Weak Solutions to the One-dimensional Non-Isentropic Gas Dynamics by the Vanishing Viscosity Method *

Kazufumi Ito

Abstract

In this paper we consider the non-isentropic equations of gas dynamics with the entropy preserved. Equations are formulated so that the problem is reduced into the 2×2 system of conservation laws with a forcing term in momentum equation. The method of compensated compactness is then applied to prove the existence of weak solution in the vanishing viscosity method.

1 Introduction

Consider the one-dimensional gas dynamics equation in the Eulerian coordinate

$$
\begin{align*}
& \rho_{t}+(\rho u)_{x}=0 \\
& (\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}=0 \tag{1.1}\\
& s_{t}+u s_{x}=0
\end{align*}
$$

where ρ, u, p and s denote the density, velocity, pressure and entropy. Other relevant quantities are the internal energy e and the temperature T. We assume that the gas is ideal, so that the equation of state is given by

$$
p=R \rho T
$$

and that it is polytropic, so that $e=c_{v} T$ and

$$
\begin{equation*}
p=(\gamma-1) e^{s / c_{v}} \rho^{\gamma} \tag{1.2}
\end{equation*}
$$

where $\gamma=c_{p} / c_{v}>1$ and $R=c_{p}-c_{v}$. Define ϕ by

$$
\begin{equation*}
\phi^{1-\gamma}=\gamma(\gamma-1) e^{s / c_{v}} \tag{1.3}
\end{equation*}
$$

[^0]Then, ϕ satisfies

$$
\phi_{t}+u \phi_{x}=0 .
$$

Thus, we consider the Cauchy problem (equivalent to (1.1))

$$
\begin{align*}
& \rho_{t}+m_{x}=0 \\
& m_{t}+\left(m^{2} / \rho+p\right)_{x}=0 \tag{1.4}\\
& \phi_{t}+u \phi_{x}=0
\end{align*}
$$

where

$$
\begin{equation*}
m=\rho u \quad \text { and } \quad p=\frac{1}{\gamma} \phi^{1-\gamma} \rho^{\gamma} \tag{1.5}
\end{equation*}
$$

with smooth initial data $\left(\rho_{0}, m_{0}\right)$ in $L^{\infty}\left(R^{2}\right)$ that approaches a constant state $(\bar{\rho}, \bar{m})$ at infinity and satisfies $\rho_{0}(x) \geq \delta_{1}>0$, and ϕ_{0} in $W^{1, \infty}(R)$ that satisfies $\left(\phi_{0}\right)_{x}$ converges to 0 at infinity and

$$
\begin{equation*}
\phi_{0}(x) \geq \delta_{2}>0 \quad \text { and } \quad\left(\phi_{0}\right)_{x}(x) \geq 0 \quad\left(\text { or } \quad\left(\phi_{0}\right)_{x}(x) \leq 0\right) \tag{1.6}
\end{equation*}
$$

Consider the conservation form of the gas dynamics

$$
\begin{align*}
& \rho_{t}+(\rho u)_{x}=0 \\
& (\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}=0 \tag{1.7}\\
& {\left[\rho\left(\frac{1}{2} u^{2}+e\right)\right]_{t}+\left(\rho u\left[\frac{1}{2} u^{2}+e\right]+p u\right)_{x}=0}
\end{align*}
$$

System (1.7) can be written as the hyperbolic system of conservation laws

$$
y_{t}+f(y)_{x}=0
$$

where $y=y(t, x)=\left(\rho, \rho u, \rho\left(\frac{1}{2} u^{2}+e\right)\right) \in R^{3}$ and f is a smooth nonlinear mapping from R^{3} to R^{3}. System (1.4) is equivalent to system (1.7) when solutions are smooth but not necessarily when solutions are weak (e.g., [Sm, Chapters 1617]). It is proved in Corollary 3.6 that the viscosity limit of solutions to (1.10) satisfies $\eta_{t}+q_{x} \leq 0$ in the sense of distributions, i.e., the third equation of (1.7), the conservation of energy $\eta_{t}+q_{x}=0$ is replaced by the non-energy production. We also note that the isentropic solution ($\phi=$ const) [Di1] is a weak solution of (1.4) but not necessarily of (1.7).

In this paper we show the existence of weak solutions to (1.4)-(1.5) using the vanishing viscosity method. The function $(\rho, m, \phi) \in L^{\infty}(\Omega) \times L^{\infty}(\Omega) \times$ $W^{1, \infty}(\Omega)$ with $\Omega=[0, \tau] \times R$ is a weak solution of (1.4)-(1.5) if ϕ satisfies the third equation of (1.4) a.e in Ω and

$$
\begin{equation*}
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(v \cdot \psi_{t}+F(\rho, m, \phi) \cdot \psi_{x}\right) d x d t=0 \tag{1.8}
\end{equation*}
$$

for all $\psi \in C_{c}^{\infty}\left(\Omega ; R^{2}\right)$ where $v=(\rho, m)$ and

$$
\begin{equation*}
F(\rho, m, \phi)=\left(m, m^{2} / \rho+p\right) \tag{1.9}
\end{equation*}
$$

We consider the viscous equation of (1.4) with equal diffusion rates

$$
\begin{align*}
& \rho_{t}+m_{x}=\epsilon \rho_{x x} \\
& m_{t}+\left(m^{2} / \rho+p\right)_{x}=\epsilon m_{x x} \tag{1.10}\\
& \phi_{t}+u \phi_{x}=\epsilon \phi_{x x}
\end{align*}
$$

It will be shown in Theorem 3.5 that the solutions $\left(\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}\right)$ to (1.10) converge to a locally defined (in time) weak solution (ρ, m, ϕ) of (1.4).

Our approach is based on the following observation. Suppose ϕ is a constant. Then equation (1.4) reduces to the isentropic gas dynamics. For the isentropic equation it is shown in DiPerna [Di1] that (1.4) has a weak solution by the vanishing viscosity method and using the theory of compensated compactness. The key steps in [Di1] are given as follows. First, if ϕ is a constant and $\theta=$ $(\gamma-1) / 2$ then

$$
\begin{equation*}
w=G_{1}(\rho, m, \phi)=\frac{m}{\rho}+\frac{1}{\theta} \phi^{-\theta} \rho^{\theta} \quad \text { and } \quad-z=G_{2}(\rho, m, \phi)=-\frac{m}{\rho}+\frac{1}{\theta} \phi^{-\theta} \rho^{\theta} \tag{1.11}
\end{equation*}
$$

are the Riemann invariants so that $\nabla_{v} G_{1}$ and $\nabla_{v} G_{2}$ are the two left eigenvectors of the 2×2 matrix

$$
\nabla_{v} F=\left(\begin{array}{cc}
0 & 1 \\
-\frac{m^{2}}{\rho^{2}}+\rho^{2 \theta} \phi^{-2 \theta} & \frac{2 m}{\rho}
\end{array}\right)
$$

where ϕ is assumed to be a positive constant. The method of invariant regions ([CCS],[Sm]) is applied to G_{1}, G_{2} to obtain that $0 \leq \rho^{\epsilon} \leq$ const, $\left|m^{\epsilon} / \rho^{\epsilon}\right| \leq$ const. Then, there exist a subsequence of $v^{\epsilon}=\left(\rho^{\epsilon}, m^{\epsilon}\right)$, still denoted by v^{ϵ} and a Young measure $\nu_{t, x}$ such that for each $\Phi \in C\left(R^{2}\right)$ we have $\Phi\left(v^{\epsilon}\right)$ converges weak star to $\bar{\Phi}$ in $L^{\infty}(\Omega)$ where

$$
\bar{\Phi}(t, x)=\langle\nu, \Phi\rangle=\int_{\Omega} \Phi(y) d \nu_{t, x}(y), \text { a.e. }(t, x) \in \Omega
$$

Using the entropy fields [La] and the div-curl theorem of Murat [Mu] and Tatar [Ta] for bilinear maps in the weak topology,

$$
\begin{equation*}
\left\langle\nu, \eta_{1} q_{2}-\eta_{2} q_{1}\right\rangle=\left\langle\nu, \eta_{1}\right\rangle\left\langle\nu, q_{2}\right\rangle-\left\langle\nu, \eta_{2}\right\rangle\left\langle\nu, q_{1}\right\rangle \tag{1.12}
\end{equation*}
$$

for all entropy/entropy flux pairs $\left(\eta_{i}, q_{i}\right)$ so that

$$
\nabla_{v} \eta \nabla_{v} F=\nabla_{v} q .
$$

Then, using the weak entropy pairs (i.e., $\eta(0, \cdot)=0)$ it is shown that ν reduces to a point mass, i.e., v_{ϵ} converges to v, a.e. in Ω.

We will apply the method described above for the non-isentropic equation (1.10). We need to overcome the two major difficulties. First, G_{1}, G_{2} are no longer the Riemann invariants of the 3×3 matrix M :

$$
M=\nabla F=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{m^{2}}{\rho^{2}}+\rho^{2 \theta} \phi^{-2 \theta} & \frac{2 m}{\rho} & -\frac{2 \theta}{\gamma} \rho^{\gamma} \phi^{-2 \theta-1} \\
0 & 0 & \frac{m}{\rho}
\end{array}\right)
$$

Next, equation (1.12) should be extended to the 3×3 system. We resolve these difficulties by the following steps. Note (see Lemma 2.4) that $G_{i}=$ $G_{i}(\rho, m, \phi), i=1,2$ satisfies
$\left(G_{i}\right)_{t}+\lambda_{i} \nabla G_{i} \cdot y_{x}+\frac{1}{\gamma}\left\{\begin{array}{ll}\rho^{2 \theta} \phi^{-2 \theta-1} \phi_{x}, & i=1 \\ -\rho^{2 \theta} \phi^{-2 \theta-1} \phi_{x}, & i=2\end{array}=\epsilon\left(\left(G_{i}\right)_{x x}-\nabla^{2} G_{i}\left(y_{x}, y_{x}\right)\right)\right.$
where $y=(\rho, m, \phi)$ is a solution to (1.10) and $\lambda_{1}=u+\rho^{\theta} \phi^{-\theta}, \lambda_{2}=u-\rho^{\theta} \phi^{-\theta}$ are the eigenvalues of the 2×2 matrix $\nabla_{v} F$. Here, $G_{i}, i=1,2$ are quasi-convex functions of (ρ, m, ϕ) (see Lemma 2.5), i.e.,

$$
r \cdot \nabla G_{i}=0 \text { implies } \nabla^{2} G_{i}(r, r) \geq 0
$$

Note that from the third equation of (1.10) that $\phi^{\epsilon} \geq \delta_{2}$ and $\left|\phi^{\epsilon}\right|_{\infty} \leq\left|\phi_{0}\right|_{\infty}$ (see Lemma 2.1) and moreover ϕ_{x}^{ϵ} satisfies

$$
\left(\phi_{x}^{\epsilon}\right)_{t}+\left(u^{\epsilon} \phi_{x}^{\epsilon}\right)_{x}=\epsilon\left(\phi_{x}^{\epsilon}\right)_{x x}
$$

Observing that if (ρ, m, ϕ) is a solution to (1.10) then $\xi=\log \left(\frac{\phi_{x}}{\rho}\right)$ satisfies

$$
\begin{equation*}
\xi_{t}+u \xi_{x}=\epsilon\left(\xi_{x x}+\left|\left(\log \phi_{x}\right)_{x}\right|^{2}-\left|(\log \rho)_{x}\right|^{2}\right) \tag{1.14}
\end{equation*}
$$

we show that if $\left(\phi_{0}\right)_{x} \geq 0($ resp. $\leq 0)$ then $\phi_{x}^{\epsilon} \geq 0($ resp. $\leq 0)$ and $\left|\phi_{x}^{\epsilon}\right| \leq c \rho^{\epsilon}$ in Ω provided that $\left|\left(\phi_{0}\right)_{x}\right| \leq c \rho_{0}$ in R (see Lemma 2.3). It thus follows from (1.13) and the quasi-convexity of $G_{i}, i=1,2$ that $\max _{x} G_{2}(t, x) \leq \max _{x} G_{2}(0, x)$ (resp. $\left.\max _{x} G_{1}(t, x) \leq \max _{x} G_{1}(0, x)\right)$ and

$$
\left|\rho^{2 \theta} \phi^{-2 \theta-1} \phi_{x}\right| \leq c\left(\frac{\rho}{\phi}\right)^{2 \theta+1}
$$

By the maximum principle (see Theorem 2.6), there exists a $\tau=\tau_{c}>0$ with $c \rightarrow \tau_{c}$ monotonically decreasing and $\tau_{0}=\infty$ such that $\max _{t \in[0, \tau], x \in R} G_{1}(t, x)$ is less than a constant independent of $\epsilon>0$. Hence, we obtain $0 \leq \rho^{\epsilon} \leq$ const, $\left|m^{\epsilon} / \rho^{\epsilon}\right| \leq$ const and $\left|\phi_{x}\right| \leq$ const in Ω.

Second, in contrast to the isentropic case, the system (1.10) is not endowed with a rich family of entropy-entropy flux pairs. Thus, in order to prove that the Young measures $\nu_{t, x}$ of a weakly star convergent subsequence of ($\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}$) reduce to a point mass, we first note that $\left\{\phi^{\epsilon}(t, x)\right\}$ is precompact in $L_{l o c}^{2}(\Omega)$ and thus ϕ^{ϵ} converges ϕ a.e. in Ω (see Lemma 3.4). Also, we note that dividing the first two equations (1.10) by ϕ, we obtain

$$
\begin{align*}
& \hat{\rho}_{t}+\hat{m}_{x}=\epsilon\left(\hat{\rho}_{x x}+2 \frac{\rho_{x} \phi_{x}}{\phi^{2}}\right) \\
& \hat{m}_{t}+\left(\hat{m}^{2} / \hat{\rho}+\frac{1}{\gamma} \hat{\rho}^{\gamma}\right)_{x}+\frac{p \phi_{x}}{\phi^{2}}=\epsilon\left(\hat{m}_{x x}+2 \frac{m_{x} \phi_{x}}{\phi^{2}}\right) \tag{1.15}
\end{align*}
$$

where $\hat{\rho}=\frac{\rho}{\phi}$ and $\hat{m}=\frac{m}{\phi}$ (see Lemma 3.2). This implies that $\hat{v}=(\hat{\rho}, \hat{m})$ satisfies the (viscous) isentropic gas-dynamics with the forcing term $-p \phi_{x} / \phi^{2}$ in the momentum equation. Since $\frac{p^{\epsilon} \phi_{x}^{\epsilon}}{\left(\phi^{\epsilon}\right)^{2}} \in L^{\infty}(\Omega)$ uniformly in $\epsilon>0$, thus $\left\{\frac{p^{\epsilon} \phi_{x}^{\epsilon}}{\left(\phi^{\epsilon}\right)^{2}}\right\}_{\epsilon>0}$ is precompact in $H_{l o c}^{-1, q}(\Omega), 1 \leq q<2$. Hence, the method of compensated compactness in [Di1],[Ch] can be applied to the functions ($\hat{\rho}^{\epsilon}, \hat{m}^{\epsilon}$) to show that $\nu_{t, x}$ is a point mass provided that $1<\gamma \leq 5 / 3$.

Regarding work on existence of weak solutions for conservation laws, we refer the reader to an excellent treatise by DiPerna $[\mathrm{Di} 3]$ and references therein. Concerning basic framework on conservation laws, we refer the reader to [La], $[\mathrm{Sm}$] and for the functional analytic framework of compensated compactness we refer $[\mathrm{Mu}],[\mathrm{Ta} 1],[\mathrm{Ev}]$ and [Di2]. For scalar conservation laws the vanishing viscosity method is employed (e.g., in $[\mathrm{Ol}],[\mathrm{Kr}]$ and references in $[\mathrm{Sm}]$) to define the unique entropy solution. Also, the vanishing viscosity method is used to develop the viscosity solution to the Hamilton-Jacobi equation in [CL]. The finite-difference methods (e.g., Lax-Friedrichs and Gudunov schemes) are also used to construct weak solutions to a scalar and 2×2 system of conservation laws (e.g., see [Di2], [Ch] and [Sm]).

In the case where the initial data have small total variation, Glimm [Gl] proved the global existence of BV-solutions for a general class of hyperbolic systems as the strong limit of random choice approximations. However, the problem of existence of solutions to (1.7) with large initial data is still unsolved. In $[\mathrm{CD}]$ the vanishing viscosity method is applied to the system (1.7) under a special class of constitutive relations in Lagrangian coordinates.

2 The Viscosity Method

In this section we establish the uniform L^{∞} bound of $y^{\epsilon}=\left(\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}\right)$.
Lemma 2.1 If $\phi \in C^{1,2}([0, \tau] \times R)$ satisfies $\phi_{t}+u \phi_{x}=\epsilon \phi_{x x}$ then

$$
\min _{x} \phi_{0}(x) \leq \phi(t, x) \leq \max _{x} \phi_{0}(x) .
$$

Proof: Using the same arguments as in the proof of Theorem 2.6, we can show that $\max _{x} \phi(t, x) \leq \max _{x} \phi_{0}(x)$ and $\min _{x} \phi(t, x) \geq \min _{x} \phi_{0}(x)$.

It will be shown in Section 3 (see (3.4) and Lemma 3.1) that the normalized mechanical energy

$$
\begin{equation*}
E(\rho, u, \phi)=\frac{1}{2} \rho(u-\bar{u})^{2}+\frac{1}{\gamma}\left(\rho^{\gamma}-\gamma \bar{\rho}^{\gamma-1}(\gamma-\bar{\gamma})-\bar{\rho}^{\gamma}\right) \phi^{1-\gamma} \tag{2.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\int_{-\infty}^{\infty} E(\rho(t, x), u(t, x), \phi(t, x)) d x \leq \int_{-\infty}^{\infty} E\left(\rho_{0}(x), u_{0}(x), \phi_{0}(x)\right) d x \tag{2.2}
\end{equation*}
$$

The following lemma shows the lower bound of ρ_{ϵ}.
Lemma 2.2 If $\rho \in C^{1,2}([0, \tau] \times R)$ satisfies

$$
\begin{equation*}
\rho_{t}+(u \rho)_{x}=\epsilon \rho_{x x} \tag{2.3}
\end{equation*}
$$

with $\rho(0, \cdot) \geq 0$ and $u \in C^{1}(\Omega)$, then $\rho(t, \cdot) \geq 0$. Moreover, if $\rho(0, \cdot) \geq \delta>0$ and

$$
\begin{equation*}
\int_{0}^{\tau} \int_{-\infty}^{\infty} \rho\left|u-u_{0}\right|^{2} d x d t \leq \text { const } \tag{2.4}
\end{equation*}
$$

then $\rho(t, \cdot) \geq \delta(\epsilon, \tau)>0$ on $(0, \tau)$.
Proof: Choose $\psi=\min (\rho(t, x), 0)$. Then we have

$$
\int_{-\infty}^{\infty} \frac{1}{2}|\psi(t, x)|^{2}+\int_{0}^{t} \int_{-\infty}^{\infty}\left(\epsilon\left|\psi_{x}\right|^{2}-\psi u \psi_{x}\right) d x d s=0
$$

By the Hölder inequality, we obtain

$$
\int_{-\infty}^{\infty}|\psi(t, 0)|^{2} \leq \frac{|u|_{\infty}}{2 \epsilon} \int_{0}^{t} \int_{-\infty}^{\infty}|\psi|^{2} d x d s
$$

where $|u|_{\infty}=\sup _{(t, x) \in(0, \tau) \times R}|u(t, x)|$, and the Gronwall's inequality implies $\psi=0$. Thus, $\rho \geq 0$.

Next, we prove $\rho(t, \cdot) \geq \delta=\delta(\epsilon, \tau)>0$ if $\varphi(0, \cdot) \geq \delta>0$ by using the Stampacchia's lemma (e.g., see $[\mathrm{FI}],[\mathrm{Tr}]$), i.e., suppose $\chi(c)$ is a nonnegative, non-increasing function on $\left[c_{0}, \infty\right)$, and there exist positive constants K, s and t such that

$$
\chi(\hat{c}) \leq K c^{s}(\hat{c}-c)^{-s} \chi(c)^{1+t} \quad \text { for all } \hat{c}>c \geq c_{0}
$$

then

$$
\chi\left(c^{*}\right)=0 \quad \text { for } \quad c^{*}=2 c_{0}\left(1+2^{\frac{1+2 t}{t^{2}}} K^{\frac{1+t}{s t}} \chi\left(c_{0}\right)^{\frac{1+t}{s}}\right)
$$

First, we establish a priori bound. We consider the class K [Di1] of strictly convex C^{2} functions h with following properties:

$$
h(\bar{\rho})=h^{\prime}(\bar{\rho})=0, \quad h(\rho)=\rho^{-\alpha} \text { on }(0, \bar{\rho} / 2) \text { for some } 0<\alpha<1
$$

Premultiplying the first equation of (1.10) by $h^{\prime}(\rho)$ we obtain

$$
h(\rho)_{t}+\left(h^{\prime}(\rho) \rho u\right)_{x}-h^{\prime \prime}(\rho) \rho_{x} \rho u=\epsilon\left(h(\rho)_{x x}-h^{\prime \prime}(\rho) \rho_{x}^{2}\right)
$$

Integration of this over $(0, t) \times R$ yields

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\rho(t, x))-h\left(\rho_{0}(x)\right) d x+\epsilon \int_{0}^{t} \int_{-\infty}^{\infty} h^{\prime \prime}(\rho) \rho_{x}^{2} d x d t \\
& \quad=\int_{0}^{t} \int_{-\infty}^{\infty} h^{\prime \prime}(\rho) \rho_{x} \rho(u-\bar{u}) d x d t
\end{aligned}
$$

Note that

$$
h^{\prime \prime}(\rho) \rho_{x} \rho(u-\bar{u}) \leq \frac{\epsilon}{2} h^{\prime \prime}(\rho) \rho_{x}^{2}+\frac{1}{2 \epsilon} h^{\prime \prime}(\rho) \rho^{2}(u-\bar{u})^{2} .
$$

Since there exists some constant $\beta>0$ such that

$$
\begin{aligned}
& \rho^{2} h^{\prime \prime}(\rho) \leq \beta \rho \text { for } \bar{\rho} / 2 \leq \rho \leq M \\
& \rho^{2} h^{\prime \prime}(\rho) \leq \beta h(\rho) \text { for } 0<\rho<\bar{\rho} / 2
\end{aligned}
$$

it follows that $\rho^{2} h^{\prime \prime}(\rho)(u-\bar{u})^{2} \leq \beta\left(\rho(u-\bar{u})^{2}+h(\rho)\right)$. Hence,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\rho(t, x))-h\left(\rho_{0}(x)\right) d x+\frac{\epsilon}{2} \int_{0}^{t} \int_{-\infty}^{\infty} h^{\prime \prime}(\rho) \rho_{x}^{2} d x d t \\
& \quad \leq \frac{\beta}{2 \epsilon} \int_{0}^{t} \int_{-\infty}^{\infty} \rho(u-\bar{u})^{2}+h(\rho) d x d t
\end{aligned}
$$

and it follows from (2.4) and Gronwall's inequality that

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(\rho(t, x)) d x \leq \mathrm{const} \text { on }[0, \tau] . \tag{2.5}
\end{equation*}
$$

Set $\eta=1 / \rho$. Then from (2.3) η satisfies

$$
\eta_{t}+u \eta_{x}-u_{x} \eta=\epsilon\left(\eta_{x x}-\frac{2\left|\eta_{x}\right|^{2}}{\eta}\right)
$$

We further introduce $\hat{\eta}=e^{\omega t} \eta$ with $\omega>0$ to be determined later. The equation for $\hat{\eta}$ becomes

$$
\begin{equation*}
\hat{\eta}_{t}+\omega \hat{\eta}+u \hat{\eta}_{x}-u_{x} \hat{\eta}=\epsilon\left(\hat{\eta}_{x x}-\frac{2\left|\hat{\eta}_{x}\right|^{2}}{\hat{\eta}}\right) \tag{2.6}
\end{equation*}
$$

Define $\xi=\xi_{c}=\max (0, \hat{\eta}-c)$ with $c \geq c_{0}=\delta^{-1}$. Pre-multiplication of (2.6) by ξ^{3} and integration over R yields

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\frac{1}{4}\left(\xi^{4}\right)_{t}+\omega\left(\xi^{4}+c \xi^{3}\right)+\frac{3 \epsilon}{4}\left|\left(\xi^{2}\right)_{x}\right|^{2}\right) \leq-\int_{-\infty}^{\infty} u\left(5 \xi^{3}+3 c \xi^{2}\right) \xi_{x} d x \tag{2.7}
\end{equation*}
$$

Note that
$-\int_{-\infty}^{\infty} 5 u \xi^{3} \xi_{x} \leq-\int_{-\infty}^{\infty} \frac{5}{2} u \xi^{2}\left(\xi^{2}\right)_{x} d x \leq \frac{\epsilon}{4} \int_{-\infty}^{\infty}\left|\left(\xi^{2}\right)_{x}\right|^{2} d x+\frac{25}{4 \epsilon}|u|_{\infty}^{2} \int_{-\infty}^{\infty}|\xi|^{4} d x$
To estimate the second term on the right hand side of (2.7), we define

$$
I_{c}(t)=\{x \in R: \xi(t, x)>0\}=\left\{x \in R: \eta(t, x)>c e^{\omega t}\right\} .
$$

Then, using the Hölder inequality, we have

$$
\begin{aligned}
& -\int_{-\infty}^{\infty} 3 c \xi^{2} \xi_{x} d x=-\int_{-\infty}^{\infty} \frac{3 c}{2} u \xi\left(\xi^{2}\right)_{x} d x \\
& \quad \leq \frac{3 c}{2}|u|_{\infty}\left(\int_{-\infty}^{\infty}\left|\left(\xi^{2}\right)_{x}\right|^{2} d x\right)^{1 / 2}\left(\int_{-\infty}^{\infty}|\xi|^{6} d x\right)^{1 / 6}\left|I_{c}(t)\right|^{1 / 3} \\
& \quad \leq \frac{\epsilon}{4} \int_{-\infty}^{\infty}\left|\left(\xi^{2}\right)_{x}\right|^{2} d x+\frac{9 c^{2}}{4 \epsilon}|u|_{\infty}^{2}\left(\int_{-\infty}^{\infty}|\xi|^{6} d x\right)^{1 / 3}\left|I_{c}(t)\right|^{2 / 3}
\end{aligned}
$$

Substituting these estimates into (2.7), choosing $\omega=\frac{\epsilon}{4}+\frac{25}{4 \epsilon}|u|_{\infty}^{2}$, and integrating on the interval $[0, t]$, we obtain

$$
\begin{align*}
& \int_{-\infty}^{\infty}|\xi|^{4} d x+\epsilon \int_{0}^{t} \int_{-\infty}^{\infty}\left(\left|\xi^{2}\right|^{2}+\left|\left(\xi^{2}\right)_{x}\right|^{2}\right) d x d s \\
& \quad \leq \frac{9 c^{2}}{\epsilon}|u|_{\infty}^{2} \int_{0}^{t}\left(\int_{-\infty}^{\infty}|\xi|^{6} d x\right)^{1 / 3}\left|I_{c}(s)\right|^{2 / 3} d s \tag{2.8}
\end{align*}
$$

Since

$$
\left|\xi^{2}\right|_{\infty} \leq \sqrt{2}\left(\int_{-\infty}^{\infty}\left(\left|\xi^{2}\right|^{2}+\left|\left(\xi^{2}\right)_{x}\right|^{2}\right) d x\right)^{1 / 2}
$$

we have

$$
\left(\int_{-\infty}^{\infty}|\xi|^{6} d x\right)^{1 / 3} \leq 2^{1 / 6}\left(\int_{-\infty}^{\infty}\left(\left|\xi^{2}\right|^{2}+\left|\left(\xi^{2}\right)_{x}\right|^{2}\right) d x\right)^{1 / 2}
$$

Thus, from (2.8),

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|\xi|^{4} d x+\epsilon \int_{0}^{t} \int_{-\infty}^{\infty}\left(\left|\xi^{2}\right|^{2}+\left|\left(\xi^{2}\right)_{x}\right|^{2}\right) d x d s \\
& \quad \leq 2^{1 / 3} \frac{81 c^{4}}{4 \epsilon}|u|_{\infty}^{4} \int_{0}^{t}\left|I_{c}(s)\right|^{4 / 3} d s \leq K c^{4} \chi(c)^{4 / 3}
\end{aligned}
$$

where we define

$$
\chi(c)=\sup _{t \in[0, \tau]}\left|I_{c}(t)\right| \quad \text { and } \quad K=2^{1 / 3} \frac{81 \tau}{4 \epsilon}
$$

Clearly $\chi(c)$ is nonnegative, non-increasing on $\left[c_{0}, \infty\right)$. Moreover, for $\hat{c}>c$,

$$
\int_{-\infty}^{\infty}|\xi|^{4} d x \geq \int_{I_{\hat{c}}}|\xi|^{4} d x \geq(\hat{c}-c)^{4} I_{\hat{c}}(t)
$$

Hence,

$$
I_{\hat{c}}(t) \leq K c^{4}(\hat{c}-c)^{-4} \chi(c)^{4 / 3}
$$

and by taking the sup over t we obtain

$$
\chi(\hat{c}) \leq K c^{4}(\hat{c}-c)^{-4} \chi(c)^{4 / 3}
$$

It follows from (2.5) that $\chi(2 / \bar{\rho})<\infty$ and thus from Stampacchia's lemma that $\chi\left(c^{*}\right)=0$ for some $c^{*} \geq c_{0}$ and hence

$$
\eta(t, x) \leq c^{*} e^{\omega t} \quad \text { and } \quad \rho(t, x) \geq\left(c^{*}\right)^{-1} e^{-\omega t}
$$

where c^{*} depends on ϵ and τ.
The following lemma shows that $\left|\phi_{x}^{\epsilon}(t, \cdot)\right|$ is uniformly bounded by $\rho^{\epsilon}(t, \cdot)$ for every $t \in[0, \tau]$ under assumption (1.7).
Lemma 2.3 Assume that ϕ_{0} satisfies (1.7) and $\left|\left(\phi_{0}\right)_{x}\right| \leq c \rho_{0}$ in R. Then $\left|\phi_{x}(t, \cdot)\right| \leq c \rho(t, x)$ in R for every $t \in[0, \tau]$.
Proof: If the initial condition ($\rho_{0}, m_{0}, \phi_{0}$) is sufficiently smooth and $\left(\phi_{0}\right)_{x} \geq \delta_{3}$ then the solution to (1.10) satisfies $\rho, u, \phi \in C^{3}(\Omega)$ and $\phi_{x}(t, \cdot)>0$. Note that ϕ_{x} satisfies

$$
\begin{equation*}
\left(\phi_{x}\right)_{t}+\left(u \phi_{x}\right)_{x}=\epsilon\left(\phi_{x}\right)_{x x} \tag{2.9}
\end{equation*}
$$

Then, it is not difficult to show that if we define $\xi=\log \left(\frac{\phi_{x}}{\rho}\right)$ then ξ satisfies

$$
\xi_{t}+u \xi_{x}=\epsilon\left(\xi_{x x}+\left|\left(\log \phi_{x}\right)_{x}\right|^{2}-\left|(\log \rho)_{x}\right|^{2}\right)
$$

Suppose $\xi\left(t, x_{0}\right)=\max _{x} \xi(t, x)$. Then

$$
\xi_{x}\left(t, x_{0}\right)=\left(\log \phi_{x}\right)_{x}\left(t, x_{0}\right)-(\log \rho)_{x}\left(t, x_{0}\right)=0
$$

and $\xi_{x x}\left(t, x_{0}\right) \leq 0$. Thus, $\partial_{t}\left(\max _{x} \xi(t, x)\right) \leq 0$, which implies the lemma. Since the solution to (2.9) continuously depends on the initial data $\left(\phi_{0}\right)_{x}$ the estimate holds for when $\left(\phi_{0}\right)_{x} \geq 0$.

The following lemmas provide the technical properties of the functions $G_{i}(t)$, $i=1,2$ defined by (1.11).

Lemma 2.4 If $y=(\rho, m, \phi) \in C^{1,2}((0, \tau) \times R)^{3}$ is a solution to (1.10), then (1.13) holds.

Proof: First, note that the 3×3 matrix $M=\nabla F$ has the eigenvalues $\lambda_{1}=$ $\frac{m}{\rho}+\rho^{\theta} \phi^{-\theta}, \lambda_{2}=\frac{m}{\rho}-\rho^{\theta} \phi^{-\theta}$ and $\frac{m}{\rho}$ and that $\nabla_{v} G_{i}, i=1,2$ are the lefteigenvectors of the sub-matrix $\nabla_{v} F$ corresponding to λ_{i}. Thus,
$\left(G_{1}\right)_{t}+\lambda_{1}\left(\nabla G_{i} \cdot y_{x}+\rho^{\theta} \phi^{-\theta-1} \phi_{x}\right)-\left(\frac{2 \theta}{\gamma} \rho^{2 \theta-1} \phi^{-2 \theta-1}+u \rho^{\theta} \phi^{-\theta-1}\right) \phi_{x}=\epsilon \nabla G_{1} \cdot y_{x x}$.
Since $\nabla G_{1} \cdot y_{x x}=\left(G_{1}\right)_{x x}-\nabla^{2} G_{1}\left(y_{x}, y_{x}\right)$ we obtain (1.13) for G_{1}. The same calculation applies to G_{2}.
Lemma 2.5 If $\rho>0, \phi>0$ then $G_{i}, i=1,2$, are quasi-convex.
Proof: We prove $G_{1}=\frac{m}{\rho}+\frac{1}{\theta} \rho^{\theta} \phi^{-\theta}$ is quai-convex. The same proof applies to G_{2}. Note that

$$
\begin{gathered}
\nabla G_{1}=\left(\begin{array}{c}
-\frac{m}{\rho^{2}}+\rho^{\theta-1} \phi^{-\theta} \\
\frac{1}{\rho} \\
-\rho^{\theta} \phi^{-\theta-1}
\end{array}\right) \\
\nabla^{2} G_{1}=\left(\begin{array}{ccc}
-\frac{2 m}{\rho^{3}}+(\theta-1) \rho^{\theta-2} \phi^{-\theta} & -\frac{1}{\rho^{2}} & -\theta \rho^{\theta-1} \phi^{-\theta-1} \\
-\frac{1}{\rho^{2}} & 0 & 0 \\
-\theta \rho^{\theta-1} \phi^{-\theta-1} & 0 & (\theta+1) \rho^{\theta} \phi^{-\theta-2}
\end{array}\right)
\end{gathered}
$$

If $r=(X, Y, Z)$ satisfies $r \cdot \nabla G_{1}$ then $Y=-\frac{m}{\rho}+\rho^{\theta} \phi^{-\theta} X+\rho^{\theta+1} \phi^{-\theta-1} Z$. Thus,

$$
\begin{aligned}
& \nabla^{2} G_{i}(r, r)=(\theta+1)\left(\rho^{\theta-2} \phi^{-\theta} X^{2}-2 \rho^{\theta-1} \phi^{-\theta-1} X Z+\rho^{\theta} \phi^{-\theta-2} Z^{2}\right) \\
& \quad=(\theta+1) \rho^{\theta-2} \phi^{-\theta-2}(\phi X-\rho Z)^{2} \geq 0 .
\end{aligned}
$$

We now state the main result of this section that establishes the uniform L^{∞}-bound of $\left(\rho^{\epsilon}, m^{\epsilon}, \phi_{x}^{\epsilon}\right)$ in $\epsilon>0$.
Theorem 2.6 Suppose ϕ_{0} satisfies (1.7) and $\left|\left(\phi_{0}\right)_{x}\right| \leq c \rho_{0}$ in R. Then, there exists a $\tau=\tau_{c}>0$ with $c \rightarrow \tau_{c}$ monotonically decreasing and $\tau_{0}=\infty$ such that $0 \leq \rho^{\epsilon} \leq$ const, $\left|\frac{m^{\epsilon}}{\rho^{\epsilon}}\right| \leq$ const and $\left|\phi_{x}\right| \leq$ const in $\Omega=[0, \tau] \times R$.
Proof: Suppose that $\left(\phi_{0}\right)_{x} \leq 0$. Then, it follows from Lemmas 2.3-2.6 that $\max _{x} G_{2}(t, x) \leq \max _{x} G_{2}(0, x)=A$. Hence, $\frac{m}{\rho}+A \geq \frac{1}{\theta} \rho^{\theta} \phi^{-\theta} \geq 0$. Set $G=A+G_{1}$. It then follows from Lemma 2.4 that

$$
G_{t}+\lambda_{1} \nabla G \cdot y_{x}+\frac{1}{\gamma} \rho^{2 \theta} \phi^{-2 \theta-1} \phi_{x}=\epsilon\left(G_{x x}-\nabla^{2} G\left(y_{x}, y_{x}\right)\right)
$$

Let $G^{k}=G(k h), h>0$. Then,
$G^{k}-G^{k-1}+\lambda_{1} \nabla G^{k} \cdot y_{x}^{k}+\frac{1}{\gamma}\left(\rho^{k}\right)^{2 \theta}\left(\phi^{k}\right)^{-2 \theta-1}\left(\phi^{k}\right)_{x}=\epsilon\left(G_{x x}^{k}-\nabla^{2} G^{k}\left(y_{x}^{k}, y_{x}^{k}\right)\right)+\varepsilon(h)$
where $\varepsilon(h) / h \rightarrow 0$ as $h \rightarrow 0^{+}$. Suppose $G^{k}\left(x_{0}\right)=\max _{x} G^{k}(x)$. Then, $G_{x}^{k}\left(x_{0}\right)=$ $\left(\nabla G^{k} \cdot y_{x}^{k}\right)\left(x_{0}\right)=0$ and $G_{x x}^{k}\left(x_{0}\right) \leq 0$. It follows from Lemmas 2.3 and 2.5 that if $\psi(t)=\max _{x} G(t, x)$ then

$$
\psi(k h)-\psi((k-1) h)-\varepsilon(h) \leq \frac{c}{\gamma}\left(\frac{\rho}{\phi}\left(x_{0}\right)\right)^{2 \theta+1} \leq \frac{c}{\gamma} \theta^{(2 \theta+1) / \theta} \psi(k h)^{(2 \theta+1) / \theta}
$$

Taking the limit $h \rightarrow 0^{+}$, we obtain

$$
\psi(t)-\psi(0) \leq \int_{0}^{t} \frac{c}{\gamma} \theta^{(2 \theta+1) / \theta} \psi(\tau)^{(2 \theta+1) / \theta} d \tau
$$

and thus

$$
\begin{equation*}
\psi(t) \leq\left(\frac{\psi(0)^{(\theta+1) / \theta}}{1-\frac{c}{\gamma}\left(\frac{\theta+1}{\theta}\right) \theta^{(2 \theta+1) / \theta} \psi(0)^{(\theta+1) / \theta} t}\right)^{\theta /(\theta+1)} \tag{2.10}
\end{equation*}
$$

In fact, if

$$
s(t)=\psi(0)+\int_{0}^{t} \frac{c}{\gamma} \theta^{(2 \theta+1) / \theta} \psi(\tau)^{(2 \theta+1) / \theta} d \tau
$$

then $\psi(t) \leq s(t)$ and $\dot{s} \leq \frac{c}{\gamma} \theta^{(2 \theta+1) / \theta} s^{(2 \theta+1) / \theta}$, which implies (2.10). Since

$$
0 \leq \frac{1}{\theta} \rho^{\theta} \phi^{-\theta} \leq \frac{1}{2}\left(G_{1}+G_{2}\right) \quad \text { and } \quad-G_{2} \leq \frac{m}{\rho} \leq G_{1}
$$

the lemma follows from (2.9).

3 Compensated Compactness

In this section we show that the sequence $\left\{\left(\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}\right)\right\}_{\epsilon>0}$ has a subsequence that converges to a weak solution of (1.10) a.e in Ω using the method of compensated compactness. First note that the mechanical energy

$$
\begin{equation*}
\eta=\frac{1}{2} \frac{m^{2}}{\rho}+\frac{1}{\gamma(\gamma-1)} \rho^{\gamma} \phi^{-\gamma+1} \tag{3.1}
\end{equation*}
$$

and the corresponding entropy-flux

$$
\begin{equation*}
q=\frac{\rho}{2}\left(\frac{m}{\rho}\right)^{3}+\frac{1}{\gamma-1} \frac{m}{\rho} \rho^{\gamma} \phi^{-\gamma+1} \tag{3.2}
\end{equation*}
$$

form an entropy pair, i.e.,

$$
\begin{equation*}
\nabla \eta M=\nabla q \tag{3.3}
\end{equation*}
$$

In order to treat solutions approaching a nonzero state at infinity, we consider a normalized entropy pair

$$
\begin{aligned}
& \tilde{\eta}=\eta(y)-\eta((\bar{v}, \phi))-\nabla_{v} \eta((\bar{v}, \phi))(v-\bar{v}) \\
& \tilde{q}=q(y)-q((\bar{v}, \phi))-\nabla_{v} \eta((\bar{v}, \phi)) F(y)
\end{aligned}
$$

where $v=(\rho, m), \bar{v}=(\bar{\rho}, \bar{m})$ and $y=(v, \phi)$. Premultiplying (1.10) by $\nabla \tilde{\eta}$, we obtain

$$
\tilde{\eta}_{t}+\tilde{q}_{x}=\epsilon\left(\tilde{\eta}_{x x}-\nabla^{2} \eta\left(y_{x}, y_{x}\right)\right) .
$$

Integration over Ω yields an energy estimate

$$
\begin{equation*}
\int_{-\infty}^{\infty} \tilde{\eta}(t, x) d x+\epsilon \int_{0}^{t} \int_{-\infty}^{\infty} \nabla^{2} \eta\left(y_{x}, y_{x}\right) d x d t=\int_{-\infty}^{\infty} \tilde{\eta}(0, x) d x \tag{3.4}
\end{equation*}
$$

The following lemma implies the energy estimate (2.2) where $\tilde{\eta}(y)=E(\rho, u, \phi)$.

Lemma 3.1 For $\rho>0, \phi>0, \nabla^{2} \eta$ is non-negative.
Proof: Note that

$$
\nabla^{2} \eta=\left(\begin{array}{ccc}
\frac{m^{2}}{\rho^{3}}+\rho^{\gamma-2} \phi^{-\gamma+1} & -\frac{m}{\rho^{2}} & -\rho^{\gamma-1} \phi^{-\gamma} \\
-\frac{m}{\rho^{2}} & \frac{1}{\rho} & 0 \\
-\rho^{\gamma-1} \phi^{-\gamma} & 0 & \rho^{\gamma} \phi^{-\gamma-1}
\end{array}\right)
$$

Thus,

$$
\begin{equation*}
\nabla^{2} \eta\left(y_{x}, y_{x}\right)=\frac{1}{\rho}\left(\frac{m}{\rho} \rho_{x}-m_{x}\right)^{2}+\rho^{\gamma-2} \phi^{-\gamma-1}\left(\phi \rho_{x}-\rho \phi_{x}\right)^{2} \geq 0 \tag{3.5}
\end{equation*}
$$

for $y_{x}=\left(\rho_{x}, m_{x}, \phi_{x}\right)$.
The following lemma establishes the viscosity estimate which is essential for the method of compensated compactness.
Lemma 3.2 Assume that $1<\gamma \leq 2$ and $\int_{-\infty}^{\infty} \tilde{\eta}(0, x) d x<\infty$. Then, if (ρ, m, ϕ) is a solution of (1.10)

$$
\epsilon \int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\left|\rho_{x}(t, x)\right|^{2}+\left|m_{x}(t, x)\right|^{2}\right) d x d t \leq \text { const }
$$

where $\tau>0$ is defined in Theorem 2.6

Proof: From (2.9) and Lemma 2.2 we have

$$
\int_{-\infty}^{\infty}\left|\phi_{x}(t, x)\right| d x=\int_{-\infty}^{\infty}\left|\phi_{x}(0, x)\right| d x, \quad t \in[0, \tau]
$$

It thus follows from Theorem 2.6 that

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\phi_{x}(t, x)\right|^{2} d x \leq \text { const. }
$$

Since $0<\rho(t, x), \phi(t, x) \leq$ const in Ω it follows from (3.5) that

$$
\nabla^{2} \eta\left(y_{x}(t, x), y_{x}(t, x)\right)+\left|\phi_{x}(t, x)\right|^{2} \geq c_{1}\left|y_{x}(t, x)\right|^{2}
$$

for some $c_{1}>0$. Hence, the lemma follows from (3.4).
We apply the method of compensated compactness for the function \hat{v}^{ϵ} defined by

$$
\hat{v}^{\epsilon}=\left(\hat{\rho}^{\epsilon}, \hat{m}^{\epsilon}\right)=\left(\frac{\rho^{\epsilon}}{\phi^{\epsilon}}, \frac{m^{\epsilon}}{\phi^{\epsilon}}\right)
$$

The function \hat{v}^{ϵ} satisfies the 2×2 viscous conservation law (1.15) with the forcing term which is in $L^{\infty}(\Omega)$. Based on this observation we have

Lemma 3.3 Assume that the conditions in Theorem 2.6 are satisfied and that $\int_{-\infty}^{\infty} \tilde{\eta}(0, x) d x<\infty$. Then, for $1<\gamma \leq 2$, the measure set

$$
\eta\left(\hat{v}^{\epsilon}\right)_{t}+q\left(\hat{v}^{\epsilon}\right)_{x}
$$

lies in a compact subset of $H_{l}^{-1}(\Omega)$ for all weak entropy/entropy flux pair (η, q) of $\nabla_{v} F$, where $\hat{v}^{\epsilon}=\left(\frac{\rho^{\epsilon}}{\phi^{\epsilon}}, \frac{m^{\epsilon}}{\phi^{\epsilon}}\right)$.
Proof: Suppose (ρ, m, ϕ) is a solution to (1.10). Then, dividing the first two equations of (1.10) by ϕ, we obtain (1.15) for $\hat{\rho}=\frac{\rho}{\phi}$ and $\hat{m}=\frac{m}{\phi}$. Let (η, q) be a weak entropy/entropy flux pair, i.e.,

$$
\begin{equation*}
\nabla \eta \nabla_{v} F=\nabla q \quad \text { and } \quad \eta(0, \cdot)=0 \tag{3.6}
\end{equation*}
$$

It can be shown that for $0<\rho \leq$ const, $\left|\frac{m}{\rho}\right| \leq$ const

$$
\begin{equation*}
|\nabla \eta| \leq \mathrm{const} \quad \text { and } \quad\left|\nabla^{2} \eta(r, r)\right| \leq \mathrm{const} \nabla^{2} \eta^{*}(r, r) \tag{3.7}
\end{equation*}
$$

where

$$
\eta^{*}=\frac{1}{2} \rho\left(\frac{m}{\rho}\right)^{2}+\frac{1}{\gamma(\gamma-1)} \rho^{\gamma}
$$

is the mechanical energy, r is any vector in R^{2} and constant is independent of r. Premultiplying (1.15) by $\nabla \eta$, we obtain

$$
\eta(\hat{v})_{t}+q(\hat{v})_{x}=\epsilon\left(\eta(\hat{v})_{x x}-\nabla^{2} \eta\left(\hat{v}_{x}, \hat{v}_{x}\right)\right)+\nabla \eta(\hat{v}) A
$$

where

$$
A=2 \epsilon\left(\frac{\rho_{x} \phi_{x}}{\phi^{2}}, \frac{m_{x} \phi_{x}}{\phi^{2}}\right)-\left(0, \frac{p \phi_{x}}{\phi^{2}}\right)
$$

It follows from Theorem 2.6 that $\frac{p^{\epsilon} \phi_{x}^{\epsilon}}{\left(\phi^{\epsilon}\right)^{2}} \in L^{\infty}(\Omega)$ uniformly in $\epsilon>0$. It follows from Lemma 3.2 and Theorem 2.6 that

$$
\epsilon^{1 / 2}\left(\frac{\rho_{x}^{\epsilon} \phi_{x}^{\epsilon}}{\left(\phi^{\epsilon}\right)^{2}}, \frac{m_{x}^{\epsilon} \phi_{x}^{\epsilon}}{\left(\phi^{\epsilon}\right)^{2}}\right) \in L^{2}(\Omega)
$$

uniformly in $\epsilon>0$. Thus, $\left\{\nabla \eta\left(v^{\epsilon}\right) A^{\epsilon}\right\}_{\epsilon>0}$ is precompact in $W_{l o c}^{-1, q}(\Omega), 1 \leq q<2$. Since

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty} \epsilon\left|\hat{v}_{x}^{\epsilon}(t, x)\right|^{2} d x d t \leq \mathrm{const}
$$

The set $\left\{\epsilon \nabla \eta \hat{v}_{x}^{\epsilon}\right\}_{\epsilon>0}$ is precompact in $L^{2}(\Omega)$ and so is $\left\{\epsilon \eta\left(\hat{v}^{\epsilon}\right)_{x x}\right\}_{\epsilon>0}$ in $H^{-1}(\Omega)$. Hence, the lemma follows from the fact that if set S is compact in $W^{-1, q}(U)$ and bounded in $W^{-1, r}(U)$ then S is compact in $H^{-1}(U)$ for $1 \leq q<2<r$ and any bounded and open set U in R^{2}. [Ev] \square

In the next lemma we prove that the sequence $\left\{\phi^{\epsilon}\right\}_{\epsilon>0}$ is precompact in $L_{l o c}^{2}(\Omega)$.
Lemma 3.4 For $\epsilon>0$ and $\tau>0$ defined in Theorem 2.6

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\left|\phi_{t}^{\epsilon}\right|^{2}+\left|\phi_{x}^{\epsilon}\right|^{2}\right) d x d t \leq \text { const. }
$$

Thus, the family $\left\{\phi^{\epsilon}(t, x)\right\}_{\epsilon>0}$ is compact in $L^{2}(U)$ for any bounded rectangle $U=(0, \tau) \times(-L, L)$.
Proof: Premultiplying (1.10) by $\phi_{x x}$ and integrating in $(0, \tau) \times R$, we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{-\infty}^{\infty}\left|\phi_{x}(\tau, x)\right|^{2} d x+\frac{\epsilon}{2} \int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\phi_{x x}\right|^{2} d x d t \\
& \quad \leq \frac{1}{2} \int_{-\infty}^{\infty}\left|\phi_{x}(0, x)\right|^{2} d x+\frac{1}{2 \epsilon}|u|_{\infty}^{2} \int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\phi_{x}\right|^{2} d x d t
\end{aligned}
$$

where $|u|_{\infty}=\sup _{(t, x) \in(0, \tau) \times R}|u(t, x)|$. Thus,

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\epsilon \phi_{x x}\right|^{2} d x d t \leq|u|_{\infty}^{2} \int_{0}^{t} \int_{-\infty}^{\infty}\left|\phi_{x}\right|^{2} d x d t+\epsilon \int_{-\infty}^{\infty}\left|\phi_{x}(0, x)\right|^{2} d x
$$

and

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\phi_{t}\right|^{2} d x d t \leq 4|u|_{\infty}^{2} \int_{0}^{\tau} \int_{-\infty}^{\infty}\left|\phi_{x}\right|^{2} d x d t+2 \epsilon \int_{-\infty}^{\infty}\left|\phi_{x}(0, x)\right|^{2} d x
$$

which proves the lemma.
Now, we state the main result of the paper.
Theorem 3.5 Assume that the conditions in Theorem 2.6 are satisfied and $\int \tilde{\eta}(0, x) d x<\infty$. Then, for $1<\gamma \leq 5 / 3$, there exists a subsequence of $\left(\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}\right)$ such that

$$
\begin{equation*}
\left(\rho^{\epsilon}(t, x), m^{\epsilon}(t, x), \phi^{\epsilon}(t, x)\right) \rightarrow(\rho(t, x), m(t, x), \phi(t, x)) \quad \text { a.e. in } \Omega=[0, \tau] \times R \text {. } \tag{3.8}
\end{equation*}
$$

where the triple $(\rho, m, \phi) \in L_{+}^{\infty}(\Omega) \times L^{\infty}(\Omega) \times W^{1, \infty}(\Omega)$ is a weak solution to (1.4).

Proof: It follows from Lemma 3.3 that there exists a subsequence of $\left(\hat{\rho}^{\epsilon}, \hat{m}^{\epsilon}\right)$ such that

$$
\left(\hat{\rho}^{\epsilon}(t, x), \hat{m}^{\epsilon}(t, x)\right) \rightarrow(\hat{\rho}(t, x), \hat{m}(t, x)) \text { a.e. in } \Omega .
$$

by applying the results of [Di1] and [Ch]. It follows from Lemma 3.4 that using a standard diagonal process, there is a subsequence of $\phi^{\epsilon}(t, x)$ that converges a.e. in Ω, weakly in $H^{1}(\Omega)$ and weakly-star in $W^{1, \infty}(\Omega)$ to ϕ. Define $\rho(t, x)=$ $\hat{\rho}(t, x) \phi(t, x), m(t, x)=\hat{m}(t, x) \phi(t, x)$ a.e. $(t, x) \in \Omega$. Then, the statement (3.8) holds. It follows from the first two equations of (1.10) that

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\left(\rho^{\epsilon}, m^{\epsilon}\right) \cdot\left(\psi_{t}-\epsilon \psi_{x x}\right)+F\left(\rho^{\epsilon}, m^{\epsilon}, \phi^{\epsilon}\right) \cdot \psi_{x}\right) d x d t=0
$$

for all $\psi \in C_{c}^{\infty}\left(\Omega ; R^{2}\right)$. It thus follows from (3.8) and the dominated convergence theorem that (1.8) is satisfied. It follows from the third equation of (1.10) that

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\left(\phi_{t}^{\epsilon}+u^{\epsilon} \phi_{x}^{\epsilon}\right) \xi+\epsilon \phi_{x} \xi_{x}\right) d x d t=0
$$

for all $\xi \in C_{c}^{\infty}(\Omega ; R)$. Since $u^{\epsilon} \rightarrow u$ in $L^{2}(U)$ for any bounded rectangle $U=$ $[0, \tau] \times[-L, L]$ and $\phi^{\epsilon} \rightarrow \phi$ weakly in $H^{1}(\Omega)$ it follows that

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\phi_{t}+u \phi_{x}\right) \xi d x d t=0
$$

for all $\xi \in C_{c}^{\infty}(\Omega ; R)$. Hence ϕ satisfies (1.4) a.e. in Ω.
Corollary 3.6 Suppose the entropy pair (η, q) is defined by (3.1)-(3.2). Then

$$
\begin{equation*}
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\eta \xi_{t}+q \xi_{x}\right) d x d t \geq 0 \tag{3.9}
\end{equation*}
$$

for all $\xi \in C_{c}^{\infty}(\Omega ; R)$ satisfying $\xi \geq 0$. That is, the third equation of (1.1) is replaced by the inequality $\eta_{t}+q_{x} \leq 0$ in the sense of distributions.

Proof: It follows from (3.3) that

$$
\int_{0}^{\tau} \int_{-\infty}^{\infty}\left(\eta^{\epsilon}\left(\xi_{t}-\epsilon \xi_{x x}\right)+q^{\epsilon} \xi_{x}\right) d x d t=\epsilon \int_{0}^{\tau} \int_{-\infty}^{\infty} \nabla^{2} \eta\left(y^{\epsilon}, y^{\epsilon}\right) \xi d x d t
$$

for all $\psi \in C_{c}^{\infty}\left(\Omega ; R^{2}\right)$ satisfying $\xi \geq 0$. It follows from Lemma 3.1 that the right hand side of this equality is nonnegative. Thus, by taking the limit as $\epsilon \rightarrow 0^{+}$we obtain (3.9)

References

[CCS] K. Chueh, C. Conley and J. Smoller, Positive invariant regions for systems of nonlinear diffusions equations, Ind. U. Math. J., 26 (1979), 373-393.
[CD] G. Q. Chen and C. M. Dafermos, The vanishing viscosity method in onedimensional thermo elasticity, LCDS Rep. 94-1, Brown University, RI.
[Ch] G. Q. Chen, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci. 6 (1986), 75-120.
[CL] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc, 277 (1983), 1-42.
[Di1] R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Physics, 91 (1983), 1-30.
[Di2] R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., 82 (1983), 27-30.
[Di3] R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal., 88 (1985), 223-270.
[Ev] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, American Mathematical Society, Providence, 1990.
[FI] W. Fang and K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations, J. Diff. Eqns, to appear.
[Gl] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commu. Pure Appl. Math. 18 (1965), 697-715.
[Kr] N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR Sb., 10 (1970), 217-243.
[La] P. D. Lax, Hyperbolic Systems of Conservation Laws and Mathematical Theory of Shock Waves, Conf. Board Math. Sci., 11, SIAM, 1973.
[Mu] F. Murat, Compacité par compensation, Ann. Scuola Norm. sup. Pisa,5 (1978), 489-507.
[Ol] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk 12 (1957), 3-73, (AMS Transl., Ser. 2, 26, (1963), 95-172).
[Sm] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.
[Ta1] L. Tatar, Compensated compactness and applications to partial differential equations, Heriot-Watt Sympos., Vol 4, R.J.Knops ed. Pitman Press, New York, 1979.
[Ta2] L. Tatar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear PDE, J.M.Ball ed., Reidel, Dordrecht, 1983.
[Tr] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987.

Kazufumi Ito
Center for Research in Scientific Computation
North Carolina State University
Raleigh, North Carolina 27695-8205
E-mail: kito@eos.ncsu.edu

[^0]: *1991 Mathematics Subject Classifications: 35L65.
 Key words and phrases: Compensated compactness, Conservation laws, Entropy. © 1996 Southwest Texas State University and University of North Texas.
 Published June 18, 1996.

