and ∇V (y) = 0 and the second-order approx-
imation simplifies to

V (x) ≈ 1
2
(x− y)THV (y)(x− y),

which renders it very reasonable to make the Lyapunov function
ansatz

W (x) = (x− y)TA(x− y)
for some square matrix A and then try to determine a suitable
matrix A. This will, if the equilibrium is exponentially stable, de-
liver a function that is a Lyapunov function for the system in some
(possibly small) vicinity of the equilibrium.

However, if y is not an equilibrium of the system, then V (y) 6= 0
and ∇V (y) 6= 0 and using several second-order power series expan-
sions about different points in the state-space that are not equilib-
ria, each one supposed to be valid on some subset of the state-space,
becomes problematic. Either one has to try to glue the local approx-
imations together in a continuous fashion, which causes problems
because the result is in general not a Lyapunov function for the
system, or one has to consider non-continuous Lyapunov functions,
which causes even more problems.

Brayton and Tong in [4, 5], Ohta, Imanishi, Gong, and Haneda in [49], Michel,
Sarabudla, and Miller in [45], and Michel, Nam, and Vittal in [44] reduced the Lya-
punov function construction for a set of autonomous linear systems to the design
of a balanced polytope fulfilling certain invariance properties. Polanski in [52] and
Koutsoukos and Antsaklis in [30] consider the construction of a Lyapunov function
of the form V (x) := ‖Wx‖∞, where W is a matrix, for autonomous linear systems
by linear programming. Julian, Guivant, and Desages in [27] and Julian in [25]
presented a linear programming problem to construct piecewise affine Lyapunov
functions for autonomous piecewise affine systems. This method can be used for
autonomous, nonlinear systems if some a posteriori analysis of the generated Lya-
punov function is done. The difference between this method and our (non-switched
and autonomous) method is described in Section 6.2 in [40]. In [21] Johansen uses
linear programming to parameterize Lyapunov functions for autonomous nonlin-
ear systems. His results are, however, only valid within an approximation error,
which is difficult to determine. P. Parrilo in [51] and Papachristodoulou and Prajna
in [50] consider the numerical construction of Lyapunov functions that are pre-
sentable as sums of squares for autonomous polynomial systems under polynomial
constraints. Recently, Giesl proposed in [11, 12, 13, 14] a method to construct
Lyapunov functions for autonomous systems with exponentially stable equilibrium
by solving numerically a generalized Zubov equation (see, for example, [68] and for
an extension to perturbed systems [6])

∇V (x) · f(x) = −p(x), (2.1)

where usually p(x) = ‖x‖2. A solution to the partial differential equation (2.1)
is a Lyapunov function for the system. He uses radial basis functions to find a
numerical approximation to the solution of (2.1).

In the third part of this monograph in Section 9 we give several examples of Lya-
punov functions generated by the linear programming problems from Definition 6.8
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(nonautonomous) and Definition 6.12 (autonomous). Further, in Section 10, we
give some final words. The examples are as follows: In Section 9.1 we generate a
Lyapunov function for a two-dimensional, autonomous, nonlinear ODE, of which
the equilibrium is asymptotically stable but not exponentially stable. In Section 9.2
we consider three different two-dimensional, autonomous, nonlinear ODEs and we
generate a Lyapunov function for each of them. Then we generate a Lyapunov func-
tion for the corresponding arbitrary switched system. In Section 9.3 we generate
a Lyapunov function for a two-dimensional, autonomous, piecewise linear variable
structure system without sliding modes. Variable structure systems are switched
systems, where the switching is not arbitrary but is performed in dependence of
the current state-space position of the system. Such systems are not discussed the
theoretical part of this monograph, but as explained in the example such an ex-
tension is straight forward. For variable structure systems, however, one cannot
use the theorems that guarantee the success of the linear programming problem in
parameterizing a Lyapunov function. In Section 9.4 we generate a Lyapunov func-
tion for a two-dimensional, autonomous, piecewise affine variable structure system
with sliding modes. In Section 9.5 we generate Lyapunov functions for two dif-
ferent one-dimensional, nonautonomous, nonlinear systems. We then parameterize
a Lyapunov function for the corresponding arbitrary switched system. Finally, in
Section 9.6, we parameterize Lyapunov functions for two different two-dimensional,
nonautonomous, nonlinear systems. Then we generate a Lyapunov function for the
corresponding arbitrary switched system.

3. Preliminaries

In this section we list some results, most of them well known or straightforward
extensions of well known results, that we will need later on in this monograph and
we give some references for further reading.

3.1. Continuous dynamical systems. A continuous dynamical system is a sys-
tem, of which the dynamics can be modelled by an ODE of the form

ẋ = f(t,x). (3.1)

This equation is called the state equation of the dynamical system. We refer to x
as the state of the system and to the set of all possible states as the state-space of
the system. Further, we refer to t as the time of the system. For our purposes it is
advantageous to assume that f is a vector field R≥0 × U → Rn, where U ⊂ Rn is a
domain in Rn.

One possibility to secure the existence and uniqueness of a solution for any initial
time t0 and any initial state ξ in the state-space of a system, is given by a Lipschitz
condition (for more general conditions see, for example, [63, III.§12.VII]).

Let ‖ · ‖ be a norm on Rn and assume that f in (3.1) satisfies the local Lipschitz
condition: for every compact C ⊂ R≥0×U there exists a constant LC ∈ R such that

‖f(t,x)− f(t,y)‖ ≤ LC‖x− y‖ for every (t,x), (t,y) ∈ C. (3.2)

Then there exists a unique global solution to the initial value problem

ẋ = f(t,x), x(t0) = ξ,
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for every t0 ∈ R≥0 and every ξ ∈ U (see, for example, Theorems VI and IX in
III.§10 in [63]) and we denote this solution by t 7→ φ(t, t0, ξ) and we say that φ is
the solution to the state equation (3.1).

For this reason we will, in this monograph, only consider continuous dynamical
systems, of which the dynamics are modelled by an ODE

ẋ = f(t,x), (3.3)

where f : R≥0 × U → Rn satisfies a local Lipschitz condition as in (3.2).
Two well known facts about ODEs that we will need in this monograph are given

in the next two theorems:

Theorem 3.1. Let U ⊂ Rn be a domain, f : R≥0×U → Rn satisfy a local Lipschitz
condition as in (3.2), and φ be the solution to the state equation ẋ = f(t,x). Let
m ∈ N≥0 and assume that f ∈ [Cm(R≥0 × U)]n, that is, every component fi of f is
in Cm(R≥0 × U), then φ, φ̇ ∈ [Cm(dom(φ))]n.

Proof. See, for example, the Corollary at the end of III.§13 in [63]. �

Theorem 3.2. Let I ⊂ R be a nonempty interval, ‖ · ‖ be a norm on Rn, and let
U be a domain in Rn. Let f ,g : I × U → Rn be continuous mappings and assume
that there exists a constant L ∈ R such that f satisfies the Lipschitz condition: there
exists a constant L such that

‖f(t,x)− f(t,y)‖ ≤ L‖x− y‖ for all t ∈ I and all x,y ∈ U .

Let t0 ∈ I and let ξ,η ∈ U and denote the (unique) global solution to the initial
value problem

ẋ = f(t,x), x(t0) := ξ,

by y : Iy → Rn and let z : Iz → Rn be any solution to the initial value problem

ẋ = g(t,x), x(t0) = η.

Set J := Iy ∩ Iz and let γ and δ be constants, such that

‖ξ − η‖ ≤ γ and ‖f(t, z(t))− g(t, z(t))‖ ≤ δ

for all t ∈ J . Then the inequality

‖y(t)− z(t)‖ ≤ γeL|t−t0| +
δ

L
(eL|t−t0| − 1)

holds for all t ∈ J .

Proof. See, for example, Theorem III.§12.V in [63]. �

3.2. Arbitrary switched systems. A switched system is basically a family of
dynamical systems and a switching signal, where the switching signal determines
which system in the family describes the dynamics at what times or states. As we
are concerned with the stability of switched systems under arbitrary switchings,
the following definition of a switching signal is sufficient for our needs.

Definition 3.3 (Switching signal). Let P be a nonempty set and equip it with
the discrete metric d(p, q) := 1 if p 6= q. A switching signal σ : R≥0 → P is a
right-continuous function, of which the discontinuity-points are a discrete subset of
R≥0. The discontinuity-points are called switching times. For technical reasons it
is convenient to count zero with the switching times, so we agree upon that zero is
a switching time as well. We denote the set of all switching signals R≥0 → P by
SP .
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With the help of the switching signal in the last definition we can define the
concept of a switched system and its solution.

Definition 3.4 (Solution to a switched system). Let U ⊂ Rn be a domain, let P
be a nonempty set, and let fp : R≥0 × U → Rn, p ∈ P, be a family of mappings,
of which each fp, p ∈ P, satisfies a local Lipschitz condition as in (3.2). For every
switching signal σ ∈ SP we define the solution t 7→ φσ(t, s, ξ) to the initial value
problem

ẋ = fσ(t,x), x(s) = ξ, (3.4)

in the following way:
Denote by t0, t1, t2, . . . the switching times of σ in an increasing order. If there

is a largest switching time tk we set tk+1 := +∞ and if there is no switching
time besides zero we set t1 := +∞. Let s ∈ R≥0 and let k ∈ N≥0 be such that
tk ≤ s < tk+1. Then φσ is defined by gluing together the trajectories of the systems

ẋ = fp(t,x), p ∈ P,

using p := σ(s) between s and tk+1, p := σ(tk+1) between tk+1 and tk+2, and in
general p := σ(ti) between ti and ti+1, i ≥ k + 1. Mathematically this can be
expressed inductively as follows:

Forward solution:

(i) φσ(s, s, ξ) = ξ for all s ∈ R≥0 and all ξ ∈ U .
(ii) Denote by y the solution to the initial value problem

ẋ = fσ(s)(t,x), x(s) = ξ,

on the interval [s, tk+1[, where k ∈ N≥0 is such that tk ≤ s < tk+1. Then
we define φσ(t, s, ξ) on the domain of t 7→ y(t) by φσ(t, s, ξ) := y(t).
If the closure of graph(y) is a compact subset of [s, tk+1] × U , then the
limit limt→tk+1− y(t) exists and is in U and we define φσ(tk+1, s, ξ) :=
limt→tk+1− y(t).

(iii) Assume φσ(ti, s, ξ) ∈ U is defined for some integer i ≥ k+ 1 and denote by
y the solution to the initial value problem

ẋ = fσ(ti)(t,x), x(ti) = φσ(ti, s, ξ),

on the interval [ti, ti+1[ . Then we define φσ(t, s, ξ) on the domain of t 7→
y(t) by φσ(t, s, ξ) := y(t). If the closure of graph(y) is a compact subset of
[ti, ti+1]×U , then the limit limt→ti+1− y(t) exists and is in U and we define
φσ(ti+1, s, ξ) := limt→ti+1− y(t).

Backward solution:

(i) φσ(s, s, ξ) = ξ for all s ∈ R≥0 and all ξ ∈ U .
(ii) Denote by y the solution to the initial value problem

ẋ = fσ(tk)(t,x), x(s) = ξ,

on the interval ]tk, s], where k ∈ N≥0 is such that tk ≤ s < tk+1. Then
we define φσ(t, s, ξ) on the domain of t 7→ y(t) by φσ(t, s, ξ) := y(t). If
the closure of graph(y) is not empty and a compact subset of [tk, s] × U ,
then the limit limt→tk+ y(t) exists and is in U and we define φσ(tk, s, ξ) :=
limt→tk+ y(t).
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(iii) Assume φσ(ti, s, ξ) ∈ U is defined for some integer i, 0 < i ≤ k and denote
by y the solution to the initial value problem

ẋ = fσ(ti)(t,x), x(ti) = φσ(ti, s, ξ),

on the interval ]ti−1, ti]. Then we define φσ(t, s, ξ) on the domain of t 7→
y(t) by φσ(t, s, ξ) := y(t). If the closure of graph(y) is a compact subset of
[ti−1, ti]×U , then the limit limt→ti−1+ y(t) exists and is in U and we define
φσ(ti−1, s, ξ) := limt→ti−1+ y(t).

Thus, for every σ ∈ SP we have defined the solution φσ to the differential equation

ẋ = fσ(t,x).

Note, just as one usually suppresses the time dependency of x in (3.1), that
is, writes ẋ = f(t,x) instead of ẋ(t) = f(t,x(t)), one usually suppresses the time
dependency of the switching signal too, that is, writes ẋ = fσ(t,x) instead of
ẋ(t) = fσ(t)(t,x(t)).

Now, that we have defined the solution to (3.4) for every σ ∈ SP , we can define
the switched system and its solution.

Switched System 3.5. Let U ⊂ Rn be a domain, let P be a nonempty set, and
let fp : R≥0 × U → Rn, p ∈ P, be a family of mappings, of which each fp, p ∈ P,
satisfies a local Lipschitz condition as in (3.2).

The arbitrary switched system

ẋ = fσ(t,x), σ ∈ SP ,

is simply the collection of all the differential equations

{ẋ = fσ(t,x) : σ ∈ SP},

whose solutions we defined in Definition 3.4. The solution φ to the arbitrary
switched system is the collection of all the solutions φσ to the individual switched
systems.

Because the trajectories of the Switched System 3.5 are defined by gluing together
trajectory-pieces of the corresponding continuous systems, they inherit the following
important property: For every σ ∈ SP , every s ∈ R≥0, and every ξ ∈ U the closure
of the graph of t 7→ φσ(t, s, ξ), t ≥ s, is not a compact subset of R≥0 × U and the
closure of the graph of t 7→ φσ(t, s, ξ), t ≤ s, is not a compact subset of R>0 × U .

Further, note that if σ, ς ∈ SP , σ 6= ς, then in general φσ(t, t0, ξ) is not equal to
φς(t, t0, ξ) and that if the Switched System 3.5 is autonomous, that is, none of the
vector fields fp, p ∈ P, does depend on the time t, then

φσ(t, t′,x) = φγ(t− t′, 0, ξ), where γ(s) := σ(s+ t′) for all s ≥ 0,

for all t ≥ t′ ≥ 0 and all ξ ∈ U . Therefore, we often suppress the middle argument
of the solution to an autonomous system and simply write φσ(t, ξ).

We later need the following generalization of Theorem 3.2 to switched systems.

Theorem 3.6. Consider the Switched System 3.5, let ‖ · ‖ be a norm on Rn, and
assume that the functions fp satisfy the Lipschitz condition: there exists a constant
L such that

‖fp(t,x)− fp(t,y)‖ ≤ L‖x− y‖
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for all t ≥ 0, all x,y ∈ U , and all p ∈ P. Let t0 ≥ 0, let ξ,η ∈ U , let σ, ς ∈ SP ,
and assume there is a constant δ ≥ 0 such that

‖fσ(t)(t,x)− fς(t)(t,x)‖ ≤ δ

for all t ≥ 0 and all x ∈ U .
Denote the solution to the initial value problem

ẋ = fσ(t,x), x(s0) = ξ,

by y : Iy → Rn and denote the solution to the initial value problem

ẋ = fς(t,x), x(s0) = η,

by z : Iz → Rn. Set J := Iy ∩ Iz and set γ := ‖ξ − η‖. Then the inequality

‖y(t)− z(t)‖ ≤ γeL|t−s0| +
δ

L
(eL|t−s0| − 1) (3.5)

holds for all t ∈ J .

Proof. We prove only inequality (3.5) for t ≥ s0, the case t < s0 follows similarly.
Let s1 be the smallest real number larger than s0 that is a switching time of σ or
a switching time of ς. If there is no such a number, then set s1 := supx∈J x. By
Theorem 3.2 inequality (3.5) holds for all t, s0 ≤ t < s1. If s1 = supx∈J x we
are finished with the proof, otherwise s1 ∈ J and inequality (3.5) holds for t = s1
too. In the second case, let s2 be the smallest real number larger than s1 that is a
switching time of σ or a switching time of ς. If there is no such a number, then set
s2 := supx∈J x. Then, by Theorem 3.2,

‖y(t)− z(t)‖ ≤
(
γeL(s1−s0) +

δ

L
(eL(s1−s0) − 1)

)
eL(t−s1) +

δ

L
(eL(t−s1) − 1)

= γeL(t−s0) +
δ

L
eL(t−s0) − δ

L
eL(t−s1) +

δ

L
eL(t−s1) − δ

L

= γeL(t−s0) +
δ

L
(eL(t−s0) − 1)

for all t such that s1 ≤ t < s2. As this argumentation can, if necessary, be repeated
ad infinitum, inequality (3.5) holds for all t ≥ s0 such that t ∈ J . �

3.3. Dini derivatives. The Italian mathematician Ulisse Dini introduced in 1878
in his textbook [8] on analysis the so-called Dini derivatives. They are a gener-
alization of the classical derivative and inherit some important properties from it.
Because the Dini derivatives are point-wise defined, they are more suited for our
needs than some more modern approaches to generalize the concept of a derivative
like Sobolev Spaces (see, for example, [1]) or distributions (see, for example, [64]).
The Dini derivatives are defined as follows:

Definition 3.7 (Dini derivatives). Let I ⊂ R, g : I → R be a function, and y ∈ I.

(i) Assume y is a limit point of I ∩ ]y,+∞[. Then the right-hand upper Dini
derivative D+ of g at the point y is defined by

D+g(y) := lim sup
x→y+

g(x)− g(y)
x− y

:= lim
ε→0+

(
sup

x∈I∩ ]y,+∞[
0<x−y≤ε

g(x)− g(y)
x− y

)
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and the right-hand lower Dini derivative D+ of g at the point y is defined
by

D+g(y) := lim inf
x→y+

g(x)− g(y)
x− y

:= lim
ε→0+

(
inf

x∈I∩ ]y,+∞[
0<x−y≤ε

g(x)− g(y)
x− y

)
.

(ii) Assume y is a limit point of I ∩ ] −∞, y[. Then the left-hand upper Dini
derivative D− of g at the point y is defined by

D−g(y) := lim sup
x→y−

:= lim
ε→0−

(
sup

x∈I∩ ]−∞,y[
ε≤x−y<0

g(x)− g(y)
x− y

)
and the left-hand lower Dini derivative D− of g at the point y is defined by

D−g(y) := lim inf
x→y−

g(x)− g(y)
x− y

:= lim
ε→0−

(
inf

x∈I∩ ]−∞,y[
ε≤x−y<0

g(x)− g(y)
x− y

)
.

The four Dini derivatives defined in Definition 3.7 are sometimes called the de-
rived numbers of g at y, or more exactly the right-hand upper derived number,
the right-hand lower derived number, the left-hand upper derived number, and the
left-hand lower derived number respectively.

It is clear from elementary calculus, that if g : I → R is a function from a
nonempty open subset I ⊂ R into R and y ∈ I, then all four Dini derivatives
D+g(y), D+g(y), D−g(y), and D−g(y) of g at the point y exist. This means that
if I is a nonempty open interval, then the functions D+g,D+g,D

−g,D−g : I → R
defined in the canonical way, are all properly defined. It is not difficult to see that
if this is the case, then the classical derivative g′ : I → R of g exists, if and only if
the Dini derivatives are all real-valued and D+g = D+g = D−g = D−g.

Using lim sup and lim inf instead of the usual limit in the definition of a derivative
has the advantage, that they are always properly defined. The disadvantage is, that
because of the elementary

lim sup
x→y+

[g(x) + h(x)] ≤ lim sup
x→y+

g(x) + lim sup
x→y+

h(x),

a derivative defined in this way is not a linear operation anymore. However, when
the right-hand limit of the function h exists, then it is easy to see that

lim sup
x→y+

[g(x) + h(x)] = lim sup
x→y+

g(x) + lim
x→y+

h(x).

This leads to the following lemma, which we will need later.

Lemma 3.8. Let g and h be real-valued functions, the domains of which are subsets
of R, and let D∗ ∈ {D+, D+, D

−, D−} be a Dini derivative. Let y ∈ R be such,
that the Dini derivative D∗g(y) is properly defined and h is differentiable at y in
the classical sense. Then

D∗[g + h](y) = D∗g(y) + h′(y).

The reason why Dini derivatives are so useful for the applications in this mono-
graph, is the following generalization of the Mean-value theorem of differential
calculus and its corollary.

Theorem 3.9 (Mean-value theorem for Dini derivatives). Let I be an interval of
strictly positive measure in R, let C be a countable subset of I, and let g : I → R be
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a continuous function. Let D∗ ∈ {D+, D+, D
−, D−} be a Dini derivative and let

J be an interval, such that D∗g(x) ∈ J for all x ∈ I \ C. Then
g(x)− g(y)
x− y

∈ J

for all x, y ∈ I, x 6= y.

Proof. See, for example, Theorem 12.24 in [62]. �

The previous theorem has an obvious corollary.

Corollary 3.10. Let I be an interval of strictly positive measure in R, let C be
a countable subset of I, let g : I → R be a continuous function, and let D∗ ∈
{D+, D+, D

−, D−} be a Dini derivative. Then:

D∗g(x) ≥ 0 for all x ∈ I \ C, implies that g is a monotonically
increasing function on I.

D∗g(x) > 0 for all x ∈ I \ C, implies that g is a strictly monotonically
increasing function on I.

D∗g(x) ≤ 0 for all x ∈ I \ C, implies that g is a monotonically
decreasing function on I.

D∗g(x) < 0 for all x ∈ I \ C, implies that g is a strictly monotonically
decreasing function on I.

3.4. Stability of arbitrary switched systems. The concepts equilibrium point
and stability are motivated by the desire to keep a dynamical system in, or at
least close to, some desirable state. The term equilibrium or equilibrium point of
a dynamical system, is used for a state of the system that does not change in the
course of time, that is, if the system is at an equilibrium at time t = 0, then it will
stay there for all times t > 0.

Definition 3.11 (Equilibrium point). A state y in the state-space of the Switched
System 3.5 is called an equilibrium or an equilibrium point of the system, if and
only if fp(t,y) = 0 for all p ∈ P and all t ≥ 0.

If y is an equilibrium point of Switched System 3.5, then obviously the initial
value problem

ẋ = fσ(t,x), x(0) = y
has the solution x(t) = y for all t ≥ 0 regardless of the switching signal σ ∈ S. The
solution with y as an initial value in the state-space is thus a constant vector and
the state does not change in the course of time. By a translation in the state-space
one can always reach that y = 0 without affecting the dynamics. Hence, there is no
loss of generality in assuming that a particular equilibrium point is at the origin.

A real-world system is always subject to some fluctuations in the state. There
are some external effects that are unpredictable and cannot be modelled, some
dynamics that have (hopefully) very little impact on the behavior of the system
are neglected in the modelling, etc. Even if the mathematical model of a physical
system would be perfect, which hardly seems possible, the system state would
still be subject to quantum mechanical fluctuations. The concept of local stability
in the theory of dynamical systems is motivated by the desire, that the system
state stays at least close to an equilibrium point after small fluctuations in the
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state. Any system that is expected to do something useful must have a predictable
behavior to some degree. This excludes all equilibria that are not locally stable as
usable working points for a dynamical system. Local stability is thus a minimum
requirement for an equilibrium. It is, however, not a very strong property. It merely
states, that there are disturbances that are so small, that they do not have a great
effect on the system in the long run. In this monograph we will concentrate on
uniform asymptotic stability on a set containing the equilibrium. This means that
we are demanding that the uniform asymptotic stability property of the equilibrium
is not merely valid for some, possibly arbitrary small, neighborhood of the origin,
but this property must hold on a a priori defined neighborhood of the origin. This
is a much more robust and powerful concept. It denotes, that all disturbances
up to a certain known degree are ironed out by the dynamics of the system, and,
because the domain of the Lyapunov functions is only limited by the size of the
equilibriums’ region of attraction, that we can get a reasonable lower bound on the
region of attraction.

The common stability concepts are most practically characterized by the use of
so-called K, L, and KL functions.

Definition 3.12 (Comparison functions K, L, and KL). The function classes K,
L, and KL of comparison functions are defined as follows:

(i) A continuous function α : R≥0 → R≥0 is said to be of class K, if and only if
α(0) = 0, it is strictly monotonically increasing, and limr→+∞ α(r) = +∞.

(ii) A continuous function β : R≥0 → R≥0 is said to be of class L, if and only
if it is strictly monotonically decreasing and lims→+∞ β(s) = 0.

(iii) A continuous function ς : R≥0 × R≥0 → R≥0 is said to be of class KL, if
and only if for every fixed s ∈ R≥0 the mapping r 7→ ς(r, s) is of class K
and for every fixed r ∈ R≥0 the mapping s 7→ ς(r, s) is of class L.

Note that some authors make a difference between strictly monotonically in-
creasing functions that vanish at the origin and strictly monotonically increasing
functions that vanish at the origin and additionally asymptotically approach in-
finity at infinity. They usually denote the functions of the former type as class K
functions and the functions of the latter type as class K∞ functions. We are not
interested in functions of the former type and in this work α ∈ K always implies
limr→+∞ α(r) = +∞.

We now define various stability concepts for equilibrium points of switched dy-
namical systems with help of the comparison functions.

Definition 3.13 (Stability concepts for equilibria). Assume that the origin is an
equilibrium point of the Switched System 3.5, denote by φ the solution to the
system, and let ‖ · ‖ be an arbitrary norm on Rn.

(i) The origin is said to be a uniformly stable equilibrium point of the Switched
System 3.5 on a neighborhoodN ⊂ U of the origin, if and only if there exists
an α ∈ K such that for every σ ∈ SP , every t ≥ t0 ≥ 0, and every ξ ∈ N
the following inequality holds

‖φσ(t, t0, ξ)‖ ≤ α(‖ξ‖).

(ii) The origin is said to be a uniformly asymptotically stable equilibrium point
of the Switched System 3.5 on the neighborhood N ⊂ U of the origin, if and
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only if there exists a ς ∈ KL such that for every σ ∈ SP , every t ≥ t0 ≥ 0,
and every ξ ∈ N the following inequality holds

‖φσ(t, t0, ξ)‖ ≤ ς(‖ξ‖, t− t0). (3.6)

(iii) The origin is said to be a uniformly exponentially stable equilibrium point
of the Switched System 3.5 on the neighborhood N ⊂ U of the origin, if and
only if there exist constants k > 0 and γ > 0, such that for every σ ∈ SP ,
every t ≥ t0 ≥ 0, and every ξ ∈ N the following inequality holds

‖φσ(t, t0, ξ)‖ ≤ ke−γ(t−t0)‖ξ‖.

The stability definitions above imply, that if the origin is a uniformly exponen-
tially stable equilibrium of the Switched System 3.5 on the neighborhood N , then
the origin is a uniformly asymptotically stable equilibrium on N as well, and, if the
origin is a uniformly asymptotically stable equilibrium of the Switched System 3.5
on the neighborhood N , then the origin is a uniformly stable equilibrium on N .

If the Switched System 3.5 is autonomous, then the stability concepts presented
above for the systems equilibria are uniform in a canonical way, that is, independent
of t0, and the definitions are somewhat more simple.

Definition 3.14. (Stability concepts for equilibria of autonomous systems) As-
sume that the origin is an equilibrium point of the Switched System 3.5, denote by
φ the solution to the system, let ‖ · ‖ be an arbitrary norm on Rn, and assume that
the system is autonomous.

(i) The origin is said to be a stable equilibrium point of the autonomous
Switched System 3.5 on a neighborhood N ⊂ U of the origin, if and only
if there exists an α ∈ K such that for every σ ∈ SP , every t ≥ 0, and every
ξ ∈ N the following inequality holds

‖φσ(t, ξ)‖ ≤ α(‖ξ‖).

(ii) The origin is said to be an asymptotically stable equilibrium point of the
autonomous Switched System 3.5 on the neighborhood N ⊂ U of the origin,
if and only if there exists a ς ∈ KL such that for every σ ∈ SP , every t ≥ 0,
and every ξ ∈ N the following inequality holds

‖φσ(t, ξ)‖ ≤ ς(‖ξ‖, t).

(iii) The origin is said to be an exponentially stable equilibrium point of the
Switched System 3.5 on the neighborhood N ⊂ U of the origin, if and only
if there exist constants k > 0 and γ > 0, such that for every σ ∈ SP , every
t ≥ 0, and every ξ ∈ N the following inequality holds

‖φσ(t, ξ)‖ ≤ ke−γt‖ξ‖.

The set of those points in the state-space of a dynamical system, that are at-
tracted to an equilibrium point by the dynamics of the system, is of great impor-
tance. It is called the region of attraction of the equilibrium. Some authors prefer
domain, basin, or even bassin instead of region. For nonautonomous systems it
might depend on the initial time.

Definition 3.15 (Region of attraction). Assume that y = 0 is an equilibrium
point of the Switched System 3.5 and let φ be the solution to the system. For
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every t0 ∈ R≥0 the set

Rt0
Att := {ξ ∈ U : lim sup

t→+∞
φσ(t, t0, ξ) = 0 for all σ ∈ SP}

is called the region of attraction with respect to t0 of the equilibrium at the origin.
The region of attraction RAtt of the equilibrium at the origin is defined by

RAtt :=
⋂

t0≥0

Rt0
Att .

Thus, for the Switched System 3.5, ξ ∈ RAtt implies limt→+∞ φσ(t, t0, ξ) = 0
for all σ ∈ SP and all t0 ≥ 0.

3.5. Three useful lemmas. It is often more convenient to work with smooth
rather that merely continuous functions and later on we need estimates by convex
C∞ ∩ K functions. The two next lemmas state some useful facts in this regard.

Lemma 3.16. Let f : R>0 → R≥0 be a monotonically decreasing function. Then
there exists a function g : R>0 → R>0 with the following properties:

(i) g ∈ C∞(R>0).
(ii) g(x) > f(x) for all x ∈ R>0.
(iii) g is strictly monotonically decreasing.
(iv) limx→0+ g(x) = +∞ and limx→+∞ g(x) = limx→+∞ f(x).
(v) g is invertible and g−1 ∈ C∞(g(R>0)).

Proof. We define the function h̃ : R>0 → R>0 by,

h̃(x) :=

{
f
(

1
n+1

)
+ 1

x , if x ∈ [ 1
n+1 ,

1
n [ for some n ∈ N>0,

f(n) + 1
x , if x ∈ [n, n+ 1[ for some n ∈ N>0,

and the function h : R>0 → R>0 by

h(x) := h̃(x− tanh(x)).

Then h is a strictly monotonically decreasing measurable function and because h̃
is, by its definition, strictly monotonically decreasing and larger than f , we have

h(x+ tanh(x)) = h̃(x+ tanh(x)− tanh(x+ tanh(x))) > h̃(x) > f(x)

for all x ∈ R>0.
Let ρ ∈ C∞(R) such that ρ(x) ≥ 0 for all x ∈ R, supp(ρ) ⊂ ] − 1, 1[, and∫

R ρ(x)dx = 1. We claim that the function g : R>0 → R>0,

g(x) :=
∫ x+tanh(x)

x−tanh(x)

ρ
( x− y

tanh(x)
) h(y)
tanh(x)

dy =
∫ 1

−1

ρ1(y)h(x− y tanh(x))dy,

fulfills the properties (i)–(v).
Proposition (i) follows from elementary Lebesgue integration theory. Proposition

(ii) follows from

g(x) =
∫ 1

−1

ρ(y)h(x− y tanh(x))dy

>

∫ 1

−1

ρ(y)h(x+ tanh(x))dy
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>

∫ 1

−1

ρ(y)f(x)dy = f(x).

To see that g is strictly monotonically decreasing let t > s > 0 and consider that

t− y tanh(t) > s− y tanh(s) (3.7)

for all y in the interval [−1, 1]. Inequality (3.7) follows from

t− y tanh(t)− [s− y tanh(s)] = t− s− y[tanh(t)− tanh(s)]

= t− s− y(t− s)(1− tanh2(s+ ϑt,s(t− s))) > 0,

for some ϑt,s ∈ [0, 1], where we used the Mean-value theorem. But then

h(t− y tanh(t)) < h(s− y tanh(s))

for all y ∈ [−1, 1] and the definition of g implies that g(t) < g(s). Thus, proposition
(iii) is fulfilled.

Proposition iv) is obvious from the definition of g. Clearly g is invertible and by
the chain rule

[g−1]′(x) =
1

g′(g−1(x))
,

so it follows by mathematical induction that g−1 ∈ C∞(g(R>0)), that is, proposition
(v). �

Lemma 3.17. Let α ∈ K. Then, for every R > 0, there is a function βR ∈ K,
such that:

(i) βR is a convex function.
(ii) βR restricted to R>0 is infinitely differentiable.
(iii) For all 0 ≤ x ≤ R we have βR(x) ≤ α(x).

Proof. By Lemma 3.16 there is a function g, such that g ∈ C∞(R>0), g(x) > 1/α(x)
for all x > 0, limt→0+ g(x) = +∞, and g is strictly monotonically decreasing. Then
the function βR : R≥0 → R≥0, defined through

βR(x) :=
1
R

∫ x

0

dτ

g(τ)
,

has the desired properties. First, βR(0) = 0 and for every 0 < x ≤ R we have

βR(x) =
1
R

∫ x

0

dτ

g(τ)
≤ 1
g(x)

< α(x).

Second, to prove that βR is a convex K function is suffices to prove that the second
derivative of βR is strictly positive. But this follows immediately because for every
x > 0 we have g′(x) < 0, which implies

d 2βR

dx2
(x) =

−g′(x)
R[g(x)]2

> 0.

�

The third existence lemma is the well known and very useful Massera’s lemma
[42].
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Lemma 3.18 (Massera’s lemma). Let f ∈ L and λ ∈ R>0. Then there is a function
g ∈ C1(R≥0), such that g, g′ ∈ K, g restricted to R>0 is a C∞(R>0) function,∫ +∞

0

g(f(t))dt < +∞, and
∫ +∞

0

g′(f(t))eλtdt < +∞.

Note, that because g, g′ ∈ K in Massera’s lemma above, we have for every mea-
surable function u : R≥0 → R≥0, such that u(t) ≤ f(t) for all t ∈ R≥0, that∫ +∞

0

g(u(t))dt ≤
∫ +∞

0

g(f(t))dt and
∫ +∞

0

g′(u(t))eλtdt ≤
∫ +∞

0

g′(f(t))eλtdt.

It is further worth noting that Massera’s lemma can be proved quite simply by
using Lemma 3.16, which implies that there is a strictly monotonically decreasing
C∞(R>0) bijective function h : R>0 → R>0 such that h(x) > f(x) for all x > 0 and
h−1 ∈ C∞(R>0). The function g : R≥0 → R≥0,

g(t) :=
∫ t

0

e−(1+λ)h−1(τ)dτ,

then fulfills the claimed properties.

3.6. Linear programming. For completeness we spend a few words on linear
programming problems. A linear programming problem is a set of linear constraints,
under which a linear function is to be minimized. There are several equivalent
possibilities to state a linear programming problem, one of them is

minimize g(x) := c · x,
given Cx ≤ b, x ≥ 0,

(3.8)

where r, s > 0 are integers, C ∈ Rs×r is a matrix, b ∈ Rs and c ∈ Rr are vectors,
and x ≤ y denotes xi ≤ yi for all i. The function g is called the objective of
the linear programming problem and the conditions Cx ≤ b and x ≥ 0 together
are called the constraints. A feasible solution to the linear programming problem
is a vector x′ ∈ Rr that satisfies the constraints, that is, x′ ≥ 0 and Cx′ ≤ b.
There are numerous algorithms known to solve linear programming problems, the
most commonly used being the simplex method (see, for example, [56]) or interior
point algorithms, for example, the primal-dual logarithmic barrier method (see, for
example, [53]). Both need a starting feasible solution for initialization. A feasible
solution to (3.8) can be found by introducing slack variables y ∈ Rs and solving
the linear programming problem:

minimize g(
[
x
y

]
) :=

s∑
i=1

yi,

given
[
C −Is

] [x
y

]
≤ b,

[
x
y

]
≥ 0,

(3.9)

which has the feasible solution x = 0 and y = (|b1|, |b2|, . . . , |bs|). If the linear
programming problem (3.9) has the solution g([x′ y′]) = 0, then x′ is a feasible
solution to (3.8), if the minimum of g is strictly larger than zero, then (3.8) does
not have any feasible solution.
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4. Lyapunov’s Direct Method for Switched Systems

The Russian mathematician and engineer Alexandr Mikhailovich Lyapunov pub-
lished a revolutionary work in 1892 on the stability of motion, where he introduced
two methods to study the stability of general continuous dynamical systems. An
English translation of this work can be found in [36].

The more important of these two methods, known as Lyapunov’s second method
or Lyapunov’s direct method, enables one to prove the stability of an equilibrium
of (3.3) without integrating the differential equation. It states, that if y = 0 is an
equilibrium point of the system, V ∈ C1(R≥0 × U) is a positive definite function,
that is, there exist functions α1, α2 ∈ K such that

α1(‖x‖2) ≤ V (t,x) ≤ α2(‖x‖2)

for all x ∈ U and all t ∈ R≥0, and φ is the solution to the ODE (3.3). Then the
equilibrium is uniformly asymptotically stable, if there is an ω ∈ K such that the
inequality
d

dt
V (t,φ(t, t0, ξ)) = [∇xV ](t,φ(t, t0, ξ)) · f(t,φ(t, t0, ξ)) +

∂V

∂t
(t,φ(t, t0, ξ))

≤ −ω(‖φ(t, t0, ξ)‖2)
(4.1)

holds for all φ(t, t0, ξ) in an open neighborhood N ⊂ U of the equilibrium y. In
this case the equilibrium is uniformly asymptotically stable on a neighborhood,
which depends on V , of the origin. The function V satisfying (4.1) is said to
be a Lyapunov function for (3.3). The direct method of Lyapunov is covered in
practically all modern textbooks on nonlinear systems and control theory. Some
good examples are [19, 20, 28, 54, 60, 3, 65].

We will prove, that if the time-derivative in the inequalities above is replaced
with a Dini derivative with respect to t, then the assumption V ∈ C1(R≥0×U) can
be replaced with the less restrictive assumption, that V is merely continuous. The
same is done in Theorem 42.5 in [19], but a lot of details are left out. Further, we
generalize the results to arbitrary switched systems.

Before we state and prove the direct method of Lyapunov for switched systems,
we prove a lemma that we use in its proof.

Lemma 4.1. Assume that the origin is an equilibrium of the Switched System 3.5
and let ‖ · ‖ be a norm on Rn. Further, assume that there is a function α ∈ K, such
that for all σ ∈ SP and all t ≥ t0 ≥ 0 the inequality

‖φσ(t, t0, ξ)‖ ≤ α(‖ξ‖) (4.2)

holds for all ξ in some bounded neighborhood N ⊂ U of the origin.
Under these assumptions the following two propositions are equivalent:

(i) There exists a function β ∈ L, such that

‖φσ(t, t0, ξ)‖ ≤
√
α(‖ξ‖)β(t− t0)

for all σ ∈ SP , all t ≥ t0 ≥ 0, and all ξ ∈ N .
(ii) For every ε > 0 there exists a T > 0, such that for every t0 ≥ 0, every

σ ∈ SP , and every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ε

holds for all t ≥ T + t0.
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Proof. Let R > 0 be so large that N ⊂ B‖·‖,R and set C := max{1, α(R)}.
Note that Proposition (i) implies proposition (ii): For every ε > 0 we set T :=
β−1(ε/

√
α(R)) and proposition (ii) follows immediately.

Proposition (ii) implies proposition (i): For every ε > 0 define T̃ (ε) as the
infimum of all T > 0 with the property, that for every t0 ≥ 0, every σ ∈ SP , and
every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ε

holds for all t ≥ T + t0.
Then T̃ is a monotonically decreasing function R>0 → R≥0 and, because of (4.2),

T̃ (ε) = 0 for all ε > α(R). By Lemma 3.16 there exists a strictly monotonically
decreasing C∞(R>0) bijective function g : R>0 → R>0, such that g(ε) > T̃ (ε) for
all ε > 0. Now, for every pair t > t0 ≥ 0 set ε′ := g−1(t− t0) and note that because
t = g(ε′) + t0 ≥ T̃ (ε′) + t0 we have

g−1(t− t0) = ε′ ≥ ‖φσ(t, t0, ξ)‖.

But then

β(s) :=

{√
2C − C/g(1) · s, if s ∈ [0, g(1)],√
Cg−1(s), if s > g(1),

is an L function such that √
‖φσ(t, t0, ξ)‖ ≤ β(t− t0),

for all t ≥ t0 ≥ 0 and all ξ ∈ N , and therefore

‖φσ(t, t0, ξ)‖ ≤
√
α(‖ξ‖)β(t− t0).

�

We come to the main theorem of this section: The Lyapunov’s direct method
for arbitrary switched systems.

Theorem 4.2. Assume that the Switched System 3.5 has an equilibrium at the
origin. Let ‖ · ‖ be a norm on Rn and let R > 0 be a constant such that the closure
of the ball B‖·‖,R is a subset of U . Let V : R≥0 × B‖·‖,R → R be a continuous
function and assume that there exist functions α1, α2 ∈ K such that

α1(‖ξ‖) ≤ V (t, ξ) ≤ α2(‖ξ‖)

for all t ≥ 0 and all ξ ∈ B‖·‖,R. Denote the solution to the Switched System 3.5
by φ and set d := α−1

2 (α1(R)). Finally, let D∗ ∈ {D+, D+, D
−, D−} be a Dini

derivative with respect to the time t, which means, for example with D∗ = D+, that

D+[V (t,φσ(t, t0, ξ))] := lim sup
h→0+

V (t+ h,φσ(t+ h, t0, ξ))− V (t,φσ(t, t0, ξ))
h

.

Then the following propositions are true:
(i) If for every σ ∈ SP , every ξ ∈ U , and every t ≥ t0 ≥ 0, such that

φσ(t, t0, ξ) ∈ B‖·‖,R, the inequality

D∗[V (t,φσ(t, t0, ξ))] ≤ 0 (4.3)

holds, then the origin is a uniformly stable equilibrium of the Switched Sys-
tem 3.5 on B‖·‖,d.
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(ii) If there exists a function ψ ∈ K, with the property that for every σ ∈ SP ,
every ξ ∈ U , and every t ≥ t0 ≥ 0, such that φσ(t, t0, ξ) ∈ B‖·‖,R, the
inequality

D∗[V (t,φσ(t, t0, ξ))] ≤ −ψ(‖φσ(t, t0, ξ)‖) (4.4)

holds, then the origin is a uniformly asymptotically stable equilibrium of the
Switched System 3.5 on B‖·‖,d.

Proof. Proposition (i): Let t0 ≥ 0, ξ ∈ B‖·‖,d, and σ ∈ SP all be arbitrary but fixed.
By the note after the definition of Switched System 3.5 either φσ(t, t0, ξ) ∈ B‖·‖,R
for all t ≥ t0 or there is a t∗ > t0 such that φσ(s, t0, ξ) ∈ B‖·‖,R for all s ∈ [t0, t∗[
and φσ(t∗, t0, ξ) ∈ ∂B‖·‖,R. Assume that the second possibility applies. Then, by
inequality (4.3) and Corollary 3.10

α1(R) ≤ V (t∗,φσ(t∗, t0, ξ)) ≤ V (t0, ξ) ≤ α2(‖ξ‖) < α2(d),

which is contradictory to d = α−1
2 (α1(R)). Therefore φσ(t, t0, ξ) ∈ B‖·‖,R for all

t ≥ t0.
But then it follows by inequality (4.3) and Corollary 3.10 that

α1(‖φσ(t, t0, ξ)‖) ≤ V (t,φσ(t, t0, ξ)) ≤ V (t0, ξ) ≤ α2(‖ξ‖),
for all t ≥ t0, so

‖φσ(t, t0, ξ)‖ ≤ α−1
1 (α2(‖ξ‖))

for all t ≥ t0. Because α−1
1 ◦ α2 is a class K function, it follows, because t0 ≥ 0,

ξ ∈ B‖·‖,d, and σ ∈ SP were arbitrary, that the equilibrium at the origin is a
uniformly stable equilibrium point of the Switched System 3.5 on B‖·‖,d.

Proposition (ii): Inequality (4.4) implies inequality (4.3) so Lemma 4.1 applies
and it suffices to show that for every ε > 0 there is a finite T > 0, such that

t ≥ T + t0 implies ‖φσ(t, t0, ξ)‖ ≤ ε (4.5)

for all t0 ≥ 0, all ξ ∈ B‖·‖,d, and all σ ∈ SP . To prove this choose an arbitrary
ε > 0 and set

δ∗ := min{d, α−1
2 (α1(ε))} and T :=

α2(d)
ψ(δ∗)

.

We first prove that for every σ ∈ SP the following proposition:

ξ ∈ B‖·‖,d and t0 ≥ 0 implies ‖φσ(t∗, t0, ξ)‖ < δ∗ (4.6)

for some t∗ ∈ [t0, T + t0]. We prove (4.6) by contradiction. Assume that

‖φσ(t, t0, ξ)‖ ≥ δ∗ (4.7)

for all t ∈ [t0, T + t0]. Then

0 < α1(δ∗) ≤ α1(‖φσ(T + t0, t0, ξ)‖) ≤ V (T + t0,φσ(T + t0, t0, ξ)). (4.8)

By Theorem 3.9 and the assumption (4.7), there is an s ∈ [t0, T + t0], such that

V (T + t0,φσ(T + t0, t0, ξ))− V (t0, ξ)
T

≤ [D∗V ](s,φ(s, t0, ξ))]

≤ −ψ(‖φσ(s, t0, ξ)‖)
≤ −ψ(δ∗),

that is

V (T + t0,φσ(T + t0, t0, ξ)) ≤ V (t0, ξ)− Tψ(δ∗)
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≤ α2(‖ξ‖)− Tψ(δ∗)

< α2(d)− Tψ(δ∗)

= α2(d)−
α2(d)
ψ(δ∗)

ψ(δ∗) = 0,

which is contradictory to (4.8). Therefore proposition (4.6) is true.
Now, let t∗ be as in (4.6) and let t > T + t0 be arbitrary. Then, because

s 7→ V (s,φσ(s, t0, ξ)), s ≥ t0,

is strictly monotonically decreasing by inequality (4.4) and Corollary 3.10, we get
by (4.6), that

α1(‖φσ(t, t0, ξ)‖) ≤ V (t,φσ(t, t0, ξ))

≤ V (t∗,φσ(t∗, t0, ξ))

≤ α2(‖φσ(t∗, t0, ξ)‖)
< α2(δ∗)

= min{α2(d), α1(ε)}
≤ α1(ε),

and we have proved (4.5). The proposition (ii) follows.
�

The function V in the last theorem is called a Lyapunov function for the Switched
System 3.5.

Definition 4.3 (Lyapunov function). Assume that the Switched System 3.5 has
an equilibrium at the origin. Denote the solution to the Switched System 3.5 by
φ and let ‖ · ‖ be a norm on Rn. Let R > 0 be a constant such that the closure
of the ball B‖·‖,R is a subset of U . A continuous function V : R≥0 × B‖·‖,R → R
is called a Lyapunov function for the Switched System 3.5 on B‖·‖,R, if and only if
there exists a Dini derivative D∗ ∈ {D+, D+, D

−, D−} with respect to the time t
and functions α1, α2, ψ ∈ K with the properties that:

(L1)
α1(‖ξ‖) ≤ V (t, ξ) ≤ α2(‖ξ‖)

for all t ≥ 0 and all ξ ∈ B‖·‖,R.
(L2)

D∗[V (t,φσ(t, t0, ξ))] ≤ −ψ(‖φσ(t, t0, ξ)‖)
for every σ ∈ SP , every ξ ∈ U , and every t ≥ t0 ≥ 0,
such that φσ(t, t0, ξ) ∈ B‖·‖,R.

The Direct Method of Lyapunov (Theorem 4.2) can thus, by Definition 4.3, be
rephrased as follows:

Assume that the Switched System 3.5 has an equilibrium point at
the origin and that there exists a Lyapunov function defined on the
ball B‖·‖,R, of which the closure is a subset of U , for the system.
Then there is a d, 0 < d < R, such that the origin is a uniformly
asymptotically stable equilibrium point of the system on the ball
B‖·‖,d (which implies that B‖·‖,d is a subset of the equilibrium’s
region of attraction). If the comparison functions α1 and α2 in the
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condition (L1) for a Lyapunov function are known, then we can
take d = α−1

2 (α1(R)).

5. Converse Theorem for Switched Systems

In the last section we proved, that the existence of a Lyapunov function V
for the Switched System 3.5 is a sufficient condition for the uniform asymptotic
stability of an equilibrium at the origin. In this section we prove the converse of
this theorem. That is, if the origin is a uniformly asymptotically stable equilibrium
of the Switched System 3.5, then there exists a Lyapunov function for the system.

Later, in Section 8, we prove that our algorithm always succeeds in construct-
ing a Lyapunov function for a switched system if the system possesses a Lyapunov
function, whose second-order derivatives are bounded on every compact subset of
the state-space that do not contain the origin. Thus, it is not sufficient for our pur-
poses to prove the existence of a merely continuous Lyapunov function. Therefore,
we prove that if the origin is a uniformly asymptotically stable equilibrium of the
Switched System 3.5, then there exists a Lyapunov function for the system that is
infinitely differentiable with a possible exception at the origin.

5.1. Converse theorems. There are several theorems known, similar to Theo-
rem 4.2, where one either uses more or less restrictive assumptions regarding the
Lyapunov function than in Theorem 4.2. Such theorems are often called Lyapunov-
like theorems. An example for less restrictive assumptions is Theorem 46.5 in [19]
or equivalently Theorem 4.10 in [28], where the solution to a continuous system is
shown to be uniformly bounded, and an example for more restrictive assumptions is
Theorem 5.17 in [54], where an equilibrium is proved to be uniformly exponentially
stable. The Lyapunov-like theorems all have the form:

If one can find a function V for a dynamical system, such that
V satisfies the properties X, then the system has the stability
property Y .

A natural question awakened by any Lyapunov-like theorem is whether its converse
is true or not, that is, if there is a corresponding theorem of the form:

If a dynamical system has the stability property Y , then there
exists a function V for the dynamical system, such that V satisfies
the properties X.

Such theorems are called converse theorems in the Lyapunov stability theory. For
nonlinear systems they are more involved than Lyapunov’s direct method and the
results came rather late and did not stem from Lyapunov himself. The converse
theorems are covered quite thoroughly in Chapter VI in [19]. Some further general
references are Section 5.7 in [60] and Section 4.3 in [28]. More specific references
were given here in Section 2.

About the techniques to prove such theorems W. Hahn writes on page 225 in his
book Stability of Motion [19]:

In the converse theorems the stability behavior of a family of mo-
tions p(t,a, t0)1 is assumed to be known. For example, it might
be assumed that the expression ‖p(t,a, t0)‖ is estimated by known

1In our notation p(t,a, t0) = φ(t, t0,a).
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comparison functions (secs. 35 and 36). Then one attempts to con-
struct by means of a finite or transfinite procedure, a Lyapunov
function which satisfies the conditions of the stability theorem un-
der consideration.

In this section we prove a converse theorem on uniform asymptotic stability
of an arbitrary switched system’s equilibrium, where the functions fp, p ∈ P, of
the systems ẋ = fp(t,x), satisfy the common Lipschitz condition: there exists a
constant L such that

‖fp(s,x)− fp(t,y)‖ ≤ L(|s− t|+ ‖x− y‖)

for all p ∈ P, all s, t ∈ R≥0, and all x,y ∈ B‖·‖,R. To construct a Lyapunov function
that is merely Lipschitz in its state-space argument, it suffices that the functions
fp, p ∈ P, satisfy the common Lipschitz condition:

‖fp(t,x)− fp(t,y)‖ ≤ Lx‖x− y‖ (5.1)

for all p ∈ P, all t ∈ R≥0, and all x,y ∈ B‖·‖,R, as shown in Theorem 5.2. However,
our procedure to smooth it to a C∞ function everywhere except at the origin, as done
in Theorem 5.4, does not necessarily work if (s, t) 7→ ‖fp(s,x) − fp(t,x)‖/|s − t|,
s 6= t, is unbounded. Note, that this additional assumption does not affect the
growth of the functions fp, p ∈ P, but merely excludes infinitely fast oscillations
in the temporal domain. The Lipschitz condition (5.1) already takes care of that
‖fp(t,x)‖ ≤ Lx‖x‖ ≤ LxR for all t ≥ 0 and all x ∈ B‖·‖,R because fp(t,0) = 0.

5.2. A converse theorem for arbitrary switched systems. The construction
here of a smooth Lyapunov function for the Switched System 3.5 is quite long
and technical. We therefore arrange the proof in a few definitions, lemmas, and
theorems. First, we use Massera’s lemma (Lemma 3.18) to define the functions
Wσ, σ ∈ SP , and them in turn to define the function W , and after that we prove
that the function W is a Lyapunov function for the Switched System 3.5 used in
its construction.

Definition 5.1 (The functions Wσ and W ). Assume that the origin is a uniformly
asymptotically stable equilibrium point of the Switched System 3.5 on the ball
B‖·‖,R ⊂ U , where ‖ · ‖ is a norm on Rn and R > 0, and let ς ∈ KL be such that
‖φσ(t, t0, ξ)‖ ≤ ς(‖ξ‖, t − t0) for all σ ∈ SP , all ξ ∈ B‖·‖,R, and all t ≥ t0 ≥ 0.
Assume further, that there exists a constant L for the functions fp, such that

‖fp(t,x)− fp(t,y)‖ ≤ L‖x− y‖

for all t ≥ 0, all x,y ∈ B‖·‖,R, and all p ∈ P. By Massera’s lemma (Lemma 3.18)
there exists a function g ∈ C1(R≥0), such that g, g′ ∈ K, g is infinitely differentiable
on R>0, ∫ +∞

0

g(ς(R, τ))dτ < +∞, and
∫ +∞

0

g′(ς(R, τ))eLτdτ < +∞.

(i) For every σ ∈ SP we define the function Wσ for all t ≥ 0 and all ξ ∈ B‖·‖,R
by

Wσ(t, ξ) :=
∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ.
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(ii) We define the function W for all t ≥ 0 and all ξ ∈ B‖·‖,R by

W (t, ξ) := sup
σ∈SP

Wσ(t, ξ).

Note, that if the Switched System 3.5 is autonomous, then W does not
depend on t, that is, it is time-invariant.

The function W from the definition above (Definition 5.1) is a Lyapunov function
for the Switched System 3.5 used in its construction. This is proved in the next
theorem.

Theorem 5.2 (Converse theorem for switched systems). The function W in Defini-
tion 5.1 is a Lyapunov function for the Switched System 3.5 used in its construction.
Further, there exists a constant LW > 0 such that

|W (t, ξ)−W (t,η)| ≤ LW ‖ξ − η‖ (5.2)

for all t ≥ 0 and all ξ,η ∈ B‖·‖,R, where the norm ‖ · ‖ and the constant R are the
same as in Definition 5.1.

Proof. We have to show that the function W complies to the conditions (L1) and
(L2) of Definition 4.3. Because

φσ(u, t, ξ) = ξ +
∫ u

t

fσ(τ)(τ,φσ(τ, t, ξ))dτ,

and ‖fσ(s)(s,y)‖ ≤ LR for all s ≥ 0 and all y ∈ B‖·‖,R, we conclude ‖φσ(u, t, ξ)‖ ≥
‖ξ‖ − (u− t)LR for all u ≥ t ≥ 0, ξ ∈ B‖·‖,R, and all σ ∈ SP . Therefore,

‖φσ(u, t, ξ)‖ ≥ ‖ξ‖
2

whenever t ≤ u ≤ t+
‖ξ‖
2LR

,

which implies

Wσ(t, ξ) :=
∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ ≥ ‖ξ‖
2LR

g(‖ξ‖/2)

and then α1(‖ξ‖) ≤ W (t, ξ) for all t ≥ 0 and all ξ ∈ B‖·‖,R, where α1(x) :=
x/(2LR)g(x/2) is a K function.

By the definition of W ,

W (t, ξ) ≥
∫ t+h

t

g(‖φσ(τ, t, ξ)‖)dτ +W (t+ h,φσ(t+ h, t, ξ))

(reads: supremum over all trajectories emerging from ξ

at time t is not less than over any particular trajectory

emerging from ξ at time t)

for all ξ ∈ B‖·‖,R, all t ≥ 0, all small enough h > 0, and all σ ∈ SP , from which

lim sup
h→0+

W (t+ h,φσ(t+ h, t, ξ))−W (t, ξ)
h

≤ −g(‖ξ‖)

follows. Because g ∈ K this implies that the condition (L2) from Definition 4.3
holds for the function W .

Now, assume that there is an LW > 0 such that inequality (5.2) holds. Then
W (t, ξ) ≤ α2(‖ξ‖) for all t ≥ 0 and all ξ ∈ B‖·‖,R, where α2(x) := LWx is a
class K function. Thus, it only remains to prove inequality (5.2). However, as this
inequality is a byproduct of the next lemma, we spare us the proof here. �
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The results of the next lemma are needed in the proof of our converse theorem on
uniform asymptotic stability of a switched system’s equilibrium and as a convenient
side effect it completes the proof of Theorem 5.2.

Lemma 5.3. The function W in Definition 5.1 satisfies for all t ≥ s ≥ 0, all
ξ,η ∈ B‖·‖,R, and all σ ∈ SP the inequality

W (t, ξ)−W (s,η) ≤ C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ, (5.3)

where

C :=
∫ +∞

0

g′(ς(R, τ))eLτdτ < +∞.

Especially,
|W (t, ξ)−W (t,η)| ≤ C‖ξ − η‖ (5.4)

for all t ≥ 0 and all ξ,η ∈ B‖·‖,R.
The norm ‖ · ‖, the constants R,L, and the functions ς and g are, of course, the

same as in Definition 5.1.

Proof. By the Mean-value theorem and Theorem 3.6 we have

Wσ(t, ξ)−Wσ(s,η) (5.5)

=
∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ −
∫ +∞

s

g(‖φσ(τ, s,η)‖)dτ

≤
∫ +∞

t

∣∣g(‖φσ(τ, t, ξ)‖)− g(‖φσ(τ, s,η)‖)
∣∣dτ − ∫ t

s

g(‖φσ(τ, s,η)‖)dτ

=
∫ +∞

t

∣∣g(‖φσ(τ, t, ξ)‖)− g(‖φσ(τ, t,φσ(t, s,η))‖)
∣∣dτ − ∫ t

s

g(‖φσ(τ, s,η)‖)dτ

≤
∫ +∞

t

g′(ς(R, τ − t))‖φσ(τ, t, ξ)− φσ(τ, t,φσ(t, s,η))‖dτ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

≤
∫ +∞

t

g′(ς(R, τ − t))eL(τ−t)‖ξ − φσ(t, s,η)‖dτ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

= C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ.

We now show that we can replace Wσ(t, ξ) − Wσ(s,η) by W (t, ξ) − W (s,η) on
the leftmost side of inequality (5.5) without violating the ≤ relations. That this is
possible might seem a little surprising at first sight. However, a closer look reveals
that this is not surprising at all because the rightmost side of inequality (5.5) only
depends on the values of σ(z) for s ≤ z ≤ t and because Wσ(t, ξ) − W (s,η) ≤
Wσ(t, ξ) −Wσ(s,η), where the left-hand side only depends on the values of σ(z)
for z ≥ t, .

To rigidly prove the validity of this replacement let δ > 0 be an arbitrary constant
and choose a γ ∈ SP , such that

W (t, ξ)−Wγ(t, ξ) <
δ

2
, (5.6)

and a u > 0 so small that

ug(ς(‖ξ‖, 0)) + 2CR(eu − 1) <
δ

2
. (5.7)
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We define θ ∈ SP by

θ(τ) :=

{
σ(τ), if 0 ≤ τ < t+ u,
γ(τ), if τ ≥ t+ u.

Then

W (t, ξ)−W (s,η) ≤W (t, ξ)−Wθ(s,η)

≤ [W (t, ξ)−Wγ(t, ξ)] + [Wγ(t, ξ)−Wθ(t, ξ)] + [Wθ(t, ξ)−Wθ(s,η)].
(5.8)

By the Mean-value theorem, Theorem 3.6, and inequality (5.7),

Wγ(t, ξ)−Wθ(t, ξ) (5.9)

=
∫ t+u

t

[g(‖φγ(τ, t, ξ)‖)− g(‖φθ(τ, t, ξ)‖)]dτ

+
∫ +∞

t+u

[g(‖φγ(τ, t+ u,φγ(t+ u, t, ξ))‖)− g(‖φγ(τ, t+ u,φθ(t+ u, t, ξ))‖)]dτ

≤ ug(ς(‖ξ‖, 0)) +
∫ +∞

t+u

g′(ς(R, τ − t− u))

× ‖φγ(τ, t+ u,φγ(t+ u, t, ξ))− φγ(τ, t+ u,φθ(t+ u, t, ξ))‖dτ
≤ ug(ς(‖ξ‖, 0))

+
∫ +∞

t+u

g′(ς(R, τ − t− u))eL(τ−t−u)‖φγ(t+ u, t, ξ)− φθ(t+ u, t, ξ)‖dτ

≤ ug(ς(‖ξ‖, 0)) +
∫ +∞

t+u

g′(ς(R, τ − t− u))eL(τ−t−u)2RL
eLu − 1
L

dτ

= ug(ς(‖ξ‖, 0)) + 2R(eu − 1)
∫ +∞

0

g′(ς(R, τ))eLτdτ.

<
δ

2
.

Because θ and σ coincide on [s, t], we get by (5.5), that

Wθ(t, ξ)−Wθ(s,η) ≤ C‖ξ − φθ(t, s,η)‖ −
∫ t

s

g(‖φθ(τ, s,η)‖)dτ

= C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ.
(5.10)

Hence, by (5.8), (5.6), (5.9), and (5.10) we conclude that

W (t, ξ)−W (s,η) < δ + C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

and because δ > 0 was arbitrary we have proved inequality (5.3).
Inequality (5.4) is a trivial consequence of inequality (5.3), just set s = t and

note that ξ and η can be reversed. �

Finally, we come to the central theorem of this section. It is the promised
converse Lyapunov theorem for a uniformly asymptotically stable equilibrium of
the Switched System 3.5.
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Theorem 5.4 (Smooth converse theorem for switched systems). Assume that the
origin is a uniformly asymptotically stable equilibrium point of the Switched System
3.5 on the ball B‖·‖,R ⊂ U , R > 0, where ‖ · ‖ is a norm on Rn. Assume further,
that the functions fp, p ∈ P, satisfy the common Lipschitz condition: there exists a
constant L > 0 such that

‖fp(s,x)− fp(t,y)‖ ≤ L(|s− t|+ ‖x− y‖) (5.11)

for all s, t ≥ 0, all x,y ∈ B‖·‖,R, and all p ∈ P.
Then, for every 0 < R∗ < R, there exists a Lyapunov function V : R≥0 ×

B‖·‖,R∗ → R for the switched system, that is infinitely differentiable at every point
(t,x) ∈ R≥0 × B‖·‖,R∗ , x 6= 0.

Further, if the Switched System 3.5 is autonomous, then there exists a time-
invariant Lyapunov function V : B‖·‖,R∗ → R for the system, that is infinitely
differentiable at every point x ∈ B‖·‖,R∗ , x 6= 0.

Proof. The proof is long and technical, even after all the preparation we have
done, so we split it into two parts. In part I we introduce some constants and
functions that we will use in the rest of the proof and in part II we define a function
V ∈ C∞(R≥0 ×

[
B‖·‖,R∗ \ {0}

]
) and prove that it is a Lyapunov function for the

system.
Part I: Because the assumptions of the theorem imply the assumptions made in
Definition 5.1, we can define the functions Wσ : R≥0 × B‖·‖,R → R≥0, σ ∈ SP , and
W : R≥0 × B‖·‖,R → R≥0 just as in the definition. As in Definition 5.1, denote by
g be the function from Massera’s lemma 3.18 in the definition of the functions Wσ,
and set

C :=
∫ +∞

0

g′(ς(R, τ))eLτdτ,

where, once again, ς is the same function as in Definition 5.1.
Let m,M > 0 be constants such that

‖x‖2 ≤ m‖x‖ and ‖x‖ ≤M‖x‖2
for all x ∈ Rn and let a be a constant such that

a > 2m and set y∗ :=
mR

a
.

Define

K :=
g(y∗)
a

L
(
C
[
m(1 +M)R+mR

(4
3
LR+M

)]
+ g(4R/3)mR

)
,

and set

ε := min
{

a

3g(y∗)
,
a(R−R∗)
R∗g(y∗)

,
a

2mRLg(y∗)
,

1
K

}
. (5.12)

Note that ε is a real-valued constant that is strictly larger than zero. We define the
function ε : R≥0 → R≥0 by

ε(x) := ε

∫ x
a

0

g(z)dz. (5.13)

The definition of ε implies

ε(x) ≤ εg(x/a)
x

a
≤ a

3g(y∗)
· g(x/a)x

a
≤ x

3
(5.14)
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for all 0 ≤ x ≤ mR and

ε′(x) =
ε

a
g(x/a) (5.15)

for all x ≥ 0.
Define the function ϑ by ϑ(x) := g(2x/3)− g(x/2) for all x ≥ 0. Then ϑ(0) = 0

and for every x > 0 we have

ϑ′(x) =
2
3
g′(2x/3)− 1

2
g′(x/2) > 0

because g′ ∈ K, that is ϑ ∈ K.

Part II: Let ρ ∈ C∞(R) be a nonnegative function with supp(ρ) ⊂ ] − 1, 0[ and∫
R ρ(x) = 1 and let % ∈ C∞(Rn) be a nonnegative function with supp(%) ⊂ B‖·‖2,1

and
∫

Rn %(x)dnx = 1. Extend W on R × Rn by setting it equal to zero outside of
R≥0 × B‖·‖,R. We claim that the function V : R≥0 × B‖·‖,R∗ → R≥0, V (t,0) := 0
for all t ≥ 0, and

V (t, ξ) :=
∫

R

∫
Rn

ρ
( t− τ

ε(‖ξ‖2)

)
%
( ξ − y
ε(‖ξ‖2)

) W [τ,y]
εn+1(‖ξ‖2)

dnydτ

=
∫

R

∫
Rn

ρ(τ)%(y)W [t− ε(‖ξ‖2)τ, ξ − ε(‖ξ‖2)y]dnydτ

for all t ≥ 0 and all ξ ∈ B‖·‖,R∗ \ {0}, is a C∞(R≥0 ×
[
B‖·‖,R∗ \ {0}

]
) Lyapunov

function for the switched system. Note, that if the Switched System 3.5 in question
is autonomous, then W is time-invariant, which implies that V is time-invariant
too.

Because, for every ‖y‖2 ≤ 1 and every ‖ξ‖ < R∗, we have by (5.14) and (5.12),
that

‖ξ − ε(‖ξ‖2)y‖ ≤
(
1 +

ε(‖ξ‖2)
‖ξ‖2

)
‖ξ‖

≤
(
1 +

εg(‖ξ‖2/a)
‖ξ‖2

· ‖ξ‖2
a

)
‖ξ‖

<
(
1 +

a(R−R∗)g(y∗)
R∗g(y∗)a

)
R∗

= R,

so V is properly defined on R≥0×B‖·‖,R∗ . But then, by construction, V ∈ C∞(R≥0×[
B‖·‖,R∗ \ {0}

]
). It remains to be shown that V fulfills the conditions (L1) and (L2)

in Definition 4.3 of a Lyapunov function.
By Theorem 5.2 and Lemma 5.3 there is a function α1 ∈ K and a constant

LW > 0, such that
α1(‖ξ‖) ≤W (t, ξ) ≤ LW ‖ξ‖

for all t ≥ 0 and all ξ ∈ B‖·‖,R. By inequality (5.14) we have for all ξ ∈ B‖·‖,R and
all ‖y‖2 ≤ 1, that

‖ξ − ε(‖ξ‖2)y‖ ≥ ‖ξ − ‖ξ‖2
3

ξ

‖ξ‖2
‖ =

2
3
‖ξ‖, (5.16)

‖ξ − ε(‖ξ‖2)y‖ ≤ ‖ξ +
‖ξ‖2

3
ξ

‖ξ‖2
‖ =

4
3
‖ξ‖. (5.17)
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Hence

α1(2‖ξ‖/3) =
∫

R

∫
Rn

ρ(τ)%(y)α1(2‖ξ‖/3)dnydτ

≤
∫

R

∫
Rn

ρ(τ)%(y)α1(‖ξ − ε(‖ξ‖2)y‖)dnydτ

≤
∫

R

∫
Rn

ρ(τ)%(y)W [t− ε(‖ξ‖2)τ, ξ − ε(‖ξ‖2)y]dnydτ

= V (t, ξ)

≤
∫

R

∫
Rn

ρ(τ)%(y)LW ‖ξ − ε(‖ξ‖2)y‖dnydτ

≤ 4LW

3
‖ξ‖,

(5.18)

and the function V fulfills the condition (L1).
We now prove that V fulfills the condition (L2). To do this let t ≥ 0, ξ ∈ B‖·‖,R∗ ,

and σ ∈ SP be arbitrary, but fixed throughout the rest of the proof. Denote by I
the maximum interval in R≥0 on which s 7→ φσ(s, t, ξ) is defined and set

q(s, τ) := s− ε(‖φσ(s, t, ξ)‖2)τ
for all s ∈ I and all −1 ≤ τ ≤ 0 and define

D(h,y, τ) := W [q(t+ h, τ),φσ(t+ h, t, ξ)− ε(‖φσ(t+ h, t, ξ)‖2)y]

−W [q(t, τ), ξ − ε(‖ξ‖2)y]

for all h such that t+ h ∈ I, all ‖y‖2 ≤ 1, and all −1 ≤ τ ≤ 0. Then

V (t+ h,φσ(t+ h, t, ξ))− V (t, ξ) =
∫

R

∫
Rn

ρ(τ)%(y)D(h,y, τ)dnydτ

for all h such that t+h ∈ I, especially this equality holds for all h in an interval of
the form [0, h′[, where 0 < h′ ≤ +∞.

We are going to show that

lim sup
h→0+

D(h,y, τ)
h

≤ −ϑ(‖ξ‖). (5.19)

If we can prove that (5.19) holds, then, by Fatou’s lemma,

lim sup
h→0+

V (t+ h,φσ(t+ h, t, ξ))− V (t, ξ)
h

≤
∫

R

∫
Rn

%(τ)%n(y) lim sup
h→0+

D(h,y, τ)
h

dnydτ

≤ −ϑ(‖ξ‖),

and we would have proved that the condition (L2) is fulfilled.
To prove inequality (5.19) observe that q(t, τ) ≥ 0 for all −1 ≤ τ ≤ 0 and, for

every s > t that is smaller than any switching-time (discontinuity-point) of σ larger
than t, and because of (5.12) and (5.11), we have

dq

ds
(s, τ) = 1− εg(‖φσ(s, t, ξ)‖2/a)

a

φσ(s, t, ξ)
‖φσ(s, t, ξ)‖2

· fσ(s)(s,φσ(s, t, ξ))τ

≥ 1− ε
g(y∗)LmR

a
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≥ 1
2
,

so q(t+ h, τ) ≥ q(t, τ) ≥ 0 for all small enough h ≥ 0.
Now, denote by γ the constant switching signal σ(t) in SP , that is γ(s) := σ(t)

for all s ≥ 0, and consider that by Lemma 5.3

D(h,y, τ)
h

≤ C

h

∥∥∥φσ(t+ h, t, ξ)− ε(‖φσ(t+ h, t, ξ)‖2)y

− φγ(q(t+ h, τ), q(t, τ), ξ − ε(‖ξ‖2)y)
∥∥∥

− 1
h

∫ q(t+h,τ)

q(t,τ)

g(‖φγ(s, q(t, τ), ξ − ε(‖ξ‖2)y)‖)ds

= C
∥∥∥φσ(t+ h, t, ξ)− ξ

h
− ε(‖φσ(t+ h, t, ξ)‖2)− ε(‖ξ‖2)

h
y

−
φγ(q(t+ h, τ), q(t, τ), ξ − ε(‖ξ‖2)y)− [ξ − ε(‖ξ‖2)y]

h

∥∥∥
− 1
h

∫ q(t+h,τ)

q(t,τ)

g(‖φγ(s, q(t, τ), ξ − ε(‖ξ‖2)y)‖)ds.

For the next calculations we need s 7→ q(s, τ) to be differentiable at t. If it is not,
which might be the case if t is a switching time of σ, we replace σ with σ∗ ∈ SP
where

σ∗(s) :=

{
σ(t), if 0 ≤ s ≤ t,

σ(s), if s ≥ t.

Note that this does not affect the numerical value

lim sup
h→0+

D(h,y, τ)
h

because σ∗(t + h) = σ(t + h) for all h ≥ 0. Hence, with p := σ(t), and by (5.11),
the chain rule, (5.16), and (5.17),

lim sup
h→0+

D(h,y, τ)
h

≤ C
∥∥∥fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y) · dq

dt′
(t′, τ)

∣∣∣
t′=t

− ε′(‖ξ‖2) ·
d

dt′
‖φσ(t′, t, ξ)‖2

∣∣∣
t′=t

y
∥∥∥

− g(‖φγ(q(t, τ), q(t, τ), ξ − ε(‖ξ‖2)y)‖) · dq
dt′

(t′, τ)
∣∣∣
t′=t

= C
∥∥∥fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y)

[
1− ε′(‖ξ‖2)

ξ

‖ξ‖2
· fp(t, ξ)τ

]
− ε′(‖ξ‖2)[

ξ

‖ξ‖2
· fp(t, ξ)]y

∥∥∥
− g(‖ξ − ε(‖ξ‖2)y‖)

[
1− ε′(‖ξ‖2)

ξ

‖ξ‖2
· fp(t, ξ)

]
≤ C

∥∥fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y)
∥∥

+ Cε′(‖ξ‖2)‖fp(t, ξ)‖2
[
‖fp(q(t, τ), ξ − ε(‖ξ‖2)y)‖+ ‖y‖

]
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− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)‖fp(t, ξ)‖2
≤ CL

[
|t− q(t, τ)|+ ε(‖ξ‖2)‖y‖)

[
]

+ Cε′(‖ξ‖2)mLR
[
L‖ξ − ε(‖ξ‖2)y)‖+M‖y‖2

]
− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)mLR

≤ C
[
L(1 +M)ε(‖ξ‖2) + ε′(‖ξ‖2)mLR

{
L

4
3
‖ξ‖+M

}]
− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)mLR.

Therefore, by (5.14), (5.15), and (5.12), and with x := ‖ξ‖, we can further simplify,

lim sup
h→0+

D(h,y, τ)
h

≤ −g(2x/3) +
ε

a
g(mx/a)L

(
C
[
m(1 +M)x+mR

(4
3
Lx+M

)]
+ g(4x/3)mR

)
≤ −g(2x/3) +Kεg(x/2)

≤ −ϑ(x),

and because t ≥ 0, ξ ∈ B‖·‖,R∗ , and σ ∈ SP were arbitrary, we have proved that V
is a Lyapunov function for the system. �

Now, we have proved the main theorem of this section, our much wanted converse
theorem for the arbitrary Switched System 3.5.

6. Construction of Lyapunov Functions

In this section we present a procedure to construct Lyapunov functions for the
Switched System 3.5. After a few preliminaries on piecewise affine functions we give
an algorithmic description of how to derive a linear programming problem from the
Switched System 3.5 (Definition 6.8), and we prove that if the linear programming
problem possesses a feasible solution, then it can be used to parameterize a Lya-
punov function for the system. Then, in Section 8 and after some preparation in
Section 7, we present an algorithm that systematically generates linear program-
ming problems for the Switched System 3.5 and we prove, that if the switched
system possesses a Lyapunov function at all, then the algorithm generates, in a
finite number of steps, a linear programming problem that has a feasible solution.
Because there are algorithms that always find a feasible solution to a linear pro-
gramming problem if one exists, this implies that we have derived an algorithm for
constructing Lyapunov functions, whenever one exists. Further, we consider the
case when the Switched System 3.5 is autonomous separately, because in this case
it is possible to parameterize a time-independent Lyapunov function for the system.
Let us be a little more specific on these points before we start to derive the results:

To construct a Lyapunov function with a linear programming problem, one needs
a class of continuous functions that are easily parameterized. That is, we need a
class of functions that is general enough to be used as a search-space for Lyapunov
functions, but it has to be a finite-dimensional vector space so that its functions
are uniquely characterized by a finite number of real numbers. The class of the
continuous piecewise affine functions CPWA is a well suited candidate.

The algorithm for parameterizing a Lyapunov function for the Switched System
3.5 consists roughly of the following steps:
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(i) Partition a neighborhood of the equilibrium under consideration in a family
S of simplices.

(ii) Limit the search for a Lyapunov function V for the system to the class of
continuous functions that are affine on any S ∈ S.

(iii) State linear inequalities for the values of V at the vertices of the simplices
in S, so that if they can be fulfilled, then the function V , which is uniquely
determined by its values at the vertices, is a Lyapunov function for the
system in the whole area.

We first partition Rn into n-simplices and use this partition to define the function
spaces CPWA of continuous piecewise affine functions Rn → R. A function in
CPWA is uniquely determined by its values at the vertices of the simplices in S.
Then we present a linear programming problem, algorithmically derived from the
Switched System 3.5, and prove that a CPWA Lyapunov function for the system can
be parameterized from any feasible solution to this linear programming problem.
Finally, in Section 7, we prove that if the equilibrium of the Switched System
3.5 is uniformly asymptotically stable, then any simplicial partition with small
enough simplices leads to a linear programming problem that does have a feasible
solution. Because, by Theorem 4.2 and Theorem 5.4, a Lyapunov function exists for
the Switched System 3.5 exactly when the equilibrium is uniformly asymptotically
stable, and because it is always possible to algorithmically find a feasible solution
if at least one exists, this proves that the algorithm we present in Section 8 can
parameterize a Lyapunov function for the Switched System 3.5 if the system does
possess a Lyapunov functions at all.

6.1. Continuous piecewise affine functions. To construct a Lyapunov function
by linear programming, one needs a class of continuous functions that are easily
parameterized. Our approach is a simplicial partition of Rn, on which we define the
finite dimensional R-vector space CPWA of continuous functions, that are affine on
every of the simplices. We first discuss an appropriate simplicial partition of Rn

and then define the function space CPWA. The same is done in considerable more
detail in Chapter 4 in [40].

The simplices Sσ, where σ ∈ Perm[{1, 2, . . . , n}], will serve as the atoms of our
partition of Rn. They are defined in the following way:

Definition 6.1 (The simplices Sσ). For every σ ∈ Perm[{1, 2, . . . , n}] we define
the n-simplex

Sσ := {y ∈ Rn : 0 ≤ yσ(1) ≤ yσ(2) ≤ · · · ≤ yσ(n) ≤ 1},

where yσ(i) is the σ(i)-th component of the vector y. An equivalent definition of
the n-simplex Sσ is

Sσ = con
{ n∑

j=1

eσ(j),
n∑

j=2

eσ(j), . . . ,
n∑

j=n+1

eσ(j)

}

=
{ n+1∑

i=1

λi

n+1∑
j=i

eσ(j) : 0 ≤ λi ≤ 1 for i = 1, 2, . . . , n+ 1 and
n+1∑
i=1

λi = 1
}
,

where eσ(i) is the σ(i)-th unit vector in Rn.
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For every σ ∈ Perm[{1, 2, . . . , n}] the set Sσ is an n-simplex with the volume
1/n! and, more importantly, if α, β ∈ Perm[{1, 2, . . . , n}], then

Sα ∩ Sβ = con {x ∈ Rn : x is a vertex of Sα and x is a vertex of Sβ} . (6.1)

Thus, we can define a continuous function p : [0, 1]n → R that is affine on every Sσ,
σ ∈ Perm[{1, 2, . . . , n}], by just specifying it values at the vertices of the hypercube
[0, 1]n. That is, if x ∈ Sσ, then

x =
n+1∑
i=1

λi

n+1∑
j=i

eσ(j)

where 0 ≤ λi ≤ 1 for i = 1, 2, . . . , n+ 1 and
∑n+1

i=1 λi = 1, Then we set

p(x) = p
( n+1∑

i=1

λi

n+1∑
j=i

eσ(j)

)
=

n+1∑
i=1

λi p
( n+1∑

j=i

eσ(j)

)
.

The function p is now well defined and continuous because of (6.1). We could now
proceed by partitioning Rn into the simplices (z + Sσ)z∈Zn,σ∈Perm[{1,2,...,n}], but
we prefer a simplicial partition of Rn that is invariable with respect to reflections
through the hyperplanes ei · x = 0, i = 1, 2, . . . , n, as a domain for the function
space CPWA. We construct such a partition by first partitioning Rn

≥0 into the
family (z + Sσ)z∈Zn

≥0, σ∈Perm[{1,2,...,n}] and then we extend this partition on Rn by
use of the reflection functions RJ , where J ∈ P({1, 2, . . . , n}).

Definition 6.2 (Reflection functions RJ ). For every J ∈ P({1, 2, . . . , n}), we
define the reflection function RJ : Rn → Rn,

RJ (x) :=
n∑

i=1

(−1)χJ (i)xiei

for all x ∈ Rn, where χJ : {1, 2, . . . , n} → {0, 1} is the characteristic function of
the set J .

Clearly RJ , where J := {j1, j2, . . . , jk}, represents reflections through the hy-
perplanes ej1 · x = 0, ej2 · x = 0, . . . , ejk

· x = 0 in succession.
The simplicial partition of Rn that we use for the definition of the function spaces

CPWA of continuous piecewise affine functions is

(RJ (z + Sσ))z∈Zn
≥0, J∈P({1,2,...,n}), σ∈Perm[{1,2,...,n}].

Similar to (6.1), this partition has the advantageous property, that from

S, S∗ ∈
{
RJ (z + Sσ) : z ∈ Zn

≥0, J ∈ P({1, 2, . . . , n}), σ ∈ Perm[{1, 2, . . . , n}]
}

follows, that S ∩ S∗ is the convex hull of the vertices that are common to S and
S∗. This leads to the following theorem:

Theorem 6.3. Let (qz)z∈Zn be a collection of real numbers. Then there is exactly
one continuous function p : Rn → R with the following properties:

(i) p(z) = qz for every z ∈ Zn.
(ii) For every J ∈ P({1, 2, . . . , n}), every σ ∈ Perm[{1, 2, . . . , n}], and every

z ∈ Zn
≥0, the restriction of the function p to the simplex RJ (z + Sσ) is

affine.

Proof. See, for example, Corollary 4.12 in [40]. �
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A CPWA space is a set of continuous affine functions from a subset of Rn into
R with a given boundary configuration. If the subset is compact, then the bound-
ary configuration makes it possible to parameterize the functions in the respective
CPWA space with a finite number of real-valued parameters. Further, the CPWA
spaces are vector spaces over R in a canonical way. They are thus well suited
as a foundation, in the search of a Lyapunov function with a linear programming
problem.

We first define the function spaces CPWA for subsets of Rn that are the unions
of n-dimensional cubes.

Definition 6.4 (CPWA function on a simple grid). Let Z ⊂ Zn, Z 6= ∅, be such
that the interior of the set

N :=
⋃
z∈Z

(z + [0, 1]n),

is connected. The function space CPWA[N ] is then defined as follows.
A function p : N → R is in CPWA[N ], if and only if:

(i) p is continuous.
(ii) For every simplex RJ (z + Sσ) ⊂ N , where z ∈ Zn

≥0, J ∈ P({1, 2, . . . , n}),
and σ ∈ Perm[{1, 2, . . . }], the restriction p|RJ (z+Sσ) is affine.

We will need continuous piecewise affine functions, defined by their values on
grids with smaller grid steps than one, and we want to use grids with variable grid
steps. We achieve this by using images of Zn under mappings Rn → Rn, of which
the components are continuous and strictly increasing functions R → R, affine on
the intervals [m,m + 1] for all integers m, and map the origin on itself. We call
such Rn → Rn mappings piecewise scaling functions.

Note that if yi,j , i = 1, 2, . . . , n and j ∈ Z, are real numbers such that yi,j < yi,j+1

and yi,0 = 0 for all i = 1, 2, . . . , n and all j ∈ Z, then we can define a piecewise
scaling function PS : Rn → Rn by P̃Si(j) := yi,j for all i = 1, 2, . . . , n and all j ∈ Z.
Moreover, the piecewise scaling functions Rn → Rn are exactly the functions, that
can be constructed in this way.

In the next definition we use piecewise scaling functions to define general CPWA
spaces.

Definition 6.5 (CPWA function, general). Let PS : Rn → Rn be a piecewise
scaling function and let Z ⊂ Zn, Z 6= ∅, be such that the interior of the set

N :=
⋃
z∈Z

(z + [0, 1]n)

is connected. The function space CPWA[PS,N ] is defined as

CPWA[PS,N ] := {p ◦PS−1 : p ∈ CPWA[N ]}

and we denote by S[PS,N ] the set of the simplices in the family

(PS(RJ (z + Sσ)))z∈Zn
≥0, J∈P({1,2,...,n}), σ∈Perm[{1,2,...,n}]

that are contained in the image PS(N ) of N under PS.

Clearly

{x ∈ Rn : x is a vertex of a simplex in S[PS,N ]} = PS(N ∩ Zn)
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and every function in CPWA[PS,N ] is continuous and is uniquely determined by
its values on the grid PS(N ∩ Zn).

We use functions from CPWA[PS,N ] to approximate functions in C2(PS(N )),
that have bounded second-order derivatives. The next lemma gives an upper bound
of the approximation error of such a linearization.

Lemma 6.6. Let σ ∈ Perm[{1, 2, . . . , n}], let J ∈ P({1, 2, . . . , n}), let z ∈ Zn
≥0,

let RJ be a reflection function, and let PS be a piecewise scaling function. Denote
by S the n-simplex that is the convex combination of the vertices

yi := PS(RJ (z +
n+1∑
j=i

eσ(j))), i = 1, 2, . . . , n+ 1,

and let f ∈ C2(U) be a function defined on a domain S ⊂ U ⊂ Rn. For every
i = 1, 2, . . . , n+ 1 and every k = 1, 2, . . . , n define the constant

Ak,i := |ek · (yi − yn+1)|

and for every r, s = 1, 2, . . . , n let Brs be a constant, such that

Brs ≥ max
x∈S

∣∣∣ ∂2f

∂xr∂xs
(x)
∣∣∣.

Define for every i = 1, 2, . . . , n+ 1 the constant

Ei :=
1
2

n∑
r,s=1

BrsAr,i(As,1 +As,i).

Then for every convex combination

y :=
n+1∑
i=1

λiyi, (6.2)

of the vertices of the simplex S we have∣∣∣f(y)−
n+1∑
i=1

λif(yi)
∣∣∣ ≤ n+1∑

i=1

λiEi.

Proof. Let y be as in equation (6.2). Then, by Taylor’s theorem, there is a vector
yx on the line-segment between yn+1 and y, such that

f(y) = f(yn+1) +∇f(yn+1) · (y − yn+1)

+
1
2

n∑
r,s=1

[er · (y − yn+1)][es · (y − yn+1)]
∂2f

∂xr∂xs
(yx)

=
n+1∑
i=1

λi

(
f(yn+1) +∇f(yn+1) · (yi − yn+1)

+
1
2

n∑
r,s=1

[er · (yi − yn+1)][es · (y − yn+1)]
∂2f

∂xr∂xs
(yx)

)
and for every i = 1, 2, . . . , n there is a vector yi,x on the line-segment between yi

and yn+1 such that

f(yi) = f(yn+1) +∇f(yn+1) · (yi − yn+1)
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+
1
2

n∑
r,s=1

[er · (yi − yn+1)][es · (yi − yn+1)]
∂2f

∂xr∂xs
(yi,x) .

Further, because a simplex is a convex set, the vectors yx and y1,x,y2,x, . . . ,yn,x

are all in S. But then∣∣∣f(y)−
n+1∑
i=1

λif(yi)
∣∣∣

≤ 1
2

n+1∑
i=1

λi

n∑
r,s=1

|er · (yi − yn+1)| (|es · (y − yn+1)|+ |es · (yi − yn+1)|)Brs

=
1
2

n+1∑
i=1

λi

n∑
r,s=1

BrsAr,i (|es · (y − yn+1)|+As,i)

and because

|es · (y − yn+1)| ≤
n+1∑
i=1

λi|es · (yi − yn+1)| ≤ |es · (y1 − yn+1)| = As,1

it follows that∣∣∣f(y)−
n+1∑
i=1

λif(yi)
∣∣∣ ≤ 1

2

n+1∑
i=1

λi

n∑
r,s=1

BrsAr,i(As,1 +As,i) =
n+1∑
i=1

λiEi.

�

An affine function p, defined on a simplex S ⊂ Rn and with values in R, has
the algebraic form p(x) = w · x + q, where w is a constant vector in Rn and q is
constant in R. Another characterization of p is given by specifying its values at
the vertices as stated. The next lemma gives a formula for the components of the
vector w when the values of p at the vertices of S are known and S is a simplex in
S[PS,N ].

Lemma 6.7. Let PS : Rn → Rn be a piecewise scaling function, let z ∈ Zn
≥0, let

J ∈ P({1, 2, . . . , n}), let σ ∈ Perm[{1, 2, . . . , n}], and let p(x) := w · x + q be an
affine function defined on the n-simplex with the vertices

yi := PS(RJ (z +
n∑

j=i

eσ(j))), i = 1, 2, . . . , n.

Then

w =
n∑

i=1

p(yi)− p(yi+1)
eσ(i) · (yi − yi+1)

eσ(i).

Proof. For any i ∈ {1, 2, . . . , n} we have

p(yi)− p(yi+1) = w · (yi − yi+1)

=
n∑

k=1

wσ(k)[eσ(k) · (yi − yi+1)]

= wσ(i)[eσ(i) · (yi − yi+1)]
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because the components of the vectors yi and yi+1 are all equal with except of the
σ(i)-th one. But then

wσ(i) =
p(yi)− p(yi+1)

eσ(i) · (yi − yi+1)
and we have finished the proof. �

Now, that we have defined the function spaces CPWA we are ready to state
our linear programming problem, of which every feasible solution parameterizes a
CPWA Lyapunov function for the Switched System 3.5 used in the derivation of
its linear constraints.

6.2. The linear programming problem. We come to the linear programming
problem, of which every feasible solution parameterizes a Lyapunov function for
the Switched System 3.5. The Lyapunov function is of class CPWA. We first
define the linear programming problem in Definition 6.8. In the definition the
linear constraints are grouped into four classes, (LC1), (LC2), (LC3), and (LC4),
for linear constraints 1, 2, 3, and 4 respectively. Then we show how the variables
of the linear programming problem that fulfill these constraints can be used to
parameterize functions that meet the conditions (L1) and (L2) of Definition 4.3,
the definition of a Lyapunov function. Then we state and discuss the results in
Section 6.8. Finally, we consider a more simple linear programming, defined in
Definition 6.12, for autonomous systems and we show that it is equivalent to the
linear programming problem in Definition 6.8 with additional constraints that force
the parameterized CPWA Lyapunov function to be time-invariant.

The next definition plays a central role in this work. It is generalization of the
linear programming problems presented in [40], [39], [17], and [16] to serve the
nonautonomous Switched System 3.5.

Definition 6.8. (Linear programming problem LP ({fp : p ∈ P},N ,PS, t,D, ‖·‖))
Consider the Switched System 3.5 where the set P has a finite number of elements.
Let T ′ and T ′′ be constants such that 0 ≤ T ′ < T ′′ and let PS : Rn → Rn be a
piecewise scaling function and N ⊂ U be such that the interior of the set

M :=
⋃

z∈Zn, PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)

is a connected set that contains the origin. Let

D := PS( ]d−1 , d
+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

be a set, of which the closure is contained in the interior of M, and either D = ∅
or d−i and d+

i are integers such that d−i ≤ −1 and 1 ≤ d+
i for every i = 1, 2, . . . , n.

Finally, let ‖ · ‖ be an arbitrary norm on Rn and t := (t0, t1, . . . , tM ) ∈ RM+1,
M ∈ N>0, be a vector such that T ′ =: t0 < t1 < · · · < tM := T ′′.

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on [T ′, T ′′]× (M\D).

Before we go on, it is very practical to introduce an alternate notation for the
vectors (t,x) ∈ R×Rn, because it considerably shortens the formulae in the linear
programming problem. We identify the time t with the zeroth component x̃0 of the
vector

x̃ := (x̃0, x̃1, . . . , x̃n)
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and x with the components 1 to n, that is t := x̃0 and x̃i := xi for all i = 1, 2, . . . , n.
Then, the systems

ẋ = fp(t,x), p ∈ P,
can be written in the equivalent form

d

dx̃0
x̃ = f̃p(x̃), p ∈ P,

where

f̃p(x̃) :=
[
f̃p,0(x̃), f̃p,1(x̃), f̃p,2(x̃), . . . , f̃p,n(x̃)

]
:=
[
1, fp,1(t,x), fp,2(t,x), . . . , fp,n(t,x)

]
,

(Recall that fp,i denotes the i-th component of the function fp.) that is, f̃p,0 := 1
and f̃p,i(x̃) := fp,i(t,x), where x̃ = (t,x), for all p ∈ P and all i = 1, 2, . . . , n.

Further, let PS0 : R → R be a piecewise scaling function such that PS0(i) := ti
for all i = 0, 1, . . . ,M and define the piecewise scaling function

P̃S : R× Rn → R× Rn

through
P̃S(x̃) :=

[
PS0(x̃0),PS1(x̃1), . . . ,PSn(x̃n))

]
,

that is,
P̃S(x̃) =

[
PS0(t),PS(x)

]
,

where x̃ = (t,x).
We will use the standard orthonormal basis in Rn+1 = R × Rn, but start the

indexing at zero (use e0, e1, . . . , en), that is,

x̃ :=
n∑

i=0

x̃iei = te0 +
n∑

i=1

xiei.

Because we do not have to consider negative time-values t = x̃0 < 0, it is more
convenient to use reflection functions that do always leave the zeroth-component of
x̃ = (t,x) unchanged. Therefore, we define for every reflection function RJ : Rn →
Rn, where J ⊂ {1, 2, . . . , n}, the function R̃J : R× Rn → R× Rn through

R̃J (x̃) :=
[
x̃0,RJ (x)

]
:= te0 +

n∑
i=1

(−1)χJ (i)xiei.

We define the seminorm ‖ · ‖∗ : R× Rn → R≥0 through

‖(x̃0, x̃1, . . . , x̃n)‖∗ := ‖(x̃1, x̃2, . . . , x̃n)‖.
Then, obviously, ‖x̃‖∗ = ‖x‖ for all x̃ = (t,x) ∈ R× Rn. The linear programming
problem LP({fp : p ∈ P},N ,PS, t,D, ‖·‖) is now constructed in the following way:

(i) Define the sets

G := {x̃ ∈ R× Rn : x̃ ∈ P̃S(Z× Zn) ∩
(
[T ′, T ′′]× (M\D)

)
}

and
X ‖·‖ := {‖x‖ : x ∈ PS(Zn) ∩M}.

The set G is the grid, on which we will derive constraints on the values
of the CPWA Lyapunov function, and X ‖·‖ is the set of distances of all
relevant points in the state-space to the origin with respect to the norm
‖ · ‖.
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(ii) Define for every σ ∈ Perm[{0, 1, . . . , n}] and every i = 0, 1, . . . , n + 1 the
vector

xσ
i :=

n∑
j=i

eσ(j),

where, of course, the empty sum is interpreted as 0 ∈ R× Rn.
(iii) Define the set Z through: The tuple (z,J ), where z := (z0, z1, . . . , zn) ∈

Z≥0 × Zn
≥0 and J ∈ P({1, 2, . . . , n}, is an element of Z, if and only if

P̃S(R̃J (z + [0, 1]n+1)) ⊂ [T ′, T ′′]×
(
M\D

)
.

Note that this definition implies that⋃
(z,J )∈Z

P̃S(R̃J (z + [0, 1]n+1)) = [T ′, T ′′]×
(
M\D

)
.

iv) For every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every
i = 0, 1, . . . , n+ 1 we set

y(z,J )
σ,i := P̃S(R̃J (z + xσ

i )).

The vectors y(z,J )
σ,i are the vertices of the simplices in our simplicial partition

of the set [T ′, T ′′] ×
(
M \ D

)
. The position of the simplex is given by

(z,J ), where z0 specifies the position in time and (z1, z2, . . . , zn) specifies
the position in the state-space. Further, σ specifies the simplex and i
specifies the vertex of the simplex.

v) Define the set

Y :=
{
y(z,J )

σ,k ,y(z,J )
σ,k+1}

∣∣∣σ ∈ Perm[{0, 1, . . . , n}], (z,J ) ∈ Z,

and k ∈ {0, 1, . . . , n}
}
.

The set Y is the set of all pairs of neighboring grid points in the grid G.
(vi) For every p ∈ P, every (z,J ) ∈ Z, and every r, s = 0, 1, . . . , n let B(z,J )

p,rs

be a real-valued constant, such that

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x̃∈fPS(eRJ (z+[0,1]n+1))

∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s
(x̃)
∣∣∣.

The constants B(z,J )
p,rs are local bounds on the second-order partial deriva-

tives of the components of the functions f̃p, p ∈ P, with regard to the in-
finity norm ‖ · ‖∞, similar to the constants Brs in Lemma 6.6. Note, that
because f̃p,0 := 1, the zeroth-components can be left out in the definition
of the B(z,J )

p,rs because they are identically zero anyways. Further, for every
r, s = 0, 1, . . . , n and every x̃ = (t,x),

∂2f̃p,i

∂x̃r∂x̃s
(x̃) =

∂2fp,i

∂xr∂xs
(t,x)

if we read ∂x0 as ∂t on the right-hand side of the equation. Finally, note
that if B is a constant such that

B ≥ sup
x̃∈[T ′,T ′′]×(M\D)

‖ ∂2fp
∂x̃r∂x̃s

(x̃)‖∞,
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for all p ∈ P and all r, s = 0, 1, . . . , n, then, of course, we can set B(z,J )
p,rs = B

for all p ∈ P, all (z,J ) ∈ Z, and all r, s = 0, 1, . . . , n. Tighter bounds,
however, might save a lot of computational efforts in a search for a feasible
solution to the linear programming problem.

(vii) For every (z,J ) ∈ Z, every i, k = 0, 1, . . . , n, and every
σ ∈ Perm[{0, 1, . . . , n}], define

A
(z,J )
σ,k,i :=

∣∣ek · (y(z,J )
σ,i − y(z,J )

σ,n+1)
∣∣.

The A(z,J )
σ,k,i are constants similar to the constants Ak,i in Lemma 6.6.

(viii) Define the constant

xmin,∂M := min{‖x‖ : x ∈ PS(Zn) ∩ ∂M},

where ∂M is the boundary of the set M.
(ix) For every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every

i = 0, 1, . . . , n+ 1 set

E
(z,J )
p,σ,i :=

1
2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,0 ). (6.3)

(ix) Let ε > 0 and δ > 0 be arbitrary constants.

The variables of the linear programming problem are:

Υ,

Ψ[y], for all y ∈ X ‖·‖,

Γ[y], for all y ∈ X ‖·‖,

V [x̃], for all x̃ ∈ G,
C[{x̃, ỹ}], for all {x̃, ỹ} ∈ Y.

Considering Definition 4.3, the definition of a Lyapunov function, the variables
Ψ[y] correspond to the function α1, the variables Γ[y] to the function ψ, and the
variables V [x̃] to the Lyapunov function V , the x̃0 component representing the
time t. The variables C[{x̃, ỹ}] are local bounds on the gradient ∇x̃V

Lya of the
Lyapunov function V Lya to be constructed and Υ is a corresponding global bound.

The linear constraints of the linear programming problem are:

(LC1) Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. Then

Ψ[y0] = Γ[y0] = 0,

εy1 ≤ Ψ[y1],

εy1 ≤ Γ[y1],

and for every i = 1, 2, . . . ,K − 1:

Ψ[yi]−Ψ[yi−1]
yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]
yi+1 − yi

,

Γ[yi]− Γ[yi−1]
yi − yi−1

≤ Γ[yi+1]− Γ[yi]
yi+1 − yi

.
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(LC2) For every x̃ ∈ G:
Ψ[‖x̃‖∗] ≤ V [x̃].

If D = ∅, then, whenever ‖x̃‖∗ = 0:

V [x̃] = 0.

If D 6= ∅, then, whenever (x̃1, x̃2, . . . , x̃2) ∈ PS(Zn) ∩ ∂D:

V [x̃] ≤ Ψ[xmin,∂M]− δ.

Further, if D 6= ∅, then for every i = 1, 2, . . . , n and every j = 0, 1, . . . ,M :

V [PS0(j)e0 + PSi(d−i )ei] ≤ −Υ · PSi(d−i ),

V [PS0(j)e0 + PSi(d+
i )ei] ≤ Υ · PSi(d+

i ).

(LC3) For every {x̃, ỹ} ∈ Y:

−C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ V [x̃]− V [ỹ] ≤ C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ Υ · ‖x̃− ỹ‖∞.
(LC4) For every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every

i = 0, 1, . . . , n+ 1:

− Γ
[
‖y(z,J )

σ,i ‖∗
]

≥
n∑

j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

As the objective of the linear programming problem is not needed to parameterize
a CPWA Lyapunov function we do not define it here.

Note that the values of the constants ε > 0 and δ > 0 do not affect whether there
is a feasible solution to the linear program or not. If there is a feasible solution for
ε := ε′ > 0 and δ := δ′ > 0, then there is a feasible solution for all ε := ε∗ > 0
and δ := δ∗ > 0. Just multiply the numerical values of all variables of the feasible
solution with

max{ε
∗

ε′
,
δ∗

δ′
}.

Further note that if ‖y(z,J )
σ,i ‖∗ = 0, then f̃p,σ(j)(y

(z,J )
σ,i ) = 0 for all j ∈ {0, 1, . . . , n}

such that σ(j) 6= 0 and if σ(j) = 0, then V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1] = 0. Thus, the con-
straints (LC4) reduce to

0 ≥
n∑

j=0

E
(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}], (6.4)

which looks contradictory at first glance. However, if ‖y(z,J )
σ,i ‖∗ = 0 then necessarily

i = n+ 1 and

E
(z,J )
p,σ,n+1 :=

1
2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,n+1(A

(z,J )
σ,s,n+1 +A

(z,J )
σ,s,0 ) = 0

because A(z,J )
σ,r,n+1 = 0 for all r = 0, 1, . . . , n, so (6.4) is not contradictory and even

trivially fulfilled.
Finally, if the Switched System 3.5 is autonomous, then we know by Theorem

5.4 that there exists a time-invariant Lyapunov function for the system. To reflect
this fact one is tempted to additionally include the constraints V [x̃] = V [ỹ] for
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every pair x̃, ỹ ∈ G such that ‖x̃− ỹ‖∗ = 0 in the linear programming problem to
limit the search to time-invariant Lyapunov functions. However, as we will show in
Theorem 6.14, this is equivalent to a more simple linear programming problem if
the Switched System 3.5 is autonomous, namely, the linear programming problem
defined in Definition 6.12.

In the next sections we prove that a feasible solution to the linear programming
problem defined in Definition 6.8 parameterizes a CPWA Lyapunov function for
the Switched System 3.5 used for its construction. For this proof the variable Υ is
not needed. However, it will be needed for the analysis in Section 6.8.

6.3. Definition of the functions ψ, γ, and V Lya . Let y0, y1, . . . , yK be the el-
ements of X ‖·‖ in an increasing order. We define the piecewise affine functions
ψ, γ : R≥0 → R,

ψ(y) := Ψ[yi] +
Ψ[yi+1]−Ψ[yi]

yi+1 − yi
(y − yi),

γ(y) := Γ[yi] +
Γ[yi+1]− Γ[yi]
yi+1 − yi

(y − yi),

for all y ∈ [yi, yi+1] and all i = 0, 1, . . . ,K − 1. The values of ψ and γ on ]yK ,+∞[
do not really matter, but to have everything properly defined, we set

ψ(y) := Ψ[yK−1] +
Ψ[yK ]−Ψ[yK−1]

yK − yK−1
(y − yK−1),

γ(y) := Γ[yK−1] +
Γ[yK ]− Γ[yK−1]
yK − yK−1

(y − yK−1)

for all y > yK . Clearly the functions ψ and γ are continuous.
The function V Lya ∈ CPWA[P̃S, P̃S

−1(
[T ′, T ′′] ×

(
M \ D

))
] is defined by as-

signing
V Lya(x̃) := V [x̃]

for all x̃ ∈ G. We will sometimes write V Lya(t,x) for V Lya(x̃) and V [t,x] for V [x̃].
It is then to be understood that t := x̃0 and x := (x̃1, x̃2, . . . , x̃n).

In the next four sections we will successively derive the implications the linear
constraints (LC1), (LC2), (LC3), and (LC4) have on the functions ψ, γ, and V Lya .

6.4. Implications of the constraints (LC1). Let y0, y1, . . . , yK be the elements
of X ‖·‖ in an increasing order. We are going to show that the constraints (LC1)
imply, that the functions ψ and γ are convex and strictly increasing on [0,+∞[ .
Because y0 = 0, ψ(y0) = Ψ[y0] = 0, and γ(y0) = Γ[y0] = 0, this means that they
are convex K functions. The constraints are the same for Ψ and Γ, so it suffices to
show this for the function ψ.

From the definition of ψ, it is clear that it is continuous and that

ψ(x)− ψ(y)
x− y

=
Ψ[yi+1]−Ψ[yi]

yi+1 − yi
(6.5)

for all x, y ∈ [yi, yi+1] and all i = 0, 1, . . . ,K − 1. From y0 = 0, Ψ[y0] = 0, and
εy1 ≤ Ψ[y1] we get

ε ≤ Ψ[y1]−Ψ[y0]
y1 − y0

≤ Ψ[y2]−Ψ[y1]
y2 − y1

≤ · · · ≤ Ψ[yK ]−Ψ[yK−1]
yK − yK−1

.
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But then D+ψ is a positive and increasing function on R≥0 and it follows from
Corollary 3.10, that ψ is a strictly increasing function.

The function ψ is convex, if and only if for every y ∈ R>0 there are constants
ay, by ∈ R, such that

ayy + by = ψ(y) and ayx+ by ≤ ψ(x)

for all x ∈ R≥0 (see, for example, Section 17 in Chapter 11 in [62]). Let y ∈ R>0.
Because the function D+ψ is increasing, it follows by Theorem 3.9, that for every
x ∈ R≥0, there is a cx,y ∈ R, such that

ψ(x) = ψ(y) + cx,y(x− y)

and cx,y ≤ D+ψ(y) if x < y and cx,y ≥ D+ψ(y) if x > y. This means that

ψ(x) = ψ(y) + cx,y(x− y) ≥ D+ψ(y)x+ ψ(y)−D+ψ(y)y

for all x ∈ R≥0. Because y was arbitrary, the function ψ is convex.

6.5. Implications of the constraints (LC2). Define the constant

V Lya
∂M,min := min

x∈∂M
t∈[T ′,T ′′]

V Lya(t,x)

and if D 6= ∅ the constant

V Lya
∂D,max := max

x∈∂D
t∈[T ′,T ′′]

V Lya(t,x).

We are going to show that the constraints (LC2) imply, that

ψ(‖x‖) ≤ V Lya(t,x) (6.6)

for all t ∈ [T ′, T ′′] and all x ∈M \D and that

V Lya
∂D,max ≤ V Lya

∂M,min − δ

if D 6= ∅.
We first show that they imply, that

ψ(‖x̃‖∗) ≤ V Lya(x̃)

for all x̃ ∈ G, which obviously implies (6.6). Let x̃ ∈ G. Then there is a (z,J ) ∈ Z,
a σ ∈ Perm[{0, 1, . . . , n}], and constants λ0, λ1, . . . , λn+1 ∈ [0, 1], such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i and

n+1∑
i=0

λi = 1.

Then

ψ(‖x̃‖∗) = ψ(‖
n+1∑
i=0

λiy
(z,J )
σ,i ‖∗) ≤ ψ(

n+1∑
i=0

λi‖y(z,J )
σ,i ‖∗)

≤
n+1∑
i=0

λiψ(‖y(z,J )
σ,i ‖∗) =

n+1∑
i=0

λiΨ[‖y(z,J )
σ,i ‖∗] ≤

n+1∑
i=0

λiV [y(z,J )
σ,i ]

=
n+1∑
i=0

λiV
Lya(y(z,J )

σ,i ) = V Lya(
n+1∑
i=0

λiy
(z,J )
σ,i ) = V Lya(x̃).
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Now consider the case D 6= ∅. From the definition of V Lya and the constants
V Lya

∂D,max and V Lya
∂M,min it is clear, that

V Lya
∂D,max = max

x∈∂D∩PS(Zn)
u=0,1,...,M

V [tu,x],

V Lya
∂M,min = min

x∈∂M∩PS(Zn)
u=0,1,...,M

V [tu,x].

Let x ∈ ∂M∩PS(Zn) and u ∈ {0, 1, . . . ,M} be such that V [tu,x] = V Lya
∂M,min, then

V Lya
∂D,max ≤ Ψ[xmin,∂M]− δ = ψ(xmin,∂M)− δ

≤ ψ(‖x‖)− δ ≤ V [tu,x]− δ

= V Lya
∂M,min − δ.

6.6. Implications of the constraints (LC3). The constraints (LC3) imply that∣∣∣∣V [x̃]− V [ỹ]
‖x̃− ỹ‖∞

∣∣∣∣ ≤ C[{x̃, ỹ}] ≤ Υ

for every {x̃, ỹ} ∈ Y and these local bounds C[{x̃, ỹ}] on the gradient ∇x̃V
Lya will

be used in the next section.

6.7. Implications of the constraints (LC4). We are going to show that the
constraints (LC4) and (LC3) together imply that

−γ(‖φς(t, t
′, ξ)‖) ≥ lim sup

h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t′, ξ))
h

(6.7)

for all ς ∈ SP and all (t,φς(t, t′, ξ)) in the interior of [T ′, T ′′]× (M\D).
Let ς ∈ SP and x̃ := (t,φς(t, t′, ξ)) in the interior of [T ′, T ′′] × (M \ D) be

arbitrary, but fixed throughout this section, and set x := φς(t, t′, ξ) and p := ς(t).
We claim that there is a (z,J ) ∈ Z, a σ ∈ Perm[{0, 1, . . . , n}], and constants

λ0, λ1, . . . , λn+1 ∈ [0, 1], such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i ,

n+1∑
i=0

λi = 1,

x̃ + hf̃p(x̃) ∈ con{y(z,J )
σ,0 ,y(z,J )

σ,1 , . . . ,y(z,J )
σ,n+1}

(6.8)

for all h ∈ [0, a], where a > 0 is some constant.
We prove this claim by a contradiction. Assume that it does not hold true.

The vector x̃ is contained in some of the simplices in the simplicial partition of
[T ′, T ′′]×

(
M\D

)
, say S1, S2, . . . , Sk. Simplices are convex sets so we necessarily

have {
x̃ +

1
j
f̃p(x̃) : j ∈ N>0

}
∩ Si = ∅

for every i = 1, 2, . . . , k. But then there must be a simplex S in the simplicial
partition, different to the simplices S1, S2, . . . , Sk, such that the intersection{

x̃ +
1
j
f̃p(x̃) : j ∈ N>0

}
∩ S
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contains an infinite number of elements. This implies that there is a sequence in S
that converges to x̃, which is a contradiction, because S is a closed set and x̃ /∈ S.
Therefore (6.8) holds.

Because γ is a convex function, we have

−γ(‖x̃‖∗) ≥ −
n+1∑
i=0

λiΓ
[
‖y(z,J )

σ,i ‖∗
]

(6.9)

as was shown in Section 6.5. From the definition of V Lya it follows, that there is a
vector w ∈ R× Rn, such that

V Lya(ỹ) = w · (ỹ − y(z,J )
σ,n+1) + V Lya(y(z,J )

σ,n+1) (6.10)

for all ỹ ∈ con{y(z,J )
σ,0 ,y(z,J )

σ,1 , . . . ,y(z,J )
σ,n+1}.

It follows by Hölder’s inequality, that

w · f̃p(x̃) = w ·
n+1∑
i=0

λif̃p(y
(z,J )
σ,i ) + w ·

(
f̃p(x̃)−

n+1∑
i=0

λif̃p(y
(z,J )
σ,i )

)
≤

n+1∑
i=0

λiw · f̃p(y(z,J )
σ,i ) + ‖w‖1‖f̃p(x̃)−

n+1∑
i=0

λif̃p(y
(z,J )
σ,i )‖∞ .

(6.11)

By Lemma 6.6 and the assignment in (6.3),

‖f̃p(x̃)−
n+1∑
i=0

λif̃p(y
(z,J )
σ,i )‖∞ = max

j=0,1,...,n

∣∣f̃p,j(x̃)−
n+1∑
i=0

λif̃p,j(y
(z,J )
σ,i )

∣∣
≤ 1

2

n+1∑
i=0

λi

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,0 +A
(z,J )
σ,s,i )

≤
n+1∑
i=0

λiE
(z,J )
p,σ,i ,

which implies that we have derived the inequality

w · f̃p(x̃) ≤
n+1∑
i=0

λi

(
w · f̃p(y(z,J )

σ,i ) + ‖w‖1E(z,J )
p,σ,i

)
. (6.12)

We come to the vector w. By Lemma 6.7, the constraints (LC3), and because∣∣∣eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
∣∣∣ = ‖y(z,J )

σ,j − y(z,J )
σ,j+1‖∞

for all j = 0, 1, . . . , n, we obtain the inequality

‖w‖1 =
n∑

j=0

∣∣∣∣∣V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

‖y(z,J )
σ,j − y(z,J )

σ,j+1‖∞

∣∣∣∣∣ ≤
n∑

j=0

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}].

This inequality combined with (6.12) gives

w · f̃p(x̃) ≤
n+1∑
i=0

λi

n∑
j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i )

+ E
(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

(6.13)
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We are going to show that inequality (6.13) together with the constraints (LC4)
imply that inequality (6.7) holds. First, note that because V Lya satisfies a Lipschitz
condition with Lipschitz constant, say LV > 0 with respect to the norm ‖ · ‖, we
have

lim sup
h→0+

∣∣∣∣V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t+ h,x + hfp(t,x))
h

∣∣∣∣
≤ lim sup

h→0+
LV

∥∥φς(t+ h, t′, ξ)− x
h

− fp(t,x)
∥∥

= LV ‖fp(t,x)− fp(t,x)‖ = 0.

Hence, by Lemma 3.8 and the representation (6.10) of V Lya ,

lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t′, ξ))
h

= lim sup
h→0+

V Lya(x̃ + hf̃p(x̃))− V Lya(x̃)
h

= lim sup
h→0+

hw · f̃p(x̃)
h

= w · f̃p(x̃),

and we obtain by (6.13), (LC4), and (6.9) that

lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t′, ξ))
h

= w · f̃p(x̃)

≤
n+1∑
i=0

λi

n∑
j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)

≤ −
n+1∑
i=1

λiΓ
[
‖y(z,J )

σ,i ‖
]

≤ −γ(‖φς(t, t
′, ξ)‖).

Hence, inequality (6.7) holds for all ς ∈ SP and all (t,φς(t, t′, ξ)) in the interior of
[T ′, T ′′]× (M\D).

6.8. Summary of the results and their consequences. We start by summing
up the results we have proved after the definition of the linear programming problem
in a theorem.

Theorem 6.9 (CPWA Lyapunov functions by linear programming).
Consider the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) in
Definition 6.8 and assume that it possesses a feasible solution. Let the functions
ψ, γ, and V Lya be defined as in Section 6.3 from the numerical values of the vari-
ables Ψ[y], Γ[y], and V [x̃] from a feasible solution. Then the inequality

ψ(‖x‖) ≤ V Lya(t,x)
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holds for all x ∈M\D and all t ∈ [T ′, T ′′]. If D = ∅ we have ψ(0) = V Lya(t,0) = 0
for all t ∈ [T ′, T ′′]. If D 6= ∅ we have, with

V Lya
∂M,min := min

x∈∂M
t∈[T ′,T ′′]

V Lya(t,x),

V Lya
∂D,max := max

x∈∂D
t∈[T ′,T ′′]

V Lya(t,x),

that
V Lya

∂D,max ≤ V Lya
∂M,min − δ.

Further, with φ as the solution to the Switched System 3.5 that we used in the
construction of the linear programming problem, the inequality

−γ(‖φς(t, t
′, ξ)‖) ≥ lim sup

h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t′, ξ))
h

(6.14)
hold true for all ς ∈ SP and all (t,φς(t, t′, ξ)) in the interior of [T ′, T ′′]× (M\D).

We now come to the important question:
Which information on the stability behavior of the Switched System
3.5 can we extract from the Lyapunov-like function V Lya defined
in Section 6.3?

Before we answer this question we discuss the implications secured by a continuously
differentiable Lyapunov function on the stability behavior of a non-switched system
to get an idea what we can expect. To do this consider the system

ẋ = f(t,x),

where f ∈ [C1(R≥0 ×V)]n and V is a bounded domain in Rn containing the origin,
and assume that there is a function W ∈ C1(R≥0 × V) and functions a, b, c ∈ K,
such that

a(‖ξ‖) ≤W (t, ξ) ≤ b(‖ξ‖)
for all ξ ∈ V and all t ≥ 0 and

d

dt
W (t,φ(t, t′, ξ)) = [∇xW ](t,φ(t, t′, ξ)) · f(t,φ(t, t′, ξ)) +

∂W

∂t
(t,φ(t, t′, ξ))

≤ −c(‖φ(t, t′, ξ)‖)

for all (t,φ(t, t′, ξ)) ∈ R≥0 ×V, where φ is the solution to the differential equation
ẋ = f(t,x).

For our analysis we let (t′, ξ) ∈ R≥0×V be arbitrary but constant and set y(t) :=
W (t,φ(t, t′, ξ)). Then y(t′) = W (t′, ξ) and y satisfies the differential inequality

ẏ(t) ≤ −c(b−1(y(t)))

for all t such that φ(t, t′, ξ) ∈ V. Now, assume that there are constants b∗ > 0 and
c∗ > 0, such that b(‖x‖) ≤ b∗‖x‖ and c∗‖ξ‖ ≤ c(‖x‖) for all x ∈ V. In this simple
case it is quite simple to derive the inequality

y(t) ≤ y(t′) exp
(
− c∗

b∗
(t− t′)

)
,

which is valid for all t ≥ t′ if

W (t′, ξ) < inf
s≥t′, y∈∂V

W (s,y).
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We are going to show that a very similar analysis can be done for a switched
system and the corresponding Lyapunov-like function V Lya if the arbitrary norm
‖ · ‖ used in Definition 6.8 of the linear programming problem is a p-norm ‖ · ‖p,
1 ≤ p ≤ +∞, but first we prove a technical lemma that will be used in the proof of
the theorem.

Lemma 6.10. Let [a, b[ be an interval in R, −∞ < a < b ≤ +∞, and let y, z :
[a, b[→ R be functions such that y(a) ≤ z(a), y is continuous, and z is differentiable.
Assume that there is a function s : R → R that satisfies the local Lipschitz condition,
for every compact C ⊂ R there is a constant LC such that

|y(α)− y(β)| ≤ LC |α− β|, for all α, β ∈ C,
and assume further that

D+y(t) ≤ −s(y(t)) and ż(t) = −s(z(t))
for all t ∈ [a, b[ . Then y(t) ≤ z(t) for all t ∈ [a, b[ .

Proof. Assume that the proposition of the lemma does not hold. Then there is a
t0 ∈ [a, b[ such that y(t) ≤ z(t) for all t ∈ [a, t0] and an ε > 0 such that y(t) > z(t)
for all t ∈ ]t0, t0 + ε]. Let L > 0 be a local Lipschitz constant for s on the interval
[y(t0), y(t0 + ε)]. Then, by Lemma 3.8,

D+(y − z)(t) = D+y(t)− ż(t) ≤ −s(y(t)) + s(z(t)) ≤ L(y(t)− z(t))

for every t ∈ [t0, t0 + ε]. But then, with w(t) := y(t)− z(t) for all t ∈ [a, b[ , we have

lim sup
h→0+

w(t+ h)e−L(t+h) − w(t)e−Lt

h

≤ e−Lt lim sup
h→0+

w(t+ h)(e−Lh − 1)
h

+ e−Lt lim sup
h→0+

w(t+ h)− w(t)
h

= −Le−Ltw(t) + e−LtD+w(t)

≤ −Le−Ltw(t) + Le−Ltw(t) = 0,

for all t ∈ [t0, t0 + ε], which implies, by Corollary 3.10, that the function t 7→
e−Ltw(t) is monotonically decreasing on the same interval. Because w(t0) = 0 this
is contradictory to y(t) > z(t) for all t ∈ ]t0, t0 + ε] and therefore the proposition of
the lemma must hold true. �

We come to the promised theorem, where the implications of the function V Lya

on the stability behavior of the Switched System 3.5 are specified. Here with k-
norm we mean the norm ‖x‖k :=

(∑n
i=1 |xi|k

)1/k if 1 ≤ k < +∞ and ‖x‖∞ :=
maxi=1,2,...,n |xi|. Unfortunately, these norms are usually called p-norms, which is
inappropriate in this context because the alphabet p is used to index the functions
fp, p ∈ P.

Theorem 6.11 (Implications of the Lyapunov function V Lya).
Make the same assumptions and definitions as in Theorem 6.9 and assume ad-
ditionally that the norm ‖ · ‖ in the linear programming problem LP({fp : p ∈
P},N ,PS, t,D, ‖·‖) is a k-norm, 1 ≤ k ≤ +∞. Define the set T through T := {0}
if D = ∅ and

T := D ∪
{
x ∈M \D : max

t∈[T ′,T ′′]
V Lya(t,x) ≤ V Lya

∂D,max

}
, if D 6= ∅,
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and the set A through

A :=
{
x ∈M \D : max

t∈[T ′,T ′′]
V Lya(t,x) < V Lya

∂M,min

}
.

Set q := k · (k − 1)−1 if 1 < k < +∞, q := 1 if k = +∞, and q := +∞ if k = 1,
and define the constant

Eq := ‖
n∑

i=1

ei‖q.

Then the following propositions hold true:
(i) If φς(t, t′, ξ) ∈ T for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and

ξ ∈ U , then φς(s, t′, ξ) ∈ T for all s ∈ [t, T ′′].
(ii) If φς(t, t′, ξ) ∈M\D for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and

ξ ∈ U , then the inequality

V Lya(s,φς(s, t
′, ξ)) ≤ V Lya(t,φς(t, t

′, ξ)) exp
(
− Υ
εEq

(s− t)
)

(6.15)

holds for all s such that φς(s′, t′, ξ) ∈M \D for all t ≤ s′ ≤ s ≤ T ′′.
(iii) If φς(t, t′, ξ) ∈ A for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0,

and ξ ∈ U , then the solution φς either fulfills inequality (6.15) for all
t ≤ s ≤ T ′′, or there is a T ∗ ∈ ]t, T ′′], such that the solution φς fulfills
inequality (6.15) for all t ≤ s ≤ T ∗, φς(T ∗, t′, ξ) ∈ ∂D, and φς(s, t′, ξ) ∈ T
for all T ∗ ≤ s ≤ T ′′.

Proof. Proposition (i) is trivial if D = ∅. To prove proposition (i) when D 6= ∅
define for every κ > 0 the set

Tκ := {x ∈ Rn : ‖x− y‖2 < κ for some y ∈ T }.

Because V Lya
∂D,max ≤ V Lya

∂M,min − δ by Theorem 6.9, it follows that Tκ ⊂ M for all
small enough κ > 0. For every such small κ > 0 notice, that inequality (6.14) and
Corollary 3.10 together imply, that if φς(t, t′, ξ) ∈ Tκ for some particular ς ∈ SP ,
T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , then φς(s, t′, ξ) ∈ Tκ for all s ∈ [t, T ′′]. Then the
proposition (i) follows, because if φς(t, t′, ξ) ∈ T , then φς(t, t′, ξ) ∈

⋂
κ>0 Tκ, and

therefore φς(s, t′, ξ) ∈
⋂

κ>0 Tκ = T for all s ∈ [t, T ′′].
To prove proposition (ii) first note that the linear constraints (LC2) and (LC3)

imply that V Lya(t,x) ≤ Υ‖x‖1 for all t ∈ [T ′, T ′′] and all x ∈ M. To see this just
notice that at least for one i ∈ {1, 2, . . . , n} we must have either

xi ≥ PSi(d+
i ) or xi ≤ PSi(d−i )

because x /∈ D. Then either

V Lya(t, xiei) ≤ Υ · PSi(d+
i ) + Υ · |x1 − PSi(d+

i )| = Υ|xi|

or
V Lya(t, xiei) ≤ −Υ · PSi(d−i ) + Υ · |x1 − PSi(d−i )| = Υ|xi|,

so
V Lya(t, xiei) ≤ Υ|xi|,

which in turn implies, for any j ∈ {1, 2, . . . , n}, j 6= i, that

V Lya(t, xiei + xjej) ≤ V Lya(t, xiei) + Υ|xj | ≤ Υ(|xi|+ |xj |)
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and by mathematical induction V Lya(t,x) ≤ Υ‖x‖1. Then, by Hölder’s inequality,

V Lya(t,x) ≤ Υ‖x‖1 = Υ
( n∑

i=1

ei

)
·
( n∑

i=1

|xi|ei

)
≤ ΥEq‖x‖k,

so by the linear constraints (LC1) and inequality (6.14), we have for every ς ∈ SP ,
T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , such that φς(t, t′, ξ) ∈M \D, that

− ε

ΥEq
V Lya(t,φς(t, t

′, ξ))

≥ −ε‖φς(t, t
′, ξ)‖k

≥ −γ(‖φς(t, t
′, ξ)‖k)

≥ lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t′, ξ))
h

.

The differential equation ẏ(s) = −ΥEq/ε · y(s) has solution y(s) = exp[−ΥEq(s−
t′)/ε] y(t′). Hence, by Lemma 6.10,

V (s,φς(s, t
′, ξ)) ≤ V (t,φς(t, t

′, ξ)) exp
(
− Υ
εEq

(s− t)
)

and proposition (ii) holds.
Proposition (iii) is a direct consequence of the propositions (i) and (ii) and the

definition of the set A. It merely states that if it is impossible for a solution to exit
the set M\D at the boundary ∂M, then it either exits at the boundary ∂D or it
does not exit at all. �

6.9. The autonomous case. As was discussed after Definition 6.8, one is tempted
to try to parameterize a time-invariant Lyapunov function for the Switched System
3.5 if it is autonomous. The reason for this is that we proved in Theorem 5.4 that if
it is autonomous, then there exists a time-invariant Lyapunov function. In the next
definition we present a linear programming problem that does exactly this. It is a
generalization of the linear programming problem presented in [40], [39], [17], and
[16] to serve the Switched System 3.5 in the particular case that it is autonomous.

Definition 6.12. (Linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖))
Consider the Switched System 3.5, where the set P has a finite number of elements
and the functions fp : U → Rn, p ∈ P are time-invariant. Let PS : Rn → Rn be a
piecewise scaling function and N ⊂ U be such that the interior of the set

M :=
⋃

z∈Zn, PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)

is a connected set that contains the origin. Let ‖ · ‖ be an arbitrary norm on Rn

and let
D := PS( ]d−1 , d

+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

be a set, of which the closure is contained in the interior of M, and either D = ∅
or d−i and d+

i are integers such that d−i ≤ −1 and 1 ≤ d+
i for all i = 1, 2, . . . , n.

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on M\D.

The linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖) is now con-
structed in the following way:
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(i) Define the sets

Ga := {x ∈ Rn : x ∈ PS(Zn) ∩
(
M\D

)
},

X ‖·‖ := {‖x‖ : x ∈ PS(Zn) ∩M}.

(ii) Define for every σ ∈ Perm[{1, 2, . . . , n}] and every i = 1, . . . , n + 1 the
vector

xσ
i :=

n∑
j=i

eσ(j).

(iii) Define the set Za through:

Za :=
{
(z,J ) ∈ Zn

≥0 ×P({1, 2, . . . , n}) : PS(RJ (z + [0, 1]n)) ⊂M\D
}
.

iv) For every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and every i =
1, 2, . . . , n+ 1 we set

y(z,J )
σ,i := PS(RJ (z + xσ

i )).

(v) Define the set

Ya :=
{
{y(z,J )

σ,k ,y(z,J )
σ,k+1} : σ ∈ Perm[{1, 2, . . . , n}], (z,J ) ∈ Za, k ∈ {1, 2, . . . , n}

}
.

(vi) For every p ∈ P, every (z,J ) ∈ Za, and every r, s = 1, 2, . . . , n let B(z,J )
p,rs

be a real-valued constant, such that

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x∈PS(RJ (z+[0,1]n))

∣∣∣∣ ∂2fp,i

∂xr∂xs
(x)
∣∣∣∣ .

(vii) For every (z,J ) ∈ Za, every i, k = 1, 2, . . . , n, and every
σ ∈ Perm[{1, 2, . . . , n}], define

A
(z,J )
σ,k,i :=

∣∣∣ek · (y(z,J )
σ,i − y(z,J )

σ,n+1)
∣∣∣ .

(viii) Define the constant

xmin,∂M := min{‖x‖ : x ∈ PS(Zn) ∩ ∂M},

where ∂M is the boundary of the set M.
(ix) For every p ∈ P, every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and

every i = 1, 2, . . . , n+ 1 set

E
(z,J )
p,σ,i :=

1
2

n∑
r,s=1

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,1 ). (6.16)

(ix) Let ε > 0 and δ > 0 be arbitrary constants.
The variables of the linear programming problem are:

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

The linear constraints of the linear programming problem are:
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(LC1a) Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. Then

Ψa[y0] = Γa[y0] = 0,

εy1 ≤ Ψa[y1],

εy1 ≤ Γa[y1],

and for every i = 1, 2, . . . ,K − 1:

Ψa[yi]−Ψa[yi−1]
yi − yi−1

≤ Ψa[yi+1]−Ψa[yi]
yi+1 − yi

,

Γa[yi]− Γa[yi−1]
yi − yi−1

≤ Γa[yi+1]− Γa[yi]
yi+1 − yi

.

(LC2a) For every x ∈ Ga:
Ψa[‖x‖] ≤ Va[x].

If D = ∅, then:
Va[0] = 0.

If D 6= ∅, then, for every x ∈ PS(Zn) ∩ ∂D:

Va[x] ≤ Ψa[xmin,∂M]− δ.

Further, if D 6= ∅, then for every i = 1, 2, . . . , n:

Va[PSi(d−i )ei] ≤ −Υa · PSi(d−i ) and Va[PSi(d+
i )ei] ≤ Υa · PSi(d+

i ).

(LC3a) For every {x,y} ∈ Ya:

−Ca[{x,y}] · ‖x− y‖∞ ≤ Va[x]− Va[y] ≤ Ca[{x,y}] · ‖x− y‖∞ ≤ Υa · ‖x− y‖∞.

(LC4a) For every p ∈ P, every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and
every i = 1, 2, . . . , n+ 1:

− Γa

[
‖y(z,J )

σ,i ‖
]

≥
n∑

j=1

( Va[y(z,J )
σ,j ]− Va[y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fp,σ(j)(y

(z,J )
σ,i + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

As the objective of the linear programming problem is not needed to parameterize
a CPWA Lyapunov function we do not define it here.

Obviously, the two first comments after Definition 6.8 apply equally to the linear
programming problem from this definition. Further, if the functions fp, p ∈ P, in
Definition 6.12 are linear, then obviously we can set B(z,J )

p,rs := 0 for all p ∈ P,
all (z,J ) ∈ Za, and all r, s = 1, 2, . . . , n, and then the “error terms” E

(z,J )
p,σ,i are

all identically zero. Linear problems are thus the most easy to solve with the
linear programming problem because we can drop the variables C[{x,y}] and the
constraints (LC3) out of the linear programming problem altogether.

If the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ ·‖) from Defini-
tion 6.12 possesses a feasible solution, then we can use this solution to parameterize
a time-invariant CPWA Lyapunov function for the autonomous Switched System
3.5 used in the construction of the linear programming problem. The definition of
the parameterized CPWA Lyapunov function in the autonomous case is in essence
identical to the definition in the nonautonomous case.
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Definition 6.13. Assume that

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

is a feasible solution to LP({fp : p ∈ P},N ,PS,D, ‖·‖) from Definition 6.12. Then
we define the function V Lya

a trough V Lya
a ∈ CPWA[PS,PS−1

(
M\D

)
] and

V Lya
a (x) := Va[x] for all x ∈ Ga.

Further, we define the function ψa from the numerical values of the variables Ψa[y]
and γa from the numerical values of the variables Γa[y], just as the functions ψ and
γ were defined in Section 6.3 from the numerical values of the variables Ψ[y] and
Γ[y] respectively.

That V Lya
a in Definition 6.13 is a Lyapunov function for the autonomous Switched

System 3.5, that is equivalent to a time-invariant Lyapunov function parameter-
ized by the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) from
Definition 6.8, is proved in the next theorem.

Theorem 6.14. Consider the Switched System 3.5 where the set P is finite. Let
T ′ and T ′′ be constants such that 0 ≤ T ′ < T ′′ and let PS : Rn → Rn be a piecewise
scaling function and N ⊂ U be such that the interior of the set

M :=
⋃

z∈Zn, PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)

is a connected set that contains the origin. Let ‖ · ‖ be an arbitrary norm on Rn

and let
D := PS( ]d−1 , d

+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

be a set, of which the closure is contained in the interior of M, and either D = ∅
or d−i and d+

i are integers such that d−i ≤ −1 and 1 ≤ d+
i for all i = 1, 2, . . . , n.

Finally, let t := (t0, t1, . . . , tM ) ∈ RM+1, M ∈ N>0 be a vector such that T ′ =: t0 <
t1 < · · · < tM := T ′′.

Assume the the Switched System 3.5 is autonomous, that is, that the fp, p ∈ P
are time-independent, and assume that the second-order partial derivatives of their
components are bounded on M\D. Then, the linear programming problem LP({fp :
p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 6.8 with the additional linear constraints:

(LC-A) For every x̃, ỹ ∈ G such that ‖x̃− ỹ‖∗ = 0:

V [x̃] = V [ỹ].

For every {x̃, ỹ} ∈ Y such that ‖x̃− ỹ‖∗ = 0:

C[{x̃, ỹ}] = 0.

Is equivalent to the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖)
from Definition 6.12, in the following sense:
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(i) If V Lya is a Lyapunov function, defined as in 6.3 from a feasible solution
to the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) from
Definition 6.8 that additionally satisfies the constraints (LC-A), then V Lya

does not depend on t and we can parameterize a Lyapunov function WLya

with the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖) from
Definition 6.12, such that

WLya(x) = V Lya(T ′,x) for all x ∈M \D.

(ii) If WLya is a Lyapunov function, defined as the function V Lya
a in Definition

6.13, from a feasible solution to the linear programming problem LP({fp :
p ∈ P},N ,PS,D, ‖ · ‖) from Definition 6.12, then we can parameterize a
Lyapunov function V Lya by use of the linear programming problem LP({fp :
p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 6.8 with (LC-A) as additional
constraints, such that

V Lya(t,x) = WLya(x) for all t ∈ [T ′, T ′′] and all x ∈M \D.

In both cases one should use the same numerical values for the bounds B(z,J )
p,rs on

the second-order partial derivatives of the components of the functions fp, p ∈ P,
and for the constants ε and δ.

Proof. We start by proving proposition (i):
Assume that

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

is a feasible solution to the (autonomous) linear programming problem
LP({fp : p ∈ P},N ,PS,D, ‖ · ‖) from Definition 6.12, define Ca[{x,x}] := 0 for all
x ∈ Ga, and set

Υ := Υa,

Ψ[y] := Ψa[y], for all y ∈ X ‖·‖,

Γ[y] := Γa[y], for all y ∈ X ‖·‖,

V [x̃] := Va[(x̃1, x̃2, . . . , x̃n)], for all x̃ ∈ G,
C[{x̃, ỹ}] := Ca[{(x̃1, x̃2, . . . , x̃n), (ỹ1, ỹ2, . . . , ỹn)}], for all {x̃, ỹ} ∈ Y.

We claim that Υ, Ψ[y], Γ[y], V [x̃], and C[{x̃, ỹ}] is a feasible solution to the linear
programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 6.8 that
additionally satisfies the constraints (LC-A). If this is the case, then clearly

V Lya ∈ CPWA[P̃S, P̃S
−1(

[T ′, T ′′]×
(
M\D

))
],

defined through V Lya(x̃) := V [x̃] for all x̃ ∈ G,

is the promised Lyapunov function.
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It is a simple task so confirm that they satisfy the constraints (LC1), (LC2),
(LC3), and (LC-A), so we only prove that they fulfill the constraints (LC4), which
is not as obvious.

Let p ∈ P, (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n + 1} be
arbitrary, but fixed throughout this part of the proof. We have to show that

− Γ
[
‖y(z,J )

σ,i ‖∗
]

≥
n∑

j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

(6.17)
We define the mapping lσ : {0, 1, . . . , n+ 1} → {1, . . . , n+ 1} through

lσ(k) :=

{
k + 1, if 0 ≤ k ≤ σ−1(0),
k, otherwise,

and ς ∈ Perm[{1, 2, . . . , n}] through

ς(k) :=

{
σ(k − 1), if 1 ≤ k ≤ σ−1(0),
σ(k), if σ−1(0) < k ≤ n.

Further, we set

z′ := (z1, z2, . . . , zn), where z = (z0, z1, . . . , zn).

Note that by these definitions and the definitions of y(z,J )
σ,j and y(z′,J )

ς,j we have for
all j = 0, 1, . . . , n+ 1 and all r = 1, 2, . . . , n, that

er · y(z,J )
σ,j = er · P̃S(R̃J (z +

n∑
k=j

eσ(k)))

= er ·PS(RJ (z′ +
n∑

k=j, σ(k) 6=0

eσ(k)))

= er ·PS(RJ (z′ +
n∑

k=lσ(j)

eς(k)))

= er · y(z′,J )
ς,lσ(j).

(6.18)

Especially, because lσ(0) = 1, we have

er · y(z,J )
σ,0 = er · y(z′,J )

ς,1 for all r = 1, 2, . . . , n.

But then ‖y(z,J )
σ,i ‖∗ = ‖y(z′,J )

ς,lσ(i)‖ and for every r = 1, 2, . . . , n and every j =
0, 1, . . . , n we have

A
(z,J )
σ,r,j =

∣∣∣er · (y(z,J )
σ,j − y(z,J )

σ,n+1)
∣∣∣ = ∣∣∣er · (y(z′,J )

ς,lσ(j) − y(z′,J )
ς,n+1 )

∣∣∣ = A
(z′,J )
ς,r,lσ(j). (6.19)

Further, because f̃p does not depend on the first argument,

f̃p,σ(j)(y
(z,J )
σ,i ) =

{
1, if σ(j) = 0,

fp,ς(lσ(j))(y
(z′,J )
ς,lσ(i)), if j ∈ {1, 2, . . . , n} \ {σ−1(0)},

(6.20)
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and similarly

V [y(z,J )
σ,j ] = Va[y(z′,J )

ς,lσ(j)] for all j = 0, 1, . . . , n+ 1, (6.21)

and

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}] = Ca[{y(z′,J )
ς,lσ(j),y

(z′,J )
ς,lσ(j+1)] for all j = 0, 1, . . . , n. (6.22)

Especially,

V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1] = C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}] = 0 if σ(j) = 0. (6.23)

For the bounds B(z,J )
p,rs on the second-order partial derivatives of the components

of the fp we demand,

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x̃∈fPS(eRJ (z+[0,1]n+1))

∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s
(x̃)
∣∣∣,

which is compatible with

B(z,J )
p,rs := 0 if r = 0 or s = 0

and
B(z,J )

p,rs := B(z′,J )
p,rs for r, s = 1, 2, . . . , n.

This together with (6.19) implies that

E
(z,J )
p,σ,i :=

1
2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,0 ) (6.24)

=
1
2

n∑
r,s=1

B(z′,J )
p,rs A

(z,J )
ς,r,lσ(i)(A

(z′,J )
ς,s,lσ(i) +A

(z′,J )
ς,s,1 )

= E
(z′,J )
p,ς,lσ(i).

Now, by assumption,

− Γa

[
‖y(z′,J )

ς,lσ(i)‖
]

≥
n∑

j=1

( Va[y(z′,J )
ς,j ]− Va[y(z′,J )

ς,j+1 ]

eς(j) · (y
(z′,J )
ς,j − y(z′,J )

ς,j+1 )
fp,ς(j)(y

(z′,J )
ς,lσ(i)) + E

(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,j ,y(z′,J )
ς,j+1 }]

)
,

so by (6.18), the definition of the function lσ, (6.24), (6.20), (6.21), (6.22), and
(6.23), we have

− Γ
[
‖y(z,J )

σ,i ‖∗
]

= −Γa

[
‖y(z′,J )

ς,lσ(i)‖
]

≥
n∑

j=1

( Va[y(z′,J )
ς,j ]− Va[y(z′,J )

ς,j+1 ]

eς(j) · (y
(z′,J )
ς,j − y(z′,J )

ς,j+1 )
fp,ς(j)(y

(z′,J )
ς,lσ(i)) + E

(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,j ,y(z′,J )
ς,j+1 }]

)

=
n∑

j=0
σ(j)6=0

( Va[y(z′,J )
ς,lσ(j)]− Va[y(z′,J )

ς,lσ(j+1)]

eς(lσ(j)) · (y
(z′,J )
ς,lσ(j) − y(z′,J )

ς,lσ(j+1))
fp,ς(lσ(j))(y

(z′,J )
ς,lσ(i))

+ E
(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,lσ(j),y
(z′,J )
ς,lσ(j+1)}]

)
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=
n∑

j=0
σ(j)6=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)

=
n∑

j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
and we have proved (6.17).

We now prove proposition (ii): Assume that

Υ,

Ψ[y], for all y ∈ X ‖·‖,

Γ[y], for all y ∈ X ‖·‖,

V [x̃], for all x̃ ∈ G,
C[{x̃, ỹ}], for all {x̃, ỹ} ∈ Y.

is a solution to the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖)
from Definition 6.8 and set

Υa := Υ,

Ψa[y] := Ψ[y], for all y ∈ X ‖·‖,

Γa[y] := Γ[y], for all y ∈ X ‖·‖,

Va[x] := V [(T ′,x)], for all x ∈ Ga,

Ca[{x,y}] := C[{(T ′,x), (T ′,y)}], for all {x,y} ∈ Ya.

We claim that Υa, Ψa[y], Γa[y], Va[x], and Ca[{x,y}] is a feasible solution to the
linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖) from Definition 6.12,
that

V Lya ∈ CPWA[P̃S, P̃S
−1(

[T ′, T ′′]×
(
M\D

))
],

defined through V Lya(x̃) := V [x̃] for all x̃ ∈ G,

does not depend on the first argument (the time), and that

WLya ∈ CPWA[PS,PS−1,M\D],

defined through WLya(x) := Va[x] for all x ∈ Ga,

is the promised Lyapunov function.
First we prove that the function values of V Lya do not depend on the first

argument. To do this it is obviously enough to show that this holds for every
simplex in the simplicial partition of [T ′, T ′′] ×

(
M \ D

)
. Let (z,J ) ∈ Z and

σ ∈ Perm[{0, 1, . . . , n}] be arbitrary and let

x̃, ỹ ∈ con{y(z,J )
σ,0 ,y(z,J )

σ,1 , . . . ,y(z,J )
σ,n+1}

be such that
er · x̃ = er · ỹ for all r = 1, 2, . . . , n.

We are going to show that V Lya(x̃) = V Lya(ỹ).
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Set k := σ−1(0) and let λ0, λ1, . . . , λn+1 ∈ [0, 1] and µ0, µ1, . . . , µn+1 ∈ [0, 1] be
such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i , ỹ =

n+1∑
i=0

µiy
(z,J )
σ,i ,

n+1∑
i=0

λi =
n+1∑
i=0

µi = 1.

From the definition of the y(z,J )
σ,i it follows that

eσ(0) ·
n+1∑
i=0

λiy
(z,J )
σ,i = eσ(0) ·

n+1∑
i=0

µiy
(z,J )
σ,i , hence λ0 = µ0,

which implies

eσ(1) ·
n+1∑
i=1

λiy
(z,J )
σ,i = eσ(1) ·

n+1∑
i=1

µiy
(z,J )
σ,i , hence λ1 = µ1,

...

which implies

eσ(k−1) ·
n+1∑

i=k−1

λiy
(z,J )
σ,i = eσ(k−1) ·

n+1∑
i=k−1

µiy
(z,J )
σ,i , hence λk−1 = µk−1,

which implies

eσ(k+1) ·
n+1∑
i=k

λiy
(z,J )
σ,i = eσ(k+1) ·

n+1∑
i=k

µiy
(z,J )
σ,i , hence λk + λk+1 = µk + µk+1,

which implies

eσ(k+2) ·
n+1∑

i=k+2

λiy
(z,J )
σ,i = eσ(k+2) ·

n+1∑
i=k+2

µiy
(z,J )
σ,i , hence λk+2 = µk+2,

...

which implies

eσ(n) ·
n+1∑
i=n

λiy
(z,J )
σ,i = eσ(n) ·

n+1∑
i=n

µiy
(z,J )
σ,i , hence λn = µn.

Then λn+1 = µn+1 and because by (LC-A) we have V [y(z,J )
σ,k ] = V [y(z,J )

σ,k+1] we get

V Lya(x̃) = V Lya(
n+1∑
i=0

λiy
(z,J )
σ,i ) =

n+1∑
i=0

λiV [y(z,J )
σ,i ]

=
n+1∑
i=0

i6=k,k+1

λiV [y(z,J )
σ,i ] + (λk + λk+1)V [y(z,J )

σ,k ]

=
n+1∑
i=0

i6=k,k+1

µiV [y(z,J )
σ,i ] + (µk + µk+1)V [y(z,J )

σ,k ]

=
n+1∑
i=0

µiV [y(z,J )
σ,i ] = V Lya(

n+1∑
i=0

µiy
(z,J )
σ,i )

= V Lya(ỹ)
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and we have proved that V Lya does not depend on the first argument.
Now, let p ∈ P, (z,J ) ∈ Za, σ ∈ Perm[{1, 2, . . . , n}], and i ∈ {1, 2, . . . , n+1} be

arbitrary, but fixed throughout the rest of the proof. To finish the proof we have
to show that

− Γa

[
‖y(z,J )

σ,i ‖
]

≥
n∑

j=1

( Va[y(z,J )
σ,j ]− Va[y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fp,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

(6.25)
We define ς ∈ Perm[{0, 1, 2, . . . , n}] trough

ς(k) :=

{
0, if k = 0,
σ(k), if k ∈ {1, 2, . . . , n},

and z′ ∈ G through

z′ := (T ′, z1, z2, . . . , zn), where z = (z1, z2, . . . , zn).

Then, for every r = 1, 2, . . . , n, one easily verifies that

er · y(z′,J )
ς,0 = er · y(z′,J )

ς,1

and, for all r = 1, 2, . . . , n and all j = 1, 2, . . . , n+ 1, that

er · y(z′,J )
ς,j = er · P̃S(R̃J (z′ +

n∑
k=j

eς(k)))

= er ·PS(RJ (z +
n∑

k=j

eσ(k))) = er · y(z,J )
σ,j .

(6.26)

Then ‖y(z′,J )
ς,i ‖∗ = ‖y(z,J )

σ,i ‖ and for every r = 1, 2, . . . , n

A
(z′,J )
ς,r,0 =

∣∣∣er · (y(z′,J )
ς,0 − y(z′,J )

ς,n+1 )
∣∣∣ = ∣∣∣er · (y(z,J )

σ,1 − y(z,J )
σ,n+1)

∣∣∣ = A
(z,J )
σ,r,1 . (6.27)

and for every every j, r = 1, 2, . . . , n we have

A
(z′,J )
ς,r,j =

∣∣∣er · (y(z′,J )
ς,j − y(z′,J )

ς,n+1 )
∣∣∣ = ∣∣∣er · (y(z,J )

σ,j − y(z,J )
σ,n+1)

∣∣∣ = A
(z,J )
σ,r,j . (6.28)

For every k = 0, 1, . . . ,M define

zk := (tk, z1, z2, . . . , zn), where z := (z1, z2, . . . , zn),

and define for every r, s = 1, 2, . . . , n

B(z,J )
p,rs := min

k=0,1,...,n
B(zk,J )

p,rs .

Now set
B

(zk,J )
p,00 := 0 for all k = 0, 1, . . . ,M

and

B(zk,J )
p,rs := B(z,J )

p,rs for all k = 0, 1, . . . ,M and all r, s = 1, 2, . . . , n,

and consider, that with these possibly tighter bounds B(zk,J )
p,rs in the linear pro-

gramming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖), the Υ, Ψ[y], Γ[y], V [x̃], and
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C[{x̃, ỹ}] are, of course, still a solution. Therefore we can just as well assume that
these were the bounds ab initio. It follows by (6.28) that

E
(z′,J )
p,ς,i =

1
2

n∑
r,s=0

B(z′,J )
p,rs A

(z′,J )
ς,r,i (A(z′,J )

ς,s,i +A
(z,J )
ς,s,0 ) (6.29)

=
1
2

n∑
r,s=1

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,1 )

= E
(z,J )
p,σ,i .

By assumption

− Γ
[
‖y(z′,J )

ς,i ‖∗
]

≥
n∑

j=0

( V [y(z′,J )
ς,j ]− V [y(z′,J )

ς,j+1 ]

eς(j) · (y
(z′,J )
ς,j − y(z′,J )

ς,j+1 )
f̃p,ς(j)(y

(z′,J )
ς,i ) + E

(z′,J )
p,ς,i C[{y(z′,J )

ς,j ,y(z′,J )
ς,j+1 }]

)
,

so, by (6.26), (LC-A), because fp does not depend on the first argument, and (6.29),
we get

− Γ
[
‖y(z,J )

σ,i ‖
]

= −Γ
[
‖y(z′,J )

ς,i ‖∗
]

≥
n∑

j=0

( V [y(z′,J )
ς,j ]− V [y(z′,J )

ς,j+1 ]

eς(j) · (y
(z′,J )
ς,j − y(z′,J )

ς,j+1 )
f̃p,ς(j)(y

(z′,J )
ς,i ) + E

(z′,J )
p,ς,i C[{y(z′,J )

ς,j ,y(z′,J )
ς,j+1 }]

)

=
n∑

j=1

( Va[y(z,J )
σ,j ]− Va[y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fp,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
and we have proved (6.25) and the proof is complete. �

An immediate consequence of Theorem 6.14 is a theorem, similar to Theorem 6.9,
but for autonomous systems possessing a time-invariant CPWA Lyapunov function.

Theorem 6.15. (Autonomous CPWA Lyapunov functions by linear programming)
Consider the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖) from
Definition 6.12 and assume that it possesses a feasible solution. Let the functions
ψa, γa, and V Lya

a be defined as in Definition 6.13 from the numerical values of the
variables Ψa[y], Γa[y], and Va[x̃] from a feasible solution. Then the inequality

ψa(‖x‖) ≤ V Lya
a (x)

holds for all x ∈ M \ D. If D = ∅ we have ψa(0) = V Lya
a (t,0) = 0. If D 6= ∅ we

have, with

V Lya
∂M,min := min

x∈∂M
V Lya

a (x),

V Lya
∂D,max := max

x∈∂D
V Lya

a (x),

that
V Lya

∂D,max ≤ V Lya
∂M,min − δ.
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Further, with φ as the solution to the Switched System 3.5 that we used in the
construction of the linear programming problem, the inequality

−γa(‖φς(t, ξ)‖) ≥ lim sup
h→0+

V Lya(φς(t+ h, ξ))− V Lya(φς(t, ξ))
h

hold true for all ς ∈ SP and all ξ in the interior of M\D.

Proof. Follows directly by Theorem 6.9 and Theorem 6.14. �

We conclude this discussion with a theorem, that is the equivalent of Theorem
6.11 for autonomous systems possessing a time-invariant CPWA Lyapunov function,
parameterized by the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖·‖)
from Definition 6.12. It states some stability properties such a system must have.

Theorem 6.16 (Implications of the Lyapunov function V Lya
a ).

Make the same assumptions and definitions as in Theorem 6.15 and assume ad-
ditionally that the norm ‖ · ‖ in the linear programming problem LP({fp : p ∈
P},N ,PS,D, ‖ ·‖) is a k-norm 2, 1 ≤ k ≤ +∞. Define the set T through T := {0}
if D = ∅ and

T := D ∪
{
x ∈M \D : V Lya

a (x) ≤ V Lya
∂D,max

}
, if D 6= ∅,

and the set A through

A :=
{
x ∈M \D : V Lya(x) < V Lya

∂M,min

}
.

Set q := k · (k − 1)−1 if 1 < k < +∞, q := 1 if k = +∞, and q := +∞ if k = 1,
and define the constant

Eq := ‖
n∑

i=1

ei‖q.

Then the following propositions hold true:

(i) If ξ ∈ T , then φσ(t, ξ) ∈ T for all σ ∈ SP and all t ≥ 0.
(ii) If ξ ∈M \D, the inequality

V Lya
a (φσ(t, ξ)) ≤ V Lya

a (ξ) exp
(
− Υa

εEq
t
)

(6.30)

holds for all t such that φσ(t′, ξ) ∈M \D for all 0 ≤ t′ ≤ t.
(iii) If ξ ∈ A \ T and D = ∅, then inequality (6.30) holds for all t ≥ 0 and all

σ ∈ SP . If ξ ∈ A \ T and D 6= ∅, then, for every σ ∈ SP there is a t′ ≥ 0,
such that inequality (6.30) holds for all 0 ≤ t ≤ t′, φσ(t′, ξ) ∈ ∂T , and
φσ(t, ξ) ∈ T for all t ≥ t′.

The proof follows directly by Theorem 6.11.

2With k-norm we mean the norm ‖x‖k :=
`Pn

i=1 |xi|k
´1/k

if 1 ≤ k < +∞ and ‖x‖∞ :=

maxi=1,2,...,n |xi|. Unfortunately, these norms are usually called p-norms, which is inappropriate

in this context because the alphabet p is used to index the functions fp, p ∈ P.
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7. Constructive Converse Theorems

We show how to combine the results from Theorem 5.4, a non-constructive con-
verse Lyapunov theorem, and the linear programming problem from Definition 6.8,
to prove a constructive converse Lyapunov theorem. We will do this for the general,
not necessarily autonomous, case. Thereafter, we will do the same for autonomous
switched systems and we will prove that in this case, we can parameterize a time-
invariant Lyapunov function by the use of the linear programming problem from
Definition 6.12.

The structure of this section is somewhat unconventional because we start with
a proof of the yet to be stated Theorem 7.1. In the proof we assign values to
the constants and to the variables of the linear programming problem such that a
feasible solution results. By these assignments we use the numerical values of the
Lyapunov function from Theorem 5.4. Note, that because Theorem 5.4 is a pure
existence theorem, the numerical values of this Lyapunov function are not known.
However, our knowledge about these numerical values and their relations is sub-
stantial. Indeed, we have enough information to prove that the linear constraints
(LC1), (LC2), (LC3), and (LC4), of the linear programming problem in Definition
6.8 are fulfilled by the numerical values we assign to the variables and to the con-
stants. Because there are well-known algorithms to find a feasible solution to a
linear programming problem if the set of feasible solutions is not empty, this im-
plies that we can always parameterize a Lyapunov function by the use of the linear
programming problem in Definition 6.8, whenever the underlying system possesses
a Lyapunov function at all.

7.1. The assumptions. Consider the Switched System 3.5 and assume that the set
P is finite and that fp is a [C2(R≥0×U)]n function for every p ∈ P. Further, assume
that there is an a > 0 such that [−a, a]n ⊂ U and W ∈ C2(R≥0× ([−a, a]n \{0})) is
a Lyapunov function for the switched system. By Theorem 5.4 this is, for example,
the case if the origin is a uniformly asymptotically stable equilibrium of the Switched
System 3.5, [−a, a]n is a subset of its region of attraction, and the functions fp all
satisfy the Lipschitz condition: for every p ∈ P there exists a constant Lp such that

‖fp(t,x)−fp(s,y)‖ ≤ Lp(|s−t|−‖x−y‖), for all s, t ∈ R≥0 and all x,y ∈ [−a, a]n.

By Definition 4.3 there exist, for an arbitrary norm ‖ · ‖ on Rn, class K functions
α, β, and ω, such that

α(‖x‖) ≤W (t,x) ≤ β(‖x‖)
and

[∇xW ](t,x) · fp(t,x) +
∂W

∂t
(t,x) ≤ −ω(‖x‖) (7.1)

for all (t,x) ∈ R>0 × (] − a, a[n\{0}) and all p ∈ P. Further, by Lemma 3.17, we
can assume without loss of generality that α and ω are convex functions. Now, let
0 ≤ T ′ < T ′′ < +∞ be arbitrary and letD′ ⊂ [−a, a]n be an arbitrary neighborhood
of the origin. Especially, the set D′ 6= ∅ can be taken as small as one wishes. We
are going to prove that we can parameterize a CPWA Lyapunov function on the set
[T ′, T ′′]×

(
[−a, a]n \D′

)
. We will start by assigning values to the constants and the

variables of the linear programming problem LP({fp : p ∈ P}, ]−a, a[n,PS, t,D, ‖ ·
‖) in Definition 6.8. This includes that we define the piecewise scaling function
PS, the vector t, and the set D ⊂ D′. Thereafter, we will prove that the linear
constraints of the linear programming problem are all fulfilled by these values.
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7.2. The assignments. First, we determine a constant B that is an upper bound
on all second-order partial derivatives of the components of the functions fp, p ∈ P.
That is, with x̃ = (x̃0, x̃1, . . . , x̃n) := (t,x) and

f̃p(x̃) = (f̃p,0(x̃), f̃p,1(x̃), . . . , f̃p,n(x̃)) = (1, fp,1(t,x), fp,2(t,x), . . . , fp,n(t,x)),

we need a constant B < +∞ such that

B ≥ max
p∈P, i,r,s=0,1,...,n, x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s
(x̃)
∣∣∣.

We must, at least in principle, be able to assign a numerical value to the constant
B. This is in contrast to the rest of the constants and variables, where the mere
knowledge of the existence of the appropriate values suffices. However, because
B is an arbitrary upper bound (no assumptions are needed about its quality) on
the second-order partial derivatives of the components of the functions fp on the
compact set [T ′, T ′′]× [−a, a]n, this should not cause any difficulties if the algebraic
form of the components is known. It might sound strange that the mere existence
of the appropriate values to be assigned to the other variables suffices in a construc-
tive theorem. However, as we will prove later on, if they exist then the simplex
algorithm, for example, will successfully determine valid values for them.

With
x∗min := min

‖x‖∞=a
‖x‖

we set

δ :=
α(x∗min)

2
and let m∗ be a strictly positive integer, such that

[− a

2m∗ ,
a

2m∗ ]n ⊂ {x ∈ Rn : β(‖x‖) ≤ δ} ∩ D′ (7.2)

and set
D := ]− a

2m∗ ,
a

2m∗ [n.

Note that we do not know the numerical values of the constants δ and m∗ because
α and β are unknown. However, their mere existence allows us to properly define
δ and m∗. We will keep on introducing constants in this way. Their existence is
secured in the sense that there exists a constant with the following property.

Set

x∗ := 2−m∗
x∗min, ω∗ :=

1
2
ω(x∗),

A∗ := sup
p∈P, x̃∈[T ′,T ′′]×[−a,a]n

‖f̃p(x̃)‖2.

We define W̃ (x̃) := W (t,x), where x̃ := (t,x), and assign

C := max
r=0,1,...,n

x̃∈[T ′,T ′′]×([−a,a]n\D)

∣∣∣∂W̃
∂x̃r

(x̃)
∣∣∣,

B∗ := (n+ 1)
3
2 · max

r,s=0,1,...,n
x̃∈[T ′,T ′′]×([−a,a]n\D)

∣∣∣ ∂2W̃

∂x̃r∂x̃s
(x̃)
∣∣∣,

C∗ := (n+ 1)3CB.
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We set a∗ := max{T ′′ − T ′, a} and let m ≥ m∗ be an integer, such that

a∗

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗
,

and set d := 2m−m∗
.

We define the piecewise scaling function PS : Rn → Rn through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn)

for all (j1, j2, . . . , jn) ∈ Zn and the vector t := (t0, t1, . . . , t2m), where

tj := T ′ + 2−mj(T ′′ − T ′)

for all j = 0, 1, . . . , 2m.
We assign the following values to the variables and the remaining constants of

the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖):

B(z,J )
p,rs := B, for all p ∈ P, all (z,J ) ∈ Z, and all r, s = 0, 1, . . . , n,

Ψ[y] := α(y), for all y ∈ X ‖·‖,

Γ[y] := ω∗y, for all y ∈ X ‖·‖,

V [x̃] := W̃ (x̃) for all x̃ ∈ G,
C[{x̃, ỹ}] := C, for all {x̃, ỹ} ∈ Y,

Υ := max
{
C, a−12m∗

· max
i=1,2,...,n

β(a2−m∗
‖ei‖)

}
,

ε := min{ω∗, α(y1)/y1}, where y1 := min{y : y ∈ X ‖·‖ and y 6= 0}.

We now show that the linear constraints (LC1), (LC2), (LC3), and (LC4) of the
linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) are satisfied by
these values.

7.3. The constraints (LC1) are fulfilled. Let y0, y1, . . . , yK be the elements of
X ‖·‖ in an increasing order. We have to show that Ψ[y0] = Γ[y0] = 0, εy1 ≤ Ψ[y1],
εy1 ≤ Γ[y1], and that for every i = 1, 2, . . . ,K − 1:

Ψ[yi]−Ψ[yi−1]
yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]
yi+1 − yi

,

Γ[yi]− Γ[yi−1]
yi − yi−1

≤ Γ[yi+1]− Γ[yi]
yi+1 − yi

.

Proof. Clearly Ψ[y0] = Γ[y0] = 0 because y0 = 0 and

εy1 ≤ ω∗y1 = Γ[y1] and εy1 ≤
α(y1)
y1

y1 = Ψ[y1].

Because α is convex we have for all i = 1, 2, . . . ,K − 1 that
yi − yi−1

yi+1 − yi−1
α(yi+1) +

yi+1 − yi

yi+1 − yi−1
α(yi−1) ≥ α(yi),

that is
α(yi)− α(yi−1)

yi − yi−1
=

Ψ[yi]−Ψ[yi−1]
yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]
yi+1 − yi

=
α(yi+1)− α(yi)

yi+1 − yi
.
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Finally, we clearly have for every i = 1, 2, . . . ,K − 1 that

ω∗

2
=

Γ[yi]− Γ[yi−1]
yi − yi−1

≤ Γ[yi+1]− Γ[yi]
yi+1 − yi

=
ω∗

2
.

�

7.4. The constraints (LC2) are fulfilled. We have to show that for every x̃ ∈ G
we have

Ψ[‖x̃‖∗] ≤ V [x̃],

that for every x̃ = (x̃0, x̃1, . . . , x̃n), such that (x̃1, x̃2, . . . , x̃n) ∈ PS(Zn) ∩ ∂D we
have

V [x̃] ≤ Ψ[xmin,∂M]− δ,

and that for every i = 1, 2, . . . , n and every j = 0, 1, . . . , 2m we have

V [PS0(j)e0 + PSi(d−i )ei] ≤ −ΥPS(d−i )

and

V [PS0(j)e0 + PSi(d−i )ei] ≤ ΥPSi(d+
i ).

Proof. Clearly,

Ψ[‖x̃‖∗] = α(‖x̃‖∗) ≤ W̃ (x̃) = V [x̃]

for all x̃ ∈ G. For every x̃ = (x̃0, x̃1, . . . , x̃n), such that (x̃1, x̃2, . . . , x̃n) ∈ PS(Zn)∩
∂D, we have by (7.2) that

V [x̃] = W̃ (x̃) ≤ β(‖x̃‖∗) ≤ δ = α(x∗min)− δ ≤ α(xmin,∂M)− δ = Ψ[xmin,∂M]− δ.

Finally, note that d+
i = −d−i = d = 2m−m∗

for all i = 1, 2, . . . , n, which implies
that for every i = 1, 2, . . . , n and j = 0, 1, . . . , 2m we have

V [PS0(j)e0 + PS(d+
i )ei] = V [PS0(j)e0 + a2−m∗

ei]

= W (tj , a2−m∗
ei)

≤ β(a2−m∗
‖ei‖)

≤ Υa2−m∗

= Υ · PSi(d+
i )

and

V [PS0(j)e0 + PS(d−i )ei] = V [PS0(j)e0 − a2−m∗
ei]

= W (tj ,−a2−m∗
ei)

≤ β(a2−m∗
‖ei‖)

≤ Υa2−m∗

= −Υ · PS(d−i ).

�



68 S. F. HAFSTEIN EJDE-2007/MON. 08

7.5. The constraints (LC3) are fulfilled. We have to show that {x̃, ỹ} ∈ Y
implies the inequalities:

−C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ V [x̃]− V [ỹ] ≤ C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ Υ · ‖x̃− ỹ‖∞.

Proof. Let {x̃, ỹ} ∈ Y. Then there is an i ∈ {0, 1, . . . , n} such that x̃ − ỹ =
±ei‖x̃− ỹ‖∞. By the Mean-value theorem there is a ϑ ∈ ]0, 1[ such that∣∣∣V [x̃]− V [ỹ]

‖x̃− ỹ‖∞

∣∣∣ = ∣∣∣W̃ (x̃)− W̃ (ỹ)
‖x̃− ỹ‖∞

∣∣∣ = ∣∣∣∂W̃
∂x̃i

(ỹ + ϑ(x̃− ỹ))
∣∣∣.

Hence, by the definition of the constants C and Υ,∣∣∣V [x̃]− V [ỹ]
‖x̃− ỹ‖∞

∣∣∣ ≤ C ≤ Υ,

which implies that the constraints (LC3) are fulfilled. �

7.6. The constraints (LC4) are fulfilled. We have to show that for arbitrary
p ∈ P, (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n+ 1} we have

− Γ
[
‖y(z,J )

σ,i ‖∗
]

≥
n∑

j=0

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

(7.3)

Proof. With the values we have assigned to the variables and the constants of the
linear programming problem we have for every p ∈ P, every (z,J ) ∈ Z, every
σ ∈ Perm[{0, 1, . . . , n}], every i, j = 0, 1, . . . , n, and with h := a∗2−m, that

A
(z,J )
σ,i,j ≤ h,

E
(z,J )
p,σ,i :=

1
2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A(z,J )

σ,s,i +A
(z,J )
σ,s,1 ) ≤ (n+ 1)2Bh2,

n∑
j=0

C[{y(z,J )
σ,j ,y(z,J )

σ,j+1}] ≤ (n+ 1)C.

Hence, inequality (7.3) follows if we can prove that

−Γ
[
‖y(z,J )

σ,i ‖∗
]

= −ω∗‖y(z,J )
σ,i ‖∗

≥
n∑

j=0

W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + C∗h2.

(7.4)

Now, by the Cauchy-Schwarz inequality and inequality (7.1),
n∑

j=0

W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i )

=
n∑

j=0

(W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W̃

∂x̃σ(j)
(y(z,J )

σ,i )
)
f̃p,σ(j)(y

(z,J )
σ,i )

+∇x̃W̃ (y(z,J )
σ,i ) · f̃p(y(z,J )

σ,i )
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≤
∥∥∥ n∑

j=0

(W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W̃

∂x̃σ(j)
(y(z,J )

σ,i )
)
ej

∥∥∥
2
‖f̃p(y(z,J )

σ,i )‖2

− ω(‖y(z,J )
σ,i ‖∗)

By the Mean-value theorem there is an y on the line-segment between the vectors
y(z,J )

σ,j and y(z,J )
σ,j+1, such that

W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
=

∂W̃

∂x̃σ(j)
(y)

and an y∗ on the line-segment between the vectors y and y(z,J )
σ,i such that

∂W̃

∂x̃σ(j)
(y)− ∂W̃

∂x̃σ(j)
(y(z,J )

σ,i ) =
[
∇x̃

∂W̃

∂x̃σ(j)

]
(y∗) · (y − y(z,J )

σ,i ).

Because y and y(z,J )
σ,i are both elements of the simplex PS(RJ (z + Sσ)), we have

‖y − y(z,J )
σ,i ‖2 ≤ h

√
n+ 1

and because∥∥[∇x̃
∂W̃

∂x̃σ(j)

]
(y∗)

∥∥
2
≤
√
n+ 1 · max

r,s=0,1,...,n
x̃∈[T ′,T ′′]×([−a,a]n\D)

∣∣ ∂2W̃

∂x̃r∂x̃s
(x̃)
∣∣,

we obtain ∥∥∥ n∑
j=0

(W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W̃

∂x̃σ(j)
(y(z,J )

σ,i )
)
ej

∥∥∥
2
≤ hB∗.

Finally, by the definition of A∗, ‖f̃p(y(z,J )
σ,i )‖2 ≤ A∗. Putting the pieces together

delivers the inequality

n∑
j=0

W̃ (y(z,J )
σ,j )− W̃ (y(z,J )

σ,j+1)

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) ≤ hB∗A∗ − ω(‖y(z,J )

σ,i ‖∗).

From this inequality and because ω(x) ≥ 2ω∗x for all x ≥ x∗ and because of the
fact that ‖y(z,J )

σ,i ‖∗ ≥ x∗, inequality (7.4) holds if

−ω∗‖y(z,J )
σ,i ‖∗ ≥ hA∗B∗ − 2ω∗‖y(z,J )

σ,i ‖∗ + h2C∗.

This last inequality follows from

h :=
a∗

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗
,

which implies

0 ≥ hA∗B∗ − ω∗x∗ + h2C∗ ≥ hA∗B∗ − ω∗‖y(z,J )
σ,i ‖∗ + h2C∗.

Because p ∈ P, (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n + 1} were
arbitrary, the proof is complete �
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In the last proof we took care of that the second-order polynomial

P (z) := z2C∗ + zA∗B∗ − ω∗x∗

has two distinct real-valued roots, one smaller than zero and one larger then zero.
Further, because h := a∗2−m > 0 is not larger than the positive root, we have
P (h) ≤ 0, which is exactly what we need in the proof so that everything adds up.

7.7. Summary of the results. In this Section 7, we have delivered a proof of the
following theorem:

Theorem 7.1 (Constructive converse theorem for arbitrary switched systems).
Consider the Switched System 3.5 where P is a finite set, let a > 0 be a real-valued
constant such that [−a, a]n ⊂ U , and assume that at least one of the following two
assumptions holds:

(i) There exists a Lyapunov function W ∈ C2(R≥0 × ([−a, a]n \ {0})) for the
Switched System 3.5.

(ii) The origin is a uniformly asymptotically stable equilibrium point of the
Switched System 3.5, the set [−a, a]n is contained in its region of attraction,
and the functions fp satisfy the Lipschitz condition: for every p ∈ P there
exists a constant LP such that

‖fp(s,x)− fp(t,y)‖ ≤ Lp(|s− t|+ ‖x− y‖)
for all s, t ∈ R≥0 and all x,y ∈ [−a, a]n.

Then, for every constants 0 ≤ T ′ < T ′′ < +∞ and every neighborhood N ⊂
[−a, a]n of the origin, no matter how small, it is possible to parameterize a Lyapunov
function V Lya of class CPWA,

V Lya : [T ′, T ′′]×
(
[−a, a]n \ N

)
→ R,

for the Switched System 3.5 by using the linear programming problem defined in
Definition 6.8.

More concretely: Let m be a positive integer and define the piecewise scaling
function PS : Rn → Rn, the set D, and the vector t of the linear programming
problem through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn),

D := ]− 2k a

2m
, 2k a

2m
[n⊂ N ,

for some integer 1 ≤ k < m, and

t := (t0, t1, . . . , tM ), where ti := T ′ + j2−m(T ′′ − T ′) for all j = 0, 1, . . . , 2m.

Then the linear programming problem LP({fp : p ∈ P}, [−a, a]n,PS, t,D, ‖ · ‖) in
Definition 6.8 possesses a feasible solution, whenever m is large enough.

Proof. Note that by Theorem 5.4 assumption (ii) implies assumption (i). But then,
by the arguments already delivered in this Section 7, the propositions of the theorem
follow. �

Note that we have, in this Section 7, actually proved substantially more than
stated in Theorem 7.1. Namely, we did derive formulae for the values of the pa-
rameters that are needed to initialize the linear programming problem in Definition
6.8. These formulae do depend on the unknown Lyapunov function W , so we can-
not extract the numerical values. However, these formulae are concrete enough to
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derive the promised algorithm for generating a CPWA Lyapunov function. This
will be done in Section 8.

7.8. The autonomous case. The circumstances are close to identical when the
Switched System 3.5 is autonomous.

Theorem 7.2 (Converse theorem for autonomous switched systems).
Consider the Switched System 3.5 where P is a finite set and assume that it is
autonomous. Let a > 0 be a real-valued constant such that [−a, a]n ⊂ U , and
assume that at least one of the following two assumptions holds:

(i) There exists a Lyapunov function W ∈ C2([−a, a]n \ {0}) for the Switched
System 3.5.

(ii) The origin is an asymptotically stable equilibrium point of the Switched
System 3.5, the set [−a, a]n is contained in its region of attraction, and the
functions fp satisfy the Lipschitz condition: for every p ∈ P there exists a
constant LP such that

‖fp(x)− fp(y)‖ ≤ Lp‖x− y‖, for all x,y ∈ [−a, a]n.

Then, for every neighborhood N ⊂ [−a, a]n of the origin, no matter how small, it is
possible to parameterize a time-invariant Lyapunov function V Lya of class CPWA,

V Lya : [−a, a]n \ N → R,

for the Switched System 3.5 by using the linear programming problem from Defini-
tion 6.12.

More concretely: Let m be a positive integer and define the piecewise scaling
function PS : Rn → Rn and the set D of the linear programming problem through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn)

and
D := ]− 2k a

2m
, 2k a

2m
[n⊂ N ,

for some integer 1 ≤ k < m. Then, the linear programming problem LP({fp : p ∈
P}, [−a, a]n,PS,D, ‖ · ‖) in Definition 6.12 possesses a feasible solution, whenever
m is large enough.

Proof. The proof is essentially a slimmed down version of the proof of Theorem
7.1, so we will not go very thoroughly into details.

First, note that by Theorem 5.4 assumption (ii) implies assumption (i), so in both
cases there are functions α, β, γ ∈ K and a function W ∈ C2([−a, a]n \ {0}) → R,
such that

α(‖x‖) ≤W (x) ≤ β(‖x‖),
∇W (x) · fp(x) ≤ −ω(‖x‖)

for all x ∈ ]− a, a[ n \ {0} and all p ∈ P. Further, by Lemma 3.17, we can assume
without loss of generality that α and ω are convex functions. With

x∗min := min
‖x‖∞=a

‖x‖

we set

δ :=
α(x∗min)

2



72 S. F. HAFSTEIN EJDE-2007/MON. 08

and let m∗ be a strictly positive integer, such that

[− a

2m∗ ,
a

2m∗ ]n ⊂ {x ∈ Rn : β(‖x‖) ≤ δ} ∩ N

and set

D :=]− a

2m∗ ,
a

2m∗ [n

Set

x∗ := min
‖x‖∞=a2−m∗

‖x‖, ω∗ :=
1
2
ω(x∗),

C := max
i=1,2,...,n

x∈[−a,a]n\D

∣∣∣∂W
∂xi

(x)
∣∣∣,

and determine a constant B such that

B ≥ max
p∈P

i,r,s=1,2,...,n
x∈[−a,a]n

∣∣∣ ∂2fp,i

∂xr∂xs
(x)
∣∣∣.

Assign

A∗ := sup
p∈P

x∈[−a,a]n

‖fp(x)‖2,

B∗ := n
3
2 · max

r,s=1,2,...,n
x∈[−a,a]n\D

∣∣∣∣ ∂2W

∂xr∂xs
(x)
∣∣∣∣ ,

C∗ := n3BC,

and let m ≥ m∗ be an integer such that

a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗

and set d := 2m−m∗
. We define the piecewise scaling function PS : Rn → Rn

through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn) for all (j1, j2, . . . , jn) ∈ Zn.

We assign the following values to the variables and the remaining constants of the
linear programming problem LP({fp : p ∈ P}, [−a, a]n,PS,D, ‖ · ‖):

B(z,J )
rs := B, for all (z,J ) ∈ Za and all r, s = 1, 2, . . . , n,

Ψa[y] := α(y), for all y ∈ X ‖·‖,

Γa[y] := ω∗x, for all y ∈ X ‖·‖,

Va[x] := W (x) for all x ∈ Ga,

Ca[{x,y}] := C, for all {x,y} ∈ Ya,

ε := min{ω∗, α(y1)/y1}, where y1 := min{y : y ∈ X ‖·‖ and y 6= 0}.

That the linear constraints (LC1a), (LC2a), and (LC3a) are all satisfied follows
very similarly to how the linear constraints (LC1), (LC2), and (LC3) follow in the
nonautonomous case, so we only show that the constraints (LC4a) are fulfilled.
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To do this let (z,J ) ∈ Za, σ ∈ Perm[{1, 2, . . . , n}], and i ∈ {1, 2, . . . , n + 1} be
arbitrary, but fixed throughout the rest of the proof. We have to show that

− Γa[‖y(z,J )
σ,i ‖]

≥
n∑

j=1

Va[y(z,J )
σ,j ]− Va[y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fp,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i

n∑
j=1

Ca[{y(z,J )
σ,j ,y(z,J )

σ,j+1}].

(7.5)
With the values we have assigned to the variables and the constants of the linear
programming problem, inequality (7.5) holds if

−ω∗‖y(z,J )
σ,i ‖ ≥

n∑
j=1

W [y(z,J )
σ,j ]−W [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i ) + h2C∗

with h := a2−m. Now, by the Mean-value theorem and because ω(x) ≥ 2ω∗x for
all x ≥ x∗,

n∑
j=1

W [y(z,J )
σ,j ]−W [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
fσ(j)(y

(z,J )
σ,i ) + h2C∗

=
n∑

j=1

(W [y(z,J )
σ,j ]−W [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )
)
fσ(j)(y

(z,J )
σ,i )

+∇W (y(z,J )
σ,i ) · f(y(z,J )

σ,i ) + h2C∗

≤
∥∥∥ n∑

j=1

(W [y(z,J )
σ,j ]−W [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
− ∂W

∂ξσ(j)
(y(z,J )

σ,i )
)
ej

∥∥∥
2
‖fσ(j)(y

(z,J )
σ,i )‖2

− ω(‖y(z,J )
σ,i ‖) + h2C∗

≤ B∗hA∗ − 2ω∗‖y(z,J )
σ,i ‖+ h2C∗.

Hence, if

−ω∗‖y(z,J )
σ,i ‖ ≥ hA∗B∗ − 2ω∗‖y(z,J )

σ,i ‖+ h2C∗,

inequality (7.5) follows. But, this last inequality follows from

h :=
a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗
,

which implies

0 ≥ hA∗B∗ − ω∗x∗ + h2C∗ ≥ hA∗B∗ − ω∗‖y(z,J )
σ,i ‖+ h2C∗.

�

In Section 8 we will use Theorem 7.1 to derive an algorithm for parameterizing
a CPWA Lyapunov function for the Switched System 3.5 and, if the Switched
System 3.5 is autonomous, we will use Theorem 7.2 to derive an algorithm for
parameterizing a time-invariant CPWA Lyapunov function for the system.
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8. An Algorithm for Constructing Lyapunov Functions

In this section use the results from Theorem 7.1 and Theorem 7.2 to prove that
the systematic scan of the initiating parameters of the linear programming problem
from Definition 6.8 in Procedure 8.1 is an algorithm for constructing Lyapunov
functions for the Switched System 3.5, whenever one exists, and that Procedure 8.3
is an algorithm for constructing time-invariant Lyapunov functions for the Switched
System 3.5 if it is autonomous, again, whenever one exists. However, we first give
a short discussion on algorithms, because we intend to prove that our procedure
to generate Lyapunov functions is concordant with the concept of an algorithm,
whenever the system in question possesses a Lyapunov function.

Donald Knuth writes in his classic work The Art of Computer Programming on
algorithms [29]:

The modern meaning for algorithm is quite similar to that of recipe,
process, method, technique, procedure, routine, rigmarole, except
that the word “algorithm” connotes something just a little different.
Besides merely being a finite set of rules that gives a sequence of
operations for solving a specific type of problem, an algorithm has
five important features:
(1) Finiteness. An algorithm must always terminate in a finite

number of steps. [. . . ]
(2) Definiteness. Each step of an algorithm must be precisely

defined; the actions to be carried out must be be rigorously
and unambiguously specified for each case. [. . . ]

(3) Input. An algorithm has zero or more inputs: quantities that
are given to it initially before the algorithm begins, or dy-
namically as the algorithm runs. These inputs are taken from
specified sets of objects. [. . . ]

(4) Output. An algorithm has one or more outputs: quantities
that have a specified relation to the inputs. [. . . ]

(5) Effectiveness. An algorithm is also generally expected to be
effective, in the sense that its operations must all be sufficiently
basic that they can in principle be done exactly and in a finite
length of time by someone using pencil and paper.

The construction scheme for a Lyapunov function we are going to derive here
does comply to all of these features whenever the equilibrium at the origin is an
uniformly asymptotically stable equilibrium of the Switched System 3.5, and is
therefore an algorithm for constructing Lyapunov functions for arbitrary switched
systems possessing a uniformly asymptotically stable equilibrium.

8.1. The algorithm in the nonautonomous case. We begin by defining a pro-
cedure to construct Lyapunov functions and then we prove that it is an algorithm
for constructing Lyapunov functions for arbitrary switched systems possessing a
uniformly asymptotically stable equilibrium.

Procedure 8.1. Consider the Switched System 3.5 where P is a finite set, let a > 0
be a constant such that [−a, a]n ⊂ U , and let N ⊂ U be an arbitrary neighborhood
of the origin. Further, let T ′ and T ′′ be arbitrary real-valued constants such that
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0 ≤ T ′ < T ′′ and let ‖ · ‖ be an arbitrary norm on Rn.

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on [T ′, T ′′]× [−a, a]n.

First, we have to determine a constant B such that

B ≥ max
p∈P, i,r,s=0,1,...,n
x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s
(x̃)
∣∣∣.

The process has two integer variables that have to be initialized, namely m and N .
They should be initialized as follows: Set N := 0 and assign the smallest possible
positive integer to m such that

]− a2−m, a2−m[ n ⊂ N .
The process consists of the following steps:

(i) Define the piecewise scaling function PS : Rn → Rn and the vector t :=
(t0, t1, . . . , t2m), through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn), for all (j1, j2, . . . , jn) ∈ Zn

and

ti := T ′ + i
T ′′ − T ′

2m
, for i = 0, 1, . . . , 2m.

(ii) For every N∗ = 0, 1, . . . , N we do the following:
Generate the linear programming problem

LP({fp : p ∈ P}, [−a, a]n,PS, t, ]− a2N∗−m, a2N∗−m[n, ‖ · ‖)
as defined in Definition 6.8 and check whether it possesses a feasible solu-
tion or not. If one of the linear programming problems possesses a feasible
solution, then go to step (iii). If none of them possesses a feasible solution,
then assign m := m+ 1 and N := N + 1 and go back to step i).

(iii) Use the feasible solution to parameterize a CPWA Lyapunov function for
the Switched System 3.5 as described in Section 6.3.

After all the preparation we have done, the proof that Procedure 8.1 is an algo-
rithm for constructing Lyapunov functions for arbitrary switched systems possess-
ing a uniformly asymptotically stable equilibrium is remarkably short.

Theorem 8.2 (Procedure 8.1 is an algorithm). Consider the Switched System 3.5
where P is a finite set and let a > 0 be a constant such that [−a, a]n ⊂ U .

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on [T ′, T ′′]× [−a, a]n for
every 0 ≤ T ′ < T ′′ < +∞.

Assume further, that at least one of the following two assumptions holds:
(i) There exists a Lyapunov function W ∈ C2(R≥0 × ([−a, a]n \ {0})) for the

Switched System 3.5.
(ii) The origin is a uniformly asymptotically stable equilibrium point of the

Switched System 3.5, the set [−a, a]n is contained in its region of attraction,
and the functions fp satisfy the Lipschitz condition: for every p ∈ P there
exists a constant LP such that

‖fp(s,x)− fp(t,y)‖ ≤ Lp(|s− t|+ ‖x− y‖),
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for all s, t ∈ R≥0 and all x,y ∈ [−a, a]n.
Then, for every constants 0 ≤ T ′ < T ′′ < +∞ and every neighborhood N ⊂ [−a, a]n
of the origin, no matter how small, the Procedure 8.1 delivers, in a finite number
of steps, a CPWA Lyapunov function V Lya ,

V Lya : [T ′, T ′′]×
(
[−a, a]n \ N

)
→ R,

for the Switched System 3.5.

Proof. Follows directly from what we have shown in Section 7. With the same
notations as there, the linear programming problem

LP({fp : p ∈ P}, [−a, a]n,PS, t, ]− a2N∗−m, a2N∗−m[n, ‖ · ‖)
possesses a feasible solution, when m is so large that

max{T ′′ − T ′, a}
2m

≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗
and N∗, 0 ≤ N∗ ≤ N , is such that

[−a2
N∗

2m
,
a2N∗

2m
]n ⊂ {x ∈ Rn : β(‖x‖) ≤ δ} ∩ N .

�

Because we have already proved in Theorem 4.2 and Theorem 5.4 that the
Switched System 3.5 possesses a Lyapunov function, if and only if an equilibrium of
the system is uniformly asymptotically stable, Theorem 8.2 implies the statement:

It is always possible, in a finite number of steps, to construct a
Lyapunov function for the Switched System 3.5 with the methods
presented in this monograph, whenever one exists.

8.2. The algorithm in the autonomous case. The procedure to construct Lya-
punov functions for autonomous systems mimics Procedure 6.8.

Procedure 8.3. Consider the Switched System 3.5 where P is a finite set, let a > 0
be a constant such that [−a, a]n ⊂ U , and let N ⊂ U be an arbitrary neighborhood
of the origin. Further, assume that the system is autonomous and let ‖ · ‖ be an
arbitrary norm on Rn.

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on [−a, a]n.

First, we have to determine a constant B such that

B ≥ max
p∈P

i,r,s=1,2,...,n
x∈[−a,a]n

∣∣∣ ∂2fp,i

∂xr∂xs
(x)
∣∣∣.

The procedure has two integer variables that have to be initialized, namely m and N .
They should be initialized as follows: Set N := 0 and assign the smallest possible
positive integer to m such that

]− a2−m, a2−m[ n ⊂ N .
The procedure consists of the following steps:

(i) Define the piecewise scaling function PS : Rn → Rn through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn), for all (j1, j2, . . . , jn) ∈ Zn.
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(ii) For every N∗ = 0, 1, . . . , N we do the following:
Generate the linear programming problem

LP({fp : p ∈ P}, [−a, a]n,PS, ]− a2N∗−m, a2N∗−m[n, ‖ · ‖)

as defined in Definition 6.12 and check whether it possesses a feasible solu-
tion or not. If one of the linear programming problems possesses a feasible
solution, then go to step (iii). If none of them possesses a feasible solution,
then assign m := m+ 1 and N := N + 1 and go back to step i).

(iii) Use the feasible solution to parameterize a CPWA Lyapunov function for
the Switched System 3.5 as described in Definition 6.13.

The proof that Procedure 8.3 is an algorithm for constructing time-invariant
Lyapunov functions for arbitrary switched systems possessing an asymptotically
stable equilibrium is essentially identical to the proof of Theorem 8.2, where the
nonautonomous case is treated.

Theorem 8.4 (Procedure 8.3 is an algorithm). Consider the Switched System 3.5
where P is a finite set and assume that it is autonomous. Let a > 0 be a constant
such that [−a, a]n ⊂ U .

We assume that the components of the fp, p ∈ P, have bounded
second-order partial derivatives on [−a, a]n.

Assume further, that at least one of the following two assumptions holds:
(i) There exists a time-invariant Lyapunov function W ∈ C2([−a, a]n \ {0})

for the Switched System 3.5.
(ii) The origin is an asymptotically stable equilibrium point of the Switched

System 3.5, the set [−a, a]n is contained in its region of attraction, and the
functions fp satisfy the Lipschitz condition: for every p ∈ P there exists a
constant LP such that

‖fp(x)− fp(y)‖ ≤ Lp‖x− y‖, for all x,y ∈ [−a, a]n.

Then, for every neighborhood N ⊂ [−a, a]n of the origin, no matter how small,
the Procedure 8.3 delivers, in a finite number of steps, a time-invariant Lyapunov
function V Lya of class CPWA,

V Lya : [−a, a]n \ N → R,

for the autonomous Switched System 3.5.

Proof. Almost identical to the proof of Theorem 8.2. With the same notation as in
Section 7, the linear programming problem

LP({fp : p ∈ P}, [−a, a]n,PS, ]− a2N∗−m, a2N∗−m[n, ‖ · ‖)

possesses a feasible solution, when m is so large that

a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ −A∗B∗

2C∗

and N∗, 0 ≤ N∗ ≤ N , is such that

[−a2
N∗

2m
,
a2N∗

2m
]n ⊂ {x ∈ Rn : β(‖x‖) ≤ δ} ∩ N .

�
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Because we have already proved in Theorem 4.2 and Theorem 5.4 that the au-
tonomous Switched System 3.5 possesses a time-invariant Lyapunov function, if and
only if an equilibrium of the system is asymptotically stable, Theorem 8.4 implies
the statement:

It is always possible, in a finite number of steps, to construct a time-
invariant Lyapunov function for the autonomous Switched System
3.5 with the methods presented in this monograph, whenever one
exists.

9. Examples of Lyapunov functions generated by linear programming

In this section we give some examples of the construction of Lyapunov functions
by the linear programming problem LP({fp : p ∈ P},N ,PS, t,D, ‖ · ‖) from Def-
inition 6.8 and the linear programming problem LP({fp : p ∈ P},N ,PS,D, ‖ · ‖)
from Definition 6.12. In all the examples we will use the infinity norm, that is
‖ · ‖ := ‖ · ‖∞, in the linear programming problems. Further, we will use piece-
wise scaling functions PS, whose components PSi are all odd functions, that is
(recall that the i-th component PSi of PS does only depend on the i-th variable
xi of the argument x) PSi(xi) = −PSi(−xi). Because are only be interested in
the values of a piecewise scaling functions on compact subsets [−m,m]n ⊂ Rn,
m ∈ N>0, this implies that we can define such a function by specifying n vectors
psi := (psi,1,psi,2, . . . ,psi,m), i = 1, 2, . . . , n. If we say that the piecewise scaling
function PS is defined through the ordered vector tuple (ps1,ps2, . . . ,psn), we
mean that PS(0) := 0 and that for every i = 1, 2, . . . , n and every j = 1, 2, . . . ,m,
we have

PSi(j) := psi,j and PSi(−j) := −psi,j .

If we say that the piecewise scaling function PS is defined through the vector ps, we
mean that it is defined trough the vector tuple (ps1,ps2, . . . ,psn), where psi := ps
for all i = 1, 2, . . . , n.

The linear programming problems were all solved by use of the GNU Linear
programming kit (GLPK), version 4.8, developed by Andrew Makhorin. It is a
free software that is available for download on the internet. The parameterized
Lyapunov functions were drawn with gnuplot, version 3.7, developed by Thomas
Williams and Colin Kelley. Just as GLPK, gnuplot is a free software that is available
for download on the internet. The author is indebted to these developers.

9.1. An autonomous system. As a fist example of the use of the linear program-
ming problem from Definition 6.12 and Procedure 8.3 we consider the continuous
system

ẋ = f(x), where f(x, y) :=

(
x3(y − 1)

− x4

(1+x2)2 −
y

1+y2

)
. (9.1)

This system is taken from Example 65 in Section 5.3 in [60]. The Jacobian of f at
the origin has the eigenvalues 0 and −1. Hence, the origin is not an exponentially
stable equilibrium point (see, for example, Theorem 4.4 in [28] or Theorem 15 in
Section 5.5 in [60]). We initialize Procedure 8.3 with

a :=
8
15

and N := ]− 2
15
,

2
15

[ 2.

Further, with
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Figure 1. A Lyapunov function for the system (9.1) generated by
Algorithm 8.3.

Figure 2. A Lyapunov function for the system (9.1), parameter-
ized with the linear programming problem from Definition 6.12,
with a larger domain than the Lyapunov function on Figure 1.

x(z,J ) :=
∣∣e1 ·PS(RJ (z + e1))

∣∣ and y(z,J ) :=
∣∣e2 ·PS(RJ (z + e2))

∣∣, (9.2)



80 S. F. HAFSTEIN EJDE-2007/MON. 08

we set (note that for the constants B(z,J )
p,rs the index p is redundant because the

system is non-switched)

B
(z,J )
11 := 6x(z,J )(1 + y(z,J )),

B
(z,J )
12 := 3x2

(z,J ),

B
(z,J )
22 :=


6y(z,J )

(1+y2
(z,J ))

2 −
8y3

(z,J )

(1+y2
(z,J ))

3 , if y(z,J ) ≤
√

2− 1,

1.46, else,

for all (z,J ) ∈ Z in the linear programming problems. This is more effective
than using one constant B larger than all B(z,J )

p,rs for all (z,J ) ∈ Z and all r, s =
1, 2, . . . , n, as done to shorten the proof of Theorem 7.1.

Procedure 8.1 succeeds in finding a feasible solution to the linear programming
problem with m = 4 and D = 2. The corresponding Lyapunov function of class
CPWA is drawn in Figure 1. We used this Lyapunov function as a starting point
to parameterize a CPWA Lyapunov function with a larger domain and succeeded
with N := [−1, 1]2, D := ]− 0.133, 0.133[2, and PS defined through the vector

ps := (0.033, 0.067, 0.1, 0.133, 0.18, 0.25, 0.3, 0.38, 0.45, 0.55, 0.7, 0.85, 0.93, 1)

as described at the beginning of Section 9. It is drawn on Figure 2.
Note that the domain of the Lyapunov function on Figure 1, where we used

the Procedure 8.3 to scan the parameters of the linear programming problem from
Definition 6.12, is much smaller than that of the Lyapunov function on Figure 2,
where we used another trial-and-error procedure to scan the parameters. This is
typical! The power of Procedure 8.3 and Theorem 8.4 is that they tell us that a
systematic scan will lead to a success if there exists a Lyapunov function for the
system. However, as Procedure 8.3 will not try to increase the distance between
the points in the grid G of the linear programming problem far away from the
equilibrium, it is not particularly well suited to parameterize Lyapunov functions
with large domains. To actually parameterize Lyapunov functions a trial-and-
error procedure that first tries to parameterize a Lyapunov function in a small
neighborhood of the equilibrium, and if it succeeds it tries to extend the grid with
larger grid-steps farther away from the equilibrium, is more suited.

In Figure 3 the sets D, T , and A from Lemma 6.16 are drawn for this particular
Lyapunov function. The innermost square is the boundary of D, the outmost figure
is the boundary of the set A, and in between the boundary of T is plotted. Every
solution to the system (9.1) with an initial value ξ in A will reach the square
[−0.133, 0.133]2 in a finite time t′ and will stay in the set T for all t ≥ t′.

9.2. An arbitrary switched autonomous system. Consider the autonomous
systems

ẋ = f1(x), where f1(x, y) :=
(

−y
x− y(1− x2 + 0.1x4)

)
, (9.3)

ẋ = f2(x), where f2(x, y) :=
(
−y + x(x2 + y2 − 1)
x+ y(x2 + y2 − 1)

)
, (9.4)

and

ẋ = f3(x), (9.5)
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Figure 3. The sets D, T , and A from Lemma 6.11 for the Lya-
punov function on Figure 2 for the system (9.1).

where f3(x, y) :=

(
−1.5y

x
1.5 + y

((
x

1.5

)2 + y2 − 1
))

.

The systems (9.3) and (9.4) are taken from Exercise 1.16 in [28] and from page 194
in [54] respectively.

First, we used the linear programming problem from Definition 6.12 to param-
eterize a Lyapunov function for each of the systems (9.3), (9.4), and (9.5) individ-
ually. We define x(z,J ) and y(z,J ) as in formula (9.2) and for the system (9.3) we
set

B
(z,J )
1,11 := 2y(z,J ) + 1.2y(z,J )x

2
(z,J ),

B
(z,J )
1,12 := 2x(z,J ) + 0.4x3

(z,J ),

B
(z,J )
1,22 := 0,

for the system (9.4) we set

B
(z,J )
2,11 := max{6x(z,J ), 2y(z,J )},

B
(z,J )
2,12 := max{2x(z,J ), 2y(z,J )},

B
(z,J )
2,22 := max{2x(z,J ), 6y(z,J )},

and for the system (9.5) we set

B
(z,J )
3,11 :=

8
9
y(z,J ),

B
(z,J )
3,12 :=

8
9
x(z,J ),
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Figure 4. A Lyapunov function for the system (9.3) generated by
the linear programming problem from Definition 6.12.

B
(z,J )
3,22 := 6y(z,J ).

Figure 5. A Lyapunov function for the system (9.4) generated by
the linear programming problem from Definition 6.12.

We parameterized a CPWA Lyapunov function for the system (9.3) by use of
the linear programming problem from Definition 6.12 with N := [−1.337, 1.337]2,
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D := ∅, and PS defined trough the vector

ps := (0.0906, 0.316, 0.569, 0.695, 0.909, 1.016, 1.163, 1.236, 1.337)

as described at the beginning of Section 9. The Lyapunov function is depicted on
Figure 4.

We parameterized a CPWA Lyapunov function for the system (9.4) by use of
the linear programming problem from Definition 6.12 with N := [−0.818, 0.818]2,
D := ∅, and PS defined trough the vector

ps := (0.188, 0.394, 0.497, 0.639, 0.8, 0.745, 0.794, 0.806, 0.818)

as described at the beginning of Section 9. The Lyapunov function is depicted on
Figure 5.

We parameterized a CPWA Lyapunov function for the system (9.5) by use of
the linear programming problem from Definition 6.12 with N := [−0.506, 0.506]2,
D := ]− 0.01, 0.01[2, and PS defined trough the vector

ps := (0.01, 0.0325, 0.0831, 0.197, 0.432, 0.461, 0.506)

as described at the beginning of Section 9. The Lyapunov function is depicted on
Figure 6.

Figure 6. A Lyapunov function for the system (9.5) generated by
the linear programming problem from Definition 6.12.

Finally, we parameterized a CPWA Lyapunov function for the switched system

ẋ = fp(x), p ∈ {1, 2, 3}, (9.6)

where the functions f1, f2, and f3 are, of course, the functions from (9.3), (9.4),
and (9.5), by use of the linear programming problem from Definition 6.12 with
N := [−0.612, 0.612]2, D := ]− 0.01, 0.01[2, and PS defined trough the vector

ps := (0.01, 0.0325, 0.0831, 0.197, 0.354, 0.432, 0.535, 0.586, 0.612)
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as described at the beginning of Section 9. The Lyapunov function is depicted on
Figure 7. Note, that this Lyapunov function is a Lyapunov function for all of the
systems (9.3), (9.4), and (9.5) individually.

The equilibrium’s region of attraction, secured by this Lyapunov function, and
the set D are drawn on Figure 8. Every solution to the system (9.6) that starts in
the larger set will reach the smaller set in a finite time.

9.3. A variable structure system. Consider the linear systems

ẋ = A1x, where A1 :=
(

0.1 −1
2 0.1

)
and

ẋ = A2x, where A2 :=
(

0.1 −2
1 0.1

)
.

These systems are taken from [33]. It is easy to verify that the matrices A1 and A2

both have the eigenvalues λ± = 0.1± i
√

2. Therefore, by elementary linear stability
theory, the systems (9.3) and (9.3) are both unstable.

On Figure 9 the trajectories of the systems (9.3) and (9.3) with the initial value
(1, 0) are depicted. That the norm of the solutions is growing with t in the long
run is clear. However, it is equally clear, that the solution to (9.3) is decreasing on
the sets

Q2 := {(x1, x2) : x1 ≤ 0 and x2 > 0} and Q4 := {(x1, x2) : x1 ≥ 0 and x2 > 0}

and that the solution to (9.3) is decreasing on the sets

Q1 := {(x1, x2) : x1 > 0 and x2 ≥ 0} and Q3 := {(x1, x2) : x1 < 0 and x2 ≤ 0}.

Figure 7. A Lyapunov function for the arbitrary switched system
(9.6) generated by the linear programming problem from Definition
6.12.
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Figure 8. The region of attraction secured by the Lyapunov func-
tion on Figure 7 for the switched system. All solution that start
in the larger set are asymptotically attracted to the smaller set at
the origin.

Figure 9. Trajectory of the system ẋ = A1x (left) and of ẋ = A2x
(right) starting at (1, 0).

Now, consider the switched system

ẋ = Apx, p ∈ {1, 2}, (9.7)

where the matrices A1 and A2 are the same as in (9.3) and (9.3). Obviously, this
system is not stable under arbitrary switching, but, if we only consider solution
trajectories (t, ξ) 7→ φσ(t, ξ), such that

φσ(t, ξ) ∈ Q2 ∪Q4, implies σ(t) = 1, and (9.8)

φσ(t, ξ) ∈ Q1 ∪Q3, implies σ(t) = 2, (9.9)
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then we would expect all trajectories under consideration to be asymptotically at-
tracted to the equilibrium. The switched system (9.7), together with the constraints
(9.8) and (9.9), is said to be a variable structure system. The reason is quite obvi-
ous, the structure of the right-hand side of the system (9.7) depends on the current
position in the state-space.

It is a simple task to modify the linear programming problem from Definition 6.12
to parameterize a Lyapunov function for the variable structure system. Usually,
one would include the constraint (LC4a), that is,

− Γ
[
‖y(z,J )

σ,i ‖
]

≥
n∑

j=1

( V [y(z,J )
σ,j ]− V [y(z,J )

σ,j+1]

eσ(j) · (y
(z,J )
σ,j − y(z,J )

σ,j+1)
f̃p,σ(j)(y

(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y(z,J )
σ,j+1}]

)
.

for every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{1, 2, . . . , n}], and every i =
1, 2, . . . , n + 1. In the modified linear programming problem however, we exclude
the constraints for some values of p, (z,J ), σ, and i. It goes as follows:

(i) Whenever p = 2 and either J = {1} or J = {2}, we do not include the
constraint (LC4a), for these particular values of p, (z,J ), σ, and i, in the
linear programming problem.

(ii) Whenever p = 1 and either J = ∅ or J = {1, 2}, we do not include the
constraints (LC4a), for these particular values of p, (z,J ), σ, and i, in the
linear programming problem.

We parameterized a Lyapunov function for the variable structure system by use
of this modified linear programming problem with N := [−1.152, 1.152]2, D :=
]− 0.01, 0.01[2, and PS defined trough the vector

ps := (0.00333, 0.00667, 0.01, 0.0133, 0.0166, 0.0242,

Figure 10. A Lyapunov function for the variable structure system
(9.7) generated by an altered version of the linear programming
problem from Definition 6.12.
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0.0410, 0.0790, 0.157, 0.319, 0.652, 1.152)

as described at the beginning of Section 9. The Lyapunov function V Lya is depicted
on Figure 10.

Now, one might wonder, what information we can extract from this function
V Lya , which is parameterized by our modified linear programming problem. Denote
by γa the function that is constructed from the variables Γa[yi] as in Definition 6.13.
Then it is easy to see that for every

x ∈
(
N \ D

)
∩
(
Q1 ∪Q3

)
we have

lim sup
h→0+

V Lya(x + hA2x)− V Lya(x)
h

≤ −γa(‖x‖∞)

and for every x ∈
(
N \ D

)
∩
(
Q2 ∪Q4

)
, we have

lim sup
h→0+

V Lya(x + hA1x)− V Lya(x)
h

≤ −γa(‖x‖∞).

But this includes all trajectories of the system (9.7) that comply with the constraints
(9.8) and (9.9) so

lim sup
h→0+

V Lya(φσ(t+ h, ξ))− V Lya(φσ(t, ξ))
h

≤ −γa(‖φσ(t, ξ)‖∞)

for all φσ(t, ξ) in the interior of N \ D and all trajectories under consideration
and therefore V Lya is a Lyapunov function for the variable structure system. The
equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on
Figure 11.

Figure 11. The region of attraction secured by the Lyapunov
function in Figure 10 for the variable structure system. All solution
that start in the larger set are asymptotically attracted to the
smaller set at the origin.
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9.4. A variable structure system with sliding modes. Define the matrix A
and the vector p through

A :=
(

0 1
1 0

)
and p :=

(
1
1

)
and consider the systems

ẋ = f1(x), where f1(x) := Ax, (9.10)

ẋ = f2(x), where f2(x) := −p, (9.11)

ẋ = f3(x), where f3(x) := p. (9.12)

The eigenvalues of the matrix A in (9.10) are λ± = ±1 and the equilibrium at
the origin is therefore a saddle point of the system and is not stable. The systems
(9.11) and (9.12) do not even possess an equilibrium. Let the sets Q1, Q2, Q3, and

Figure 12. A Lyapunov function for the variable structure system
(9.13) generated by an altered version of the linear programming
problem from Definition 6.12.

Q4 be defined as in the last example and consider the variable structure system
where we use the system (9.10) in Q2 and Q4, the system (9.11) in Q1, and the
system (9.12) in Q3. A look the direction field of the system (9.10) suggests that
this variable structure system might be stable, but the problem is that the system
does not possess a properly defined solution compatible with our solution concept
in Definition 3.4. The reason is that a trajectory, for example leaving Q4 to Q1, is
sent straight back by the dynamics in Q1 to Q4, where it will, of course, be sent
straight back to Q1. This phenomena is often called chattering and the sets {x ∈
R2 : x1 = 0} and {x ∈ R2 : x2 = 0} are called the sliding modes of the dynamics. A
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solution concept for such variable structure systems has been developed by Filippov
and others, see, for example [9], [10], and [55], or, for a brief review, [67].

Figure 13. The region of attraction secured by the Lyapunov
function in Figure 12 for the variable structure system. All solution
that start in the larger set are asymptotically attracted to the
smaller set at the origin.

Figure 14. A Lyapunov function for the variable structure system
(9.13) generated by an altered version of the linear programming
problem from Definition 6.12.
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Even though Filippov’s solution trajectories are supposed to be close to the true
trajectories if the switching is fast, we will use a more simple and more robust
technique here to prove the stability of the system. Our approach is very simple,
set h := 0.005 and define the sets

S1,2 := {x ∈ Rn : |x1| < h and x2 > 0}
S2,3 := {x ∈ Rn : x1 < 0 and |x2| < h}
S3,4 := {x ∈ Rn : |x1| < h and x2 < 0}
S4,1 := {x ∈ Rn : x1 > 0 and |x2| < h}

D′ := ]− 2h, 2h[2.

We will generate a Lyapunov function with [−0.957, 0.957]2 as domain for the vari-
able structure system so we can consider D to be a small neighborhood of the origin
and the Si,j to be thin stripes between Qi and Qj .

We parameterized a Lyapunov function V Lya for the variable structure system
by use of a modified linear programming problem with N := [−0, 957, 0, 957]2,
D := D′, and PS defined trough the vector

ps := (0.005, 0.01, 0.015, 0.0263, 0.052, 0.109, 0.237, 0.525, 0.957)

as described at the beginning of Section 9.
The modification we used to the linear programming problem in Definition 6.12,

similar to the modification in the last example, was to only include the constraints
(LC4a) in the linear programming problem for some sets of parameters

p ∈ P, (z,J ) ∈ Z, σ ∈ Perm[{1, 2, . . . , n}], i ∈ {1, 2, . . . , n+ 1}.
Exactly, for every simplex S in the simplicial partition, S ∩ D = ∅, we included

the constraints (LC4a) for every vertex of the simplex, if and only if:

S ⊂ Q1 \
(
S1,2 ∪ S4,1

)
and p = 2,

S ⊂ Q2 \
(
S1,2 ∪ S2,3

)⋃
Q4 \

(
S4,1 ∪ S3,4

)
and p = 1,

S ⊂ Q3 \
(
S2,3 ∪ S3,4

)
and p = 3,

S ⊂ S1,2 ∪ S4,1 and
(
p = 1 or p = 2

)
,

S ⊂ S2,3 ∪ S3,4 and
(
p = 1 or p = 3

)
.

This implies for the Lyapunov function V Lya , where the function γa ∈ K is con-
structed from the variables Γa[yi] as in Definition 6.13, that:

V1) For every x in the interior of the set
(
Q1 ∪ S1,2 ∪ S4,1

)
\ D we have

lim sup
h→0+

V Lya(x + hf2(x))− V Lya(x)
h

≤ −γa(‖x‖∞).

V2) For every x in the interior of the set
(
Q2∪Q4∪S1,2∪S2,3∪S3,4∪S4,1

)
\D,

we have

lim sup
h→0+

V Lya(x + hf1(x))− V Lya(x)
h

≤ −γa(‖x‖∞).

V3) For every x in the interior of the set
(
Q3 ∪ S2,3 ∪ S3,4

)
\ D, we have

lim sup
h→0+

V Lya(x + hf3(x))− V Lya(x)
h

≤ −γa(‖x‖∞).
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Now, let f1, f2, and f3 be the functions from the systems (9.10), (9.11), and
(9.12) and consider the variable structure system

ẋ = fp(x), p ∈ {1, 2, 3}, (9.13)

under the following constraints:
(i) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of Q1 \

(
S1,2 ∪ S4,1

)
implies σ(t) = 2.

(ii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of
Q2 \

(
S1,2 ∪ S2,3

)⋃
Q4 \

(
S4,1 ∪ S3,4

)
implies σ(t) = 1.

(iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of Q3 \
(
S2,3 ∪ S3,4

)
implies σ(t) = 3.

(iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of S1,2 ∪ S4,1 implies
σ(t) ∈ {1, 2}.

(iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of S2,3 ∪ S3,4 implies
σ(t) ∈ {1, 3}.

One should make one self clear what these constraints imply. For example, if
ξ ∈ Q2 \

(
S1,2 ∪ S2,3

)
, then we must use the dynamics ẋ = Ax until t 7→ φσ(t, ξ)

leaves Q2 \
(
S1,2 ∪S2,3

)
. If then, for example, φσ(t′, ξ) ∈ S1,2 for some t′ > 0, then

every switching between the systems ẋ = Ax and ẋ = −p is allowed as long as
t 7→ φσ(t, ξ) stays in S1,2. However, if, for example, φσ(t′′, ξ) ∈ Q1 \

(
S1,2 ∪ S4,1

)
for some t′′ > t′, then we must use the dynamics ẋ = −p until t 7→ φσ(t,x) leaves
Q1 \

(
S1,2 ∪ S4,1

)
.

By V1, V2, and V3 we have for every trajectory t 7→ φσ(t, ξ) under consideration
that

lim sup
h→0+

V Lya(φσ(t+ h, ξ))− V Lya(φσ(t, ξ))
h

≤ −γa(‖φσ(t, ξ)‖∞),

so the function V Lya is a Lyapunov function for this system.
The parameterized Lyapunov function V Lya for the system (9.13) is depicted

on Figure 12 and its region of attraction on Figure 13. Because it is difficult to
recognize the structure of the Lyapunov function close to the origin, a Lyapunov
function for the same system, but with a much smaller domain, is depicted on
Figure 14.

9.5. A one-dimensional nonautonomous switched system. Consider the one-
dimensional systems

ẋ = f1(t, x), where f1(t, x) := − x

1 + t
(9.14)

and
ẋ = f2(t, x), where f2(t, x) := − tx

1 + t
. (9.15)

The system (9.14) has the closed-form solution

φ(t, t0, ξ) = ξ
1 + t0
1 + t

and the system (9.15) has the closed-form solution

φ(t, t0, ξ) = ξe−(t−t0)
1 + t

1 + t0
.
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Figure 15. A Lyapunov function for the nonautonomous system
(9.14) generated by the linear programming problem from Defini-
tion 6.8.

The origin in the state-space is therefore, for every fixed t0, an asymptotically
stable equilibrium point of the system (9.14) and, because

|ξ|e−(t−t0)
1 + t

1 + t0
≤ 2|ξ|e−

t−t0
2 ,

a uniformly exponentially stable equilibrium point of the system (9.15). However,
as can easily be verified, it is not a uniformly asymptotically stable equilibrium
point of the system (9.14). This implies that the system (9.14) cannot possess a
Lyapunov function that is defined for all t ≥ 0. Note however, that this does not
imply that we cannot parameterize a Lyapunov-like function on a compact time
interval for the system (9.14).

We set

t(z,J ) := e0 · P̃S(z) and x(z,J ) := |e1 · P̃S(RJ (z + e1))|

and define the constants B(z,J )
p,rs from the linear programming problem from Defini-

tion 6.8 by

B
(z,J )
p,00 :=

2x(z,J )

(1 + t(z,J ))3
,

B
(z,J )
p,01 :=

1
(1 + t(z,J ))2

,

B
(z,J )
p,11 := 0

for p ∈ {1, 2}. We parameterized a CPWA Lyapunov function for the system (9.14),
the system (9.15), and the switched system

ẋ = fp(t, x), p ∈ {1, 2} (9.16)
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Figure 16. A Lyapunov function for the nonautonomous system
(9.15) generated by the linear programming problem from Defini-
tion 6.8.

by use of the linear programming problem from Definition 6.8 with N :=]−1.1, 1.1[,
D :=]− 0.11, 0.11[, PS defined through the vector

ps := (0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88, 0.99, 1.1)

as described at the beginning of Section 9, and the vector

t := (0, 0.194, 0.444, 0.75, 1.111, 1.528, 2, 2.528, 3.111, 3.75, 4.444, 5.194, 6,

6.861, 7.778, 8.75, 9.778, 10.861, 12, 13.194, 14.444, 15.75, 17.111, 18.528, 20).

The Lyapunov function for the system (9.14) is depicted on Figure 15, the Lyapunov
function for the system (9.15) on Figure 15, and the Lyapunov function for the
arbitrary switched system (9.16) on Figure 9.16.

9.6. A two-dimensional nonautonomous switched system.
Consider the two-dimensional systems

ẋ = f1(t,x), where f1(t, x, y) :=
(
−2x+ y cos(t)
x cos(t)− 2y

)
(9.17)

and

ẋ = f2(t,x), where f2(t, x, y) :=
(
−2x+ y sin(t)
x sin(t)− 2y

)
. (9.18)

We set

x(z,J ) := |e1 · P̃S(RJ (z + e1))| and y(z,J ) := |e2 · P̃S(RJ (z + e2))|

and assign values to the constants B(z,J )
p,rs from the linear programming problem in

Definition 6.8 as follows:

B
(z,J )
p,00 := max{x(z,J ), y(z,J )},
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Figure 17. A Lyapunov function for the switched nonautono-
mous system (9.16) generated by the linear programming problem
from Definition 6.8.

Figure 18. The function (x, y) 7→ V (2, x, y), where V (t, x, y) is
the parameterized Lyapunov function for the nonautonomous sys-
tem (9.17).

B
(z,J )
p,11 := 0,

B
(z,J )
p,22 := 0,
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Figure 19. The function (x, y) 7→ V (2, x, y), where V (t, x, y) is
the parameterized Lyapunov function for the nonautonomous sys-
tem (9.18).

B
(z,J )
p,01 := 1,

B
(z,J )
p,02 := 1,

B
(z,J )
p,12 := 0

for p ∈ {1, 2}. We parameterized a Lyapunov function for the system (9.17), the
system (9.18), and the switched system

ẋ = fp(t,x), p ∈ {1, 2} (9.19)

by use of the linear programming problem from Definition 6.8 with
N := ]− 0.55, 0.55[2, D := ]− 0.11, 0.11[2, PS defined through the vector

ps := (0.11, 0.22, 0.33, 0.44, 0.55)

as described at the beginning of Section 9, and the vector

t := (0, 0.3125, 0.75, 1.3125, 2).

Because the Lyapunov functions are functions from R × R2 into R it is hardly
possible to draw them in any sensible way on a two-dimensional sheet. Therefore,
we only draw them exemplary for the fixed time-value t := 2. On figures 18, 19,
and 20, the state-space dependency of the parameterized Lyapunov functions for
the systems (9.17), (9.18), and (9.19) respectively are depicted.

10. Conclusion

In this monograph we developed an algorithm for constructing Lyapunov func-
tions for nonlinear, nonautonomous, arbitrary switched continuous systems possess-
ing a uniformly asymptotically stable equilibrium. The necessary stability theory
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5
NNS3-5.jpg

Figure 20. The function (x, y) 7→ V (2, x, y), where V (t, x, y)
is the parameterized Lyapunov function for the nonautonomous
switched system (9.19).

of switched systems, including a converse Lyapunov theorem for arbitrary switched
nonlinear, nonautonomous systems possessing a uniformly asymptotically stable
equilibrium (Theorem 5.4), was developed in the sections 3, 4, and 5. In the sec-
tions 6, 7, and 8 we presented a linear programming problem in Definition 6.8 that
can be constructed from a finite set of nonlinear and nonautonomous differential
equations ẋ = fp(t,x), p ∈ P, where the components of the fp are C2, and we proved
that every feasible solution to the linear programming problem can be used to pa-
rameterize a common Lyapunov function for the systems. Further, we proved that
if the origin in the state-space is a uniformly asymptotically stable equilibrium of
the switched system ẋ = fσ(t,x), σ : R≥0 → P, then Procedure 8.1, which uses the
linear programming problem from Definition 6.8, is an algorithm for constructing
a Lyapunov function for the switched system. Finally, in Section 9, we gave several
examples of Lyapunov functions that we generated by use of the linear program-
ming problem. Especially, we generated Lyapunov functions for variable structure
systems with sliding modes.

It is the belief of the author that this work is a considerable advance in the Lya-
punov stability theory of dynamical systems and he hopes to have convinced the
reader that the numerical construction of Lyapunov functions, even for arbitrary
switched, nonlinear, nonautonomous, continuous systems, is not only a theoretical
possibility, but is capable of being developed to a standard tool in system analysis
software in the near future. Thus, the new algorithm presented in this monograph
should give system engineers a considerable advantage in comparison to the tradi-
tional approach of linearization and pure local analysis.
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List of Symbols

R the set of real numbers
R≥0 the real-numbers larger than or equal to zero
R>0 the real-numbers larger than zero
Z the integers
Z≥0 the integers larger than or equal to zero
Z>0 the integers larger than zero
An set of n-tuples of elements belonging to a set A
Rn the n-dimensional Euclidean space, n ∈ N>0

A the topological closure of a set A ⊂ Rn

R R := R ∪ {−∞} ∪ {+∞}
∂A the boundary of a set A
dom(f) the domain of a function f
f(U) the image of a set U under a mapping f
f−1(U) the preimage of a set U with respect to a mapping f
C(U) continuous real-valued functions with domain U
Ck(U) k-times continuously differentiable real-valued functions

with domain U
[Ck(U)]n vector fields f = (f1, f2, . . . , fn) of which fi ∈ Ck(U)

for i = 1, 2, . . . , n
K strictly monotonically increasing functions on [0,+∞[

vanishing at the origin
L strictly monotonically decreasing functions on [0,+∞[,

approaching zero at infinity
P(A) the power set of a set A
Perm[A] the permutation group of A, i.e., the set of all bijective functions

A → A
conA the convex hull of a set A
graph(f) the graph of a function f
ei the i-th unit vector
x · y the inner product of vectors x and y

‖x‖p p-norm of a vector x, ‖x‖p :=
(∑

i |xi|p
) 1

p if 1 ≤ p < +∞
and ‖x‖∞ := maxi |xi|

f ′ the derivative of a function f
ẋ the time-derivative of a vector-valued function x
∇f the gradient of a scalar field f : Rn → R
∇f the Jacobian of a vector field f : Rm → Rn

χA the characteristic function of a set A
δij the delta Kronecker, equal to 1 if i = j and equal to 0 if i 6= j
[a, b] [a, b] := {x ∈ R|a ≤ x ≤ b}
]a, b] ]a, b] := {x ∈ R|a < x ≤ b}
supp(f) supp(f) := {x ∈ Rn : f(x) 6= 0}
RJ reflection function with respect to the set J ⊂ {1, 2, . . . , n},

see Definition 6.2
PS piecewise scaling function, see page 36
S[PS,N ] a simplicial partition of a the set PS(N ) ⊂ Rn,

see Definition 6.5
fp,i the i-th component of the vector field fp
B‖·‖,R B‖·‖,R := {x ∈ Rn : ‖x‖ < R}
SP the set of all switching signals R≥0 → P, see Definition 3.3
ẋ = fσ(t,x) arbitrary switched system, see Switched System 3.5
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[3] N. Bhatia and G. Szegö. Stability Theory of Dynamical Systems. Springer, 1970.
[4] R. Brayton and C. Tong. Stability of dynamical systems: a constructive approach. IEEE

Transactions on Circuits and Systems, 26:224–234, 1979.

[5] R. Brayton and C. Tong. Constructive stability and asymptotic stability of dynamical sys-
tems. IEEE Transactions on Circuits and Systems, 27:1121–1130, 1980.
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