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Singularity Formation in Systems of Non-strictly

Hyperbolic Equations ∗

R. Saxton & V. Vinod

Abstract

We analyze finite time singularity formation for two systems of hyper-
bolic equations. Our results extend previous proofs of breakdown con-
cerning 2× 2 non-strictly hyperbolic systems to n× n systems, and to a
situation where, additionally, the condition of genuine nonlinearity is vio-
lated throughout phase space. The systems we consider include as special
cases those examined by Keyfitz and Kranzer and by Serre. They take
the form

ut + (φ(u)u)x = 0,

where φ is a scalar-valued function of the n-dimensional vector u, and

ut + Λ(u)ux = 0,

under the assumption Λ = diag {λ1, . . . , λn} with λi = λi(u− ui),
where u− ui ≡ {u1, . . . , ui−1, ui+1, . . . , un}.

1 Introduction

In this paper we examine the formation of singularities in solutions to two n×n
systems. The first of these is a conservation law

ut + Fx(u) = 0 (1)

which has F = φ(u)u, and so the two vector fields F and u are parallel. We
call this situation radial. The second system takes the form

ut + Λ(u)ux = 0. (2)

Here Λ is a matrix-valued function of u, Λ = diag {λ1(u), . . . , λn(u)}. The fact
that Λ is diagonal leads to the consideration of n weakly coupled equations, cou-
pled through the dependence of the λi

′
s. These dependencies will be given the
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2 Singularity Formation in Systems EJDE–1995/09

more explicit form λi = λi(u− ui), where u− ui ≡ {u1, . . . , ui−1, ui+1, . . . , un}
which we term quasi-orthogonal. We examine two special cases of this.

Each system has n eigenvalues some of which become equal on a submanifold
Σ in phase space. They are therefore non-strictly hyperbolic. The principal
distinguishing feature of the two systems turns out to be that while in (1) finite
time breakdown can never take place on Σ, in (2) this can only take place there.
The 2×2 counterpart of (1) has been studied from a related perspective to ours
in [2], while (2) has been considered via compensated compactness in [9]. Our
approach to system (1) in Section 2 is first to examine the structure of simple
waves in the case of general φ, then to construct an invariant in the case that
φ(u) has the simple dependence φ = χ(1

2 |u|
2), and exploit its properties for

general initial data. This leads to an approach for general initial data and with
a larger class of functions, φ. In Section 3, we find a necessary condition for
finite time breakdown of solutions to (2), while in Section 4 we demonstrate
that this does indeed take place in the 2× 2 case. The proof of this last result
is somewhat different from previous 2 × 2 breakdown results ([3], [4], [5], [7]).
Finally, in Section 5, we present some numerical results showing the singularity
formation in the equation of Section 4.

2 Radial Flux n× n Systems

In this section we briefly examine the system of equations

ut + Fx(u) = 0, (3)

where the flux function F(u) takes the particular form F(u) = φ(u)u. Here
φ : Rn → R, and the flux lies parallel to the vector field u, so for convenience
we call this a radial flux function. Setting A(u) = ∇u(φ(u)u) gives

A(u) = u⊗∇uφ(u) + φ(u)I. (4)

The first term in (4) has rank one, which reduces the characteristic polynomial
for A(u) to

|λI−A(u)| = |(λ− φ(u))I − u⊗∇uφ(u)|

= (λ− φ(u))n − (λ− φ(u))n−1tr((u ⊗∇uφ(u))

= (λ− φ(u))n−1(λ− φ(u)− u.∇uφ(u)). (5)

Labeling the characteristic speeds by

λi =

{
φ(u), 1 ≤ i ≤ n− 1,
φ(u) + u.∇uφ(u), i = n,

(6)

implies the corresponding right eigenvectors, ri, satisfy
(φ(u)I −A(u))ri = −u⊗∇uφ(u)ri = −u(∇uφ.ri), 1 ≤ i ≤ n− 1, and
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((φ(u)+u.∇uφ(u))I−A(u))rn = (u.∇uφ(u)I−u⊗∇uφ(u))rn = (u.∇uφ)rn−
u(∇uφ.rn).

Consequently, for 1 ≤ i ≤ n− 1, the ri’s can be chosen proportional to a set
of mutually orthogonal vectors {(∇⊥u φ)i, 1 ≤ i ≤ n− 1} ≡ ∇uφ⊥ perpendicular
to ∇uφ. rn is proportional to u unless u.∇uφ = 0, in which case rn ∈ ∇uφ⊥.

Similarly, one finds that the first n − 1 left eigenvectors, li, belong to the
set u⊥ and that ln is proportional to ∇uφ or ln ∈ u⊥ if u.∇uφ = 0. The
first n − 1 characteristic fields satisfy ri.∇uλi ∝ (∇⊥u φ)i.∇uφ = 0 and are
linearly degenerate, ([2]), while the nth characteristic field satisfies rn.∇uλn
∝ u.∇u(φ + u.∇uφ). Set Υ = {u ∈ Rn,u.∇u(φ + u.∇uφ) = 0}. Transform-

ing to polar coordinates in Rn, with u1 = rcosθ1, uj = r
∏j−1
k=1 sinθkcosθj,

un = r
∏n−1
k=1 sinθk, implies that rn.∇uλn ∝ r∂r(φ + r∂rφ) = r∂2

r (rφ), and
so the nth characteristic field is genuinely nonlinear only when this term is
nonzero.

By equation (6), all eigenvalues of A are equal where u.∇uφ(u) ≡
rφr = 0. Following the terminology and notation of [2], we set
Σ = {u ∈ Rn,u.∇uφ = 0} and observe that for n = 2 the system loses strict
hyperbolicity on Σ, strict hyperbolicity being defined through the presence of
real, distinct eigenvalues ([6]). For n > 2 the system becomes non-strictly hy-
perbolic everywhere since by (5) there are n − 1 identical, real, eigenvalues for
any u. Some details of the behavior of solutions lying in Σ∩Υ and Σ∩CΥ can
be found in [8].

In the following Lemma, we consider the behavior of simple wave solutions,
([1]), to (3).

Lemma 2.1 Let u ∈ C1([0, T ];C1(R)) be a solution to (3) of the form u(t, x) =
v(ψ(t, x)) where ψ(x, t) is a scalar function of t and x. Then given data ψ0(x) =
ψ(0, x), ||ψx||∞(t)→∞ can occur in finite time only if there is a point x where
v(ψ0(x)) /∈ Σ ∪Υ.

Proof For such solutions, (3) reduces to

vψψt + φ(v)vψψx + (∇vφ(v).vψ)ψxv = 0 (7)

or

(ψt + φ(v)ψx)vψ + ψxv⊗∇vφ(v)vψ = 0. (8)

Consequently vψ is a right eigenvector of the matrix

A(v) = v⊗∇vφ(v) + φ(v)I (9)

having eigenvalue λ such that ψt+λψx = 0. Now using (6), λ takes on either the
value φ(v) with corresponding right eigenvectors vψ ∈ ∇vφ⊥(v), or the value
φ(v) + v.∇vφ(v) with eigenvector vψ ∝ v.
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In the first case, because of the linear degeneracy, linear waves maintain φ(v)
constant on the hypersurface ∇vφ⊥(v) while preventing singularity formation.

In the second case, φ(v) + v.∇vφ(v) remains constant in the radial, v, di-
rection, however singularities may form in finite time provided both v.∇vφ and
v.∇v(φ+v.∇vφ) are nonzero. This can be seen as follows. Suppose first that λ =
φ, and so vψ
∈ ∇vφ⊥(v). Then ψ, and consequently φ, remains constant along the (straight)

characteristic dx(t)
dt

= φ(v(ψ(t, x(t)))). Differentiating ψt + φψx = 0 with re-
spect to x, gives ψtx + φψxx + φxψx = 0. However φx = ∇vφ.vψψx = 0 since
vψ ∈ ∇vφ⊥(v), and so ψx can only evolve linearly along the characteristic. It
is simple to show (eg. [8]) that no other derivatives can blow up either in this
case. Next suppose that λ = φ+ v.∇vφ. Then ψt + (φ+ v.∇vφ)ψx = 0, and ψ,
therefore φ+ v.∇vφ, remains constant along the (again, straight) characteristic
dx
dt

= φ+ v.∇vφ. Differentiating with respect to x gives ψtx + (φ+ v.∇vφ)ψxx
+ vψ.∇v(φ + v.∇vφ)ψ2

x = 0. Since all the terms in brackets depend only on
ψ, these are constant on the characteristic, and finite time blow up of ψ will
depend (together with the sign of the derivative of the initial data, ψ0x) on the
last term being nonzero. However by equation (7) it follows that for this value of
λ, vψ(v.∇vφ) = v(∇vφ.vψ). So vψ is parallel to v unless v.∇vφ = 0, in which
case v lies in Σ and then ∇vφ.vψ = 0, ie. either ∇vφ = 0 or vψ ∈ ∇vφ⊥(v).
If vψ ∈ ∇vφ⊥(v) and v ∈ Σ, we can argue as in the previous paragraph to
show no blow up occurs, and if ∇vφ = 0, it is straightforward to show the same
thing directly. We now assume v /∈ Σ. In this case, for nontrivial solutions, the
coefficient of ψ2

x above will be nonzero whenever the term v.∇v(φ+ v.∇vφ) is
nonzero, ie. v /∈ Υ. This is simply the condition for genuine nonlinearity of the
nth characteristic field above. Blow up is therefore possible only in this case,
details of which can be supplied using standard techniques, ([7]). 2

Remark. It can be seen from the above that in the case when v ∈ Σ, then
all n eigenvectors vψ must lie in the n − 1 dimensional hyperplane ∇vφ⊥(v).
However it remains possible to construct a basis of eigenvectors and appropriate
definition. Now we consider the possibility of introducing more general data
than that in the above Lemma. We will assume that here φ(u) = χ(1

2 |u|
2). Our

approach will be to extract a scalar conservation law from (3). This provides
an invariant which we use to examine breakdown of solutions. In fact since the
term F(u) = χ(1

2 |u|
2)u in (3) is now a gradient, χ(1

2 |u|
2)u = ∇uΨ(1

2 |u|
2) where

Ψ
′
≡ χ, there exists an entropy, η = 1

2 |u|
2, for (3) together with an entropy

flux, ν = Ψ− |u|2χ, such that ηt + νx = 0, ([6]). Instead we choose another pair
η, ν, with a more convenient functional relation to deduce breakdown.
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Lemma 2.2 Let u ∈ C1([0, T ];C1(R)) be a solution to (3), with φ(u) = χ(1
2 |u|

2).
Then given data u0(x) = u(0, x), ||ux||∞(t) → ∞ can occur in finite time if
there is a point x where u0x /∈ u⊥0 and u0 /∈ Σ∪Υ. In particular, this will occur
if (3χ′ + χ′′|u0|2)u0.u0x < 0.

Proof We attempt to extract a scalar conservation law from (3) having the
form

ηt + fx(η) = 0. (10)

In other words, we require that ν = f(η). Once this is done, establishing break-
down becomes straightforward. Assuming it is possible to derive (10) from (3),
then η = η(u) and so (10) implies

∇uη.ut + f ′(η)∇uη.ux = 0 (11)

or
∇uη.(ut + f ′(η)ux) = 0. (12)

But (3) implies
∇uη.(ut +∇uFux) = 0, (13)

and so (12) and (13) show

∇uη∇uF = ∇uηf
′(η) (14)

which means that f ′(η) is an eigenvalue λ(u) of ∇uF having left eigenvector
∇uη. Now, since f ′(η) = λ(u), then

f ′′(η)∇uη = ∇uλ (15)

which implies that ∇uλ is also a left eigenvector of ∇uF unless f ′′(η) = 0, and
then η = f ′−1(λ(u)).

By (15), if r and l are right and left eigenvectors corresponding to λ, then

r.∇uλ = f ′′(η)r.∇uη ∝ f
′′(η) r.l .

So f ′′(η) = 0 ⇒ u ∈ Υ. (Note also that r.l = 0 ⇒ u ∈ Σ.) Setting g = f ′−1,
(10) together with η = g(λ(u)) gives

g′(λ)λt + f ′(η)g′(λ)λx = 0 (16)

or, since f ′(η) = λ,
λt + λλx = 0. (17)

Now in the case F = χ(1
2 |u|

2)u, we have from (6) that

λi =

{
χ(1

2 |u|
2), 1 ≤ i ≤ n− 1,

χ(1
2 |u|

2) + χ′(1
2 |u|

2)|u|2, i = n,
(18)
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and corresponding left eigenvectors li lie in the set u⊥, 1 ≤ i ≤ n − 1, or are
proportional to ∇uφ = χ′u for i = n, unless u ∈ Σ, ie. χ′ 6= 0. For the above
procedure to be possible for some λ = λi, we recall that ∇uλ must be a left
eigenvector corresponding to some eigenvector λ. Since by (18), all the λi have
∇uλi proportional to u, then it becomes possible to proceed only using λn. This
leads to the result

λnt + λnλnx = 0 (19)

with λn given by (18), which then implies ([6]) that on the characteristic dx
dt

=
λn,

λnx =
λn0x

1 + λn0xt
(20)

where λn0 = χ(1
2 |u0|2) + χ′(1

2 |u0|2)|u0|2 and u0(x) = u(0, x). So
λn0x = (3χ′ + χ′′|u0|2)u0.u0x. However, recalling the definition of Υ, genuine
nonlinearity requires the expression u.∇u(φ + u.∇uφ) to be nonzero. With
φ(u) = χ(1

2 |u|
2) this implies (3χ′+χ′′|u|2)|u|2 6= 0. So, for u0 /∈ Σ∪Υ,u0x /∈ u⊥0

then λn0x 6= 0, and for (3χ′+χ′′|u0|2)u0.u0x < 0, then λn0x < 0 and finite time
breakdown follows from (20). 2

With the previous Lemma as motivation, we turn to the final result of this
section. This is to obtain more general conditions on φ under which break-
down can take place for arbitrary data. u will be represented in terms of polar
coordinates, u = (r, θ1, . . . , θn−1), r = |u|.

Theorem 2.1 Let u ∈ C1([0, T ];C1(R)) be a solution to (3), with φ(u) =
J (rK(θ1, . . . , θn−1)), J ∈ C2(R),K ∈ C1(Rn−1). Then ||ux||∞(t) → ∞ in
finite time if there is a point x where (2J ′ + J ′′rK)(rK)x < 0 at t = 0.

Proof As before, we attempt to construct a convenient scalar conservation
law. Rather than working with (14) and general φ, it turns out to be convenient
to proceed as follows. Observe that the general form of equation (17) could, by
(18), have been replaced by an equation of the form

φt + h(φ)φx = 0 (21)

for an appropriate function h, depending on the choice of λ. With this as
a starting point, we attempt to find the most general conditions on φ(u) for
which (21) can be derived for some function h.

Now by (3),
ut + φxu + φux = 0. (22)

Taking the scalar product of (22) with ∇uφ gives

φt + φx(u.∇u)φ+ φφx = 0, (23)

and for this to be of the form (21) requires that

(u.∇u)φ+ φ = h(φ). (24)
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We therefore solve the equation

(u.∇u)φ = h(φ)− φ ≡ G(φ). (25)

Define a curve Γ by x = x(s), du
ds

= u, x(0) = γ. Then on Γ (consider t here as

a parameter), dφ
ds (u(t, x(s))) = (duds .∇u)φ = (u.∇u)φ = G(φ). Solving for u on

Γ gives
u(t, x(s)) = u(t, γ)es (26)

where
dφ

ds
= G(φ). (27)

Integrating (27) gives

H(φ(u(t, x(s)))) = H(φ(u(t, γ))) + s (28)

where H′ ≡ 1/G. Combining (26) with (28),

H(φ(u(t, x(s)))) = H(φ(u(t, x(s))e−s)) + s (29)

implies, together with the result from (26) with u expressed in polar coordinates
that r(t, x(s)) = r(t, γ)es, θi(t, x(s)) = θi(t, γ), 1 ≤ i ≤ n− 1,

H(φ(u(t, x(s)))) = H(φ(u(t, x(s)))r(t, γ)/r(t, x(s))) + ln(r(t, x(s))/r(t, γ)),
(30)

or

φ(r, θ1, . . . , θn−1) = H−1 ◦ (H ◦ φ(r0, θ1, . . . , θn−1) + ln(r/r0))

≡ J (rK(θ1, . . . , θn−1)), (31)

where we have set r(t, γ) = r0, J = H−1 ◦ ln, and K = 1/r0 expH ◦ φ. Taking
J from (31) and using (25) gives

r
∂

∂r
φ = G(φ)

⇒ J ′(rK(θ1, . . . , θn−1))rK(θ1, . . . , θn−1) = G ◦ J (rK(θ1, . . . , θn−1)) (32)

or
J ′(z)z = h(J (z))−J (z) (33)

which gives a functional relation between J and h. K is unconstrained. Thus
we obtain a single conservation law of the form (21) provided φ has the structure
given by (31), and then from (33), (21) becomes

Jt + (J + J ′z)Jx = 0, z = rK. (34)

Alternatively, multiplying by (J + J ′z)′ and dividing by J ′ ( 6= 0 if u /∈ Σ)
gives

(J + J ′z)t + (J + J ′z)(J + J ′z)x = 0 (35)

which implies (cp. (20)) (J + J ′z)x →∞ in finite time provided
(J + J ′z)x < 0 at t = 0. The result follows. 2
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3 Quasi-orthogonal n× n Systems

Here we consider systems of the form

ut + Λ(u)ux = 0, (36)

with

Λ = diag {λ1(u− u1), . . . , λn(u− un)}, (37)

where
u− ui = {u1, . . . , ui−1, ui+1, . . . , un}, 1 ≤ i ≤ n. (38)

For simplicity, we make the additional hypothesis that the λi admit either the
following additive structure

λi(u− ui) = σ(u)− νi(ui) (39)

where

σ(u) =
n∑
j=1

νj(uj), (40)

or the multiplicative structure

λi(u− ui) =
n∏
j 6=i

µj(uj). (41)

Since the eigenvalues of Λ are λ1, . . . , λn, equality of any pair defines a (possibly
empty) set Σ where (36) becomes non-strictly hyperbolic. The component ui

of u remains constant on the i-th characteristic, dxi/dt = λi(u − ui), 1 ≤ i ≤
n, and so there exist at least n Riemann invariants for (36). The i-th right
eigenvector, ri, satisfies ri ∝ ei where the set {ei, 1 ≤ i ≤ n} makes up the
standard Cartesian basis for Rn, therefore by (38) ri.∇uλi = 0, 1 ≤ i ≤ n.
So the set Υ where the problem becomes linearly degenerate comprises the full
phase space Rn.

Lemma 3.1 Let Λ be a C1 function, Λ : Rn → Rn2

, and let u(t, x)
∈ C1([0, t∗);C1(Rn)) be a solution to (36), with u(t, 0) = u0(x), x ∈ R, for
some maximal t∗. Then, under either (39) with (40), or (41), t∗ < ∞ if and
only if u : Rn−Σ→ Σ, as a map from u0 → u(t, .). In addition, u : Σ→ Σ on
any interval of existence.

Proof Define the characteristic Γi by xi = xi(t), dxi

dt = λi, xi(0) = αi,
1 ≤ i ≤ n. Differentiation along Γi will be written as Di ≡ ∂/∂t+λi∂/∂x, from
which it is immediate by (36) that Diu

i = 0, 1 ≤ i ≤ n, ie. ui(t, xi(t)) = ui0(αi),
where ui0(x) ≡ ui(0, x).
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Differentiating (36) with respect to x implies

Diu
i
x + uix

n∑
j 6=i

∂λi

∂uj
ujx = 0. (42)

Also, for i 6= j,

Diu
j = Dju

j + (λi − λj)ujx = (λi − λj)ujx. (43)

Consequently, unless λi = λj ,

Diu
i
x + uix

n∑
j 6=i

∂λi

∂uj
Diu

j

λi − λj
= 0. (44)

Adopting the additive assumptions (39), (40) reduces equation (44) to

Diu
i
x + uix

n∑
j 6=i

νj(uj)′
Diu

j

νj(uj)− νi(ui)
= 0 (45)

implying

Diu
i
x + uixDi

n∑
j 6=i

ln |νj(uj)− νi(ui)| = 0 (46)

or

Di(u
i
x

n∏
j 6=i

|νj(uj)− νi(ui)|) = 0. (47)

The multiplicative condition (41) instead reduces (44) to

Diu
i
x + uix

n∑
j 6=i

(
∂

∂uj

n∏
k 6=i

µk(uk))
Diu

j∏n
l6=i µl(u

l)−
∏n
m6=j µm(um)

= 0 (48)

and so, on simplifying,

Diu
i
x + uix

n∑
j 6=i

µj(u
j)′

Diu
j

µj(uj)− µi(ui)
(49)

which takes the same form as (45). We therefore have, as with (47),

Di(u
i
x

n∏
j 6=i

|µj(uj)− µi(ui)|) = 0. (50)

Thus, both sets of hypotheses stated lead to analogous results, namely that on
any characteristic, Γi, one obtains a relation of the form

uix

n∏
j 6=i

|κj(uj)− κi(ui)| = ui0x

n∏
j 6=i

|κj(uj0)− κi(ui0)|, (t, x) ∈ Γi, (51)
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where κi represents either µi or νi. Accordingly, if κj(uj0(αi)) = κi(ui0(αi))
for some j 6= i, then κj(uj(t, xi(t))) = κi(ui(t, xi(t))), t ∈ (0, t∗) for some
t∗ > 0, by local continuity in time. On the other hand, if the right side of
(51) is nonzero, then ux(t, xi(t)) → ∞ if ever κj(uj(t, xi(t))) → κi(ui(t, xi(t)))
for some j 6= i. Both sets of hypotheses allow this form of behavior only in
Σ. If (39), (40) hold, then νi(ui) = νj(uj), j 6= i, implies σ(u) − λi(u − ui)
= σ(u) − λj(u − uj) , so λi(u − ui) = λj(u − uj). If however (41) holds,
then µi(ui) = µj(uj). But λj(u − uj)/λi(u − ui) =

∏n
l6=j µ

l(ul)/
∏n
k 6=i µ

k(uk)

= µi(ui)/µj(uj), and so again λi(u− ui) = λj(u− uj). 2

Remark. It is possible to obtain analogous results to the above under other
conditions than (39)-(41). Either condition can however apply to the system
considered in the next section, and so we do not generalize further here.

4 Quasi-orthogonal 2× 2 Systems

Next, we consider the system of equations ([9]),

ut + vux = 0, (52)

vt + uvx = 0. (53)

In the following, we let Γ denote the v-characteristic, defined by

dx

dt
(t, α) = v(t, x(t, α)), (54)

where α is a Lagrangian coordinate, and

x(0, α) = α. (55)

Theorem 4.1 Let (u, v)(t, x) ∈ C1([0, t∗);C1(R)) be a solution to (52), (53),
for some maximal t∗. Then (u, v)(t, .) : R2 − Σ → Σ as t → t∗ < ∞ whenever
u′0 < 0 or v′0 < 0.

Proof Equation (52) implies that on Γ,

u(t, x(t, α)) = u0(α). (56)

Now, from (53),
vt + vvx = (v − u)vx, (57)

and differentiating (52),
utx + vuxx = −uxvx. (58)

So (57) and (58) together give

(v − u)(utx + vuxx) + (vt + vvx)ux = 0, (59)
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which reduces to
d

dt
((v − u)ux) = 0, (60)

where
d

dt
≡ D1 =

∂

∂t
+ v

∂

∂x
(61)

and we have used (56). As a result of (60), then

(v(t, x(t, α)) − u0(α))ux(t, x(t, α)) = (v0(α)− u0(α))u′0(α). (62)

Now by (54)

dx

dt
= v ⇒

dxα

dt
= vxxα ⇒

d ln |xα|

dt
= vx (63)

and by (58),

utx + vuxx = −uxvx ⇒
d ln |ux|

dt
= −vx. (64)

(63), (64) therefore show

d ln |ux|

d ln |xα|
= −1, (t, x) ∈ Γ, (65)

from which it follows easily that

|ux| → ∞ as |xα| → 0 (66)

since (65) implies ∫ ux(t,x(t,α))

u′0(α)

d ln |ux| = −

∫ x(t,α)

α

d ln |xα|, (67)

and so
ux(t, x(t, α)) = u′0(α)x−1

α (t, α). (68)

Here we have used continuity in time of the local initial value problem and (55)
to remove the absolute value signs. Together with (62), (68) also gives

v(t, x(t, α)) − u0(α) = (v0(α)− u0(α))xα(t, α). (69)

Next, using (54), (56) and (69), we obtain

xt + (u0 − v0)xα = u0, (70)

a linear, non-constant coefficient equation for x(t, α). Introducing a second
coordinate, a, for (t, α) space, such that

dα

dt
(t, a) = u0(α(t, a)) − v0(α(t, a)) ≡ w0(α(t, a)), (71)
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with α(0, a) ≡ α0(a), and denoting

D =
∂

∂t
+ w0

∂

∂α
, (72)

(70) then implies that

Dx(t, α(t, a)) = u0(α(t, a)), (73)

where x(0, α(0, a)) = α0(a). Since initial data lie in R2 − Σ, therefore
w0(α0(a)) 6= 0 and (71) gives

Q(α(t, a))−Q(α0(a)) ≡

∫ α(t,a)

α0(a)

dα

w0(α)
= t (74)

where Q′(α) ≡ 1/w0(α). So provided w0(α(t, a)) 6= 0,

α(t, a) = Q−1(Q(α0(a)) + t). (75)

By (73), then

Dx(t, α(t, a)) = u0(α(t, a)) = u0(Q−1(Q(α0(a)) + t)). (76)

If we now define a Lagrangian variable X(t, a) by

X(t, a) = x(t, α(t, a)), X(0, a) = α0(a), (77)

then Xt = Dx by (72), and

Xt(t, a) = u0(α(t, a)) = u0(Q−1(Q(α0(a)) + t)) (78)

implies

X(t, a) = α0(a) + S0(Q(α0(a)) + t)− S0(Q(α0(a))) (79)

where S′0 = u0 ◦ Q−1. As a result, using (75), (77) and (79),

x(t,Q−1(Q(α0(a)) + t)) = α0(a) + S0(Q(α0(a)) + t)− S0(Q(α0(a))), (80)

or, since (75) implies Q(α0(a)) = Q(α(t, a))− t, then (80) reads

x(t, α) = Q−1(Q(α) − t) + S0(Q(α)) − S0(Q(α)− t). (81)

In particular, on differentiating (81),

xα(t, α) =
Q′(α)

Q′(Q−1(Q(α)− t))
+ S′0(Q(α))Q′(α) − S′0(Q(α) − t)Q′(α), (82)
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and so, since S′0 = u0 ◦ Q−1, Q′ = 1/w0, by means of (71)

xα(t, α) =
1

w0(α)
(w0(Q−1(Q(α)− t)) + u0(α) − u0(Q−1(Q(α)− t)))

=
u0(α)− v0(Q−1(Q(α)− t))

u0(α) − v0(α)
. (83)

This then implies breakdown, by (68), provided there exists some positive
time, t, at which u0(α) = v0(Q−1(Q(α) − t)), ie. provided t = Q(α) −
Q(v−1

0 (u0(α))) > 0, if v0 possesses a local inverse. Since Q′ = 1/w0, then
Q(α) is locally increasing if u0(α) > v0(α) and locally decreasing if u0(α)
< v0(α). It is an elementary exercise to show that this is consistent with t > 0
only if v′0(α) < 0. Then t∗ = infα t. Interchanging u and v in the above proof
gives the result stated in the Theorem, with t∗ the infimum, over α, of all t > 0
constructed as above. 2

Remark. Recalling (69), which can be written

xα(t, α) =
u0(α) − v(t, x(t, α))

u0(α)− v0(α)
, (84)

and comparing (83) with (84) shows that v evolves along Γ as

v(t, x(t, α)) = v0(Q−1(Q(α) − t)). (85)

5 Numerical Results

In order to examine the onset of singularity formation for the system{
ut + vux = 0
vt + uvx = 0

numerically, the graphics shown in Figure 1 were obtained using a simple finite
difference scheme

un+1
i = uni − 0.02vni (uni+1 − u

n
i−1), (86)

vn+1
i = vni − 0.02uni (vni+1 − v

n
i−1). (87)

Step sizes are ∆t = 0.01 and ∆x = 1, and initial data takes the form

u0 = 0.0095j(150− j) sin(0.06(j − 37.5)), 0 ≤ j ≤ 150 ,

and
v0 = .01k(150− k), 0 ≤ k ≤ 150 .

The singularity forms immediately the u and v curves touch, which takes place
at t = 0.11.
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Figure 1: Singularity formation for smooth initial data.
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