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Radially Symmetric Solutions for a Class of

Critical Exponent Elliptic Problems in RN ∗

C. O. Alves, D. C. de Morais Filho & M. A. S. Souto

Abstract

We give a method for obtaining radially symmetric solutions for the
critical exponent problem{

−∆u+ a(x)u = λuq + u2∗−1 in RN
u > 0 and

∫
RN |∇u|

2 <∞

where, outside a ball centered at the origin, the non-negative function a

is bounded from below by a positive constant ao > 0. We remark that,
differently from the literature, we do not require any conditions on a at
infinity.

1 Introduction

Our purpose in this paper is to solutions for the semi-linear elliptic problem:{
−∆u+ a(x)u = λuq + u2∗−1 in RN

u > 0 and
∫
RN |∇u|

2 <∞.
(1)

where a : RN → R is a non-negative radially symmetric C1 function,
2∗ = 2N/(N − 2); 1 < q < 2∗ − 1, λ > 0, and N ≥ 3.

Several researchers have studied variants of problem (1). Among others,
we can cite the article by Brèzis & Nirenberg [8] which treats the case a ≡ 0
in bounded domains. Azorero & Alonzo in [3] and [4] generalize some similar
results for the p−Laplacian operator in bounded domains. Egnell [11] also
generalizes some results in [9]. In the case of unbounded domains, Rabinowitz
[21] considers a more general non-linearity, but he does not treat the Sobolev
critical exponent case. Benci & Cerami [5] consider the problem (1) when λ = 0,
and [2] deals with the case where λ is replaced by an integrable function. In
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[10], a variation of this problem, with a constant, was solved for the biharmonic
operator. To finish citations we list the following works: [1] Alves & Gonçalves,
[14] Gonçalves & Miyagaki, [15] Jianfu, [16] Jianfu & Xiping. All the last
results in unbounded domains are obtained under the crucial hypothesis that a
is a coercive function or that lim

|x|→+∞
a(x) exists.

We improve their results, relaxing the coerciveness of a and the existence of
the above limit. As in [21], we shall use variational method to solve problem
(1). To describe precisely our results, we present below the hypotheses on the
function a:

(Ao) a ∈ C1(RN ) is a radially symmetric function and there are ao, R > 0
such that a(x) ≥ ao, for all |x| ≥ R .

Let us consider the following W 1,2(RN ) Hilbert subspace:

H1
rad(RN ) = {u ∈W 1,2(RN ) : u radially symmetric }.

Our main result is the following.

Theorem 1 If (Ao) is satisfied, then problem (1) possesses a nontrivial classical
solution u ∈ H1

rad(RN ), for all λ > 0 and 1 < q < 2∗ − 1 when N ≥ 4. In the
case N = 3 the same result is valid if 3 < q < 6 .

Remark 1 When λ is large enough, (1) possesses a nontrivial classical solu-
tion. Later we shall justify this remark.

Employing the same techniques used to prove the above theorem, we improve
the results obtained in the subcritical exponent case due to Rabinowitz (see [21]),
where he considers the problem

−∆u+ a(x)u = f(x, u) in RN (2)

for a given C1-function f : RN × R→ R with a coercive.
Results related to this kind of problem can be found in [6], [21], among

others.
In [6], H. Berestycki and P. L. Lions obtained positive solution of problem

(1) when the non-linearity f does not depend on x. They obtained the solution
as a limit of positive solutions of the problem restricted to bounded domains.
In their paper they basically made use of H1-estimates.

Our second result is a global version on RN of a well known result for
bounded domain due to Rabinowitz (theorem 2.15 in [20]):

Theorem 2 Suppose that a ∈ C1(RN ) satisfies (Ao) and f satisfies:

(fo) The function f is a C1, radially symmetric function in x, i.e., f(x, s) =
f(r, s) where r = |x|, for all x ∈ RN , s ∈ R.
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(f1) For each ε > 0, there is a constant a1 > 0, such that

|f(x, s)| ≤ ε|s|+ a1|s|
p, for all x ∈ RN , s ∈ R,

where 1 ≤ p < 2∗ − 1.

(f2) There is µ > 2, such that

0 < µF (x, s)≤̇sf(x, s), for all x ∈ RN , s ∈ R\{0},

where F (x, s) =
∫ s
o
f(x, t)dt.

Then (2) possesses a nontrivial classical solution u ∈W 1,2(RN ).

2 Proof of Theorem 1

First, let us formulate a proper framework to solve problem (1). Define the
Hilbert space

E = {u ∈ H1
rad(RN ) :

∫
RN

a(x)u2 <∞},

endowed with the inner product 〈u, v〉 =:
∫
RN (∇u∇v + a(x)uv) and the norm

||u||2 =:
∫
RN (|∇u|2 + a(x)u2

Now we present two lemmas that will be used in the proof of the Theorem 1.

Lemma 1 Let w be a W 1,s
loc (RN ) function satisfying

−∆w = h, (3)

in RN\{0} in the weak sense, where h is a L1
loc(RN ) function and s ≥ N

N−1 .

Then (3) is weakly satisfied in the whole RN .

Proof: In order to prove this result, consider ϕ ∈ C∞(RN ) such that ϕ(x) = 0
in |x| ≤ 1 and ϕ(x) = 1 in |x| ≥ 2. For each ε > 0, define ψε(x) = ϕ(xε ). Fix a
function φ ∈ C∞c (RN ). As ψεφ ∈ C∞c (RN\{0}) we have that∫

RN
∇w∇(ψεφ) =

∫
RN

h(x)(ψεφ),

and then ∫
RN

ψε∇w∇φ+

∫
RN

φ∇w∇ψε =

∫
RN

h(x)(ψεφ). (4)

Using the dominated convergence theorem, we obtain the limits

lim
ε→0

∫
RN

ψε∇w∇φ =

∫
RN
∇w∇φ (5)

lim
ε→0

∫
RN

h(x)(ψεφ) =

∫
RN

h(x)φ.
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We claim that the limit of the second term on the left side of (4) is zero. In
fact, ∣∣∣∣∫

RN
φ∇w∇ψε

∣∣∣∣ ≤ ||φ||L∞(RN )

∫
|x|≤2ε

|∇w||∇ψε|.

Using Hölder’s inequality in the above inequality with 1
s

+ 1
q

= 1, we obtain that

∣∣∣∣∫
RN

φ∇w∇ψε

∣∣∣∣ ≤ ||φ||L∞(RN )

(∫
|x|≤2ε

|∇w|s
)1/s(∫

|x|≤2ε

|∇ψε|
q

)1/q

and then∣∣∣∣∫
RN

φ∇w∇ψε

∣∣∣∣ ≤ ||φ||L∞(RN )||∇ϕ||Lq(RN )

(∫
|x|≤2ε

|∇w|s
)1/s

ε
N−q
q .

Observe that N ≥ q and passing to the limit in this last inequality we prove the
claim.

Finally using the claim and the limits (5) in (4) we have that∫
RN
∇w∇φ =

∫
RN

h(x)φ.

Remark 2 The above result is not valid for W 1,1
loc (RN ) functions. The function

w = |x|2−N(if N ≥ 3, or w = log |x|, if N = 2) belongs to W 1,1
loc (RN ), satisfies

−∆w = 0 in RN\{0}, but if v is a radially symmetric function in C∞c
(
RN
)

such that v(0) 6= 0, we have that∫
RN
∇w∇v =

ωN

2−N

∫ ∞
o

rN−1r1−Nv′(r)dr =
ωN

2−N
v(0) 6= 0, if N ≥ 3

or ∫
RN
∇w∇v = 2πv(0) 6= 0, if N = 2.

Lemma 2 Let f : RN × R→ R be a C1 function satisfying (fo) such that

|f(x, s)| ≤ c|s|+ |s|2
∗−1 for all x ∈ RN , s ∈ R;

and let a be a radially symmetric function. Suppose that u ∈ E satisfies∫
RN

(∇u∇v + a(x)uv) =

∫
RN

f(x, u)v, for all v ∈ E .

Then u ∈ C2(RN ) and −∆u(x) + a(x)u(x) = f(x, u(x)) for all x ∈ RN .
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Proof: Since a and f are radially symmetric we rewrite the above expression
as ∫ ∞

o

rN−1(u′v′ + a(r)uv)dr =

∫ ∞
o

rN−1f(r, u)vdr, (6)

for all v ∈ E. We have that h(r) := −a(r)u(r) + f(r, u(r)) is in Co,α(RN\{0}),
since H1

rad(RN ) is contained in Co,α(RN\{0}). Hence∫ ∞
o

rN−1u′ψ′dr =

∫ ∞
o

rN−1h(r)ψdr, for all ψ ∈ C∞c (0,+∞),

and ∫ ∞
o

u′(rN−1ψ)′dr =

∫ ∞
o

[
N − 1

r
u′ + h(r)](rN−1ψ)dr, (7)

for all ψ ∈ C∞c (0,+∞). For each ϕ ∈ C∞c (0,+∞), considering ψ = r1−Nϕ in
(7) we conclude that u is a weak solution of

−u′′ =
N − 1

r
u′ + h(r), for r > 0.

Since u′ ∈ L2
loc(0,+∞), it follows that u ∈ H2

loc(0,+∞), u′ ∈ H1
loc(0,+∞), and

u ∈ H1
rad(RN ) ∩ C2(RN\{0}) .

Moreover for |x| > 0 , the function u satisfies (1) in the classical sense. ♦

Proof of Theorem 1 . This proof consists of using variational methods to
get critical points of the Euler-Lagrange functional associated to (1) and defined
on E:

I(u) =
1

2

∫
RN

(|∇u|2 + a(x)u2)−
λ

q + 1

∫
RN

(
u+
)q+1

−
1

2∗

∫
RN

(
u+
)2∗

where u+(x) = max{u(x), 0} and u+(x) = min{−u(x), 0}.
The critical points of I are precisely the weak solutions of (1). These solu-

tions may be regularized.
The Hilbert space E is immersed continuously in W 1,2(RN ). This assertion

comes from (Ao) and the following inequalities(∫
|x|≤R

u2

)1/2

≤ c1

(∫
|x|≤R

|u|2
∗

)1/2∗

≤ c1

(∫
RN
|u|2

∗
)1/2∗

≤ c2

(∫
RN
|∇u|2

)1/2

.
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We also have that H1
rad(RN ) ⊂ Lp(RN ) continuously if 2 ≤ p ≤ 2∗ and

compactly if 2 ≤ p < 2∗(see [17]). Using these results one has the following
lemma:

Lemma 3 The Banach space E is continuously immersed in Lp(RN ) if
2 ≤ p ≤ 2∗ and compactly if 2 ≤ p < 2∗.

Using lemma 3 we verify that I is a well-defined C1(E) functional - see [22].
It is easy to verify that

λ

q + 1

∫
RN

(u+)q+1 +
1

2∗

∫
RN

(u+)2∗ = o(||u||2) as u→ 0, (8)

and hence that I has a local minimum at the origin. This is not a global
minimum. If u ∈ E\{0} , u ≥ 0, we have that

I(tu) =
t2

2

∫
RN

(|∇u|2 + a(x)u2)−
λtq+1

q + 1

∫
RN

(u+)q+1 −
t2
∗

2∗

∫
RN

(u+)2∗ .

Since
∫
RN (u+)2∗ 6= 0, we conclude that I(tu) → −∞ as t → ∞. So, we have

just seen that I has the Mountain Pass Theorem Geometry.
Let e ∈ E such that I(e) < 0, and

Γ = {g : [0, 1]→ E : g(0) = 0 and g(1) = e}

and
c = inf

g∈Γ
max

0≤t≤1
I(g(t)).

Thus c is the mountain pass minimax value associated to I. At this moment,
it is important to notice that c is not the minimax value associated to the Euler
Lagrange functional of problem (1) defined in the whole W 1,2(RN ). Assertion
(8) implies c > 0. Using an application of the Ekeland Variational Principle
(Theorem 4.3 of [19]), there exists a sequence {um} ⊂ E such that

I(um)→ c, I ′(um)→ 0. (9)

Lemma 4 The above sequence {um} is bounded.

Proof: Notice that

I(um)−
1

q + 1
I ′(um)um =

(
1

2
−

1

q + 1

)
||um||

2 +

(
1

q + 1
−

1

2∗

)∫
RN

(
u+
m

)2∗
,

then

I(um)−
1

q + 1
I ′(um)um ≥

(
1

2
−

1

q + 1

)
||um||

2.
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Combining this last inequality with

I(um)−
1

q + 1
I ′(um)um ≤ 1 + c+ ||um||

for large m, we conclude the proof. ♦
The following lemma shows that we can choose a vector e ∈ E\{0} in the

definition of Γ, such that I(e) < 0 and

0 < c <
1

N
SN/2, (10)

where S is the best constant of the Sobolev immersion W 1,2(RN ) ⊂ L2∗(RN ),
this is

S = inf{

∫
RN
|∇u|2; u ∈W 1,2(RN ) and

∫
RN
|u|2

∗

= 1}.

Using the above facts and arguments due to Brèzis & Nirenberg [9], we will
show that the choice in (10) applies in obtaining a non-trivial solution of (1).

Lemma 5 Suppose that λ > 0 and one of the following conditions is satisfied:

(i) N ≥ 4;

(ii) N = 3 and 3 < q < 6.

Then, there is a vector e ∈ E\{0}, e ≥ 0, I(e) < 0 such that

sup
t≥0

I(te) <
1

N
SN/2, (11)

Proof: For each ε > 0, consider the function

φε(x) =
[N(N − 2)ε](N−2)/4

(ε+ |x|2)
(N−2)/2

.

The functions φε satisfy the problem{
−∆u = u2∗−1, in RN
u > 0,

∫
RN |∇u|

2 <∞

and ∫
RN
|∇φε|

2 =

∫
RN
|φε|

2∗ = SN/2

(see [23], lemma 2 - pp. 364). Now, consider vε = ϕφε where ϕ ∈ C∞o (RN ),
0 ≤ ϕ(x) ≤ 1 and

ϕ(x) =

{
1 if x ∈ B1

0 if x /∈ B1
.
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Using arguments due to [18] there is ε > 0 such that

sup
t≥0

I(tvε) <
1

N
SN/2.

If tε > 0 is such that I(tεvε) < 0, we choose e = tεvε and the proof is complete.♦
In order to complete the proof of Theorem 1, let us consider e ∈ E\{0} given

by lemma 5. Let {um} be the sequence in E satisfying (9). From Lemmas 3
and 4, we may assume that

um ⇀ u in E

um → u in Ls(RN ), 2 ≤ s < 2∗

um(x)→ u(x) a.e. in RN .

The above limits with an observation in Brèzis & Lieb [7] yield that u must be
a critical point of I in E, that is,

I ′(u) = 0.

We claim that u 6= 0. In fact, if u ≡ 0 and taking l ≥ 0 such that∫
RN
|∇um|

2 → l,

then ∫
RN

(
u+
m

)2∗
→ l

for the reason that I ′(um)→ 0 and E ⊂ Lq+1(RN ) compactly. Since I(um)→ c,
we get

Nc = l. (12)

From the definition of S,∫
RN
|∇um|

2 ≥ S

(∫
RN
|um|

2∗
) 2

2∗

≥ S

(∫
RN

(
u+
m

)2∗) 2
2∗

.

Taking the limit in the last inequalities, we achieve that

l ≥ Sl2/2
∗

and by (12) that

c ≥
1

N
SN/2 > c

which contradicts the above choice of e, and thus the claim is proved.
Observe that I ′(u)u− = 0 implies

∫
RN |∇u

−|2 + a(x) (u−)
2

= 0 and then
u− ≡ 0 which implies u ≥ 0. Notice that at this moment we do not know if u
satisfies (1) in the W 1,2(RN ) sense but, thanks to lemma 2, u is a nontrivial
classical solution of (1) with u ≥ 0. The Hopf maximum principle assures that
u > 0. Theorem 1 is proved. ♦

We conclude this section by justifying Remark 1 in the beginning of Section 1.
The argument we are going to use is due to Azorero & Alonzo [4].
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Justification of Remark 1. Fix ϕ ∈ C∞o (RN\{0}), ϕ(x) ≥ 0. Notice that
the real function I(tϕ) possesses a positive maximum value . Suppose that this
maximum value is assumed for t = tλ. Thus

d

dt
I(tϕ)|t=tλ = 0

then

||ϕ||2 = tq−1
λ λ

∫
RN

ϕq+1 + t2
∗−2
λ

∫
RN

ϕ2∗ ≥ tq−1
λ λ

∫
RN

ϕq+1.

From the last inequality we have that tλ → 0 as λ→∞. On the other hand

sup
t≥0

I(tϕ) ≤
tλ

2

∫
RN
|∇ϕ|2

and for large enough λ > 0 we get

sup
t≥0

I(tϕ) <
1

N
S
N
2 .

Using the same arguments employed in the proof of Theorem 1 we conclude the
justification.

We have just finished the proof of Theorem 1. Our next step is the proof of
Theorem 2

3 Proof of Theorem 2

Let (E, || · ||) be the same defined in the proof of Theorem 1 and consider

I(u) =
1

2

∫
RN

(|∇u|2 + a(x)u2)−

∫
RN

F (x, u) (13)

defined in E, as the associated Euler-Lagrange functional to problem (2), which
is C1− see [22] . Under hypothesis (f1), it is easy to verify that∫

RN
F (x, u) = o(||u||2) as u→ 0, (14)

and hence that I has a local minimum at the origin. Hypothesis (f2) implies
that

F (x, s) ≥ a2|s|
µ (15)

for large |s| . Then, by (14) and (15), I has the Mountain Pass Theorem
Geometry. Let

Γ = {g : [0, 1]→ E : g(0) = 0 and I(g(1)) ≤ 0}
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and
c = inf

g∈Γ
max

0≤t≤1
I(g(t)).

As in the proof of Theorem 1, c > 0 and there is a sequence {um} ⊂ E satisfying
(9). Using standard arguments, (f2) implies that ||um|| is a bounded sequence.
Therefore, along a subsequence, um converges weakly in E and strongly in
Lp(RN ), 2 ≤ p < 2N

N−2 , to a function u ∈ E which is a weak solution of (2). We
claim that u 6= 0. In fact, for large m,

c

2
≤ I(um)−

1

2
I ′(um)um =

∫
RN

[
1

2
f(x, um)um − F (x, um)].

Taking m→∞, in the above expression we obtain that∫
RN

[
1

2
f(x, u)u− F (x, u)] ≥

c

2

contradicting a possible vanishing of u. Then the claim is proved.
We have that u ∈ E ⊂ H1

rad(RN ) is a non-zero function satisfying∫
RN

(∇u∇v + b(x)uv) =

∫
RN

f(x, u)v, for all v ∈ E .

As in the proof of Theorem 1, using Lemma 2 we have u is a classical solution
of (2). ♦
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[14] J. V. Gonçalves - O. H. Miyagaki, Multiple positive solutions for semilinear
elliptic equations in RN involving subcritical exponents, Preprint (1995)
(To appear in Nonlinear Analysis - TMA).

[15] Y. Jianfu, Nontrivial solution of quasilinear elliptic equations involving crit-
ical Sobolev exponent, Scientia Sinica (Series A ), Vol. XXXI, No. 10, (1987)
341-359.

[16] Y. Jianfu - Z. Xiping, On the existence of nontrivial solution of a quasilinear
elliptic boundary value problem for unbounded domains, Acta Math. Sci.
7(3) (1987)
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