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ON ELLIPTIC EQUATIONS IN RN WITH

CRITICAL EXPONENTS ∗

C.O. Alves, J.V. Goncalves, & O.H. Miyagaki

Abstract

In this note we use variational arguments –namely Ekeland’s Principle
and the Mountain Pass Theorem– to study the equation

−∆u+ a(x)u = λuq + u2∗−1 in RN .

The main concern is overcoming compactness difficulties due both to the
unboundedness of the domain RN , and the presence of the critical expo-
nent 2∗ = 2N/(N − 2).

1 Introduction

In this note we use variational methods to explore existence of weak solutions
for the problem

(∗)

 −∆u+ a(x)u = λuq + u2∗−1 in RN∫
a(x)u2 <∞,

∫
|∇u|2 <∞

u ≥ 0, u 6≡ 0

where a is a nonnegative L∞loc function, λ ≥ 0, 0 < q ≤ 1 and 2∗ is the critical
exponent, 2∗ = 2N/(N − 2), for N ≥ 3.

This problem has been explored by many authors including Brézis & Niren-
berg [6], Ambrosetti-Brézis & Cerami [1], Guedda & Veron [9] (see also their
references) for the case of elliptic equations in bounded domains. As far as
unbounded domains are concerned we recall the work by Benci & Cerami [12],
Noussair-Swanson & Jianfu [3], Jianfu & Xiping [14], Egnell [7], Azorero &
Alonso [4], Miyagaki [10].
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In this work we shall assume the following condition on a.

(a1) a(x) > 0, x ∈ BcRo and

∫
Bc
Ro

1

a
<∞ .

Our main results are the following:

Theorem 1 Let 0 < q < 1 and assume (a1). Then there exists λ∗ > 0 such
that (∗) has a solution for 0 < λ < λ∗, N ≥ 3.

Theorem 2 Let N ≥ 4 and q = 1. Assume (a1) and a(x) = 0, x ∈ B2r0

for some r0 ∈ (0, R0/2). Then there is λ∗ > 0 such that (∗) has a solution for
0 < λ < λ∗.

These theorems complement the results in [10] in the sense that here the
function a is allowed to vanish on a ball BRo . Actually in Theorem 2, we
require a to vanish on B2r0 . In addition we consider the case 0 < q ≤ 1 while
in [10], a > 0 is continuous and q ∈ (1, 2∗).

2 Preliminaries

Let

E =

{
u ∈ D1,2 |

∫
au2 <∞

}
with inner product and norm given by

〈u, v〉 =

∫
(∇u∇v + auv) , ‖u‖2 =

∫ (
|∇u|2 + au2

)
.

Recall that D1,2 is the closure of C∞o with respect to the gradient norm ‖u‖21 =∫
|∇u|2. Moreover

D1,2 =
{
u ∈ L2∗ | ∂iu ∈ L

2
}

and the norm

‖u‖
′

≡ |u|L2∗ + |∇u|L2

is equivalent to the D1,2 norm. In addition D1,2 → L2∗ .

The following lemma is a variant of a result by Willem & Omana [13] and
by Costa [2].

Lemma 1 Assume (a1). Then E → Ls for 1 ≤ s ≤ 2∗ and E ↪→ Ls for
1 ≤ s < 2∗.
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We shall look for the critical points of the functional

I(u) =
1

2

∫ (
|∇u|2 + a|u|2

)
−

1

q + 1

∫
λuq+1

+ −
1

2∗

∫
u2∗

+

in the Hilbert space E.
Using standard techniques we can show that I ∈ C1(E,R), and that its

derivative is given by

〈I ′(u), v〉 =

∫
(∇u∇v + auv)− λ

∫
uq+v −

∫
u2∗−1

+ v .

Therefore, the critical points of I are the weak solutions of (∗).
The following auxiliary result concerns the geometry of I.

Lemma 2 If a satisfies (a1) and if 0 < q ≤ 1 then there exists λ∗ > 0 such that
if 0 < λ < λ∗ then

(i) I(u) ≥ r, ‖u‖ = ρ, for some r, ρ > 0

If in addition φ ≥ 0, φ 6≡ 0, and φ ∈ E then

(ii) I(tφ)→ −∞ as t→∞

(iii) I(tφ) < 0, for small t > 0, and 0 < q < 1.

3 Proofs

For the sake of completeness, we present a proof of Lemma 3, which is based on
the proof in [2].

Proof of Lemma 3. At first let R > Ro. Then we have

∫
Bc
R

|u| =

∫
Bc
R

a1/2|u|

a1/2
≤

(∫
Bc
R

1

a

)1/2(∫
Bc
R

a|u|2
)1/2

≤ C‖u‖

which shows that
|u|L1 ≤ C‖u‖, u ∈ E.

Now using the interpolation inequality

|u|s ≤ |u|
α
1 |u|

1−α
r , α+

1− α

r
=

1

s
, 1 ≤ s ≤ r ≤ 2∗, 0 ≤ α ≤ 1

and the embedding E → L2∗ , we infer that E → Ls, 1 ≤ s ≤ 2∗.
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On the other hand, for sufficiently large R > 0 we have∫
Bc
R

1

a
< ε .

So if un ⇀ 0 in E, then for large n∫
Bc
R

|un| ≤ C

∫
Bc
R

1

a
≤ ε .

Using compact Sobolev embeddings we also have

un → 0 in L1(BR)

so that un → 0 in L1. Using again the interpolation inequality stated above,
one concludes the proof of Lemma 3.

Proof of Lemma 4.

Verification of (i). From the continuous embedding in Lemma 3, we have

I(u) ≥ 1
2‖u‖

2 − λcq+1

q+1 ‖u‖
q+1 − S−2∗/2

2∗ ‖u‖
2∗

≥ ‖u‖q+1
(

1
2‖u‖

2−(q+1) − λcq+1

q+1 −
S−2∗/2

2∗ ‖u‖2
∗−(q+1)

)
where S is the best constant for the embedding D1,2 → L2∗ , that is

S = inf

{ ∫
|∇u|2(∫
|u|2∗

)2/2∗ | u ∈ D1,2, u 6≡ 0

}
.

Letting

Q(t) ≡
1

2
t2−(q+1) −

S−2∗/2

2∗
t2
∗−(q+1), t ≥ 0 ,

there is ρ > 0 such that
max
t≥0

Q(t) = Q(ρ) > 0.

Taking ‖u‖ = ρ and λ∗ = q+1
cq+1

Q(ρ) we get (i).

Verification of (ii). Taking φ 6≡ 0, φ ≥ 0, φ ∈ E we have

I(tφ) =
t2

2
‖φ‖2 −

tq+1

q + 1
λ

∫
φq+1 −

t2
∗

2∗

∫
φ2∗

which gives (ii).
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Verification of (iii). It is clear from the expression of I(tφ) above taking into
account that 0 < q < 1.

Proof of Theorem 1. By the proof of lemma 4, I is bounded from below on
Bρ. By the Ekeland Principle [8], there exists uε ∈ Bρ such that

I(uε) ≤ inf
B̄ρ
I + ε

and
I(uε) < I(u) + ε‖u− uε‖, u 6≡ uε.

Now since 0 < q < 1 it follows that

I(tφ) < 0, for small t > 0, φ 6≡ 0, and φ ∈ C∞o .

Again by Lemma 4
inf
∂Bρ

I ≥ r > 0 and inf
Bρ

I < 0.

Choose ε > 0 such that
0 < ε < inf

∂Bρ
I − inf

Bρ

I.

Hence
I(uε) < inf

∂Bρ
I

so that
uε ∈ Bρ.

Hence letting
F (u) ≡ I(u) + ε‖u− uε‖

we notice that uε is a point of minimum of F on Bρ and so

I(uε + δv)− I(uε)

δ
+ ε‖v‖ ≥ 0

which by passing to the limit as δ → 0 gives that

〈I ′(uε), v〉 + ε‖v‖ ≥ 0

and hence ‖I ′(uε)‖ ≤ ε. Therefore, there is a sequence un ∈ Bρ such that

I(un)→ c∗ ≡ inf
Bρ

I < 0 and I ′(un)→ 0.

Since of course un is bounded,

un ⇀ u∗ in E
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and
un → u∗ a.e. in RN .

Now passing to the limit in

o(1) =

∫
(∇un∇φ+ aunφ)− λ

∫
uqn+φ−

∫
u2∗−1
n+ φ, φ ∈ E

we infer that I ′(u∗) = 0 showing that u∗ is a solution of problem (∗).
In order to show that u∗ 6≡ 0, we follow the arguments in [6]. Assume that

u∗ ≡ 0 and that
‖un‖

2 → ` ≥ 0.

Using I ′(un)→ 0 we have

‖un‖
2 −

∫
u2∗

n+ = o(1)

so that
∫
u2∗

n+ → ` and from the expression

c∗ + o(1) = λ

(
1

2
−

1

q + 1

)∫
uq+1
n+ +

1

N

∫
u2∗

n+

we infer that

c∗ =
`

N
which is impossible.

Proof of Theorem 2. By Lemma 4 and the Mountain Pass Theorem, there
exists a sequence un in E such that

I(un)→ c and I ′(un)→ 0

where
c = inf

γ∈Γ
max

0≤t≤1
I(γ(t)), c ≥ r

and
Γ = {γ ∈ C([0, 1],X) | γ(0) = 0, γ(1) = e}

where e ∈ E satisfies I(e) ≤ 0.

Claim. There is e ≡ eλ such that 0 < c < 1
N
S
N
2 , 0 < λ < λ∗.

From the expression

〈I ′(un), un〉 − 2∗I(un) =

(
1−

2∗

2

)
‖un‖

2 + λ

(
2∗

2
− 1

)∫
u2
n+

one shows, by taking λ∗ > 0 smaller than the one found in lemma 4, that un is
bounded. So that, passing to subsequences,

un ⇀ u in E and un → u a.e. in RN

for some u ∈ E.
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Remark. I(un+)→ c and I ′(un+)→ 0.
Indeed, un− is also bounded so that

o(1) = 〈I ′(un), un−〉 =

∫
(|∇un−|

2 + au2
n−) .

Moreover, if φ ∈ E then

〈I ′(un+), φ〉 = 〈un+, φ〉 − λ

∫
un+φ−

∫
u2∗−1
n+ φ

= 〈I ′(un), φ〉 − 〈un−, φ〉

so that, I ′(un+)→ 0. On the other hand,

I(un)−
1

2

∫
(|∇un−|

2 + au2
n−)

=
1

2

∫
(|∇un+|

2 + au2
n+)−

λ

2

∫
u2
n+ −

1

2∗

∫
u2∗

n+

= I(un+) ,

which gives I(un+)→ c. So we may assume that un ≥ 0 and thus u ≥ 0.
Now as in the proof of Theorem 1 one shows that u satisfies the equation in

(∗). Again arguing as in [6] we assume that u ≡ 0. Then

‖un‖
2 → ` for some ` ≥ 0

and using the facts that

I(un)→ c, I ′(un)→ 0

we infer that c ≥ 1
NS

N/2, contradicting 0 < c < 1
NS

N/2 given by the Claim.

Proof of the Claim. (Arguments adapted from [6].)
Consider the cut-off function φ ∈ C∞o such that

φ ≡ 1 on Br0 , φ ≡ 0 on RN\B2r0 .

Now consider the function

wε(x) =
[N(N − 2)ε]

(N−2)/4

(ε+ |x|2)(N−2)/2
, x ∈ RN , ε > 0

which satisfies
−∆wε = w2∗−1

ε in RN .

It is well known (see e.g. Talenti [5], Aubin [11] ) that

‖wε‖
2
1 = |wε|

2∗

2∗ = SN/2.
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Let
ψε = φwε

and let vε ∈ C∞o given by

vε =
ψε(∫

ψε
2∗)1/2∗ .

Now it can be shown (see e.g. [6], [10]) that Xε ≡
∫
|∇vε|2 satisfies

Xε ≤ S +O(ε(N−2)/2).

Moreover there is some tε > 0 such that

max
t≥0

I(tvε) = I(tεvε)

and
d

dt
I(tvε)|t=tε = 0.

which gives
0 < tε < X1/(2∗−2)

ε ≡ t0.

Notice that a = 0 on B2r0 and vε = 0 on RN\B2r0 . Moreover tε ≥ d0 ≡ d0(r0)
for some d0 > 0. Otherwise since Xε is bounded, if tε → 0, then I(tεvε) → 0
contradicting

I(tεvε) = max
t≥0

I(tvε) ≥ r > 0

given by lemma 4 (i). On the other hand

I(tvε) =
t2

2

∫
|∇vε|

2 −
t2
∗

2∗
−
λt2

2

∫
v2
ε

≤

(
t2

2
t2
∗−2

0 −
t2
∗

2∗

)
−
λt2

2

∫
B2r0

v2
ε .

Now recalling that as a function of t,(
t2

2
t2
∗−2

0 −
t2
∗

2∗

)
increases on the interval (0, t0) we get

I(tεvε) ≤ t2
∗

0

(
1

2
−

1

2∗

)
−
λt2ε
2

∫
B2r0

v2
ε

≤
1

N
t2
∗

0 −
λd2

0

2

∫
B2r0

v2
ε

≤
1

N

[
S +O

(
ε(N−2)/2

)]2∗/(2∗−2)

−
λd2

0

2

∫
B2r0

v2
ε

=
1

N

[
S +O

(
ε(N−2)/2

)]N/2
−
λd2

0

2

∫
B2r0

v2
ε .



EJDE–1996/09 C.O. Alves, J.V. Goncalves, & O.H. Miyagaki 9

Using the inequality

(b+ c)α ≤ bα + α(b+ c)α−1c b, c ≥ 0, α ≥ 1

with b = S, c = O
(
ε(N−2)/2

)
and α = N/2 we get

I(tεvε) ≤
1

N
SN/2 +O(ε(N−2)/2)− c0λ

∫
B2r0

v2
ε .

Therefore,

I(tεvε) ≤
1

N
SN/2 + ε(N−2)/2

{
M − c0λε

(2−N)/2

∫
B2r0

v2
ε

}
,

where c0 = d2
0/2 and M is a positive constant.

We shall show that

ε(N−2)/2

{
M − c0λε

(N−2)/2

∫
B2r0

v2
ε

}
< 0, for small ε > 0 .

So that

I(tεvε) <
1

N
SN/2

and hence

0 < c <
1

N
SN/2.

Noticing that

d1 ≤

∫
B2r0

ψ2∗

ε ≤ d2, for some d1, d2 > 0,

(see [6]), it follows by a change of variables that

I(tεvε) ≤
1

N
SN/2 + ε(N−2)/2

{
M − c0λε

(4−N)/2

∫ r0ε
−1/2

0

sN−1ds

(1 + s2)N−2

}
.

We are going to consider separately the cases N = 4 and N ≥ 5.

Case N = 4. We have

I(tεvε) ≤
1

4
S2 + ε

{
M − c0λ

∫ r0ε
−1/2

0

s3ds

(1 + s2)2

}
≤

1

4
S2 + ε

{
M − c0λ ln(r0ε

−1/2)
}
.

Now since
c0λ ln(r0ε

−1/2)→∞ as ε→ 0

we infer that

I(tεvε) <
1

4
S2, for small ε > 0.
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Case N ≥ 5. Noticing that

c0λε
(4−N)/2

∫ r0ε
−1/2

0

sN−1ds

(1 + s2)N−2
→∞ as ε→ 0

we infer that

I(tεvε) <
1

N
SN/2 for small ε > 0 ,

which concludes the proof of this claim.
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