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REGULARITY FOR NON-UNIFORMLY ELLIPTIC SYSTEMS

AND APPLICATION TO SOME VARIATIONAL INTEGRALS

Francesco Leonetti

and

Chiara Musciano

Abstract. This paper deals with higher integrability for minimizers of some vari-
ational integrals whose Euler equation is elliptic but not uniformly elliptic. This
setting is also referred to as elliptic equations with p, q-growth conditions, following
Marcellini. Higher integrability of minimizers implies the existence of second deriva-
tives. This improves on a result by Acerbi and Fusco concerning the estimate of the
(possibly) singular set of minimizers.

0. Introduction

Let Ω be a bounded open set of Rn, n ≥ 2, u be a (possibly) vector-valued
function, u : Ω → RN ,N ≥ 1, F be a continuous function, F : RnN → R; we
consider the integral

I(u) =

∫
Ω

F (Du(x)) dx , (0.1)

where
|F (ξ)| ≤ c (1 + |ξ|p) , (0.2)

u ∈W 1,p(Ω), 2 ≤ p. Regularity of minimizers has been widely studied when

m̂ (1 + |ξ|p−2)|λ|2 ≤ DDF (ξ)λλ , 0 < m̂ , (0.3)

|DDF (ξ)| ≤ c (1 + |ξ|p−2), (0.4)

see [24], [14], [16], [17] (and [10], [12], [18], [11], [20], where (0.3) is weakened in
order to consider quasi-convex integrals but (0.4) is still present). We refer to (0.3),
(0.4) as uniform ellipticity condition. When dealing with

Ĵ(u) =

∫
Ω

{a|Du|2 + a|Du|p +
√

1 + (detDu)2} dx . (0.5)

where 2 ≤ n ≤ p < 2n, u : Rn → Rn, a > 0, it turns out that (0.4) does not hold
true any longer; conversely, the following growth condition applies:

|DDF (ξ)| ≤ c (1 + |ξ|2n−2) . (0.6)
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Moreover, if a is large enough [13], namely a ≥ a(n) = 2n4[(n − 2)!], then (0.3) is
still true: we are lead to consider integrals (0.1) verifying (0.2), (0.3) and

|DDF (ξ)| ≤ c (1 + |ξ|q−2) , (0.7)

for some q > p. We refer to (0.3), (0.7) as nonuniform ellipticity condition [13],
nonstandard growth condition [22], or p, q-growth condition [23]. In this paper we
prove higher integrability and differentiability for minimizers of integrals verifying
the nonuniform ellipticity (0.3), (0.7). Our results apply to the model integral (0.5)
in this way: assume that u : Rn → Rn, u ∈W 1,p(Ω), Ω ⊂ Rn is bounded and open,

2 ≤ n ≤ 2n− 2 < p < 2n; if u minimizes Ĵ and a ≥ a(n), then

DDu and D(|Du|(p−2)/2Du) ∈ L2
loc(Ω). (0.8)

We can also apply a partial regularity theorem contained in [1], see also [15], in
order to get

Du ∈ C0,α
loc (Ω0), ∀α ∈ (0, 1) , (0.9)

for some open Ω0 ⊂ Ω, with
|Ω \ Ω0| = 0 , (0.10)

where |E| is the n-dimensional Lebesgue measure of E ⊂ Rn. Now we are able to
improve on (0.10), because of our result (0.8):

Hn−2+ε(Ω \Ω0) = 0 ∀ε > 0 , (0.11)

where Hn−2+ε is the (n− 2 + ε)-dimensional Hausdorff measure.

1. Notation and main results

Let Ω be a bounded open set of Rn, n ≥ 2, u be a (possibly) vector-valued
function, u : Ω → RN ,N ≥ 1, F be a function F : RnN → R. We consider the
integral

I(u) =

∫
Ω

F (Du(x)) dx , (1.1)

where
F ∈ C1(RnN ) (1.2)

and, for some positive constants c, p,m,

|F (ξ)| ≤ c (1 + |ξ|p) , (1.3)

|DF (ξ)| ≤ c (1 + |ξ|p−1) , (1.4)

m (|ξ|+ |ξ̂|)(p−2)|ξ − ξ̂|2 ≤ (DF (ξ)−DF (ξ̂))(ξ − ξ̂) , (1.5)

for every ξ, ξ̂ ∈ RnN . About p, we assume that

2 ≤ p . (1.6)

We say that u minimizes the integral (1.1) if u : Ω→ RN , u ∈W 1,p(Ω) and

I(u) ≤ I(u+ φ) . (1.7)

for every φ : Ω → RN with φ ∈ W 1,p
0 (Ω). We will prove the following higher

integrability result for Du:
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Theorem 1. Let u ∈W 1,p(Ω) minimize the integral (1.1) and F satisfy (1.2–1.6);
then

Du ∈ Lσloc(Ω), ∀σ < p
n

n− 1
. (1.8)

The higher integrability result (1.8) for Du allows us to get existence of second
weak derivatives under additional conditions on F . Now we assume that

F ∈ C2(RnN ) (1.9)

and, for some constants c, p, q, m̂, µ,

|F (ξ)| ≤ c (1 + |ξ|p) , (1.10)

|DF (ξ)| ≤ c (1 + |ξ|p−1) , (1.11)

m̂ (µ+ |ξ|p−2)|λ|2 ≤ DDF (ξ)λλ , 0 < m̂ , 0 ≤ µ , (1.12)

|DDF (ξ)| ≤ c (1 + |ξ|q−2), (1.13)

2 ≤ p < q < p
n

n− 1
, (1.14)

for every ξ, λ ∈ RnN . Let us remark that (1.12) implies (1.5): compare with
Corollary 2.8 in the next section 2.

Theorem 2. Let u ∈W 1,p(Ω) minimize the integral (1.1) and F satisfy (1.9–1.14);
then

D(|Du|(p−2)/2Du) ∈ L2
loc(Ω). (1.15)

Moreover, if (1.12) holds true with 0 < µ, then

DDu ∈ L2
loc(Ω). (1.16)

In this setting we can apply the partial regularity result contained in [1], see also
[15], in order to get

Du ∈ C0,α
loc (Ω0), ∀α ∈ (0, 1), (1.17)

for some open Ω0 ⊂ Ω, with
|Ω \ Ω0| = 0. (1.18)

Now Theorem 2 allows us to improve on the estimate (1.18) of the (possibly) sin-
gular set. This is achieved in the following:

Theorem 3. Let u ∈ W 1,p(Ω) minimize the integral (1.1) and F satisfy (1.9–
1.14); moreover, we assume that (1.12) holds true with 0 < µ: then, there exists an
open set Ω0, Ω0 ⊂ Ω, such that

Du ∈ C0,α
loc (Ω0), ∀α ∈ (0, 1) (1.19)

and
Hn−2+ε(Ω \ Ω0) = 0, ∀ε > 0, (1.20)

where Hn−2+ε is the (n− 2 + ε)-dimensional Hausdorff measure.
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A model functional for the previous theorems is

J(u) =

∫
Ω

{a|Du|2 + a|Du|p + h(detDu)} dx, (1.21)

where u : Rn → Rn, h : R→ R, h ∈ C2(R), and for some positive constants c1, d,

1 ≤ d < 2, (1.22)

|h(t)| ≤ c1 (1 + |t|)d, (1.23)

|h′(t)| ≤ c1 (1 + |t|)d−1, (1.24)

0 ≤ h′′(t) ≤ c1, (1.25)

for every t ∈ R. Under these assumptions if a is large enough, see [13],

a ≥ a(n, d, c1) = c1n
4[(n− 2)!]{1 + [n!]d−1} (1.26)

and
2 ≤ n ≤ 2n− 2 < p < 2n, nd ≤ p, (1.27)

then (1.9), . . . , (1.14) hold true with q = 2n and µ = 1 in (1.12). For example, we

can take h(t) =
√

1 + t2, d = 1, c1 = 1; the resulting functional is

Ĵ(u) =

∫
Ω

{a|Du|2 + a|Du|p +
√

1 + (detDu)2} dx. (1.28)

In order to deal with weak solutions of non-uniformly elliptic systems which are
not Euler equations of variational integrals, we find out that Theorem 1 remains
true; with regard to Theorem 2, we need a more restrictive range of q. More pre-
cisely, we consider A : RnN → RnN and the system of partial differential equations

div
(
A(Du(x))

)
= 0, (1.29)

where
A ∈ C0(RnN ), (1.30)

and for some positive constants c, p,m,

|A(ξ)| ≤ c (1 + |ξ|p−1), (1.31)

m (|ξ|+ |ξ̂|)(p−2)|ξ − ξ̂|2 ≤ (A(ξ) −A(ξ̂))(ξ − ξ̂), (1.32)

for every ξ, ξ̂ ∈ RnN . About p, we keep on assuming

2 ≤ p. (1.33)

We say that u is a weak solution of (1.29) if u : Ω→ RN , u ∈W 1,p(Ω) and∫
Ω

A(Du(x))Dφ(x) dx = 0, (1.34)

for every φ : Ω→ RN with φ ∈W 1,p
0 (Ω). We have the following higher integrability

result for Du:
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Theorem 4. Let u ∈ W 1,p(Ω) be a weak solution of (1.29) and A satisfy (1.30–
1.33); then

Du ∈ Lσloc(Ω), ∀σ < p
n

n− 1
. (1.35)

As in the case of minimizers, the higher integrability of Du allows us to get higher
differentiability; let us remark that, when dealing with elliptic systems that are not
the Euler equation of some variational integral, we do not know any longer that the
bilinear form (λ, ξ) → DAλξ is symmetric: this lack of information is responsible
for the more restrictive range of q in the following (1.40). Now we assume that

A ∈ C1(RnN ), (1.36)

and, for some constants c, p, q, m̂, µ,

|A(ξ)| ≤ c (1 + |ξ|p−1), (1.37)

m̂ (µ+ |ξ|p−2)|λ|2 ≤ DA(ξ)λλ, 0 < m̂, 0 ≤ µ, (1.38)

|DA(ξ)| ≤ c (µ+ |ξ|q−2), (1.39)

2 ≤ p < q < p
2n− 1

2n− 2
, (1.40)

for every ξ, λ ∈ RnN . Let us remark that (1.38) implies (1.32).

Theorem 5. Let u ∈ W 1,p(Ω) be a weak solution of (1.29) and A satisfy (1.36–
1.40); then

D(|Du|(p−2)/2Du) ∈ L2
loc(Ω). (1.41)

Moreover, if (1.38), (1.39) hold true with 0 < µ, then

DDu ∈ L2
loc(Ω). (1.42)

Remark. The most important result of this paper is Theorem 1: in our framework,
the main step towards regularity is the improvement from Du ∈ Lp to Du ∈ Lσ,
σ < pn/(n− 1), which is contained in Theorem 1. This higher integrability result
is achieved by a careful use of difference quotient technique: when dealing with
DF (Du(x + hes)) − DF (Du(x)), where h ∈ R and es is the unit vector in the
xs direction, we do not use any second derivatives of F but we employ growth
condition (1.4) for DF : |DF (ξ)| ≤ c (1 + |ξ|p−1); this allows us to gain only a
fractional derivative of |Du|(p−2)/2Du but it is enough in order to improve on the
integrability of Du: see (3.5), (3.6) with the discussion between (4.1) and (4.5).
This proof collects some ideas found in [7], [6], [9], [27], [25].

Remark. Regularity for scalar minimizers of variational integrals and scalar weak
solutions to elliptic equations with p, q-growth condition (0.3), (0.7) can be found
in [22], [23].



6 F. Leonetti & C. Musciano EJDE–1995/06

2. Preliminaries

For a vector-valued function f(x), define the difference

τs,hf(x) = f(x+ hes)− f(x),

where h ∈ R , es is the unit vector in the xs direction, and s = 1, 2, . . . , n. For
x0 ∈ Rn, let BR(x0) be the ball centered at x0 with radius R. We will often suppress
x0 whenever there is no danger of confusion. We now state several lemmas that are
crucial to our work. In the following f : Ω→ Rk, k ≥ 1; Bρ, BR, B2ρ and B2R are
concentric balls.

Lemma 2.1. If 0 < ρ < R, |h| < R − ρ, 1 ≤ t < ∞, s ∈ {1, . . . , n}, f , Dsf ∈
Lt(BR), then ∫

Bρ

|τs,hf(x)|tdx ≤ |h|t
∫
BR

|Dsf(x)|tdx.

(See [14,p. 45], [5,p. 28].)

Lemma 2.2. Let f ∈ Lt(B2ρ), 1 < t <∞, s ∈ {1, . . . , n}; if there exists a positive
constant C such that ∫

Bρ

|τs,hf(x)|tdx ≤ C|h|t,

for every h with |h| < ρ, then there exists Dsf ∈ Lt(Bρ). (See [14,p. 45], [5,p.
26].)

Lemma 2.3. If f ∈ L2(B3ρ) and for some d ∈ (0, 1) and C > 0

n∑
s=1

∫
Bρ

|τs,hf(x)|2dx ≤ C|h|2d,

for every h with |h| < ρ, then f ∈ Lr(Bρ/4) for every r < 2n/(n− 2d).

Proof. The previous inequality tells us that f ∈W b,2(Bρ/2) for every b < d , so we
can apply the embedding theorem for fractional Sobolev spaces. [3,chapter VII].

Lemma 2.4. For every t with 1 ≤ t <∞, for every f ∈ Lt(B2R), for every h with
|h| < R, for every s = 1, 2, . . . , n we have∫

BR

|f(x+ hes)|
tdx ≤

∫
B2R

|f(x)|tdx.

Lemma 2.5. For every p ≥ 2

∣∣∣τs,h (|f(x)|(p−2)/2
f(x)

)∣∣∣2 ≤ k3
(p

2

)2
1∫

0

|f(x) + t τs,hf(x)|p−2|τs,hf(x)|2dt

for every f ∈ Lp(B2R) , for every h with |h| < R , for every s = 1, 2, . . . , n, for
every x ∈ BR.
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Lemma 2.6. For every γ > −1, for every k ∈ N there exist positive constants
c2, c3 such that

c2(|v|2 + |w|2)γ/2 ≤

1∫
0

|v + tw|γdt ≤ c3(|v|2 + |w|2)γ/2 (2.1)

for every v,w ∈ Rk. (See [2 ].)

Lemma 2.6 allows us to easily get the following Corollaries.

Corollary 2.7. For every p ≥ 2, for every k ∈ N there exists a positive constant
c4 such that

c4

1∫
0

|λ+ t(ξ − λ)|p−2dt ≤ (|λ|+ |ξ|)p−2 (2.2)

for every λ, ξ ∈ Rk.

Corollary 2.8. Let F be a function F : RnN → R of class C2(RnN ) and p ≥ 2; if
there exists m̂ > 0 such that

m̂ |ξ|p−2|λ|2 ≤ DDF (ξ)λλ,

for every ξ, λ ∈ RnN , then there exists m > 0 such that

m (|ξ|+ |ξ̂|)(p−2)|ξ − ξ̂|2 ≤ (DF (ξ)−DF (ξ̂))(ξ − ξ̂),

for every ξ, ξ̂ ∈ RnN .

Corollary 2.9. For every p ≥ 2, for every k ∈ N there exists a positive constant ĉ
such that

|λ− ξ|p ≤ ĉ
∣∣∣|λ| p−2

2 λ− |ξ|
p−2

2 ξ
∣∣∣2 (2.3)

for every λ, ξ ∈ Rk.

3. Proof of Theorem 1

Since u minimizes the integral (1.1) with growth conditions as in (1.3), (1.4), u
solves the Euler equation, ∫

Ω

DF (Du(x))Dφ(x) dx = 0, (3.1)

for all functions φ : Ω→ RN , with φ ∈ W 1,p
0 (Ω). Let R > 0 be such that B4R ⊂ Ω

and let Bρ and BR be concentric balls, 0 < ρ < R. Let η : Rn → R be a “cut
off” function in C∞0 (BR) with η ≡ 1 on Bρ, 0 ≤ η ≤ 1. Fix s ∈ {1, . . . , n}, take
0 < |h| < R. Using φ = τs,−h(η2τs,hu) in (3.1) we get, as usual

(I) =

∫
BR

η2τs,h (DF (Du)) τs,hDudx = −

∫
BR

τs,h (DF (Du)) 2ηDη τs,hudx = (II)

(3.2)
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We apply (1.5) so that

m

∫
BR

(|Du(x+ hes)|+ |Du(x)|)p−2|τs,hDu(x)|2η2(x) dx ≤ (I). (3.3)

Now we use Lemma 2.5 and Corollary 2.7 in order to get, for some positive constant
c5, independent of h,

c5

∫
BR

∣∣∣τs,h (|Du(x)|(p−2)/2
Du(x)

)∣∣∣2 η2(x) dx

≤ m

∫
BR

(|Du(x+ hes)|+ |Du(x)|)p−2|τs,hDu(x)|2η2(x) dx. (3.4)

In order to estimate (II), we first use the growth condition (1.4):

|τs,h (DF (Du(x))) | =|DF (Du(x+ hes))−DF (Du(x))|

≤|DF (Du(x+ hes))|+ |DF (Du(x))|

≤c (1 + |Du(x+ hes)|
p−1) + c (1 + |Du(x)|p−1) .

(3.5)

We apply inequality (3.5) and the properties of the “cut off” function η, then Hölder
inequality, finally Lemma 2.1 and 2.4:

(II) ≤ c6

∫
BR

(1 + |Du(x+ hes)|
p−1 + |Du(x)|p−1)|τs,hu(x)| dx

≤ c7

∫
BR

(1 + |Du(x+ hes)|
p + |Du(x)|p) dx

(p−1)/p∫
BR

|τs,hu(x)|pdx

1/p

≤ c8

 ∫
B2R

(1 + |Du(x)|p) dx

(p−1)/p ∫
B2R

|Dsu(x)|pdx

1/p

|h| ≤ c9|h|, (3.6)

for some positive constants c6, c7, c8, c9 independent of h. Collecting the estimates
for (I) and (II) yields, for some positive constant c10, independent of h,∫

BR

∣∣∣τs,h (|Du(x)|(p−2)/2
Du(x)

)∣∣∣2 η2(x) dx ≤ c10|h|, (3.7)

for every s = 1, . . . , n, for every h with |h| < R. Since η = 1 on Bρ, inequality (3.7)
allows us to apply Lemma 2.3 in order to get

|Du|(p−2)/2
Du ∈ Lr(Bρ/4), ∀r < 2n/(n− 1).

We remark that | |Du|(p−2)/2
Du| = |Du|p/2, thus (1.8) is completely proven. �
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4. Proof of Theorem 2

We start as in the proof of Theorem 1 and we arrive at (3.2); now F has second
derivatives, thus

τs,h (DF (Du(x))) =DF (Du(x+ hes))−DF (Du(x))

=

1∫
0

d

dt

(
DF (Du(x) + tτs,hDu(x))

)
dt

=

1∫
0

DDF (Du(x) + tτs,hDu(x))τs,hDu(x) dt .

(4.1)

Let us remark that second derivatives of F verify (1.13) with p < q: (4.1) is not
very useful when carrying on the standard difference quotient technique if we only
know that Du ∈ Lp. But we have already proven, in Theorem 1, that Du ∈ Lσ,
for every σ < pn/(n− 1). Since we assumed (1.14), then Du ∈ Lq and we can go
on using (4.1) in (3.2):

∫
BR

1∫
0

DDF (Du+ tτs,hDu) η τs,hDuη τs,hDudt dx = (I)

= (II) =

∫
BR

1∫
0

−2DDF (Du+ tτs,hDu) η τs,hDuDη τs,hu dt dx. (4.2)

Since F is C2, the bilinear form (λ, ξ) → DDF (Du + tτs,hDu)λ ξ is symmetric;
moreover, it is positive because of (1.12). Therefore we can use Cauchy-Schwartz
inequality in order to get

(II) ≤
1

2

∫
BR

1∫
0

DDF (Du+ tτs,hDu) η τs,hDuη τs,hDudt dx

+ 2

∫
BR

1∫
0

DDF (Du+ tτs,hDu)Dη τs,huDη τs,hu dt dx

=
1

2
(I) + 2(III).

(4.3)

As we have already pointed out, in Theorem 1 we have proven the higher integra-
bility (1.8), so that, with the aid of (1.14), we can get

Du ∈ Lqloc(Ω). (4.4)

Growth condition (1.13) and higher integrability (4.4) make the two integrals in
(4.3) finite, so we can subtract 1

2 (I) from both sides of (4.2) in order to get

1

2
(I) ≤ 2(III). (4.5)
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Let us estimate (III). First we use the properties of the “cut-off” function η with
the growth condition (1.13), then Hölder inequality, finally Lemma 2.1 and 2.4
(Lemma 2.1 is avaliable with t = q because of (4.4) ):

(III) ≤c11

∫
BR

(1 + |Du(x)|+ |Du(x+ hes)|)
q−2|τs,hu|

2 dx

≤c12

∫
BR

(1 + |Du(x)|q + |Du(x+ hes)|
q) dx


q−2
q
∫
BR

|τs,hu|
q dx

 2
q

≤c13

∫
B2R

(1 + |Du|q) dx |h|2 = c14|h|
2,

(4.6)
for some positive constants c11, c12, c13, c14 independent of h. Now we estimate (I)
from below: using (1.12) we have, for some positive constant c15 independent of h,

µ c15

∫
BR

|τs,hDu|
2 η2 dx+ c15

∫
BR

∣∣∣τs,h (|Du|(p−2)/2
Du
)∣∣∣2 η2 dx ≤ (I). (4.7)

Collecting the previous inequalities yields, for some positive constant c16 indepen-
dent of h,

µ

∫
BR

|τs,hDu|
2 η2 dx+

∫
BR

∣∣∣τs,h (|Du|(p−2)/2
Du
)∣∣∣2 η2 dx ≤ c16|h|

2, (4.8)

for every s = 1, . . . , n, for every h with |h| < R. Since η = 1 on Bρ, inequality

(4.8) allows us to apply Lemma 2.2 with f = |Du|(p−2)/2
Du (and f = Du provided

µ > 0), thus giving (1.15) (and (1.16), provided µ > 0). This ends the proof. �
5. Proof of Theorem 3. We can use the partial regularity result contained in
[1], see [15] too, in order to get

Du ∈ C0,α
loc (Ω0), ∀α ∈ (0, 1),

for the open set Ω0 defined as follows

Ω0 =

x ∈ Ω : lim
r→0

(Du)B(x,r) ∈ RnN , lim
r→0

r−n
∫

B(x,r)

|Du(y)− (Du)B(x,r)|
pdy = 0

 .

where

(g)B(x,r) = |B(x, r)|−1

∫
B(x,r)

g(y) dy.

So, for the singular set, we have

Ω \Ω0 ⊂ S1 ∪ S2,
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where

S1 =
{
x ∈ Ω : /∃ lim

r→0
(Du)B(x,r) or lim

r→0
|(Du)B(x,r)| =∞

}
,

S2 =

x ∈ Ω : lim sup
r→0

r−n
∫

B(x,r)

|Du(y)− (Du)B(x,r)|
pdy > 0

 .

Let us take ξ ∈ RnN such that |ξ|
p−2

2 ξ =
(
|Du|

p−2
2 Du

)
B(x,r)

; then

r−n
∫

B(x,r)

|Du(y)− (Du)B(x,r)|
pdy ≤ 2pr−n

∫
B(x,r)

|Du(y)− ξ|pdy = (V );

we can use Corollary 2.9 with λ = Du(y) and, if we keep in mind the particular
choice of ξ and Poincarè inequality, we get

(V ) ≤ĉ 2p r−n
∫

B(x,r)

∣∣∣|Du(y)|
p−2

2 Du(y)− |ξ|
p−2

2 ξ
∣∣∣2 dy

=ĉ 2p r−n
∫

B(x,r)

∣∣∣|Du(y)|
p−2

2 Du(y)− (|Du|
p−2

2 Du)B(x,r)

∣∣∣2 dy
≤c̃ ĉ 2p r2−n

∫
B(x,r)

∣∣∣D (|Du(y)|
p−2

2 Du(y)
)∣∣∣2 dy .

Thus

S2 ⊂

x ∈ Ω : lim sup
r→0

r2−n

∫
B(x,r)

∣∣∣D (|Du(y)|
p−2

2 Du(y)
)∣∣∣2 dy > 0

 .

Since we have proven that

DDu and D(|Du|(p−2)/2Du) ∈ L2
loc(Ω),

we can use standard technique [19], [14], in order to get (1.20). This ends the
proof. �

6. Proof of Theorem 4 and 5

Theorem 4 is proven just in the same way as Theorem 1, so we skip it and we
go to Theorem 5. Arguing as in Theorem 2 we get

∫
BR

1∫
0

DA(Du+ tτs,hDu) η τs,hDuη τs,hDudt dx = (I)

= (II) =

∫
BR

1∫
0

−2DA(Du+ tτs,hDu) η τs,hDuDη τs,hu dt dx. (6.1)
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Since the bilinear form (λ, ξ) → DAλξ is no longer symmetric, we cannot use
Cauchy-Schwartz inequality as we did in (4.3). Let us remark that q < p(2n −
1)/(2n − 2) < pn/(n − 1), so we can use the higher integrability result proven in
Theorem 4:

Du ∈ Lσloc(Ω), ∀σ < p
n

n− 1
. (1.35)

We apply the nonuniform ellipticity conditions (1.38) and (1.39), then we use (1.35)
with σ = q:

0 ≤ m̂

∫
BR

1∫
0

(µ+ |Du+ tτs,hDu|
p−2)|τs,hDu|

2 η2 dt dx = m̂ (IV ) ≤ (I) <∞. (6.2)

Let us estimate (II). First of all we use the growth condition (1.39):

|2DA(Du+ tτs,hDu) η τs,hDuDη τs,hu|

≤c17 (µ+ |Du+ tτs,hDu|
q−2)|η τs,hDu| |τs,hu|

≤ε (µ+ |Du+ tτs,hDu|
p−2)|η τs,hDu|

2

+
c217

ε
(µ+ |Du+ tτs,hDu|

2q−p−2)|τs,hu|
2, ∀ε > 0,

(6.3)

for some positive constant c17 independent of h and ε, so that

|(II)| ≤ ε(IV ) +
c217

ε

∫
BR

1∫
0

(µ+ |Du+ tτs,hDu|
2q−p−2)|τs,hu|

2 dt dx. (6.4)

Because of (1.40), p < q < 2q − p < pn/(n− 1), so (1.35) allows us to use Lemma
2.1 and 2.4 with t = 2q − p and f = Du:

∫
BR

1∫
0

(µ+ |Du+ tτs,hDu|
2q−p−2)|τs,hu|

2 dt dx

≤c18


∫
BR

(
µ

2q−p
2q−p−2 + |Du(x)|2q−p + |Du(x+ hes)|

2q−p
)
dx


2q−p−2

2q−p

×


∫
BR

|τs,hu|
2q−p dx


2

2q−p

≤c19

∫
B2R

(
µ

2q−p
2q−p−2 + |Du(x)|2q−p

)
dx |h|2

≤c20 |h|
2 ,

(6.5)

for some positive constants c18, c19, c20 independent of h and ε. Inequalities (6.4)
and (6.5) give

(II) ≤ ε(IV ) +
c21

ε
|h|2, (6.6)
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for some positive constant c21 independent of h and ε. Now we use (6.1), (6.2) and
(6.6):

m̂ (IV ) ≤ (I) = (II) ≤ ε(IV ) +
c21

ε
|h|2; (6.7)

we select ε = 1
2m̂ in (6.7); since (IV ) <∞, we can subtract ε(IV ) from both sides

of (6.7) thus giving
m̂

2
(IV ) ≤

2c21

m̂
|h|2. (6.8)

This last inequality and Lemma 2.5 end the proof. �
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