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A NOTE ON THE UNIQUENESS OF ENTROPY SOLUTIONS TO

FIRST ORDER QUASILINEAR EQUATIONS

DAVID J. DILLER

Abstract. In this note, we consider entropy solutions to scalar conservation
laws with unbounded initial data. In particular, we offer an extension of
Kružkhov’s uniqueness proof (see [1]).

1. Introduction

We are concerned with the following Cauchy problem:{
ut + divF (u) = 0 in ST = RN × (0,T)

u(x, 0) = u0(x) x ∈ RN.
(1)

Here F = (F1, · · · , FN ) ∈ [C0,1(R)]N, and u0 ∈ L1
loc(RN). In particular, we are

interested in the entropy solutions to (1). We say that u ∈ L∞loc(ST ) is an entropy
solution to (1) if∫∫

ST

sign(u− k) [(u− k)φt + (F (u)− F (k)) ·Dφ] dxdt ≥ 0, (2)

for all φ ∈ C∞0 (ST ), φ ≥ 0, and all k ∈ R, and there exists a set Γ0 ⊆ [0, T ] of
measure zero, such that for all compact sets K ⊆ RN

lim
t→0+

t/∈Γ0

‖u(·, t)− u0‖1,K = 0. (3)

In [1], Kružkhov proves existence and uniqueness of an entropy solution to (1)
when u0 is bounded and F is sufficiently smooth. If u0, v0 ∈ L1(RN)∩L∞(RN) with
corresponding entropy solutions u, v respectively then∫

RN
|u(x, t) − v(x, t)| dx ≤

∫
RN
|u0(x) − v0(x)| dx

for a.e. t ∈ [0, T ] (see [1] equation 3.1). If u0 ∈ L1(RN) (but not bounded) then
there is a natural candidate for an entropy solution with this initial data. This note
is motivated by the following two questions:

(i) Is this candidate an entropy solution?
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(ii) If it is an entropy solution then is it the unique entropy solution?
This note is a partial answer to the second of these two questions.

2. Main Result

In proving uniqueness Kružkhov proves the following Proposition:

Proposition 2.1. If u and v are entropy solutions to (1) satisfying∥∥∥∥F (u)− F (v)

u− v

∥∥∥∥
∞,ST

≤M

then u = v almost everywhere in ST .

The primary result of this note is the following improvement of Proposition 2.1.

Proposition 2.2. If u and v are entropy solutions to (1) satisfying∥∥∥∥F (u(·, t))− F (v(·, t))

u(·, t)− v(·, t)

∥∥∥∥
∞,Bρ

≤M(t, ρ) (4)

where M satisfies

lim
ρ→∞

(
ρ−

∫ T

0

M(t, ρ) dt

)
=∞ (5)

then u = v almost everywhere in ST .

The advantage of Proposition 2.2 over Proposition 2.1 is that Proposition 2.2
allows for u0 to become unbounded. Set A(u) = (F ′1(u), · · · , F ′N (u)). Then one can
easily verify that Proposition 2.2 implies the following.

Corollary 2.3. There exists at most one entropy solution to (1) satisfying

‖A(u(·, t))‖∞,RN ≤M(t)

where M satisfies ∫ T

0

M(t) dt <∞.

As an example we apply Corollary 2.3 to the Burger’s equation, i.e., N = 1 and
F (u) = 1

2u
2.

Lemma 2.4. If u0 ∈ Lp(RN) with 1 ≤ p <∞ then there exists an entropy solution
u of (1) satisfying

‖u(·, t)‖∞,RN ≤
(2‖u0‖p)

p
p+1

t
1
p+1

∈ L1([0, 1]). (6)

Proof. Let u be the almost everywhere unique minimizer of

ψ(x, t, v) =

∫ x−vt

x

u0(s) ds +
tv2

2
.

For details see [2]. Then u is an entropy solution to (1). Now ψ(x, t, 0) = 0 and by
Holder’s inequality

ψ(x, t, v) ≥− ‖u0‖p |vt|
p−1
p +

tv2

2

= |vt|
p−1
p (−‖u0‖p +

t
1
p |v|

p+1
p

2
)

>0
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when

v >
(2‖u0‖p)

p
p+1

t
1
p+1

.

This implies (6).

Thus from Corollary 2.3 the entropy solution to Burger’s equation satisfying (6) is
unique. One can prove a similar estimate for solutions when F (u) =|u|α for any
α > 1.

Proof. (of Proposition 2.2). Let u and v be any two entropy solutions to (1). Let
J ∈ C∞0 (−1, 1) satisfy: 

∫ 1

−1

J(x) dx = 1

J ≥ 0.

Any two entropy solutions u, v satisfy∫∫
ST

sign(u− v)[(u− v)φt + (F (u)− F (v)) ·Dφ] dxdt ≥ 0 (7)

for all φ ∈ C∞0 (ST ) with φ ≥ 0 (see [1] equation 3.7). Set

r(t, ρ) = ρ−

∫ t

0

M(τ, ρ)dτ.

Since t→ r(t, ρ) is decreasing, (5) implies

lim
ρ→∞

r(t, ρ) =∞ for all 0 ≤ t ≤ T.

Select R > 0 such that if ρ > R then r(T, ρ) > 0. Fix ρ > R. Set r(t) = r(t, ρ). Let
0 < t1 < t2 < T . Let 0 < ε < min{t1, T − t2}. Consider the following test function:

φε(x, t) = ε−N−1

∫ t−t1

t−t2

J
(s
ε

)
ds

∫ ∞
|x|−r(t)+ε

J
(s
ε

)
ds .

Notice that

suppφε ⊆ {(x, t) : t1 − ε < t < t2 + ε and |x|< r(0) + ε},

so that φε is an admissible test function for (7). Now we compute φε,t and Dφε.

φε,t =ε−1

[
J

(
t− t1
ε

)
− J

(
t− t2
ε

)]
ε−N

∫ ∞
|x|−r(t)+ε

J
(s
ε

)
ds

+

[
M(t)ε−NJ

(
|x| −r(t) + ε

ε

)]
ε−1

∫ t−t1

t−t2

J
(s
ε

)
ds .

Dφε =
x

|x|

[
ε−NJ

(
|x| −r(t) + ε

ε

)]
ε−1

∫ t−t1

t−t2

J
(s
ε

)
ds .
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Then using this test function in (7) yields∫∫
ST

|u− v| ε−1

[
J

(
t− t1
ε

)
− J

(
t− t2
ε

)]
ε−N

∫ ∞
|x|−r(t)+ε

J
(s
ε

)
ds

≥

∫∫
ST

ε−NJ

(
|x| −r(t) + ε

ε

)
ε−1

∫ t−t1

t−t2

J
(s
ε

)
ds

×

[
sign(u− v)(F (u)− F (v)) ·

x

|x|
+M(t, ρ) |u− v|

]
dxdt

≥0 because M(t, ρ) |u− v|≥|F (u)− F (v)| .

So by letting ε→ 0 we obtain∫
Br(t2)

|u− v| (x, t2) dx ≤

∫
Br(t1)

|u− v| (x, t1) dx .

Since r(t1) < ρ ∫
Br(t1)

|u− v| (x, t2) dx ≤

∫
Bρ

|u− v| (x, t1) dx .

Combining these with (3) yields∫
Br(t2)

|u− v| (x, t2) dx ≤

∫
Bρ

|u− v| (x, 0) dx = 0.

Thus, for 0 < t2 < T , u(x, t2) = v(x, t2) for x ∈ Br(t2). Letting ρ → ∞ and using
condition (5), u(·, t2) = v(·, t2). Since t2 is arbitrary, u = v in ST .

As another example we consider Burger’s equation with initial data u0(x) = −x.
We show that in this situation (1) has a unique entropy solution in S1 satisfying

‖u(·, t)‖∞,Bρ ≤
ρ

1− t
.

First note that

u(x, t) =
−x

1− t
is one such solution. Suppose v is another. For 0 < t < 1

r(t, ρ) = ρ−

∫ t

0

ρ

1− τ
dτ = ρ(1 + ln(1− t)),

so Proposition 2.2 guarantees that u = v in S1−e−1 . By reapplying Proposition 2.2
this time beginning at t = 1 − e−1 we find that u = v in S1−e−2 . Finally, by
repeating this argument n times, u = v in S1−e−n . Thus u = v in S1.
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