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ON THE NUMBER OF SOLUTIONS OF BOUNDARY

VALUE PROBLEMS INVOLVING THE P–LAPLACIAN

Hai Dang, Klaus Schmitt & R. Shivaji

Abstract. This paper is concerned with multiplicity questions for solutions of the
boundary value problem

(ϕ(u′))′ + λf(t, u) = 0, a < t < b

u(a) = 0 = u(b)

where ϕ is an odd, increasing homeomorphism on R, and λ is a positive parameter.
The tools employed are fixed point and continuation methods.

1. Introduction

In this paper, we are interested in the existence and multiplicities of positive
solutions of the boundary value problem.

(ϕ(u′))′ + λf(t, u) = 0, a < t < b

u(a) = 0 = u(b)
(1.1)

with f continuous (but not necessarily locally Lipschitz continuous). We make the
following assumptions:
(A.1) ϕ is an odd, increasing homeomorphism on R and

lim sup
x→∞

ϕ(σx)

ϕ(x)
<∞

for every σ > 0.
(A.2) f : [a, b] × [0,∞) → (0,∞) is continuous and there exists an interval

[c, d] ⊂ (a, b), c < d such that

lim
u→∞

f(t, u)

ϕ(u)
=∞

uniformly for t ∈ [c, d].
Our main result is:
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Theorem 1. Let (A.1) and (A.2) hold. Then there exists a positive number λ∗

such that the problem (1.1)λ has at least two positive solutions for 0 < λ < λ∗, at
least one for λ = λ∗ and none for λ > λ∗.

Note that in the special case where ϕ(u′) = u′, theorem 1 was proved in [2,6]
under the additional assumption that f is of class C2. Related results for the case
ϕ(u′) = |u′|p−2u′ can be found in [4,5,7] and the references in these papers. As we
shall see, a more specific result, which establishes the existence of solution continua
of (1.1)λ which satisfy the above conditions, may be obtained also.

One of the primary motivations for studying problems of the above types are
boundary value problems for partial differential equations for perturbations of the
p-Laplacian of the form

div
(
|∇u|p−2∇u

)
+ λg(|x|, u) = 0, a < |x| < b, x ∈ RN

u = 0 at |x| ∈ {a, b}
(1.2)

where N 6= p and λ is a positive parameter.
Seeking the existence of radial solutions, one is led to the equation

(|u′|p−2u′)′ + λf(t, u) = 0

via the change of variables

t =

(
|N − p|

(p− 1)r

)N−p
p−1

, r = |x|,

and

f(t, u) =

(
(p− 1)r

|N − p|

) p(N−1)
p−1

g

(
|N − p|

p− 1
t−

p−1
N−p , u

)
.

In proving theorem 1, we shall employ upper and lower solution methods. These
methods are, of course, standard for semilinear equations; they are also applicable
in the nonlinear case and we present the type of theorem needed for the nonlinear
case. Such a theorem is established in section 2. Section 3 is then devoted to
the proof of theorem 1, and to some more specific information about the solution
structure.

2. Upper and lower solutions

Consider the problem

(ϕ(u′))′ + g(t, u) = 0, a < t < b

u(a) = 0 = u(b),
(2.1)

where ϕ is an odd, increasing homeomorphism on R and g : [a, b] × R → R is
continuous. We say that a function α ∈ C0[a, b] is a lower solution of (2.1), if
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for each t0 ∈ [a, b] there exists a neighborhood It0 and a finite set of functions
{αk}1≤k≤n ⊂ C1(It0) with ϕ(α′k) ∈ C1(It0) such that

α(t) = max
1≤k≤n

(αk(t)), t ∈ (It0)

(ϕ(α′k))′ + g(t, αk) ≥ 0, t ∈ (It0) (2.2)

and
α(a) ≤ 0, α(b) ≤ 0. (2.3)

An upper solution is defined similarly, replacing max by min and reversing the
inequalities in (2.2), (2.3).

Theorem 2. Let α and β be a pair of lower and an upper solutions to (2.1) respec-
tively with α ≤ β. Then (2.1) has a minimum solution umin such that α ≤ umin ≤ β,
and if u is any solution to (2.1) with u ≥ α, then u ≥ umin. An analogous result
holds for the existence of a maximal solution.

Proof. We first prove that there exists a solution u to (2.1) with α ≤ u ≤ β.
Define

g̃(t, v) =


g(t, β(t)) + β−v

1+v2 if v(t) ≥ β(t)

g(t, v(t)) if α(t) ≤ v(t) ≤ β(t)
g(t, α(t)) + α−v

1+v2 if v(t) ≤ α(t)

For each v ∈ C0[a, b], let u = Av be the solution of

(ϕ(u′))′ = −g̃(t, v),

u(a) = 0 = u(b)

Note that

u(t) =

∫ t

a

ϕ−1[c−

∫ s

a

g̃(τ, v)dτ ]ds

where c is such that u(b) = 0. Then A : C0[a, b] → C0[a, b] is a completely
continuous mapping. Since A is bounded, it follows from the Schauder fixed point
theorem that A has a fixed point u. We verify that α(t) ≤ u(t) ≤ β(t), a ≤ t ≤ b.
Indeed, if there exists t0 ∈ [a, b] such that u(t0) < α(t0), then the continuous
function v = u − α will have a negative minimum, say d = v(t̃) and there exists
an interval (t1, t2) containing t̃ with v(t1) = v(t2) = 0, v(t) < 0, t ∈ (t1, t2)
Furthermore v is left and right differentiable at every point in (a, b). Thus v′+(t̃) ≥
v′−(t̃), where v′± denote the right and left derivatives. On the other hand, since u is

differentiable, the conditions on α imply that v′+(t̃) = v′−(t̃), and v is differentiable

at t̃. We next employ the differential equation satisfied by u and the fact that
α is a lower solution to conclude that v has a local maximum at t̃, which is in
contradiction to the fact that v assumes a global minimum at t̃. Similarly, we have
u(t) ≤ β(t), a ≤ t ≤ b and thus u is a solution of (2.1).

Let U = {v ∈ C0[a, b] : v ≥ α and v is an upper solution to (2.1)}. Define
umin(t) = inf {v(t) : v ∈ U}. Using the argument in [8, p.279] (also [1]), it can be
verified that umin is the minimum solution of (2.1) whose existence was asserted.
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3 Existence results

In this section, we prove theorem 1. Since we are interested in nonnegative
solutions we shall make the convention that f(t, u) = f(t, 0) if u < 0. We shall
denote by | · |k the norm in the space Ck[a, b].

Lemma 3. Let v ∈ C0[a, b] with v ≤ 0 and let u satisfy

(ϕ(u′))′ = v

u(a) = 0 = u(b).

Then
u(t) ≥ |u|0p(t), t ∈ [a, b]

where

p(t) =
min(t− a, b− t)

b− a

Proof. Since ϕ(u′) is nonincreasing and ϕ−1 is increasing it follows that u′ is non-
increasing. Hence, lemma 3 follows from lemma 2.2 in [3]. For convenience to the
readers, we give a direct proof. Let |u|0 = |u(T )|, T ∈ [a, b]. Since u is concave and
u(a) = 0, it follows that

u(t) = u(cT + (1− c)a) ≥ cu(T )

≥
t− a

b− a
|u|0, t ∈ [a, T ]

where c = t−a
T−a . Similarly,

u(t) ≥
b− t

b− a
|u|0, t ∈ [T, b]

completing the proof of lemma 3.

Lemma 4. Suppose that g : [a, b] × R+ → R+ is continuous and there exists a
positive number M and an interval [a1, b1] ⊂ (a, b) such that

g(t, u) ≥M(ϕ(u) + 1), t ∈ [a1, b1], u ≥ 0. (3.1)

There exists a positive number M0 = M0(ϕ, a1, b1) such that the problem

(ϕ(u′))′ = −g(t, u)

u(a) = 0 = u(b)
(3.2)

has no solution whenever M ≥M0.

Proof. Let u be a solution of (3.2). Then

u(t) =

∫ t

a

ϕ−1[c−

∫ s

a

g(τ, u)dτ ]ds (3.3)
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where c = ϕ(u′(a)). Let |u|0 = u(t0), t0 ∈ [a, b]. Then u′(t0) = 0 and by (3.3),

u(t) =

∫ t

a

ϕ−1[

∫ t0

s

g(τ, u)dτ ]ds (3.4)

If t0 ≥
a1+b1

2
, then

|u|0 ≥ u(a1) >

∫ a1

a

ϕ−1[M

∫ a1+b1
2

a1

(ϕ(u) + 1)]

> (a1 − a)ϕ−1[M
(b1 − a1)

2
[ϕ(|u|0δ) + 1]],

where

δ = min
a1≤t≤b1

p(t).

This implies

ϕ(
|u|0
a1 − a

) > M
(b1 − a1)

2
[ϕ(|u|0δ) + 1] (3.5)

If t0 ≤
a1+b1

2
, then by rewriting (3.4) as

u(t) =

∫ b

t

ϕ−1[

∫ s

t0

g(τ, u)dτ ]ds

we deduce

ϕ

(
|u|0
b− b1

)
>
M(b1 − a1)

2
[ϕ(|u|0δ) + 1] (3.6)

Combining (3.5) and (3.6), we obtain

ϕ(γ|u|0) >
M(b1 − a1)

2
[ϕ(|u|0δ) + 1]

where γ = max
(

1
b−b1

, 1
a1−a

)
.

Consequently,
ϕ(γ|u|0)

ϕ(δ|u|0)
>
M

2
(b1 − a1)

a contradiction to (A.1) if M is sufficiently large.

Remark 5. It follows from the proof, that problem (3.2) has no solution u satisfying

g(t, u(t)) ≥M(ϕ(u(t)) + 1), t ∈ [a1, a2],

if M ≥M0.

These considerations further imply the following result:
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Theorem 6. There exists a positive number λ̄ such that problem (1.1)λ has no
solution for λ > λ̄.

Proof. It follows immediately from (A.2) that there exists a constant µ > 0 such
that

f(t, u) ≥ µ(ϕ(u) + 1), u ∈ R+, c ≤ t ≤ d.

Hence the result follows from the previous lemma.

Lemma 7. For each µ > 0, there exists a positive constant Cµ such that the
problem

(ϕ(u′))′ = −λθf(t, u)− (1− θ)M0(|ϕ(u)| + 1)

u(a) = 0 = u(b) (3.7)

with λ ≥ µ, θ ∈ [0, 1] and M0 given by remark 5, has no solution satisfying |u|0 >
Cµ.

Proof. Let u be a solution of (3.7) with λ ≥ µ and θ ∈ [0, 1]. Then u ≥ 0. By
(A.2), there exists M1 > 0 such that

f(t, u) >
M0

µ
(ϕ(u) + 1) (3.8)

for t ∈ [c, d] and u ≥ M1. Let δ = minc≤t≤d p(t). Then if |u|0 >
M1

δ
we have by

lemma 3

u(t) ≥ |u|0δ > M1, t ∈ [c, d]

which implies by (3.8) that

λθf(t, u(t)) + (1− θ)M0(ϕ(u(t)) + 1)

≥
λθM0

µ
(ϕ(u(t)) + 1) + (1− θ)M0ϕ(u(t)) + 1)

≥M0(ϕ(u(t)) + 1), t ∈ [c, d]

a contradiction with remark 5, and the lemma is proved.

Now, let Λ be the set of all λ > 0 such that (1.1)λ has a solution and let
λ∗ = sup Λ. Note that by lemma 3, every solution of (1.1)λ is positive.

Lemma 8. 0 < λ∗ <∞ and λ∗ ∈ Λ.

Proof. u ∈ C0[a, b] is a solution of (1.1)λ if and only if u = F (λ, u), where

F : [0,∞) × C0[a, b]→ C0[a, b]

is the completely continuous mapping given by

u = F (λ, v),
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with u the solution of

(ϕ(u′))′ = −λf(t, v),

u(a) = 0 = u(b).

We note that F (0, v) = 0, v ∈ C0[a, b]. Hence it follows from the continuation
theorem of Leray-Schauder that there exists a solution continuum C ⊂ [0,∞) ×
C0[a, b] of solutions of (1.1)λ which is unbounded in [0,∞) × C0[a, b], and thus,
(1.1)λ has a solution for λ > 0 sufficiently small, and hence λ∗ > 0. By theorem 6
, λ∗ < ∞. We verify that λ∗ ∈ Λ. Let {λn}n ⊂ Λ be such that λn → λ∗ and let
{un} be the corresponding solutions of (1.1)λn . By lemma 7, {un} is bounded in
C1[a, b] and hence {un} has a subsequence converging to u ∈ C0[a, b]. By standard
limiting procedures, it follows that u is a solution of (1.1)λ∗ .

Lemma 9. Let 0 < λ < λ∗ and let uλ∗ be a solution of (1.1)λ∗ . Then there exists
ε0 > 0 such that uλ∗ + ε, 0 ≤ ε ≤ ε0 is an upper solution of (1.1)λ.

Proof. Let c1 > 0 be such that f(t, uλ∗(t)) ≥ c1 for every t ∈ [a, b] and let ε0 > 0
be such that

|f(t, uλ∗(t) + ε)− f(t, uλ∗(t))| <
c1(λ∗ − λ)

λ
, t ∈ [a, b], 0 ≤ ε ≤ ε0.

Then we have

(ϕ(u′λ∗))
′ = −λ∗f(t, uλ∗) = −λf(t, uλ∗ + ε)+

+ λ[f(t, uλ∗ + ε)− f(t, uλ∗)] + (λ− λ∗)f(t, uλ∗)

≤ −λf(t, uλ∗ + ε)

i.e. u∗λ + ε is an upper solution of (1.1)λ.

Proof of theorem 1. Let 0 < λ < λ∗. Since 0 is a lower solution and uλ∗ is an upper
solution, there exists a minimum solution uλ of (1.1)λ with 0 ≤ uλ ≤ uλ∗ . We next
establish the existence of a second solution to (1.1)λ.

Let F (λ, u) be defined as in the proof of lemma 8. Further define

f̃(t, v(t)) =

 f(t, uλ∗(t) + ε) if v(t) ≥ uλ∗(t) + ε
f(t, v(t)) if −ε ≤ v(t) ≤ uλ∗(t) + ε
f(t,−ε) if v(t) ≤ −ε

where ε is given in lemma 9, and let F̃ (λ, u) be the operator analogous to F defined

by f̃ . Consider

B =
{
u ∈ C0[a, b] : −ε < u(t) < uλ∗(t) + ε, t ∈ [a, b]

}
.

Then B is open and uλ ∈ B, 0 ≤ λ ≤ λ∗. Since F̃ is bounded for λ in compact
intervals,

deg (I − F̃ (λ, ·), B(uλ, R), 0) = 1
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if R is sufficiently large. Here B(uλ, R) is the ball centered at uλ with radius R in

C0[a, b]. If there exists u ∈ ∂B such that u = F̃ (λ, u) then u is a second solution of

(1.1)λ. Suppose that u 6= F̃ (λ, u) for every u ∈ ∂B. Then deg (I − F̃ (λ, ·), B, 0) is

well defined and since F̃ (λ, ·) has no fixed point in B(uλ, R) \ B ( see e.g [9]), we
have by the excision property

deg (I − F (λ, ·), B, 0) = deg (I − F̃ (λ, ·), B, 0) = 1, 0 ≤ λ ≤ λ∗.

On the other hand, it follows from lemma 7 that for µ > 0 there exists M > 0 such
that for λ ≥ µ, λ in compact intervals,

deg (I − F (λ, ·), B(0,M), 0) = constant,

where B(0,M) is the ball centered at 0 of radius M in C0[a, b]. The latter degree, on
the other hand, must equal 0, since for λ > λ∗ no solutions exist. Thus the existence
of a second solution follows from the excision principle of the Leray-Schauder degree.

We remark that theorem 2, together with lemma 9 (appropriately interpreted),
implies that the mapping

λ 7→ uλ, 0 ≤ λ ≤ λ∗,

where uλ is the minimal solution of (1.1)λ is a continuous mapping [0, λ∗]→ C0[a, b].

For it is the case that for any λ̃ ∈ (0, λ∗] the minimal solutions {uλ satisfy uλ ≤
uλ̃, λ ≤ λ̃. Furthermore the limit u = limλ→λ̃ uλ exists and is a solution of (1.1)λ̃.
Hence uλ̃ = limλ→λ̃ uλ. It therefore follows that

{(λ, uλ), 0 ≤ λ ≤ λ∗} ⊂ C,

where C is the continuum in the proof of lemma 8. Using separation results on closed
sets in compact metric spaces (Whyburn’s lemma), one may use the arguments used
in the above proof to verify that for each λ ∈ (0, λ∗) there are at least two solutions
on the continuum C.
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