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Abstract

We study certain approximate solutions of a system of equations for-
mulated in an earlier paper (Physica D 43 44–62 (1990)) which in dimen-
sionless form are

ut + γw(φ)t = ∇2u,

αε2φt = ε2∇2φ+ F (φ,u),

where u is (dimensionless) temperature, φ is an order parameter, w(φ) is
the temperature–independent part of the energy density, and F involves
the φ–derivative of the free-energy density. The constants α and γ are of
order 1 or smaller, whereas ε could be as small as 10−8. Assuming that a
solution has two single–phase regions separated by a moving phase bound-
ary Γ(t), we obtain the differential equations and boundary conditions
satisfied by the ‘outer’ solution valid in the sense of formal asymptotics
away from Γ and the ‘inner’ solution valid close to Γ. Both first and sec-
ond order transitions are treated. In the former case, the ‘outer’ solution
obeys a free boundary problem for the heat equations with a Stefan–like
condition expressing conservation of energy at the interface and another
condition relating the velocity of the interface to its curvature, the surface
tension and the local temperature. There are O(ε) effects not present in
the standard phase–field model, e.g. a correction to the Stefan condition
due to stretching of the interface. For second–order transitions, the main
new effect is a term proportional to the temperature gradient in the equa-
tion for the interfacial velocity. This effect is related to the dependence
of surface tension on temperature.

We also consider some cases in which the temperature u is very small,
and possibly γ or α as well; these lead to further free boundary problems,
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which have already been noted for the standard phase–field model, but
which are now given a different interpretation and derivation.

Finally, we consider two cases going beyond the formulation in the
above equations. In one, the thermal conductivity is enhanced (to or-
der O(ε−1)) within the interface, leading to an extra term in the Stefan
condition proportional (in two dimensions) to the second derivative of cur-
vature with respect to arc length. In the other, the order parameter has m
components, leading naturally to anisotropies in the interface conditions.

1 Introduction

In [PF1], the authors gave a thermodynamically consistent formalism for devel-
oping models of phase–field type for phase transitions in which the only two field
variables are temperature and an order parameter. The present paper devel-
ops in some detail the laws governing the motion of phase interfaces which are
implied by these models and their generalizations, in the case of both first and
second order phase transitions. (The latter are defined here to be those tran-
sitions in which the internal energy is the same in the two phases at constant
temperature.) These laws are obtained by a formal reduction of the models
in [PF1] to free boundary problems. Such a reduction is obtained by the use
of systematic formal asymptotics based on the smallness of a parameter ε, a
dimensionless surface tension. (This identification of ε is shown in (24) and Sec.
12, although its definition comes, via the coefficient κ1 in (3), from the gradient
term in a postulated entropy functional introduced in [PF1].) This was the
procedure first followed in [CF] for the traditional phase field equations. We
consider only models in which the density is constant and the order parameter
is not a conserved quantity.

Within these restrictions, our treatment here is in many respects more com-
plete and general than that given in [CF], [C1], [WS] and in other papers. For
example, in allowing the thermal diffusivityD to depend on the order parameter,
we may include the case when this diffusivity is enhanced within the interfacial
region; the interface condition expressing energy balance then includes an extra
term involving (in two dimensions) the second derivative of the curvature with
respect to arc length along the interface and representing lateral diffusion within
that region.

We also explore other implications of the dependence of both D and the heat
capacity c on the order parameter, and generalize the procedure to the case when
there are several order parameters. This latter case is frequently encountered in
modeling phase transitions, and leads naturally to anisotropies in the interface
conditions. It leads to some interesting mathematical problems involved with
finding a heteroclinic orbit for a special kind of Hamiltonian system.

The contrasting nature of phase interfaces for first and second order transi-
tions is brought out. In the latter case, we derive a forced motion-by-curvature
problem.
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The conditions leading to a free boundary problem of Mullins–Sekerka type
are elucidated and contrasted with those usually postulated within the frame-
work of the traditional phase field model. In particular, the time evolution from
Stefan–type motion into Mullins–Sekerka motion is discussed (Sec. 14).

The relation between the interface thickness, the surface tension, and the
Gibbs–Thompson law, is discussed, and our viewpoint corroborated by known
physical data.

Finally, the asymptotic procedure here used is developed and discussed with
great care, and certain first order terms in the interface conditions are derived
here for the first time.

The phase field models developed in [PF1] were based on certain postulated
forms for the internal energy, free energy, and entropy of the system. These
are made precise in Sec. 3 of this paper. Other assumptions, of a mathemat-
ical nature, are made in the paper, particularly in Sec. 5. These latter are
assumptions about the nature of the layered solutions we are investigating, and
are made in order to carry out a matched asymptotic expansion. Assumptions
of this type are in fact nearly always made in formal asymptotic treatments of
applied problems, but are rarely made explicit. We strive to spell them out
completely.

There has been good progress in rigorous justification of the type of formal
asymptotics used here, which means proving the existence of solutions for which
our assumptions hold. See [CC], [St], [St2] for such a justification in the case of
the traditional phase field model. (Such progress has been even more impressive
in the case of the Allen-Cahn and Cahn-Hilliard models.)

Other thermodynamically consistent models have been developed in recent
years; see [T], [UR], [AP1], [AP2], [WS], and the references given there (note
also [K], described from a thermodynamically consistent point of view in [WS]).
In many cases they are more complicated than ours, due to the inclusion of
effects such as variable density.

2 The main ideas and results

As in [PF1] we start from a Helmholtz free energy function of the form

f(φ, T ) = w̄(φ)− T s̄0(φ) − cT logT,

where φ is the order parameter, T the absolute temperature, w̄(φ) and s̄0 are
the temperature-independent parts of the energy density and entropy density,
and c is the heat capacity at constant φ, which for the time being we take to be
constant. The internal energy is then

ē(φ, T ) =
∂(f/T )

∂(1/T )
= w̄(φ) + cT (1)
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and the kinetic equations, (3.8) and (3.6) of [PF1], can be written in the form
of the following equations, the main object of study in this paper:

cTt̄ + w̄(φ)t̄ = ∇ ·D(φ, T )∇T, (2)

κ0(φ, T )φt̄ = κ1∇
2φ−

1

T

∂f(φ, T )

∂φ
. (3)

Here x̄ ∈ R2 or R3 and t̄ ∈ R are space and time variables, ∇ denotes
vector differentiation with respect to x̄, D is the heat conduction coefficient, κ1

measures the contribution to the entropy and free energy made by gradients in
φ, and κ0 is a relaxation time for φ. (The coefficient κ0 is called K−1

1 in [PF1].)
Note that w̄ and f are related to s̄0(φ):

−
1

T

∂

∂φ
f(φ, T ) = s̄′0(φ) −

1

T
w̄′(φ). (4)

where the primes indicate differentiation. In Sec. 18, the order parameter φ
is generalized to have several components, in which case (3) becomes a vector
equation, κ0 becomes a matrix, the first term on the right of (3) becomes a more
general second order operator, and the last term becomes − 1

T∇φf(φ, T ).
As in [PF1], the function w̄ will be postulated to be concave (in fact,

quadratic), and at fixed T the function of φ on the left of (4) has the form
of a “seat function” of φ with three zeros, at values φ = h−(T ), h0(T ), and
h+(T ) (see Figure 1). Fig. 1(a) illustrates the possibility (used in [WS]), that
one or more of these functions ‘h’ may be constants. Moreover, we postulate the
existence of a temperature T0 (the melting temperature if the transition is of
first order) such that f(h−(T0), T0) = f(h+(T0), T0). More specific assumptions
on our functions are given in Section 3.

As indicated in [PF1] and (especially) in [PF3], the traditional phase–field
model of Langer [L] and Caginalp, in which w̄ is linear, can be put into this
general framework, but corresponds to cases where s0(φ) is a nonconcave func-
tion.

The special case of (2), (3) studied in [PF3] for purposes of illustration is
revisited here in Section 4. In that section, we relate our parameters to various
physical constants in order to gauge their orders of magnitude. In this same
vein, we relate the interface thickness ε to the surface tension σ. (The parameter
ε is defined below in Section 3, in terms of κ0 and κ1.)

If the parameters κ0 and κ1 in (3) are small, in the sense to be explained
below in Section 3, then solutions can be constructed (in the manner of formal
asymptotics) which depict spatial configurations of two distinct phases. More
precisely, at any instant of time, space is divided into regions D+ and D−, with
a thin mobile layer separating them. In many typical cases, the order parameter
φ is approximately a constant, say φ±, in D±. In the thin layer between D+

and D−, φ makes a transition from near φ− to near φ+.
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Figure 1: Two possible functions −fφ(φ, T ) plotted for T = T0 (thick)
and T > T0 (thin), and their null sets (with the functions hi(T )) :
(a) −fφ(φ, T ) = (φ2 − 1)(φc(T − T0)− φ)
(b) −fφ(φ, T ) = φ(1− φ2)− T + T0

Our purpose is to study these layered solutions in detail. Our focus is on all
solutions of this type, rather than on solutions satisfying specific boundary or
initial conditions.

We are mainly concerned with first-order phase transitions. A matched
asymptotic analysis for this case is given in Sections 5 – 12. Only the two-
dimensional case is considered, but the method is easily extended to three di-
mensions. Our analysis relies on the smallness of ε, a parameter (actually a
dimensionless surface tension) related to κ1 which will be given later. We as-
sume that the dimensionless width of the layers is O(ε)) and that their internal
structure scales with ε in a way to be defined more carefully in Sec. 5. Under
these assumptions, the analysis allows one to deduce further information of a
detailed nature about the layered solutions. For example, it provides approxi-
mate information about how the interphase regions move. It is this property of
engendering further information which lends the assumption its credibility.

The result of the analysis is that the layered solutions can be formally ap-
proximated at the macroscopic level by the solution of a free boundary problem,
the interphase layer being approximated by a sharp interface. The free bound-
ary problem, set out in Section 11, consists of heat equations in each of the
two single-phase domains, coupled through their common domain boundary
(the interface) by means of two specific relations. One of them is a Stefan–like
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condition, and the other is a condition relating the temperature there to the
velocity, curvature, and surface tension . These approximations, valid away
from the layer, are supplemented by fine structure approximations, valid in the
vicinity of the layer, which give information about the phase and temperature
profiles within the interphase region.

The analysis reveals some new effects: (a) to order ε, the temperature may be
discontinuous at the interface; (b) the effect of interface stretching is accounted
for by an extra term in the Stefan condition; and (c) there is in general a small
extra normal derivative term as well as a curvature term in the other interface
condition.

In Section 13, we consider the analogous question of phase boundary motion
in the case of second order phase transitions. The previous development is
easily adapted to this case, but the results are strikingly different. The model
considered by Allen and Cahn [AC] is a particular case.

The basic free boundary problem obtained in Section 11 has many particular
limiting cases when certain order of magnitude assumptions are made on the
parameters of the problem; a few of these possibilities are explored in Sections
14 and 15. As opposed to previous derivations of similar limiting cases, we
show that the various alternative free boundary problems obtained in [CF] and
[C2] as formal approximations for small ε when certain parameters are taken to
depend on ε, appear here as corollaries of our basic results. The same is true
for the classic motion–by–curvature problem. Thus one general analysis does it
all. In the case of curvature–driven free boundary problems of various kinds,
we elucidate in Section 15 the physical conditions under which they are valid
approximations. These conditions are distinctly different from those which have
been suggested in the past, and are motivated by thermodynamic considerations.

In Section 16, the implications of allowing the coefficients to depend on φ and
T are explored. Section 17 is devoted to the interesting case, not considered
before, when the thermal diffusivity is enhanced within the interphase zone.
Again, the analysis in Sections 5 – 12 can be adapted. The most significant new
feature is the appearance, in the Stefan interface condition, of an extra term
representing diffusion within the zone. This term involves the second tangential
derivative (or, in three dimensions, the surface Laplacian) of the curvature of the
interface. An analogous result has been derived by Cahn, Elliott, and Novick–
Cohen [CEN], in the case of Cahn–Hilliard type equations. They show that
enhanced mobility within the interfacial zone results in a limiting free boundary
problem in which the motion is driven by the Laplacian of the curvature. See
[CT] for a materials scientific theory of a class of surface motions depending on
the Laplacian of curvature.

In Section 18 the generalization, important in some applications, is made
to multi-component order parameters. As we shall see, this provides a possible
basis for treating the motion of anisotropic interfaces. Free boundary problems
of the same general type as before are obtained, but the coefficients of the
curvature and velocity in the free boundary conditions are more complicated.
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A systematic matched asymptotic analysis of moving layer problems of this
sort was first carried out in [CF]; see also [C2] and [F2]. Similar problems were
treated using related techniques in [P] and in [RSK]. To an extent, our conclu-
sions are analogous to those in [CF] and [C2], but there are many important
differences, as was mentioned above.

3 The basic model and hypotheses for first order
phase transitions; nondimensionalization.

The models considered here consist of field equations (2), (3) for a temperature
function T (x̄, t̄) and an order parameter function φ(x̄, t̄). In the main part of
the paper we shall assume that c, κ0, and D are positive constants, and that φ is
a scalar function. Some assumptions about the function f will also be needed.
These depend somewhat on whether the phase transition is of first or second
order. We begin with the case of a first order transition (sections 5–12), for
which the assumptions are set out below. Second order transitions are treated
in Sec. 13.

A1. f(φ, T ) is twice continuously differentiable in both variables. Considered
as a function of φ at fixed T for any T in some interval T− < T < T+, f(φ, T )
has two local minima φ = h−(T ) and φ = h+(T ), which we order so that

h−(T ) < h+(T ).

It also has a single intermediate local maximum at φ = h0(T ) ∈ (h−(T ), h+(T )).
Thus −fφ typically has one of the forms shown in Figure 1. The two numbers

h−(T ) and h+(T ) are the values of φ for which uniform phases can exist at
temperature T . In general these two minima correspond to different values of
the free energy. If that is the case, one of the phases is stable and the other is
metastable, so that they cannot coexist at equilibrium. Only if they correspond
to the same free energy density,

f(h−(T ), T ) = f(h+(T ), T ), (5)

can the two phases coexist at equilibrium.

Our second assumption (which holds only for first order transitions) will be
that phase equilibrium is possible only at a single temperature T0 (the melting
temperature, in the case of solid–liquid transitions):

A2. Equation (5) is satisfied if and only if T = T0 ∈ (T−, T+).

Our third assumption strengthens the local minimum condition on f(φ, T )
at φ = h±(T ) in A1, to
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A3.
∂2f

∂φ2
(h±(T ), T ) > 0. (6)

Our fourth assumption concerns the latent heat. To write it simply, we
denote φ± = h±(T0); φc = h0(T0). Since we are considering the case of a first
order phase transition, the energies of the two phases are different : w(φ+) 6=
w(φ−). The more ordered phase (with the order parameter φ near φ+) will have
the lower energy, and so the latent heat is

¯̀= w̄(φ−)− w̄(φ+), (7)

satisfying

A4.
¯̀> 0. (8)

In view of (1) and (7), A4 is equivalent to the condition

∂

∂T

∫ φ+

φ−

∂f(φ, T )/∂φ

T
dφ > 0 at T = T0.

Using A2, we see that this is equivalent to

d

dT
[f(h−(T ), T )− f(h+(T ), T )] |T=T0 > 0, (9)

so that if (5) holds for T = T0, it cannot hold for T 6= T0, and hence A4 implies
the “only if” part of A2.

It will be convenient to recast our equations (2), (3) in dimensionless form.
Recall that x̄ and t̄ are physical variables. We define dimensionless space and
time by

x = x̄/L; t = t̄D/cL2. (10)

where L is a characteristic macrolength for our system. For example, we may
choose it to be he diameter of the spatial domain of definition of our functions
φ and T or the minimum radius of curvature of the initial interface, defined to
be the curve {φ = φc}. Each term of Equation (2) has the dimensions of energy
density per unit time, and the terms in (3) have dimensions of energy density
per unit temperature. We divide (2) by DT0

L2 and (3) by c, to make each term
dimensionless.

To simplify the notation further, we use a new temperature variable u =
T
T0
− 1, where T0 is given in A2 above, and define
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w(φ) ≡ w̄(φ)
γcT0

, ` ≡
¯̀

γcT0
,

F (φ, u) = − 1
γcT (u)

∂
∂φ
f(φ, T (u)),

(11)

where γ is a dimensionless parameter chosen so that

∂F

∂φ
(φc, 0) = 1. (12)

(We are assuming that φ+−φ− is of order 1.) This is our method of normalizing
the seat function F . But we have also incorporated γ into the definitions of the
dimensionless w and ` above; this is natural since f , w̄ and ¯̀ are related by
(1), (4), and (7) and constitute an important point of departure from previous
phase-field models (see Sec. 15). The use of γ allows us to obtain approximate
but simpler forms of the laws of interfacial motion when γ is small (Sec. 14).

Clearly, (7) continues to hold with the overbars removed. Since w̄ and w
are only defined up to an arbitrary additive constant, we are free to choose that
constant so that

w± ≡ w(φ±) = ∓
`

2
. (13)

With these representations, (2) and (3) become

ut + γw(φ)t = ∇2u, (14)

αε2φt = ε2∇2φ+ F (φ, u), (15)

where ∇ now denotes differentiation with respect to x and we have set ε2 =
κ1/L

2γc and α = κ0D/κ1c. We expect α to be O(1) but, as we shall see in
Sec. 4 , ε2 is typically very small. Equations (14) and (15) form the basis of the
remainder of the paper.

Our assumptions A1 – A4 can now be reexpressed in terms of the new
notation:

Equivalent of A1: For each small enough u, the function F (φ, u) is bistable
in φ; that is, it has the form of a seat function of φ, as exemplified by the graphs
in Fig. 1. (Again, we denote the outer zeros of F by h±(u).)

Equivalent of A2:∫ h+(u)

h−(u)

F (φ, u)dφ = 0 if and only if u = 0. (16)
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Equivalent of A3:
∂F

∂φ
(h±(u), u) < 0. (17)

It follows from (1), (5), (7), and (11) that

` = −

∫ φ+

φ−

Fu(φ, 0)dφ. (18)

We therefore have:

Equivalent of A4:

d

du

∫ h+(u)

h−(u)

F (φ, u)dφ < 0 when u = 0. (19)

Again, note the relation between this and the “only if” part of (16).
As a first consequence of these assumptions, we note the fact, which is guar-

anteed (see [F1] and its references, for instance) by (16) and (17), that the
boundary value problem

ψ
′′

+ F (ψ, 0) = 0, z ∈ (−∞,∞); ψ(±∞) = φ±, ψ(0) = φc. (20)

has a unique solution ψ(z). Changing the integration variable in (19) from φ to
z by the relation φ = ψ(z), we see that (19), and hence A4, is in turn equivalent
to ∫ ∞

−∞
Fu(ψ(z), 0)ψ′(z)dz < 0. (21)

4 Example; numerical values for the parame-
ters.

A simple free energy function modeling liquid–solid phase transitions was con-
sidered in the appendix of [PF3]. In dimensional form, it is

f = f0

[
T

4T0
(φ2 − 1)2 +

(
T

T0
− 1

)
a(φ+ 1)2

]
+ cT log

T

T0
, (22)

w̄(φ) = −f0a(φ+ 1)2,

where f0 is a parameter with dimensions of energy density, and a is dimension-
less.

To relate some of the constants in (22) to measurable quantities we note first
that, by (7), the latent heat is
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¯̀= w̄(−1)− w̄(1) = 4af0.

Another measurable quantity giving information about the parameters of
the model is the surface tension σ̄. It is equal to the excess free energy per unit
area in a plane interface, which for T = T0 is ([CA])

σ̄ =

∫ ∞
−∞

[
f(ψ(r̄/ε), T0) +

1

2
κ1T0

(
dψ

dr̄

)2
]
dr̄. (23)

According to (22), the function F (φ, 0) is − f0
γcT0

φ(φ2−1), so that the definition

(12) of γ gives Fφ(0, 0) = f0
γcT0

= 1 and

f0 = γcT0.

Since now F (φ, 0) = −φ(φ2 − 1), we have from (20)

ψ(z) = tanh
z
√

2
.

Using the relations z = r/ε = r̄/εL, φ(r̄) = ψ(z) = tanh(z/
√

2), and f(φ, T0) =
1
4f0(φ2 − 1)2 = 1

4f0sech4(z/
√

2), we can simplify (23) to

σ̄ = εL
∫∞
−∞

[
1
4f0sech4

(
z√
2

)
+ κ1T0

4ε2L2 sech4
(
z√
2

)]
dz

= εLγcT0
2
√

2
3 since f0 = γcT0 and ε2 = κ1

γcL2 .

(24)

Therefore we can think of the product εγ as a measure for the magnitude of the
surface tension.

The surface tension at a solid–liquid interface can be deduced from the value
of the Gibbs–Thompson coefficient

G =
σ̄T0

¯̀ =
σ̄T0

4af0
.

From (24) and this we obtain for the width of the interface

εL =
3σ̄

2
√

2γcT0

=
3
√

2aG

T0
.

The value of a can be estimated as follows: first, if the entropy is to be a
concave function of φ, then, as shown in [PF3], we must have a > 1

2 ; secondly,
if the liquid can be supercooled to a temperature T− then f must have a local
minimum at φ = −1 when T = T−, which with (22) implies T−/T0 > a/(1 + a)
i.e. a < T−/(T0 − T−). For example in the case of the ice-water transition we
might take T0 = 273K, T− = 233K, giving a < 5.8. We shall take the value
a = 1 to be typical.
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Typical values of G and T0 are 10−5 cm-deg and 300K, respectively. Using
them, we obtain

εL ≈ 1.5× 10−7 cm,

which is of the order of a few lattice spacings of an ice crystal, a not unreasonable
interface thickness. If L equals, say, 10 cm., then ε is less than 10−7 and the
approximations to be developed in this paper should be very accurate.

5 The approximation scheme.

Our procedure is based on assumptions which have been used implicitly in
various earlier studies of similar problems ([CF], [RSK], [P], etc.) and have
been rigorously justified, under certain conditions, in the analogous cases of the
Cahn–Allen equations [MSc], [Chen1] and the Cahn–Hilliard equation [ABC].
We spell them out completely. Their plausibility rests in large part on the
fact that they lead to a succession of reasonable formal approximations. For
simplicity we consider only the two dimensional case.

The core assumption is that there exist families of solutions (u(x, t; ε), φ(x, t; ε))
of (14), (15), defined for all small ε > 0, all x in a domain D ⊂ R2, and all t
in an interval [0, t1], with “internal layers.” This concept is defined precisely in
the form of assumptions (a)− (e) below, as follows.

For such a family, we assume that, for all small ε ≥ 0, the domain D can at
each time t be divided into two open regions D+(t; ε) and D−(t; ε), with a curve
Γ(t; ε) separating them. This curve does not intersect ∂D. It is smooth, and
depends smoothly on t and ε. In particular, its curvature and its velocity are
bounded independently of ε. These regions are related to the family of solutions
as follows.

(a) Let Ω be any open set of points (x, t) in D × [0, t1] such that
dist(x,Γ(t; 0)) is bounded away from 0. Then for some ε0 > 0, u can, we
assume, be extended to be a smooth (say, three times differentiable) function of
the three variables x, t, and ε uniformly for 0 ≤ ε < ε0, (x, t) in Ω. The same
is assumed true of φ(x, t; ε).

It follows in particular that the functions uk(x, t) ≡ 1
k!∂

k
ε u|ε=0, k = 0, 1, 2, 3,

are defined in all of D \ Γ(t; 0). A similar statement holds for ∂kε φ|ε=0.
It also follows from (15) that for (x, t) in any region Ω as described above,

F (φ, u) = O(ε2). This implies, by the definition of h±, that φ is close either to
h+(u) or h−(u). (The third possibility would be φ near h0(u); but in view of
the instability of this constant solution of (15) (for fixed u), we assume there
are no extended regions where φ is close to this value.)

(b) For Ω in D±(t; 0) × [0, t1], we assume that φ is close to h±(u). Our
interpretation is that the material where φ is close to h−(u) is in “phase I” (the
less ordered phase, since φ− < φ+) and that where φ is near h+ is in phase II,
the more ordered phase.
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Much of our analysis will refer to a local orthogonal spatial coordinate system
(r, s) depending parametrically on t and ε, defined in a neighborhood of Γ(t; ε),
which we define precisely as the set where φ = φc. We define r(x, t; ε) to be the
signed distance from x to Γ(t; ε), positive on the D+ side of Γ(t; ε). Then for
small enough δ, in a neighborhood

N (t; ε) = {x : r(x, t; ε) < δ} ,

we can define an orthogonal curvilinear coordinate system (r, s) in N , where
s(x, t; ε) is defined so that when x ∈ Γ(t; ε), s(x, t; ε) is the arc length along
Γ(t; ε) to x from some point x1(t; ε) ∈ Γ(t; ε) (which always moves normal to Γ
as t varies).

Transforming u and φ to such a coordinate system, we obtain the functions

û(r, s, t; ε) = u(x, t; ε), φ̂(r, s, t; ε) = φ(x, t; ε).

Let ûk(r, s, t), φ̂k(r, s, t) be defined in the same way as uk and φk above, in
terms of derivatives at ε = 0. They exist, by virtue of (a) above.

(c) For each t ∈ [0, t1], we assume that the ε-derivatives uk, k ≤ 3, restricted
to the open domain D∩{r > 0}, can be extended to be smooth functions on the
closure D̄∩{r ≥ 0} (on Γ, they no longer signify the derivatives indicated above).
Similarly, we assume that the restrictions to D∩{r < 0} can be extended to be
smooth functions on D̄ ∩ {r ≤ 0} and that the analogous statements are true of
the ε-derivatives of φ.

(d) Let z = r/ε, and let U(z, s, t; ε) = û(r, s, t; ε) in the neighborhood of Γ
introduced above. Then for any positive ε0 and z0, we assume that U(z, s, t; ε)
can be extended to be a smooth function of the variables (z, s, t; ε), uniformly

for 0 ≤ ε < ε0, |z| < z0, 0 ≤ t ≤ t1, all s. The analogous statements for φ̂ in
place of û are also assumed to hold.

It follows that the functions Uk(z, s, t) = 1
k!∂

k
ε U(z, s, t; ε)|ε=0 are well defined.

We now have that for any r0 > 0, z0 > 0, the Taylor series approximations

u(x, t; ε) = u0(x, t) + εu1(x, t) + o(ε), (25a)

û(r, s, t; ε) = û0(x, t) + εû1(x, t) + o(ε), (25b)

U(z, s, t; ε) = U0(z, s, t) + εU1(z, s, t) + o(ε), (25c)

together with their differentiated versions, are valid for all sufficiently small ε :
in the case of (25a,b), uniformly for dist(x,Γ(t; 0)) > r0 > 0 and in the case of

(25c), for dist(x,Γ(t; ε)) < εz0. Similar statements hold for φ, φ̂, Φ. Truncated
series as in (25a) and (25b) will constitute our ‘outer’ approximation; ones like
those in (25c) will constitute the ‘inner’ approximation.
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(e) The approximations in (25b,c) above are assumed to hold simultaneously
in a suitable region: for some 0 < ν < 1, we assume that (25b) holds for

dist(x,Γ(t; ε) > εν ,

and (25c) holds for

dist(x,Γ(t; ε) < 2εν .

Differential equations for the functions uk, φk, etc. can be obtained by
substituting (25a) and its analog into (14) and (15) and equating coefficients
of powers of ε. For this purpose, the only conclusion from (15) which will be
needed is the relation

F (φ, u) = 0(ε2), (26)

which provides algebraic equations relating uk and φk, k ≤ 1. For example,

φ0 = h±(u0) in D±. (27)

In the same way, we get from (14) that

∂te0 = ∇2u0 in D±,

e0 = u0 + γw(φ0).
(28)

Our object will be to find free boundary problems satisfied by the outer
functions uk, φk. For this, we need not only differential equations and algebraic
relations such as (27) and (28) holding in D±, but also extra conditions on Γ.
These extra conditions will be obtained by finding the inner functions Uk, Φk
and using assumption (e) to obtain matching conditions relating them to the
outer functions u, φ. And to find these inner functions, we shall in turn need to
relate the surface Γ(t; ε) to the family φ precisely and to specify a curvilinear
coordinate system near Γ. This will be done in the next section.

6 The r, s and z, s coordinate systems; matching
relations.

Recall that our definition of Γ will be the level surface

Γ(t; ε) = {x : φ(x, t; ε) = φc} , (29)

and the (r, s) coordinate system is attached to Γ.
To go from Cartesian to (r, s) coordinates we transform derivatives as follows:
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∂t is replaced by ∂t + rt∂r + st∂s;

∇2 is replaced by ∂rr + |∇s|2∂ss +∇2r∂r +∇2s∂s.
(30)

Here, we have used the fact that |∇r| ≡ 1.
The derivatives of r and s in these expressions can be written in terms

of kinematic and geometric properties of the interface Γ. The details of the
calculation are given in the Appendix; we quote only the results here. Let
v(s, t; ε) denote the normal velocity of Γ in the direction of D+ at the point s,
and let κ denote its curvature, defined by κ(s, t; ε) = ∇2r(x, t; ε)|Γ. Then the
time derivatives of r and s can be written

rt(x, t; ε) = −v(s, t; ε), st = −
rvs

1 + rκ
, (31a)

where, here and below, the arguments of v and κ are (s(x, t; ε), t; ε), and sub-
scripts on v and κ denote differentiation. The corresponding expression for the
space derivatives of r and s are

∇2r(x, t; ε) =
κ

1 + rκ
, (31b)

∇2s(x, t; ε) =
rκs

(1 + rκ)3
, |∇s|2 =

1

(1 + rκ)2
. (31c)

To obtain the equations for the inner approximation we first define, in ac-
cordance with (1) and (11), the nondimensional internal energy

e = u+ γw(φ). (32)

As in (25b), we shall denote by ê the same quantity e expressed as a function of
r, s, t, ε. In view of (30) and (31), our basic equations (14) and (15) then become

∂tê− v∂r ê−
rvs

1+rκ∂sê =

ûrr + κ
1+rκ ûr + 1

(1+rκ)2 ûss + rκs
(1−rκ)3 ûs,

αε2(φ̂t − vφ̂r −
rvs

1+rκ φ̂s) =

(33)

ε2
(
φ̂rr +

κ

1 + κr
φ̂r +

1

(1 + rκ)2
φ̂ss +

rκs

(1 + rκ)3
φ̂s

)
+ F (φ̂, û). (34)

To obtain the inner expansion we follow the procedure set out in Sec. 5(d),
defining in N (t; ε) the stretched normal coordinate

z = r/ε (35)
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and the functions

U(z, s, t; ε) = û(r, s, t; ε), Φ(z, s, t; ε) = φ̂(r, s, t; ε), E(z, s, t; ε) = ê(r, s, t; ε).

To obtain differential equations for U and Φ, we substitute (35) into (33), (34),
obtaining :

Uzz + εκUz + vεEz − ε
2κ2Uz + ε2Uss − ε

2Et = O(ε3), (36)

Φzz + F (Φ, U) + εκΦz + αεvΦz = O(ε2), (37)

E = U + γw(Φ). (38)

The functions U,Φ, E can be expanded in powers of ε as in (25c) :

U(z, s, t; ε) = U0(z, s, t) + εU1(z, s, t) + o(ε) (ε→0),
Φ = Φ0 + εΦ + o(ε)

}
(39)

and so on. By the regularity assumptions in Sec. 4, v(s, t; ε) and κ(s, t; ε)
can also be expanded in series like (39). The differential equations satisfied
by the functions U0, Φ0, etc. are obtained by substituting (39) into (36) and
(37). This will be done in the next section, but first we formulate the matching
conditions (e.g. [F2]) obtained by requiring that the inner and outer expansions
represent the same function in their common domain of validity (which exists
by Assumption (e) of the previous section). They are the following, where we
have omitted the carets from the symbols u and φ.

lim
r→0±

u0(r, s, t) = lim
z→±∞

U0(z, s, t); (40)

lim
r→0±

∂ru0(r, s, t) = lim
z→±∞

∂zU1(z, s, t). (41)

If U1(z, s, t) = A±(s, t) +B±(s, t)z + o(1) as z→±∞, then

A±(s, t) = u1(0±, s, t); B± = ∂ru0(0±, s, t), (42)

and so on. Similar relations apply, connecting φ0, φ1 to Φ0, Φ1, etc. Finally if
∂zU2 = A∗±(s, t) +B∗±(s, t)z + o(1), then

A∗±(s, t) = ∂ru1(0±, s, t). (43)

7 The zero-order inner approximation.

We substitute (35) and (39) into (36) and (37) to obtain a series expansion in
powers of ε for each side of the latter. By equating the coefficients of each power
of ε we obtain a sequence of equations for the various terms Ui and Φi . The
first couple of them are analyzed as follows :
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O(1) in (36):

U0zz = 0.

We want U0 to be bounded as z→±∞, because of (40); so U0 is independent
of z :

U0 = U0(s, t).

O(1) in (37):

Φ0zz + F (Φ0, U0) = 0. (44)

By (29), we have Φ0(0, s, t) = φc. By the equation for Φ analogous to (40),
we seek a solution Φ0 which approaches distinct finite limits as z→±∞, and it
is clear from (44) that these limits must be roots Φ of F (Φ, U0) = 0. Moreover,
it can be seen by multiplying (44) by Φ0z and integrating from −∞ to +∞ that
the integral in (16) with u replaced by U0 must vanish. By A2 (16), this implies

U0 ≡ 0. (45)

Therefore Φ0 must satisfy the differential equation in (20), and by the definition
of r it satisfies the other conditions in (20) as well, so that it must actually be
the function defined in (20):

Φ0(z, s, t) ≡ ψ(z). (46)

satisfying the condition
ψ(±∞) = h±(0) ≡ φ±. (47)

(Notice that Φ0 does not depend on s or t.)
The matching condition (40) now gives, by (45), (46) and (47), the following

boundary condition on the lowest-order outer solution :

u0 |r=±0 = 0; φ0|r=±0 = φ±. (48)

At this point, we are in a position to define and evaluate, to lowest order,
interfacial free energy and entropy densities at T = T0. The total free energy in
the system is ([PF1, eqs. 3.9 and 3.12])

F̄ [φ, T (u)] =

∫
Ω̄

(f(φ, T (u)) +
1

2
κ1T (u)|∇φ|2)dx̄,

T (u) = (u+ 1)T0. Its dimensionless form follows from our previous nondimen-
sionalization procedure:

F [φ, u] = F̄ [φ, T ]/γcT0L
2 =

∫
Ω

(
f(φ, T )

γcT0
+
T (u)

2T0
ε2|∇φ|2

)
dx.
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The (dimensionless) surface tension σ is the interfacial free energy per unit
length of interface. It can be calculated, at T = T0 (u = 0) by subtracting the
free energy density of a uniform phase, which is f(φ±, T0), from the function f
in the integrand and then integrating with respect to z = r/ε from −∞ to ∞.
To lowest order in ε we may use the approximation φ = ψ(r/ε), T = T0 in this
integral, obtaining

σ = ε

∫ ∞
−∞

(
f̂(ψ(z)) +

1

2
(ψ′(z))2

)
dz, (49)

where we have set

f̂(ψ) =
f(ψ, T0)− f(φ±, T0)

γcT0
, (50)

the dimensionless bulk free energy density. But since from (44), (45), and (46)

ψ′′ = −F (ψ, 0) =
d

dψ
f̂(ψ),

it follows that (ψ′)2 = 2f̂(ψ), so that the contributions of the two terms in the
integral for σ are equal. We therefore have

σ = ε

∫ ∞
−∞

(ψ′(z))2dz = ε

∫ 1

−1

√
2[f̂(φ) − f̂(φ±)]dφ ≡ εσ1. (51)

This is a standard formula (see e.g. [AC]). We shall call σ1 the scaled
dimensionless surface tension.

8 The jump condition at the interface.

In this section, we show how the energy balance equation (33), applied to the
inner approximation, leads to a jump condition for the outer solution at the
interface, from which the velocity of the interface can be determined once the
outer solution is known. We first calculate this to lowest order, and then to
order ε.

In view of (39), (45), and (46), we may set

U = εŨ , Φ = ψ + εΦ̃,

where Ũ , Φ̃ = O(1). We then have by (38)

E = εŨ + γw(ψ + εΦ̃).

Since ψ does not depend on t, it follows that Et = O(ε), and hence from (36)
that
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Ũzz + vEz + εκŨz = O(ε2). (52)

Integrating (52), we get

Ũz + vE + εκŨ + C1(s, t, ε) = O(ε2) (53)

for some integration constant C1 = C11 + εC12.
Since by (39a) Ũ = U1 + εU2 +O(ε2), the lowest order approximation in (53)

yields

U1z = −(vE)0 − C11 = −γv0w(ψ(z)) − C11, (54)

where in the second equation we have used the fact that the expansions of U, v,
and Φ induce an expansion of vE in powers of ε, with (vE)0 = γv0w(ψ) being
the lowest order term. Similarly induced expansions will be used below.

To obtain the lowest order jump condition for the outer approximation, we
apply (40) and (41) to the left and right sides of (54). We thus obtain

∂ru0 |r=0± = −v0e0|r=0± − C11 = ±γv0`/2− C11, (55)

using (48) and (13). By subtraction we get the jump relation

[∂ru0] = −v0 [e0] = γv0`, (56)

where the square brackets indicate the limit from the right (r = 0+) minus the
limit from the left (r = 0−).

We now derive the jump condition to order ε analogous to (56). Consider
the terms of order ε in (53). Since Ũ1 = U2, these terms are

U2z = −(vE)1 − κ0U1 − C12. (57)

To evaluate U1, we integrate (54):

U1 = −γv0p(z)− C11z + C2, (58)

where

p(z) =

∫ z

z0

w(ψ(s))ds, (59)

z0 will be chosen later, and C2 is another integration constant, unknown at this
stage, but depending on z0. Hence from (57), we have

U2z = −(vE)1 + γκ0v0p(z)− C12 + κ0C11z − κ0C2.

Applying the matching relations (43) and (40), we obtain:

∂ru1|r=0± = −(ve)1|r=0± + γκ0v0P± − C12 − κ0C2, (60)
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where the P ’s are defined by the relation

p(z) = w(φ±)z + P± + o(1) (z→±∞), (61)

i.e.

P± =

∫ ±∞
z0

(w(ψ(z))− w(φ±)) dz.

For the sake of symmetry in notation, we choose the lower limit z0 so that
P+ = −P− ≡ P . Thus we obtain (60) with P± = ±P . Subtracting, we obtain

[∂ru1] = − [(ve)1] + 2γκ0v0P. (62)

Combining (56) with (62), we get, to order ε,

[∂ru] = − [ve] + 2εγκvP +O(ε2). (63)

This relation can be used to determine v to order ε once the outer solution is
known to this order.

Physically, eqn (63) expresses the conservation of energy at the interface.
The left side represents the net flux of energy into Γ per unit length; the first
term on the right represents the portion of that energy which is taken up with
phase change. The second term on the right of (63), which is a higher order
term not usually displayed, represents the effect of Γ stretching or contracting
as it evolves; its presence is necessary to ensure conservation of energy to this
order.

9 The zero-order outer approximation.

The zero-order outer approximation to our layered family of solutions consists
of a curve Γ0(t) dividing D into two subregions D+(t) and D−(t), and functions
u0, φ0, continuous in each of D±. These can now be determined: we obtain u0

and Γ0 by solving a Stefan problem S0, defined below, and then we obtain φ0

from (27) by taking φ0 = h±(u0).
(a) In D±, u0 is to satisfy (27), (28)

∂te
±
0 = ∇2u0, (64)

where
e±0 = u0 + γw(h±(u0)). (65)

Note that in the case where h±(u) are independent of u, (64) is the usual linear
heat equation for u0. This was the case for the liquid phase in the density
functional model in [PF1], and for both phases in [WS].

(b) On Γ0(t) we have the interface condition (48)

u0 = 0 (66)
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and the Stefan condition (56)

[∂ru0] = γv0`. (67)

(c) Our focus has been on the properties of layered solutions in general,
without reference to initial or boundary conditions. But we are now led to a
free boundary problem for which it is natural to specify these extra conditions.
In fact, there may be boundary conditions for the temperature u, and hence for
u0, at ∂D (exclusive of Γ0), and initial conditions u0(x, 0), Γ0(0).

If u0(x, 0) is nonpositive in D+ (the solid) and nonnegative in D− (liquid), S0

is the classical Stefan problem, and for smooth initial conditions has a unique
classical solution for a small time interval. Our basic assumptions about the
families (u, φ) in Sec. 5 imply that in fact this is true for all t ∈ [0, t1], the
interval mentioned in Sec. 5.

If u0(x, 0) has signs opposite from those, however, then it is generally be-
lieved that S0 is an ill-posed problem, in which case our assumptions in Sec.
5 will hold only in very special circumstances, such as when the domain and
all data have radial symmetry. This ill-posed problem would correspond to a
model for crystal growth into a supersaturated liquid with no account taken
of curvature or surface tension effects. We shall see in Sec. 14 that if u0(x, 0)
is very small in magnitude, then the assumptions in Sec. 5 become reasonable
again; in fact the lowest-order free boundary problem then contains regularizing
curvature terms.

10 The first-order interface condition.

To obtain a more accurate outer solution we must calculate u1, and for this we
need expressions for u1 on the interface Γ.

First, we apply the matching condition (42) to (58), taking into account (61)
and the fact that P± = ±P , to obtain

u1|Γ± = ∓γv0P + C2. (68)

Here the subscript Γ± means the limit as Γ is approached from the + side or
the − side. To determine these limits, we must now find the constant C2. It
turns out that this can be done by examining the O(ε) terms in (37). By using
(46), one can put those terms into the form

LΦ1 = −Fu(ψ(z), 0)U1 − κ0ψ
′(z)− αv0ψ

′(z), (69)

where L is the operator defined by LΦ ≡ Φzz + Fφ(ψ(z), 0)Φ.
We know that the operator L has a nullfunction ψ′(z) which decays expo-

nentially as z→ ± ∞, obtained by differentiating (44) with respect to z and
setting Φ0 = ψ. We are seeking a solution of (69) which grows at most as fast
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as a polynomial at ∞. Multiplying (69) by ψ′ and integrating, we see that the
equation (69) has such a solution only if the right side is orthogonal to ψ′:

∫ ∞
−∞

Fu(ψ(z), 0)U1(z, s, t)ψ′(z)dz + κ0(s, t)σ1 + αv0(s, t)σ1 = 0,

where (recall (51))

σ1 =

∫ ∞
−∞

(ψ′(z))2dz.

Substituting from (58), we obtain

∫ ∞
−∞

Fu(ψ(z), 0)(−γv0p(z)− C11z + C2)ψ′(z)dz + (κ0 + αv0)σ1 = 0. (70)

¿From (18) and (20), the coefficient of C2 here is seen to be −`. On the
basis of Assumption A4, we may therefore solve (70) for C2 as

C2(s, t) = (ασ̃ + γp̃) v0(s, t) + σ̃κ0(s, t) + q̃C11, (71)

where

p̃ = −

∫
p(z)ρ(z)dz

`
, q̃ = −

∫
zρ(z)dz

`
, σ̃ =

σ1

`
, (72a)

with

ρ(z) = Fu(ψ(z), 0)ψ′(z). (72b)

Substituting (71) into (68), we find

u1|Γ± = (ασ̃ + γp̃∓ γP ) v0 + σ̃κ0 + q̃C11. (73)

Finally, the constant C11 may be found from (55):

C11(s, t) = −∂ru0|r=±0 ±
1

2
γ`v0(s, t). (74)

In the classical case when the Stefan problem (64) - (67) is well posed, it can
be used to determine the quantities on the right of (73) from the initial and
boundary conditions for u0 and Γ0. In (74), either sign may be chosen; the
right side is independent of the choice. We shall use the upper sign in D+ and
the lower one in D−.

Set (∂ru0)± ≡ ∂ru0|r=±0. Then substituting (74) into (73), we have

u1|Γ± + q̃(∂ru0)± = m±v0 + σ̃κ0, (75)
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where

m± = ασ̃ + γ(p̃∓ P )±
1

2
γ`q̃. (76)

If m+ 6= m−, it is clear from (75) that the outer temperature distribution u will
undergo a discontinuity of the order ε across the interface.

Example: Consider the particular case when Fu(φ, 0) is an even function of
φ, and ψ′(z) is even. Then from the above, we have q̃ = 0, so that (75) becomes

u1|Γ± = (ασ̃ + γ(p̃∓ P )) v0 + σ̃κ0.

If, in addition, (as in [PF1])

w(φ) = Aφ−Bφ2 + const,

then P vanishes whenever B does. In this case, then, the possibility that u1

is discontinuous across Γ is associated with the presence of quadratic terms in
w. The case when they are absent is the one treated, in the context of the
traditional phase field model, in [CF] and [F2].

11 The first-order outer solution.

We can now formulate the procedure for determining the first order approxima-
tion to the outer solution. This approximation can be determined by solving the
following modified Stefan problem Sε, which generalizes the problem S0 defined
in section 9:

(a) In D±, u is to satisfy (14)

∂te = ∇2u, (77)

where
e = u+ γw(φ),

φ = h±(u) in D± by (26). (78)

(b) On Γ± we have, from (66), (75), and (63), the conditions

(u+ εq̃(∂ru))|Γ± = εm±v + εσ̃κ; (79)

[∂ru] = −v[e] + εγκvP, (80)

where the coefficients are given by (72a), (76).
(c) In addition, boundary conditions, to hold on ∂D, and initial data are to

be prescribed.
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The coefficients in (79), (80) are the same as in (75) and (62). As men-
tioned before, when h± are constants, (77) is the heat equation with constant
coefficients. Even when h± are not constants, the heat equation is a reasonable
approximation in typical cases (see Sec. 14 ).

The term in ∂ru in (79) appears to introduce a singular perturbation into
the problem, but this is not likely to be true. We consider a model problem
consisting of (77) and (79) on the half line {r > 0} with the right side of (79)
taken to be a known constant. The potential effect of such a singular perturba-
tion can be ascertained from the inner equations associated with stretching the
variable r. In the model problem it is readily seen to be a regular perturbation.

What we have shown so far is that under the assumptions in Sec. 5 , the
exact solution family (u(x, t; ε), φ(x, t; ε)) satisfies (77) - (80) except for error
terms of the order ε2. Let us now suppose that Sε is a well-posed problem, and
let (ũ(x, t; ε), φ̃(x, t; ε), Γ̃(t; ε)) denote its solution when the conditions in (c) are
the same as those of the exact family. Thus (ũ, φ̃, Γ̃) satisfy the same equations
and initial conditions as (u, φ,Γ), except that the O(ε2) terms are discarded. It
is natural to expect the following assertion, which is basic to the paper, to hold:

Expectation: |u(x, t; ε)−ũ(x, t; ε)|, |φ(...)−φ̃(...)|, |Γ(t; ε)−Γ̃(t; ε)| = O(ε2) (ε→0),
uniformly in D × [0, t1].

12 Discussion; surface tension.

As in previous phase field models, a Gibbs–Thompson term εσ̃κ and a kinetic
undercooling term εm±v appear on the right of (79). In addition, there appears
an O(ε) normal derivative term on the left, which can be important for second
order transitions, as we shall discover.

The last term in (79) may be compared with the thermodynamic formula
for the Gibbs–Thompson effect, which can be written

(T − T0) |Γ =
σ̄T0

¯̀ κ̄

where σ̄ is the surface tension, ¯̀ the latent heat and κ̄ the curvature in physical
units. The corresponding formula in our dimensionless units is

u|Γ =
σκ

`
(81)

where σ = σ̄/γcT0L. From (51) and (72a),

σ = ε

∫ ∞
−∞

ψ′(z)2dz = εσ1 = ε`σ̃.

Thus (81) simplifies to u|Γ = εσ̃κ, which indeed agrees with the relevant terms
in (79).
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The problem (77)–(80) differs from the modifications of the Stefan problem
obtained in [CF] in three respects:

(a) The O(ε) correction to the value of the temperature at the interface
involves a flux term (on the left of (79)), so that it is perturbed into a Robin
boundary condition. In the example given in section 10, of course, q̃ vanishes,
making this correction zero.

(b) The value of u will in general be discontinuous at the interface because
of the first term on the right of (79) if m+ 6= m−. Again in the above example,
when B = 0, the discontinuity disappears. The amount of the discontinuity will
be O(ε).

(c) the Stefan condition (80) involves a small correction term due to the
stretching of the interface. A term like this was noted in [UR]; otherwise, all
these effects were absent in previous models of phase field type.

It will be shown in Sec. 14 that there are circumstances when the free
boundary problem (77)–(80) can be approximated, in a formal sense, by other
(generally simpler) free boundary problems. There are a number of possibilities
here; they include different types of curvature-driven interfacial motion.

13 Second-order transitions.

By a second-order transition we mean one where the internal energy is the same
in the two phases, for each fixed value of the temperature in the interval [T−, T+].
A good example is the case when w is an even function of φ and F is odd in
φ. For second order transitions, there is no unique transition temperature T0,
contrary to postulate A2. Instead, we define T0 to be some other characteristic
temperature of the problem, for example the average of the system’s initial
temperature distribution.

In the notation of (1), we have ē(h+(T ), T ) = ē(h−(T ), T ), and in that of
(65),

e+
0 (u) = e−0 (u) for each u. (82)

In view of (1), this implies that the quantity d
dT

[
1
T f(h±(T ), T )

]
is the same for

either choice of sign. Thus d
dT

∫ h+(T )

h−(T )

[
1
T
fφ(φ, T )

]
dφ = 0. In nondimensional

terms (11), we have

d

du

∫ h+(u)

h−(u)

F (φ, u)dφ = 0. (83)

Therefore in place of Assumption A4, the inequality sign in (19) becomes an
equality for all u, hence the latent heat ` = 0, and similarly (21) becomes

∫ ∞
−∞

Fu(ψ(z), u)ψ′(z)dz = 0 for all u in the range of interest. (84)
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In dealing with second order transitions, our formal assumptions will simply
be A1 and (84).

Following the asymptotic development in sections 4–11, we see that the
following changes are necessary.

The conclusion (45), hence also the left part of (48), no longer hold. In fact,
the value of u0 on the interface is no longer determined a priori. Therefore in the
lowest order outer problem (64)–(67), (66) is to be replaced by [u0] = 0, and the
right side of (67) is replaced by zero. Thus u0 and its derivative are continuous
across Γ0. In view of (82), we see that u0 is determined as the solution of the
heat equation (64) in all of D, with no reference to Γ (appropriate boundary
and initial conditions may be prescribed). The interface’s location is found
independently, as we now describe.

We pass to (70), which by virtue of (84) and (74) with ` = 0 becomes

m1v0 + κ0 = m2∂ru0, (85)

where

m1 = α−
γ

σ1

∫ ∞
−∞

p(z)ρ(z)dz, m2 = −
1

σ1

∫ ∞
−∞

zρ(z)dz,

the functions p and ρ being defined in (59) and (72b).

To find the interface Γ(t), then, u0 is first determined by (64), and then
Γ is found from the “forced” motion–by–curvature problem (85), with known
forcing term m2∂ru0 dependent on position and on time.

In Sec. 16 , we shall examine the more realistic case when the thermal
diffusivity D is different in the two phases; then it can be checked that the
problem for u0 can no longer be decoupled from that for Γ.

The interface condition (85) is similar to the motion-by-curvature law given
by the Cahn–Allen theory of isothermal phase transitions ([AC], [MSc]), but
there is now an extra term proportional to the temperature gradient (which
is continuous across the interface). For a physical interpretation of this term,
suppose that the surface tension (excess free energy of the interface) decreases
with temperature. Then the interface will tend to move so as to increase its
temperature. This tendency is borne out by (85) in the typical case that m1

and m2 are positive. There is an analogous forcing term in the corresponding
equation (79) for first–order transitions, but in that context its effect is relatively
small.

When the temperature deviation u is small (δ << 1 in the context of Sec. 14
), then the forcing term can be neglected, and the interfacial motion follows the
classical motion–by–curvature law. This case was noted in [C3], and is the law of
motion found for a simpler model in [CA] and [AC]. (In [C3], it was erroneously
implied that our model gives only second order transitions; see [PF2].)
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14 The transition from Stefan to Mullins-Sekerka
evolution. Other free boundary problems.

There are several special circumstances in which our basic free boundary prob-
lem (77) - (80) can be approximated formally by simpler free boundary problems.

For example, the nonlinear diffusion equation (77) can typically be approx-
imated by a linear one. In fact, the left side can be written as

ĉ±(u)ut, where ĉ±(u) ≡ 1 + w′(h±(u))h′±(u),

and the specific heat functions ĉ±(u) can be approximated by constants when
the functions h±(u) are constants (as in [WS] and for one case in [PF1]), nearly
constant, and/or when u is small enough. In such cases, they may by replaced
by ĉ±(0). In the following, we shall assume that this approximation is valid.
It should be noted that the assumption u � 1 is entirely reasonable in many
cases. It simply says

|T − T0| � T0. (86)

In the case of water, for example, it means that the temperature range (in
Centigrade degrees) in the phenomenon under consideration is much smaller
than 273.

Anticipating that the simpler problems to be examined may involve dy-
namics on a longer time scale and hence slower speed, we proceed formally by
rescaling u and t. We set

u = δū, t′ = βt, v = βv̄,

where the parameters δ and β are ≤ 1 and may be small. We make these
substitutions in (77) - (80) with the error terms O(ε2) appended, and divide by
δ to obtain

βĉ±ūt′ = ∇2ū+O(ε2/δ) in D±, (87a)

(ū+ εq̄(∂rū))|Γ± =
εβ

δ
m±v̄ +

ε

δ
σ̃κ+O(ε2/δ) on Γ, (87b)

[∂rū] =
β

δ
v̄γ`+

εβ

δ
γκv̄P +O(ε2/δ) on Γ. (87c)

To show how one kind of evolution may develop into a different kind at large
times, we consider first the “normal” case when δ = 1. Then if we set β = 1 as
well (so no rescaling actually occurs) and disregard terms of orders ε and higher
order in (87), we get the classical Stefan problem

ĉ±ut = ∇2u in D±, (88a)
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u = 0 on Γ, (88b)

[∂ru] = vγ` on Γ. (88c)

Let D represent a bounded vessel containing the material under consid-
eration, and suppose it is thermally insulated, so that the normal derivative
∂ru = ∂νu = 0 on ∂D. Suppose that u > 0 in the liquid phase, u < 0 in the
solid. Consider layered solutions with interface Γ(t) evolving according to (88).
Then it can be checked that

d

dt

[
ĉ+

∫
D+

u2dx+ ĉ−

∫
D−

u2dx

]
= −2

∫
D
|∇u|2dx

which in view of (88b) is strictly negative as long as u does not vanish identically.
Suppose that Γ(t), the solution of (88), exists for all t and does not intersect
∂D. Then it is natural to conjecture that as t→∞, u(x, t)→0 uniformly in D
and that Γ(t) approaches a limiting configuration Γ∞.

Eventually, then, u = O(ε) and the quantity εσ̃κ on the right of (79) and
(87b) can no longer be neglected on Γ relative to u. (This term indicates,
in fact, that the temperature u can in general never achieve smaller orders of
magnitude than ε.) When u achieves this order of smallness, we set δ = ε in
(87) and observe that if we select β = ε as well, and drop higher order terms,
we obtain a reasonable problem of “Mullins-Sekerka” type [MS]:

∇2ū = 0 in D±, (89a)

ū = σ̃κ on Γ, (89b)

[∂rū] = γv̄` on Γ. (89c)

An existence theory for the solution (ū,Γ) of (89) has recently been given by
Chen [Ch2]; for the Hele-Shaw problem, which bears some similarity, see [CP].

In short, when the temperature becomes small enough, the evolution accord-
ing to (88) is conceptually replaced by the much slower evolution according to
(89). The evolution (89) is well known to decrease the length of Γ(t) and to
preserve the area inside it, so it is expected that under the slow process, Γ will
typically evolve from Γ∞ (or something near it) into a circle with the same area.

Other free boundary problems can be obtained by assuming γ and/or α are
small, i.e. that the latent heat is small or the relaxation process for φ is quick.
For example, if ε2 � δ = γ � ε, we may set β = 1 to obtain the classical
motion-by-curvature law

αv = −κ on Γ, (90)
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coupled to a heat equation with prescribed jump condition (88c) on Γ (known
from solving (90)).

A number of other possibilities can occur; we leave them for the reader to
discover.

15 Comparison with other models and limiting
arguments.

The free boundary problem (89) and its companion with (89a) replaced by

ūt = ∇2ū,

have been derived by asymptotic methods from other phase field models, most
notably in [C2] and [WS]. Here we compare both the model in [WS] and its
asymptotic development with ours; similar considerations hold for the Langer
model in [C2].

The model in [WS] has the property that our functions introduced in A1 are
constant: h−(T ) ≡ 0, h+(T ) ≡ 1. Thus the order parameter in the purely liquid
or solid phase does not depend on T . On the other hand, the latent heat ¯̀(T )
may depend on T . To compare the model in [WS] to ours, we must replace φ
by 1− φ (distinguishing “order” from “disorder” parameters). In our notation,
their evolution problem (their eqns. 40, 41) corresponds to our (14), (15) with

F (φ, u(T )) =
1

γc

(
1

T0
−

1

T

)
w̄′(φ) − 4φ(φ− 1)(φ−

1

2
) (91)

and w̄(φ) = ¯̀p(ψ)|ψ=1−φ, where p(ψ) is a function with p(0) = 0, p(1) = 1,
whose first and second derivatives vanish at φ = 0 and 1.

Note that this model provides no theoretical limit to the extent of super-
cooling of the liquid or superheating of a solid, unlike the equations depicted
in our Fig. 1 and the example in Sec. 4 . In fact, at each value of T the free
energy F has local minima (in φ) at φ = 0 and 1, representing stable liquid and
solid phases. If the temperatures under consideration are kept fairly near to T0,
this should not be an important deficiency.

The temperature-independent part of the correponding dimensionless bulk
entropy density given by (4), s′0 = 1

γc
s̄′0, satisfies

s′0(φ) = −4φ(φ− 1)(φ−
1

2
) +

w̄′(φ)

γcT0
,

and since w̄′′(1
2 ) = 0, we have s′′0(1

2 ) = 1, showing that the entropy in this model
is not a concave function of φ.

Further notational comparisons are the following: the parameters ε̃, m, and
a in [WS] correspond to our parameters ε/2, α−1, and 1/4γc, respectively.
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Their asymptotics is based on the assumption that the first term in (91) is
O(ε). We rewrite the assumption as:

¯̀

γcT0

(
1−

T0

T

)
p′(1− φ) = O(ε).

Let us assume that the dimensionless quantity
¯̀

cT0
= O(1); this is reasonable in

typical scenarios. Since p′(φ) is also O(1), this implies that

1

γ

∣∣∣∣1− T0

T

∣∣∣∣ = O(ε).

This relation can be guaranteed, for example, by requiring either
(a) γ = O(ε−1), or
(b) T−T0

T0
= O(ε).

Physical meaning can be given to both of these cases. In case (a), the
implication is that

T
∂F

∂T
≈

¯̀

γcT0
p(1− φ) = O(γ−1) = O(ε),

whereas
∂F

∂φ
= O(1).

The meaning is that the free energy depends much more (by a factor ε−1)
sensitively on φ than on the temperature T .

In case (b), we have, in our notation, u = O(ε), which is exactly the as-
sumption (δ = ε) under which we have derived (89). This says simply that the
temperature is close, as measured by ε, to the melting temperature T0.

16 Variable c, D, and α.

All of the preceding can be extended in a straightforward way to the case when
c, D, and α are given functions of φ and T , and w depends on T as well as
on φ. This allows these first three physical parameters to differ in the different
phases. It was observed by Chen [Chen3] that if c differs in the two phases, then
` must depend on T . It is often the case that the temperature variation in the
problem under consideration is small enough that it does not by itself induce a
significant variation in the values of these physical constants. For simplicity, we
assume this is the case, i.e. that c and D depend on φ but not on D.

The results under this generalization are quite analogous to those obtained
before, and so are not surprising. We record them here for the sake of complete-
ness.

The first observation is that the expression (4) for a term in the right side
of (3) must be supplemented by the extra term −c′(φ) log T .
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By way of notation, we set

D(φ) = D1d(φ), c(φ) = c1k(φ),

where D1 and c1 are defined to be the minimal values of D and c, respectively.
We assume that the dimensionless functions d and k are O(1).

In the definitions of dimensionless variables given in (10) and (11), we now
replace the symbols D and c by D1 and c1. The basic equations (14) and (15)
now become

∂t(k(φ)u+ γw(φ)) = ∇ · d(φ)∇u, (92)

α(φ)ε2φt = ε2∇2φ+ F (φ, u). (93)

All of the analysis in the previous sections has its analog in the present
more general context. The resulting free boundary problem (77)–(80) takes the
following form:
In D±,

∂te±(u) = ∇ · d±(u)∇u, (77)’ = (94)

e±(u) = k(h±(u))u+ γw(h±(u)), d±(u) = d(h±(u)),

φ = h±(u) in D±.
(78)’ = (95)

On Γ±,

u+ εn±(d∂ru)|Γ± = εm±v + εσ̃κ; (79)’ = (96)

[d(u)∂ru] = − [ve] + εγκvP. (80)’ = (97)

Here the constants m± and n± have to be defined as follows. Let

d0(z) = d(ψ(z)), p(z) =

∫
(w(ψ(z))/d0(z))dz, q(z) =

∫
(1/d0(z))dz, (98)

and let the constants P and Q be such that

p(z) = w±
d(φ±)z ± P + o(1), z→±∞,

q(z) = 1
d(φ±)z ±Q+ o(1).

In the following, ρ, ` are the same as before. Let
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m1 =

∫
α(ψ(z), 0)(ψ′(z))2dz > 0,

p̃ =

∫
p(z)ρ(z)dz

`
, q̃ =

∫
q(z)ρ(z)dz

`
.

Then

m± = −m1 + γ(p̃∓ P )±
1

2
γ`(q̃ ∓Q),

n± = q̃ ∓Q.

For future reference, we give here the modified versions of relations (33) and
(52):

∂tê− v∂r ê−
rvs

1+rκ∂sê =

(dûr)r + d κ
1+rκ ûr + 1

(1+rκ)2 (dûs)s + d rκs
(1+rκ)3 ûs,

(33)’ = (99)

(dŨz)z + vEz + εκdŨz = O(ε2). (52)’ = (100)

Referring to Sec. 14 , we obtain the following generalizations of the examples
in (88)–(90).

The “normal” case (88):

ĉ±∂tu = ∇ · d±(u)∇u (88a)’ = (101a)

u = 0 on Γ, (88b)’ = (101b)

[d∂ru] = vγ` on Γ, (88c)’ = (101c)

where a different but obvious definition is given for ĉ±.

Motion by curvature (90) (δ = γ � ε, β = 1).

m1v = −σ1κ on Γ. (90)’ = (102)

The “Mullins-Sekerka” case (89) (β = δ = ε).

∇ · d±∇ū = 0 in D±, (89a)’ = (103a)

ū = σ̃κ on Γ, (89b)’ = (103b)

[d±∂rū] = γv̄` on Γ. (89c)’ = (103c)

Similar considerations hold for second order transitions. The coupling of the
generalization of (85) with that of (64) is particularly interesting.
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17 Enhanced diffusion in the interface.

In some materials science connections ([CT], and references therein), it is im-
portant to take into account increased material diffusivity in surfaces. In our
models it is heat rather than material which is diffusing. Nevertheless, there is
clearly an analogy with material diffusion, and so it may be interesting to adapt
our results to the case when diffusivity is much greater in the interfacial region
than it is elsewhere. Specifically, we treat the case when this ratio is of the
order ε−1. We show, among other things, that an effect of this is the presence,
in (89c) or (103c), of an extra term on the right taking the form of the second
derivative of the curvature κ with respect to arc length along the interface. A
similar result was obtained by a different route for a Cahn-Hilliard model in
[CFN].

Our basic assumption is that the function D can be written as the sum of
two terms as follows. Let D1 = Min [D(φ+), D(φ−)]. Then

D = D(φ; ε) = D1

(
ε−1D̂(φ) + D̃(φ)

)
≡ D1d(φ; ε), (104)

where D̂ and D̃ are O(1) functions, and D̂(φ) vanishes when φ = φ±. In fact,
we assume that for some positive number ω,

D̂(φ) > 0 for φ− + ω < φ < φ+ − ω; D̂(φ) = 0 otherwise. (105)

The function d(φ; ε) is analogous to the function d(φ) used in Sec. 16 , so in
particular D1 is used again in the definitions of the nondimensional variables.

We shall direct attention to the modifications in the previous treatment
occasioned by (104). They begin in Sec. 6 . Concentrating on the first term

in (36), we see that it must be replaced by
[
(ε−1D̂ + D̃)(U0 + εU1 + ...)z

]
z
.

Therefore the terms of orders O(ε−1) and O(1) in the revised version of (36)
(analog of (100)) are:

∂z

[
(ε−1D̂(Φ0(z)) + D̃(Φ0(z)) + D̂′(Φ0(z))Φ1)U0z + D̂(Φ0(z))U1z

]
= 0.

Integrating this with use of the fact that U0z(z) = D̂(Φ0(z)) = 0 at z = ±∞,
we obtain

(ε−1D̂(Φ0(z)) + D̃(Φ0(z)) + D̂′(Φ0(z))Φ1)U0z + D̂U1z = 0. (106)

The O(ε−1) term in this equation tells us that

D̂(Φ0(z))U0z = 0. (107)
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Now let I = {z : Φ0(z) ∈ [φ− + ω, φ+ − ω]}. It follows from (105) and (107)
that

U0z = 0, z ∈ I.

Moreover since D̂′(Φ0(z)) = 0 for z 6∈ I, we see that the third term in (106)
vanishes. Hence

D̃(Φ0(z))U0z + D̂(Φ0(z))U1z = 0.

This tells us (a) that for z 6∈ I, U0z = 0, so that in fact for all z,

U0z ≡ 0;

and therefore (b) that

U1z = 0, z ∈ I. (108)

In Sec. 7 , (44)–(48) remain unchanged. In particular, Φ0(z) = ψ(z) as
before.

Recall (99), which shows the way that our d enters into the energy balance
equation. In view of that and (104), equation (52)’ = (100) must be corrected
to

∂z

(
dŨz

)
+ vEz + εκdŨz − εκ

2D̂zŨz + ε∂s

(
D̂Ũs

)
= O(ε2), (52)” = (109)

and the new version of (53) is

dŨz + vE + εκ
∫
dŨzdz − εκ2

∫
D̂zŨzdz + ε

∫
∂s

(
D̂Ũs

)
dz

+C1(s, t, ε) = O(ε2).

(53)’ = (110)

Here C1 = C11 + εC12. As before (54), (vE)0 = γv0w(ψ(z)). Therefore the
O(ε−1) and O(1) terms in (110) are

(
ε−1D̂(ψ(z)) + D̂′(ψ(z))Φ1 + D̃(ψ(z))

)
U1z+D̂(ψ(z))U2z = −γv0w(ψ(z))−C11.

But we know from (108) that D̂U1z = D̂′U1z = 0, so in fact our alternate version
of (54) is:

D̂(ψ(z))U2z + D̃(ψ(z))U1z = −γv0w(ψ(z)) − C11. (54)’ = (111)

Let χ(z) be the characteristic function of I ′, i.e. χ(z) = 0 for z ∈ I, and = 1
otherwise. In view of (108), multiplying (111) by χ(z) does nothing to the term
in U1z, but annihilates the term in D̂. We so obtain
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U1z = −γv0
χ(z)w(ψ(z))

D̃(ψ(z))
− C11

χ

D̃
, (112)

U1 = −γv0

∫
(χw/D̃)dz − C11

∫
(χ/D̃)dz + C2, (113)

C2 being an integration constant and the arguments of w and D̃ being ψ(z).
¿From (69), which continues to hold as written, and (113), we have the other

condition

0 =
∫∞
−∞ Fu(ψ(z), 0)ψ′(z)U1(z) + (κ0 + αv0)σ1

=
∫
Fuψ

′(z)
[
−γv0

∫
χw

D̃
dz − C11

∫
χ

D̃
dz + C2

]
+ (κ0 + αv0)σ1,

hence solving for C2, we get

C2 = (ασ̃ + γp̄∗)v0 + σ̃κ0 + q̄∗C11,

where now

p∗(z) =
∫ z
z0

χw

D̃
dz = w±

D̃±
z ± P ∗/2 + o(1) (z→±∞),

q∗(z) =
∫ z
z1

χ

D̃
dz = 1

D̃±
z ±Q∗/2 + o(1) (z→±∞),

p̄∗ = −

∫
p∗ρdz

` ,

q̄∗ = −

∫
q∗ρdz

`
,

and ρ, σ̃, ` are the same as before (see (72a), (72b), (18)).
¿From (113), (42), we have

u1|Γ± = ∓γv0P
∗/2∓ C11Q

∗/2 + C2

= ∓γv0P
∗/2∓ C11Q

∗/2 + (ασ̃ + γp̄∗)v0 + σ̃κ0 + q̄∗C11

= 0(ασ̃ + γp̄∗ ∓ γP ∗/2) + σ̃κ0 + (q̄∗ ∓Q∗/2)C11.

Also from (112), (41), we have

D̃∂ru0|Γ± = ±
γv0`

2
− C11,

C11 = ±
γv0`

2
− D̃∂ru0|Γ±.

Hence

u1|± + n±(D̃∂ru0)|Γ± = m∗±v0 + σ̃κ0,
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m∗± = ασ̃ + γ(p̄∗ ∓ P ∗/2)±
1

2
γ`(q̄∗ ∓Q∗/2), n± = q̄∗ ∓Q∗/2.

This equation provides the interface condition on Γ analogous to (75). Hence
the analog of (79) is

u+ εn±(D̃∂ru)± = εm∗±v + εσ̃κ.

We now construct the analog of (80). For this purpose, we write down the
O(ε) terms in (110) (recall D̃U1z = 0):

(dUz)2 + (vE)1 +κ0

∫ (
D̂U2z + D̃U1z

)
dz+

∫
∂s

(
D̂U1s

)
dz+C12 = 0. (114)

We apply (43) to obtain an equation for
(
D̃∂ru

)
1
|Γ±, which is given in terms

of the asymptotic behavior of the first term in (114) according to (43). For
this, we have to write each of the other 4 terms in (114) in the form A∗±(s, t) +
B∗±(s, t)z + o(1) (z→ ± ∞). Only the terms A∗± will be relevant (see (43)).
The contribution of (vE)1, by (42), is (ve)1|Γ±, and the last integral in (114)
is bounded by virtue of the compact support of D̂. By (111), the first integral
can be expressed by means of (59) and (61) as

−γv0

∫
w(ψ(z))dz − C11z = −γv0 (w±z ± P/2)− C11z + o(1) (z→±∞).

Using all of these facts, we obtain

(
D̃∂ru

)
1
|Γ± + (ve)1± ∓ γκ0v0P/2 +

∫ ±∞
z0

∂sD̂(ψ(z))∂sU1(z, s, t)dz +C12 = 0.

We take the difference between the upper and the lower signs and recall that
D̂(ψ(z)) does not depend on s, to obtain

[
(D̃∂ru)1

]
+ [(ve)1]− γκ0v0P +

∫ ∞
−∞

D̂(ψ(z))∂2
sU1(z, s, t)dz = 0. (115)

¿From (113) and the definitions of p∗, q∗, we may write

U1 = v0M1±(z; γ, `, α) + σ̃κ0 +M3(z)(D̃∂ru0)|Γ±,

M1±(z) = −γ(p∗(z)− p̄∗)∓
1

2
γ`(q∗(z)− q̄∗) + ασ̃,
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M3(z) = q∗(z)− q̄∗.

Bear in mind that the M ’s do not depend on s, but that v0, κ0, and u0 do.
We therefore have, from this and (115)

[(
D̃∂ru

)
1

]
= − [(ve)1] + γκvP − a±vss − bκss − c∂

2
s

(
D̃∂ru

)
|±0, (116)

where

a± =

∫ ∞
−∞

D̂(ψ(z))M1±(z)dz, b = σ̃

∫ ∞
−∞

D̂(ψ(z))dz, c =

∫ ∞
−∞

D̃M3dz,

and we have dropped the subscripts “0” on the right of (116). On the right side
of (116), either sign may be chosen.

The corrections to the next order Stefan problem due to enhanced diffusion,
therefore, are as follows. Equations (77)’=(94) and (79)’=(96) are unchanged
except for replacing d by D̃ and a slightly different definition of m±. But
(80)’=(97) becomes

[
D̃∂ru

]
= −[ve] + ε

(
γκvP − a±vss − bκss − c∂

2
s

(
D̃∂ru0

)
|±0

)
(80)” = (117)

Thus, O(ε) corrections to the Stefan condition are found, depending on the
second derivatives of the velocity and curvature.

The new form of the special limit Mullins-Sekerka problem in Sec. 14 is
perhaps more interesting, and constitutes the main point of this section. The
interface condition (89c) is changed to[

D̃∂rū
]

= γv̄`− bκss on Γ. (89c)” = (118)

As mentioned before, the extra term represents the diffusion of heat within the
interface itself. Thus the Mullins-Sekerka problem (89) is now modified by this
additional term in the Stefan condition.

A comment about the qualitative behavior of this free boundary problem is
in order. It is well known that solutions of (89) or (89)’=(103) for which the
interface encloses a region D− whose closure is contained in a bounded domain
D, and for which ū satisfies zero Neuman conditions on the outer boundary ∂D,
have the curve–shortening and area–preserving properties. Thus if L(t) is the
length of Γ(t) and A(t) is the area of D−(t), we have

dL

dt
≤ 0; A(t) = const. (119)
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It is easily shown that our present revision of this problem with (118) re-
placing (103c) has the same properties (119). In fact

0 =

∫
D
ū∇ · D̃±∇ū = −

∫
D
D̃± |∇ū|

2 −

∫
Γ

ū
[
D̃∂rū

]
≤

∫
Γ

ū
(
γv ¯̀+ bκss

)
= σ̃

∫
Γ

κ
(
γv ¯̀+ bκss

)
= σ̃γ ¯̀

∫
Γ

κv + σ̃b

∫
Γ

κκss = σ̃γ ¯̀dL

dt
− σ̃b

∫
Γ

(κs)
2

≤ σ̃γ ¯̀dL

dt
,

hence
dL

dt
≤ 0.

The other relation in (119) is derived in the same manner.

18 Multicomponent order parameter.

It is commonplace to describe the local microscopic or macroscopic state of a
crystalline material by means of a multicomponent order parameter (see, e.g.,
[IS] and recent papers [Lai], [BB]).

Going further, we remark that in some density–functional theories (e.g.
[Ha]), the microscopic probability distribution of atoms at any location is de-
scribed by a number density function. This function provides detailed informa-
tion about the degree to which, and sense in which, the material is ordered at
that location. It is therefore an infinite–dimensional generalization of a scalar
order parameter. One way to extract a scalar order parameter φ from such a
theory was described in [PF1], namely artificially to restrict the allowed density
functions to a one–dimensional subspace of function space. Then the scalar φ
serves to designate locations on that 1–D subspace, which can be pictured as
a straight line. In the resulting phase–field model, the transition from liquid
to solid across an interface corresponds to the density function changing while
restricted to that line, whereas in the unrestricted model, it may change along
some other curve in function space. In principle, this discrepancy could be par-
tially remedied by restricting to a higher dimensional subspace, in which case
we would be dealing with several order parameters.

We sketch now how our analysis of interfacial motion can be extended to the
case when the order parameter has m components,

φ = (φ1, · · ·φm). (120)
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To avoid compounding complications, we treat D, c, and α as constants, and
continue to operate in 2-dimensional physical space. We consider only first order
transitions.

As mentioned in Sec. 1 , the system (2), (3) was derived in [PF1] as a
gradient system with respect to the entropy functional displayed following (3).

Thus, the right side of (3) is δS
δφ .

(
Note that− 1

T
∂f(φ,T )
∂φ = ∂s̄(φ,ē)

∂φ .
)

The gradient term − 1
2κ1|∇φ|2 in that functional was chosen as the simplest

negative definite quadratic function of ∇φ ≡ (∂φ/∂x1, ∂φ/∂x2). In the case
when φ has several components, the analogous term must still be a negative
definite function of ∇φ, and we still choose it to be a quadratic form. We
denote it by − 1

2Q(∇φ). Thus the more general entropy functional is

S [φ, ē] =

∫
Ω

{
s(φ(x), ē(x)) −

1

2
Q(∇φ)

}
dx. (121)

We have considerable latitude in choosing Q, including the possibility of
making it anisotropic. Even with one order parameter, anisotropy can alterna-
tively be modelled [MW] by making κ1 depend on the direction θ of ∇φ, but if
this dependence is not such that κ1(θ)|∇φ|2 continues to be a quadratic form,
the Laplacian in (3) is replaced by a quasi-linear second order partial differen-
tial operator whose coefficients depend discontinuously on ∇φ at places where
∇φ = 0.

The most general form Q, in the case of m components, is

Q(∇φ) = κ1Σijk`aijk`∂iφk∂jφ`,

where ∂i = ∂/∂xi and the a’s form a positive definite array and are symmetric
in the pair (i, j) (which run from 1 to 2) as well as the pair (k, `) (which run
from 1 to m). The normalizing parameter κ1 is chosen so that

MinXΣaijk`ξ
k
i ξ
`
j = 1,

where X =
{
ξki :

∑
k,i |ξ

k
i |

2 = 1
}

.

Our new assumptions A1 – A4 are analogous to those given before in section
2:

A1’. As before, f(φ, T ) has two and only two local minima with respect to
φ, which are now m-tuples φ denoted as before by h±(T ). We can no longer
order them or speak of a single intermediate maximum. (The following can be
partially extended to the case when there are more than two minima; we do not
pursue this.)

A2’. Again, for a first–order transition, equation (5) holds if and only if
T = T0 ∈ (T−, T+).

Set φ± = h±(T0).
The “inner layer” equation generalizing (20) and (44) is the system of equa-

tions
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A
d2φ

∂z2
−

1

γcT0
∇φf(φ, T0) = 0, (122)

where A is a positive definite symmetric m×m matrix obtainable from Q, which
in general depends on the orientation of the interface (see the definition of A
below), and ∇φ means (∂/∂φ1, . . . , ∂/∂φm).

A3’. For all such matrices A, (122) has a solution ψ(z) satisfying

ψ(±∞) = φ±, (123)

which is unique except for translation. Moreover, we assume the solution ψ(z)
approaches its limits exponentially. (There are important and interesting cases
then uniqueness fails; our analysis can be partly extended to many of those
cases.)

Note (a) in case m = 1, A3’ is known to be guaranteed if (5) and (6) hold.
Also (b) by taking the Lm2 inner product of (122) with the vector ∂ψ/∂z, it
is seen that (5) is a necessary condition for A3’ to hold. Existence theorems
for boundary value problems such as (122), (123) have been proved in [S] and
[Chm]; in the latter paper examples were given in which uniqueness does not
hold.

A4’. the same as before.
We nondimensionalize as before, except that γ in (11) is chosen so that

Maxφ|∇φF (φ, 0)| = 1,

which replaces (12).
The changes in the previous analysis are as follows.
In the generalization of (15), α becomes a positive diagonal matrix, F (φ, u)

is now defined to be − 1
γcT
∇φf(φ, T (u)), and ∇2φ is replaced by the partial

differential operator Eφ defined by

(Eφ)k =
∑
ij`

aijk`∂i∂jφ`.

The equation analogous to (37) is[
Aφzz + εBκφz + εCφzs + εαvφz + O(ε2)

]
+ F (φ, u) = 0, (124)

where the matrices A, B, and C depend on the angle θ of orientation of Γ at
the point s as follows. We represent the unit normal to Γ pointing into D+ by
ν = (cos θ, sin θ), and the unit tangent vector obtained by rotating it through
an angle π/2 in the positive direction by τ = (− sin θ, cosθ). Then

(A(θ))k` =
∑
ij

aijk`νiνj ,
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(B(θ))k` =
∑
ij

aijk`τiτj ,

(C(θ))k` =
∑
ij

aijk` (νiτj + νjτi) .

Notice that

dA(θ)/dθ = C(θ), dC(θ)/dθ = 2(B(θ)−A(θ)) (125)

From (124), we see that the inner profile is governed by the following system
of differential equations to replace (44):

A(θ)Φ0zz + F (Φ0, 0) = 0, Φ0(±∞) = φ±. (126)

This is (122), (123) with A depending on θ; we again denote the solution by
ψ(z, θ).

Also, in place of (69), we obtain the following system from the O(ε) terms
in (124); here we use the fact that ∂s = κ∂θ, and let primes denote ∂/∂z:

LΦ1 = −Fu(ψ(z, θ), 0)U1 − κ0B(θ)ψ′(z, θ)− κ0C(θ)∂θψ
′(z, θ)− v0αψ

′(z, θ),
(127)

L is the self-adjoint ordinary differential operator defined by

LΦ ≡ A(θ)Φ′′ −G(z, θ)Φ,

and the symmetric matrix function G(z, θ) is the Hessian of the function− 1
γcT0

f(φ, T0)

with respect to φ, evaluated at φ = ψ(z, θ).
Differentiating (126) with respect to z, we find that

Lψ′ = 0; (128)

taking the (L2)m scalar product of (127) with ψ′, we find a necessary condition
for solvability:

〈Fu(ψ(z, θ), 0)U1, ψ
′〉+ ω(θ)κ+ v〈αψ′, ψ′〉 = 0, (129)

where
ω(θ) = 〈Bψ′, ψ′〉 − 〈C∂θψ,ψ

′′〉. (130)

From this point on the analysis proceeds as before. The basic first order
outer approximation satisfies a free boundary problem like (77) - (80) with
different coefficients of κ and v in the O(ε) terms. These coefficients depend on

θ. For example, in place of σ̃ in (79), we have −ω(θ)
` , and in place of α, we have

〈αψ′, ψ′〉/σ1 ≡ α̃(θ), where now
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σ1 = σ1(θ) = 〈A(θ)ψ′, ψ′〉. (131)

The various limiting problems are obtained as before. Of special interest
is the Mullins-Sekerka problem (89), in which the coefficient σ̃ of κ in (89b) is
replaced by the θ-dependent coefficient given above. A similar statement is true
of the motion-by-curvature problem (90), in which the present analog will have
a coefficient of κ proportional to ω. Very probably the sign of this coefficient,
which is governed by the sign of ω, determines whether these problems are well
posed. For this reason, it is of some interest to obtain a simpler expression for
ω.

In their treatment of a different phase-field model with scalar order parame-
ter but interfacial energy a given arbitrary function of θ, McFadden et al [MW]
obtained an expression, which in our notation would be

ω(θ) = σ1(θ) + σ′′1 (θ). (132)

This also holds in our framework, of course, when m = 1, as can be verified by a
calculation based on our notation. However, this calculation depends very much
on the matrices A, B, C being able to commute with one another. It appears
doubtful that the expression (132) will continue to hold in the multi-component
case.

Appendix. Derivation of (31)

Let us represent points on the curve Γ(t) by the position vector R(ξ, t), where
ξ is a parameter on Γ defined as follows. When t = 0 it is arc length from some
chosen point. When t increases, the point R(ξ, t) (for fixed ξ) has trajectory
normal to Γ(t) at each t. We will denote the unit tangent to Γ(t) by T (ξ, t) and
the unit normal in the direction of increasing r by N(ξ, t).

The normal velocity v(ξ, t) is defined by

Rt = v(ξ, t)N(ξ, t). (133)

Let σ be arc length on Γ, and

α(ξ, t) =
∂σ

∂ξ
(ξ, t). (134)

At t = 0, we have chosen ξ = σ, so that

α(ξ, 0) = 1. (135)

In all of the following, we suppose Γ(t) is regular; and in particular that its
radius at curvature is bounded away from zero.

Consider the point x(r, ξ, t) represented by

x(r, ξ, t) = R(ξ, t) + rN(ξ, t). (136)
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For fixed r and t the curve x(r, ξ, t) will be “parallel” to Γ(t) at a distance r. On
this new curve, we can find the relation between arc length (which we continue
to denote by σ) and the parameter ξ. First, taking the differential of (136) with
t and r fixed, we obtain:

dx = (Rξ + rNξ)dξ.

But by definition we also have dx = Tdσ. Therefore

Tdσ = (Rξ + rNξ)dξ. (137)

We also have from (134)
Rξ = αT, (138)

and since T ·N = 0,

Tξ ·N + T ·Nξ = 0. (139)

The curvature κ(ξ, t) of Γ(t) is given by

κN = −Tσ = −Tξ
∂ξ

∂σ
(ξ, t)−−α−1Tξ. (140)

Hence from (139), (140) and the fact that Nξ is in the direction of T (note that
∂
∂ξ
|N |2 = Nξ ·N), we have

Nξ = ακT. (141)

From (137), (138), and (141) we now obtain

∂σ

∂ξ
= α(2 + rκ). (142)

Since Rt and Rξ are in the directions N and T respectively, we have

Rt(ξ, t) ·Rξ(ξ, t) = 0.

Differentiating this equation with respect to t, we obtain

Rtt ·Rξ +Rt ·Rξt = 0. (143)

But from (133)
Rtt = vtN + vNt, (144)

Rξt = vξN + vNξ; (145)

So from (143)–(145), (133), (138), we have

Nt = −α−1vξT. (146)

If we set dx = 0 in (136) and use (138), (133), (141), (146), we find:
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∂r

∂t
= −v, (147)

and
∂ξ

∂t
=

rvξ

α2(2 + rκ)
. (148)

Now recall the coordinate system r(x, t), s(x, t) defined in section 4 (we
suppress ε–dependence). This r(x, t) is that in (136). At t = 0, this s coincides
with the previous ξ. So at t = 0, we may replace ξ with s in (142), set α = 1,
and obtain

|∇s(x, 0)| =
∂s

∂σ
= (2 + rκ(s, 0))−1.

Howerver, if t = t0 is any other value of t, we can reset the clock in the
original coordinate system (r, ξ, t) so that time starts at t0, and make the same
conclusion. Therefore in general we will have

|∇xs(x, t)| = (2 + rκ(s, t))−1. (149)

In the same way, we find from (147), (148)

∂r

∂t
(x, t) = −v(s(x, t), t), (150)

∂s

∂t
(x, t) =

rvs(s, t)

1 + rκ(s, t)
. (151)

In these expressions, we have taken α = 1 because of (135) and the change of
time setting.

Along with (149), we also have the obvious relation

|∇xr(x, t)| = 1. (152)

We have established (31a) and part of (31c). Let us now calculate ∇2r and
∇2s. We have, for any domain Ω,∫

Ω

∇2
xr(x, t)dx =

∫
∂Ω

∂nr(x, t)d`, (153)

where ∂n is the normal derivative and d` is arc length on ∂Ω.
Let Ω be the curvilinear rectangle (in the r, s coordinate system) shown in

the diagram, bounded by sides L1 − L4.
As ∂nr = 0 on L2 and L4, we get:∫

L1∪L3

∂nrd` = |L3| − |L1|.
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!!

""

(r0, s0)

(r0 + dr, s0 + ds)

Ω

Γ(t)

L1

L4

L3

Figure 2: The domain Ω

On L1 and L3 we have (149), so that

|L1| ' (2 + r0κ(s0, t))ds,

|L3| ' (2 + (r0 + dr)κ(s0, t))ds,

so that ∫
Ω

∇2
xr(x, t)dx ' κ(s0, t)drds.

But the left side of this equation, to lowest order is ∇2r(s0, t) times the area of
Ω, and this area is approximately

|Ω| ' |L1|dr = (2 + r0κ(s0, t))drds.

Thus

∇2r(x, t) =
κ(s, t)

1 + rκ(s, t)
. (154)

In a similar way, we have∫
Ω

∇2
xs(x, t)dx =

∫
L4

(2 + rκ(s0 + ds, t))−1dr −

∫
L2

(2 + rκ(s0, t))
−1dr.

Now writing κ(s0 +ds, t) = κ(s0, t)+dκ and integrating between r0 and r0 +dr,
we obtain to lowest order,

∇2s(x, t) =
rκs

(2 + rκ)3
.

This establishes (31b,c).



46 Interfacial Dynamics EJDE–1995/16

Asknowledgements. Supported by National Science Foundation under Grants
DMS 8901771 and 9201714, and by the Science and Engineering Research Coun-
cil. Part of this research was done during a workshop sponsored by the Inter-
national Centre for Mathematical Sciences at Heriot–Watt University. The au-
thors are grateful to John Cahn for informative discussions, particularly about
the possibility of terms involving the Laplacian of the curvature, as in Section
17, and to Cecile Schreiber for carefully checking the details of an earlier version.

References

[ABC] N. Alikakos, P. Bates, and X. Chen, Convergence of the Cahn–Hilliard
equation to the Hele–Shaw model, Arch. Rat. Mech. Anal. 128, 165-205
(1994).

[AC] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase bound-
ary motion and its application to antiphase domain coarsening, Acta
Metallurgica 27, 1085–1095 (1970).

[AP1] H.W. Alt and I. Pawlow, A mathematical model of dynamics of non–
isothermal phase separation, Physica D, in press.

[AP2] H. W. Alt and I. Pawlow, Models of non–isothermal phase transitions
in multicomponent systems, Part I: Theory. preprint.

[BB] B. Boettinger, R. Braun, J. Cahn, J. McFadden, and A. Wheeler,
Phase-field model of order-disorder transitions in an FCC crystal,
preprint.

[Cahn] Personal communication.

[C1] G. Caginalp, An analysis of a phase field model of a free boundary,
Arch. Rat. Mech. Anal. 92, 205–245 (1986).

[C2] G. Caginalp, Stefan and Hele–Shaw type models as asymptotic limits
of the phase field equations, Phys. Rev. A 39, 5887–5896 (1989).

[C3] G. Caginalp, Penrose–Fife modification of solidification equations has
no freezing or melting, Appl. Math. letters 5, 93–96 (1992).

[CC] G. Caginalp and X. Chen, Phase field equations in the singular limit
of sharp interface problems, in On the Evolution of Phase Boundaries,
IMA Vol. of Mathematics and its Applications, Springer-Verlag, 1992.

[CF] G. Caginalp and P.C. Fife, Dynamics of layered interfaces arising from
phase boundaries, SIAM J. Appl. Math. 48, 506–518 (1988).



EJDE–1995/16 P. C. Fife & O. Penrose 47

[CA] J.W. Cahn and S.M. Allen, A microscopic theory for antiphase bound-
ary motion and its experimental verification in Fe-Al alloy domain
growth kinetics, Jour. de Physique, Colloque C–7, 54 (1977).

[CEN] J.W. Cahn, C.N. Elliott, and A. Novick–Cohen, The Cahn-Hilliard
equation with a concentration dependent mobility: motion by minus
the Laplacian of the mean curvature, preprint.

[CT] J.W. Cahn and J.E. Taylor, Surface motion by surface diffusion, Acta
Metall, in press.

[Chen1] Xinfu Chen, Generation and propagation of interface in reaction–
diffusion equations, J. Diff. Equations 96, 116–141 (1992).

[Chen2] Xinfu Chen, Hele-Shaw problem and area preserving curve shortening
motion, Arch. Rat. Mech. Anal. 123, 117-151 (1993).

[Chen3] Xinfu Chen, Personal communication.

[Chm] A. Chmaj, On the existence of a heteroclinic solution of a ‘phase tran-
sition’ Hamiltonian system: a variational approach, preprint.

[CP] P. Constantin and M. Pugh, Global solutions for small data to the
Hele-Shaw problem, preprint.

[F1] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems,
Lecture Notes in Biomathematics 28, Springer–Verlag, New York, 1978.

[F2] P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces,
CBMS–NSF Regional Conference Series in Applied Mathematics #53,
Soc. Ind. Appl. Math, Philadelphia (1988).

[F3] P.C. Fife, Pattern dynamics for parabolic P.D.E.’s, preprint.

[F4] P. C. Fife, Models for phase separation and their mathematics, in
Nonlinear Partial Differential Equations with Applications to Patterns,
Waves, and Interfaces, M. Mimura and T. Nishida, eds., pp. 183-212,
KTK Sci. Pubs., Tokyo (1992).

[Fix] G. Fix, Phase field methods for free boundary problems, in: Free
Boundary Problems, A. Fasano and M. Primicerio, eds., 589–589, Pit-
man, London (1983).

[Ha] A.D.J. Haymet, Theory of the equilibrium liquid–solid transition, Ann.
Rev. Phys. Chem 38, 89–108 (1987).

[He] C. Herring, in Structure and Properties of Solid Surfaces, R. Gomer
and C. S. Smith, eds., Univ. of Chicago Press, Chicago (1952).



48 Interfacial Dynamics EJDE–1995/16

[IS] Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crys-
tal Symmetry, Kluwer Acad. Pubs., Dordrecht, 1990.

[K] R. Kobayashi, Bull. Japan Soc. Ind. Appl. Math. 1, 22 (1991).

[L] J. S. Langer, Models of pattern formation in first–order phase transi-
tions, pp. 164–186 in Directions in Condensed Matter Physics, World
Science Publishers (1986).

[Lai] Theory of ordering dynamics for Cu3Au, Phys. Rev. B 41, 9239-9256
(1990).

[MW] G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell, and R.
F. Sekerka, Phase-field models for anisotropic interfaces, Phys. Rev. E,
48, 2016-2024 (1993).

[MS] W.W. Mullins and R. F. Sekerka, Morphological stability of a particle
growing by diffusion or heat flow, J. Appl. Phys. 34, 323–329 (1963).

[MSc] P. de Mottoni, and M. Schatzmann, Geometrical evolution of developed
interfaces, Trans. Amer. Math. Soc., in press.

[P] R.L. Pego, Front migration in the nonlinear Cahn–Hilliard euqation,
Proc. Roy. Soc. London A 422, 261–278 (1989).

[PF1] O. Penrose and P.C. Fife, Thermodynamically consistent models of
phase–field type for the kinetics of phase transitions, Physica D 43,
44–62 (1990).

[PF2] O. Penrose and P.C. Fife, Comment on Caginalp’s paper “Penrose–Fife
modification of the solidification equations has no freezing or melting”,
App. Math. Letter 5, 99 (1992).

[PF3] O. Penrose and P.C. Fife, On the relation between the standard phase–
field model and a “thermodynamically consistent” phase–field model,
Physica D 69, 107–113 (1993).

[RSK] J. Rubinstein, P. Sternberg, and J.B. Keller, Fast reaction, slow diffu-
sion and curve shortening, SIAM J. Appl. Math. 49, 116–133 (1989).

[S] P. Sternberg, The effect of a singular perturbation on nonconvex vari-
ational problems, Arch. Rat. Mech. Ana. 101, 209-260 (1988).

[St] B. Stoth, A model with sharp interface as limit of phase-field equations
in one space dimension, preprint.

[St2] B. Stoth, The Stefan problem coupled with the Gibbs-Thompson law as
a singular limit of the phase-field equations in the radial case, preprint.



EJDE–1995/16 P. C. Fife & O. Penrose 49

[T] L. Truskinovsky, Kinks versus shocks, in Shock Induced Phase Transi-
tions and Phase Structures in General Media (R. Fosdick et al, eds.)
Springer–Verlag, Berlin (1992).

[UR] A.P. Umantsev and A.L. Roitburd, Nonisothermal relaxation in non-
local media, Sov. Phys. Solid State 30, 651 (1988).

[WS] S–L. Wang, R.F. Sekerka, A.A.Wheeler, B.T. Murray, S.R. Coriell, R.J.
Braun, and G.B. McFadden, Thermodynamically–consistent phase–
field models for solidification, Physica D 69, 189-200 (1993).

Paul C. Fife

Mathematics Department

University of Utah

Salt Lake City, UT 84112

U.S.A.

E-mail: fife@math.utah.edu

Oliver Penrose

Mathematics Department

Heriot-Watt University

Riccarton, Edinburgh, EH14 4AS

U.K.

E-mail: oliver@cara.ma.hw.ac.uk


