A NOTE ON THE UNIQUENESS OF ENTROPY SOLUTIONS TO FIRST ORDER QUASILINEAR EQUATIONS

DAVID J. DILLER

Abstract

In this note, we consider entropy solutions to scalar conservation laws with unbounded initial data. In particular, we offer an extension of Kružkhov's uniqueness proof (see [1]).

1. Introduction

We are concerned with the following Cauchy problem:

$$
\left\{\begin{align*}
u_{t}+\operatorname{div} F(u)=0 & \text { in } S_{T}=\mathbb{R}^{\mathbb{N}} \times(\nvdash, \mathbb{T}) \tag{1}\\
u(x, 0)=u_{0}(x) & x \in \mathbb{R}^{\mathbb{N}}
\end{align*}\right.
$$

Here $F=\left(F_{1}, \cdots, F_{N}\right) \in\left[C^{0,1}(\mathbb{R})\right]^{\mathbb{N}}$, and $u_{0} \in L_{l o c}^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. In particular, we are interested in the entropy solutions to (1). We say that $u \in L_{\text {loc }}^{\infty}\left(S_{T}\right)$ is an entropy solution to (1) if

$$
\begin{equation*}
\iint_{S_{T}} \operatorname{sign}(u-k)\left[(u-k) \phi_{t}+(F(u)-F(k)) \cdot D \phi\right] d x d t \geq 0 \tag{2}
\end{equation*}
$$

for all $\phi \in C_{0}^{\infty}\left(S_{T}\right), \phi \geq 0$, and all $k \in \mathbb{R}$, and there exists a set $\Gamma_{0} \subseteq[0, T]$ of measure zero, such that for all compact sets $K \subseteq \mathbb{R}^{\mathbb{N}}$

$$
\begin{equation*}
\lim _{\substack{t \rightarrow 0^{+} \\ t \notin \Gamma_{0}}}\left\|u(\cdot, t)-u_{0}\right\|_{1, K}=0 \tag{3}
\end{equation*}
$$

In [1], Kružkhov proves existence and uniqueness of an entropy solution to (1) when u_{0} is bounded and F is sufficiently smooth. If $u_{0}, v_{0} \in L^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \cap \mathbb{L}^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ with corresponding entropy solutions u, v respectively then

$$
\int_{\mathbb{R}^{\mathbb{N}}}|u(x, t)-v(x, t)| d x \leq \int_{\mathbb{R}^{\mathbb{N}}}\left|u_{0}(x)-v_{0}(x)\right| d x
$$

for a.e. $t \in[0, T]$ (see [1] equation 3.1). If $u_{0} \in L^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ (but not bounded) then there is a natural candidate for an entropy solution with this initial data. This note is motivated by the following two questions:
(i) Is this candidate an entropy solution?

[^0](ii) If it is an entropy solution then is it the unique entropy solution? This note is a partial answer to the second of these two questions.

2. Main Result

In proving uniqueness Kružkhov proves the following Proposition:
Proposition 2.1. If u and v are entropy solutions to (1) satisfying

$$
\left\|\frac{F(u)-F(v)}{u-v}\right\|_{\infty, S_{T}} \leq M
$$

then $u=v$ almost everywhere in S_{T}.
The primary result of this note is the following improvement of Proposition 2.1.
Proposition 2.2. If u and v are entropy solutions to (1) satisfying

$$
\begin{equation*}
\left\|\frac{F(u(\cdot, t))-F(v(\cdot, t))}{u(\cdot, t)-v(\cdot, t)}\right\|_{\infty, B_{\rho}} \leq M(t, \rho) \tag{4}
\end{equation*}
$$

where M satisfies

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty}\left(\rho-\int_{0}^{T} M(t, \rho) d t\right)=\infty \tag{5}
\end{equation*}
$$

then $u=v$ almost everywhere in S_{T}.
The advantage of Proposition 2.2 over Proposition 2.1 is that Proposition 2.2 allows for u_{0} to become unbounded. Set $A(u)=\left(F_{1}^{\prime}(u), \cdots, F_{N}^{\prime}(u)\right)$. Then one can easily verify that Proposition 2.2 implies the following.
Corollary 2.3. There exists at most one entropy solution to (1) satisfying

$$
\|A(u(\cdot, t))\|_{\infty, \mathbb{R}^{\mathbb{N}}} \leq M(t)
$$

where M satisfies

$$
\int_{0}^{T} M(t) d t<\infty
$$

As an example we apply Corollary 2.3 to the Burger's equation, i.e., $N=1$ and $F(u)=\frac{1}{2} u^{2}$.
Lemma 2.4. If $u_{0} \in L^{p}\left(\mathbb{R}^{\mathbb{N}}\right)$ with $1 \leq p<\infty$ then there exists an entropy solution u of (1) satisfying

$$
\begin{equation*}
\|u(\cdot, t)\|_{\infty, \mathbb{R}^{\mathbb{N}}} \leq \frac{\left(2\left\|u_{0}\right\|_{p}\right)^{\frac{p}{p+1}}}{t^{\frac{1}{p+1}}} \in L^{1}([0,1]) \tag{6}
\end{equation*}
$$

Proof. Let u be the almost everywhere unique minimizer of

$$
\psi(x, t, v)=\int_{x}^{x-v t} u_{0}(s) d s+\frac{t v^{2}}{2}
$$

For details see [2]. Then u is an entropy solution to (1). Now $\psi(x, t, 0)=0$ and by Holder's inequality

$$
\begin{aligned}
\psi(x, t, v) & \geq-\left\|u_{0}\right\|_{p}|v t|^{\frac{p-1}{p}}+\frac{t v^{2}}{2} \\
& =|v t|^{\frac{p-1}{p}}\left(-\left\|u_{0}\right\|_{p}+\frac{t^{\frac{1}{p}}|v|^{\frac{p+1}{p}}}{2}\right) \\
& >0
\end{aligned}
$$

when

$$
v>\frac{\left(2\left\|u_{0}\right\|_{p}\right)^{\frac{p}{p+1}}}{t^{\frac{1}{p+1}}}
$$

This implies (6).
Thus from Corollary 2.3 the entropy solution to Burger's equation satisfying (6) is unique. One can prove a similar estimate for solutions when $F(u)=|u|^{\alpha}$ for any $\alpha>1$.

Proof. (of Proposition 2.2). Let u and v be any two entropy solutions to (1). Let $J \in C_{0}^{\infty}(-1,1)$ satisfy:

$$
\left\{\begin{array}{c}
\int_{-1}^{1} J(x) d x=1 \\
J \geq 0
\end{array}\right.
$$

Any two entropy solutions u, v satisfy

$$
\begin{equation*}
\iint_{S_{T}} \operatorname{sign}(u-v)\left[(u-v) \phi_{t}+(F(u)-F(v)) \cdot D \phi\right] d x d t \geq 0 \tag{7}
\end{equation*}
$$

for all $\phi \in C_{0}^{\infty}\left(S_{T}\right)$ with $\phi \geq 0$ (see [1] equation 3.7). Set

$$
r(t, \rho)=\rho-\int_{0}^{t} M(\tau, \rho) d \tau
$$

Since $t \rightarrow r(t, \rho)$ is decreasing, (5) implies

$$
\lim _{\rho \rightarrow \infty} r(t, \rho)=\infty \quad \text { for all } \quad 0 \leq t \leq T
$$

Select $R>0$ such that if $\rho>R$ then $r(T, \rho)>0$. Fix $\rho>R$. Set $r(t)=r(t, \rho)$. Let $0<t_{1}<t_{2}<T$. Let $0<\epsilon<\min \left\{t_{1}, T-t_{2}\right\}$. Consider the following test function:

$$
\phi_{\epsilon}(x, t)=\epsilon^{-N-1} \int_{t-t_{2}}^{t-t_{1}} J\left(\frac{s}{\epsilon}\right) d s \int_{|x|-r(t)+\epsilon}^{\infty} J\left(\frac{s}{\epsilon}\right) d s
$$

Notice that

$$
\operatorname{supp} \phi_{\epsilon} \subseteq\left\{(x, t): t_{1}-\epsilon<t<t_{2}+\epsilon \text { and }|x|<r(0)+\epsilon\right\}
$$

so that ϕ_{ϵ} is an admissible test function for (7). Now we compute $\phi_{\epsilon, t}$ and $D \phi_{\epsilon}$.

$$
\begin{aligned}
\phi_{\epsilon, t}= & \epsilon^{-1}\left[J\left(\frac{t-t_{1}}{\epsilon}\right)-J\left(\frac{t-t_{2}}{\epsilon}\right)\right] \epsilon^{-N} \int_{|x|-r(t)+\epsilon}^{\infty} J\left(\frac{s}{\epsilon}\right) d s \\
& +\left[M(t) \epsilon^{-N} J\left(\frac{|x|-r(t)+\epsilon}{\epsilon}\right)\right] \epsilon^{-1} \int_{t-t_{2}}^{t-t_{1}} J\left(\frac{s}{\epsilon}\right) d s . \\
D \phi_{\epsilon} & =\frac{x}{|x|}\left[\epsilon^{-N} J\left(\frac{|x|-r(t)+\epsilon}{\epsilon}\right)\right] \epsilon^{-1} \int_{t-t_{2}}^{t-t_{1}} J\left(\frac{s}{\epsilon}\right) d s .
\end{aligned}
$$

Then using this test function in (7) yields

$$
\begin{aligned}
& \iint_{S_{T}}|u-v| \epsilon^{-1}\left[J\left(\frac{t-t_{1}}{\epsilon}\right)-J\left(\frac{t-t_{2}}{\epsilon}\right)\right] \epsilon^{-N} \int_{|x|-r(t)+\epsilon}^{\infty} J\left(\frac{s}{\epsilon}\right) d s \\
& \quad \geq \iint_{S_{T}} \epsilon^{-N} J\left(\frac{|x|-r(t)+\epsilon}{\epsilon}\right) \epsilon^{-1} \int_{t-t_{2}}^{t-t_{1}} J\left(\frac{s}{\epsilon}\right) d s \\
& \quad \times\left[\operatorname{sign}(u-v)(F(u)-F(v)) \cdot \frac{x}{|x|}+M(t, \rho)|u-v|\right] d x d t \\
& \quad \geq 0 \text { because } M(t, \rho)|u-v| \geq|F(u)-F(v)|
\end{aligned}
$$

So by letting $\epsilon \rightarrow 0$ we obtain

$$
\int_{B_{r\left(t_{2}\right)}}|u-v|\left(x, t_{2}\right) d x \leq \int_{B_{r\left(t_{1}\right)}}|u-v|\left(x, t_{1}\right) d x
$$

Since $r\left(t_{1}\right)<\rho$

$$
\int_{B_{r\left(t_{1}\right)}}|u-v|\left(x, t_{2}\right) d x \leq \int_{B_{\rho}}|u-v|\left(x, t_{1}\right) d x
$$

Combining these with (3) yields

$$
\int_{B_{r\left(t_{2}\right)}}|u-v|\left(x, t_{2}\right) d x \leq \int_{B_{\rho}}|u-v|(x, 0) d x=0 .
$$

Thus, for $0<t_{2}<T, u\left(x, t_{2}\right)=v\left(x, t_{2}\right)$ for $x \in B_{r\left(t_{2}\right)}$. Letting $\rho \rightarrow \infty$ and using condition (5), $u\left(\cdot, t_{2}\right)=v\left(\cdot, t_{2}\right)$. Since t_{2} is arbitrary, $u=v$ in S_{T}.

As another example we consider Burger's equation with initial data $u_{0}(x)=-x$. We show that in this situation (1) has a unique entropy solution in S_{1} satisfying

$$
\|u(\cdot, t)\|_{\infty, B_{\rho}} \leq \frac{\rho}{1-t}
$$

First note that

$$
u(x, t)=\frac{-x}{1-t}
$$

is one such solution. Suppose v is another. For $0<t<1$

$$
r(t, \rho)=\rho-\int_{0}^{t} \frac{\rho}{1-\tau} d \tau=\rho(1+\ln (1-t))
$$

so Proposition 2.2 guarantees that $u=v$ in $S_{1-e^{-1}}$. By reapplying Proposition 2.2 this time beginning at $t=1-e^{-1}$ we find that $u=v$ in $S_{1-e^{-2}}$. Finally, by repeating this argument n times, $u=v$ in $S_{1-e^{-n}}$. Thus $u=v$ in S_{1}.
Acknowledgements. I am indebted to Gui-Qiang Chen for reading this note and making some valuable suggestions.

References

[1] S.N. Kružkov, First Order Quasilinear Equations in Several Independent Variables, Math. Sb. 123 (1970) pp. 217-243.
[2] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, Philadelphia 1973.

Lunt Hall, Northwestern University, 2033 Sheridan Rd., Evanston, IL 60208
E-mail address: diller@math.nwu.edu

[^0]: 1991 Mathematics Subject Classification. 35L60,35L65.
 Key words and phrases. Burger's Equation, Entropy Solution, Scalar Conservation Law. (c)1994 Southwest Texas State University and University of North Texas

 Submitted: June 12, 1994.

