# ON ELLIPTIC EQUATIONS IN $R^{N}$ WITH CRITICAL EXPONENTS * 

C.O. Alves, J.V. Goncalves, \& O.H. Miyagaki


#### Abstract

In this note we use variational arguments -namely Ekeland's Principle and the Mountain Pass Theorem- to study the equation $$
-\Delta u+a(x) u=\lambda u^{q}+u^{2^{*}-1} \text { in } \mathbb{R}^{N} .
$$

The main concern is overcoming compactness difficulties due both to the unboundedness of the domain $\mathbb{R}^{N}$, and the presence of the critical exponent $2^{*}=2 N /(N-2)$.


## 1 Introduction

In this note we use variational methods to explore existence of weak solutions for the problem

$$
\left\{\begin{array}{l}
-\Delta u+a(x) u=\lambda u^{q}+u^{2^{*}-1} \text { in } \mathbb{R}^{N}  \tag{*}\\
\int a(x) u^{2}<\infty, \quad \int|\nabla u|^{2}<\infty \\
u \geq 0, \quad u \neq 0
\end{array}\right.
$$

where $a$ is a nonnegative $L_{\mathrm{loc}}^{\infty}$ function, $\lambda \geq 0,0<q \leq 1$ and $2^{*}$ is the critical exponent, $2^{*}=2 N /(N-2)$, for $N \geq 3$.

This problem has been explored by many authors including Brézis \& Nirenberg [6], Ambrosetti-Brézis \& Cerami [1], Guedda \& Veron [9] (see also their references) for the case of elliptic equations in bounded domains. As far as unbounded domains are concerned we recall the work by Benci \& Cerami [12], Noussair-Swanson \& Jianfu [3], Jianfu \& Xiping [14], Egnell [7], Azorero \& Alonso [4], Miyagaki [10].

[^0]In this work we shall assume the following condition on $a$.
$\left(a_{1}\right)$

$$
a(x)>0, x \in B_{R_{o}}^{c} \text { and } \int_{B_{R_{o}}^{c}} \frac{1}{a}<\infty
$$

Our main results are the following:
Theorem 1 Let $0<q<1$ and assume ( $a_{1}$ ). Then there exists $\lambda^{*}>0$ such that ( $*$ ) has a solution for $0<\lambda<\lambda^{*}, N \geq 3$.

Theorem 2 Let $N \geq 4$ and $q=1$. Assume $\left(a_{1}\right)$ and $a(x)=0, \quad x \in B_{2 r_{0}}$ for some $r_{0} \in\left(0, R_{0} / 2\right)$. Then there is $\lambda^{*}>0$ such that $(*)$ has a solution for $0<\lambda<\lambda^{*}$.

These theorems complement the results in [10] in the sense that here the function $a$ is allowed to vanish on a ball $B_{R_{o}}$. Actually in Theorem 2, we require $a$ to vanish on $B_{2 r_{0}}$. In addition we consider the case $0<q \leq 1$ while in [10], $a>0$ is continuous and $q \in\left(1,2^{*}\right)$.

## 2 Preliminaries

Let

$$
E=\left\{u \in \mathcal{D}^{1,2} \mid \int a u^{2}<\infty\right\}
$$

with inner product and norm given by

$$
\langle u, v\rangle=\int(\nabla u \nabla v+a u v), \quad\|u\|^{2}=\int\left(|\nabla u|^{2}+a u^{2}\right)
$$

Recall that $\mathcal{D}^{1,2}$ is the closure of $\mathcal{C}_{o}^{\infty}$ with respect to the gradient norm $\|u\|_{1}^{2}=$ $\int|\nabla u|^{2}$. Moreover

$$
\mathcal{D}^{1,2}=\left\{u \in L^{2^{*}} \mid \partial_{i} u \in L^{2}\right\}
$$

and the norm

$$
\|u\|^{\prime} \equiv|u|_{L^{2^{*}}}+|\nabla u|_{L^{2}}
$$

is equivalent to the $\mathcal{D}^{1,2}$ norm. In addition $\mathcal{D}^{1,2} \rightarrow L^{2^{*}}$.
The following lemma is a variant of a result by Willem \& Omana [13] and by Costa [2].

Lemma 1 Assume $\left(a_{1}\right)$. Then $E \rightarrow L^{s}$ for $1 \leq s \leq 2^{*}$ and $E \hookrightarrow L^{s}$ for $1 \leq s<2^{*}$.

We shall look for the critical points of the functional

$$
I(u)=\frac{1}{2} \int\left(|\nabla u|^{2}+a|u|^{2}\right)-\frac{1}{q+1} \int \lambda u_{+}^{q+1}-\frac{1}{2^{*}} \int u_{+}^{2^{*}}
$$

in the Hilbert space $E$.
Using standard techniques we can show that $I \in C^{1}(E, \mathbb{R})$, and that its derivative is given by

$$
\left\langle I^{\prime}(u), v\right\rangle=\int(\nabla u \nabla v+a u v)-\lambda \int u_{+}^{q} v-\int u_{+}^{2^{*}-1} v
$$

Therefore, the critical points of $I$ are the weak solutions of $(*)$.
The following auxiliary result concerns the geometry of $I$.
Lemma 2 If a satisfies $\left(a_{1}\right)$ and if $0<q \leq 1$ then there exists $\lambda^{*}>0$ such that if $0<\lambda<\lambda^{*}$ then

$$
\begin{equation*}
I(u) \geq r, \quad\|u\|=\rho, \quad \text { for some } r, \rho>0 \tag{i}
\end{equation*}
$$

If in addition $\phi \geq 0, \phi \not \equiv 0$, and $\phi \in E$ then

$$
\begin{gather*}
I(t \phi) \rightarrow-\infty \text { as } t \rightarrow \infty  \tag{ii}\\
I(t \phi)<0, \text { for small } t>0, \text { and } 0<q<1
\end{gather*}
$$

## 3 Proofs

For the sake of completeness, we present a proof of Lemma 3, which is based on the proof in [2].

Proof of Lemma 3. At first let $R>R_{o}$. Then we have

$$
\int_{B_{R}^{c}}|u|=\int_{B_{R}^{c}} \frac{a^{1 / 2}|u|}{a^{1 / 2}} \leq\left(\int_{B_{R}^{c}} \frac{1}{a}\right)^{1 / 2}\left(\int_{B_{R}^{c}} a|u|^{2}\right)^{1 / 2} \leq C\|u\|
$$

which shows that

$$
|u|_{L^{1}} \leq C\|u\|, \quad u \in E
$$

Now using the interpolation inequality

$$
|u|_{s} \leq|u|_{1}^{\alpha}|u|_{r}^{1-\alpha}, \quad \alpha+\frac{1-\alpha}{r}=\frac{1}{s}, 1 \leq s \leq r \leq 2^{*}, \quad 0 \leq \alpha \leq 1
$$

and the embedding $E \rightarrow L^{2^{*}}$, we infer that $E \rightarrow L^{s}, \quad 1 \leq s \leq 2^{*}$.

On the other hand, for sufficiently large $R>0$ we have

$$
\int_{B_{R}^{c}} \frac{1}{a}<\epsilon
$$

So if $u_{n} \rightharpoonup 0$ in $E$, then for large $n$

$$
\int_{B_{R}^{c}}\left|u_{n}\right| \leq C \int_{B_{R}^{c}} \frac{1}{a} \leq \epsilon
$$

Using compact Sobolev embeddings we also have

$$
u_{n} \rightarrow 0 \text { in } L^{1}\left(B_{R}\right)
$$

so that $u_{n} \rightarrow 0$ in $L^{1}$. Using again the interpolation inequality stated above, one concludes the proof of Lemma 3.

Proof of Lemma 4.

Verification of $(i)$. From the continuous embedding in Lemma 3, we have

$$
\begin{aligned}
I(u) & \geq \frac{1}{2}\|u\|^{2}-\frac{\lambda c_{q+1}}{q+1}\|u\|^{q+1}-\frac{S^{-2^{*} / 2}}{2^{*}}\|u\|^{2^{*}} \\
& \geq\|u\|^{q+1}\left(\frac{1}{2}\|u\|^{2-(q+1)}-\frac{\lambda c_{q+1}}{q+1}-\frac{S^{-2^{*} / 2}}{2^{*}}\|u\|^{2^{*}-(q+1)}\right)
\end{aligned}
$$

where $S$ is the best constant for the embedding $\mathcal{D}^{1,2} \rightarrow L^{2^{*}}$, that is

$$
S=\inf \left\{\left.\frac{\int|\nabla u|^{2}}{\left(\int|u|^{2^{*}}\right)^{2 / 2^{*}}} \right\rvert\, u \in \mathcal{D}^{1,2}, u \not \equiv 0\right\}
$$

Letting

$$
Q(t) \equiv \frac{1}{2} t^{2-(q+1)}-\frac{S^{-2^{*} / 2}}{2^{*}} t^{2^{*}-(q+1)}, \quad t \geq 0
$$

there is $\rho>0$ such that

$$
\max _{t \geq 0} Q(t)=Q(\rho)>0
$$

Taking $\|u\|=\rho$ and $\lambda^{*}=\frac{q+1}{c_{q+1}} Q(\rho)$ we get $(i)$.

Verification of (ii). Taking $\phi \not \equiv 0, \phi \geq 0, \phi \in E$ we have

$$
I(t \phi)=\frac{t^{2}}{2}\|\phi\|^{2}-\frac{t^{q+1}}{q+1} \lambda \int \phi^{q+1}-\frac{t^{2^{*}}}{2^{*}} \int \phi^{2^{*}}
$$

which gives (ii).

Verification of (iii). It is clear from the expression of $I(t \phi)$ above taking into account that $0<q<1$.

Proof of Theorem 1. By the proof of lemma 4, $I$ is bounded from below on $\overline{B_{\rho}}$. By the Ekeland Principle [8], there exists $u_{\epsilon} \in \overline{B_{\rho}}$ such that

$$
I\left(u_{\epsilon}\right) \leq \inf _{\bar{B}_{\rho}} I+\epsilon
$$

and

$$
I\left(u_{\epsilon}\right)<I(u)+\epsilon\left\|u-u_{\epsilon}\right\|, \quad u \not \equiv u_{\epsilon} .
$$

Now since $0<q<1$ it follows that

$$
I(t \phi)<0, \text { for small } t>0, \quad \phi \not \equiv 0, \text { and } \phi \in \mathcal{C}_{o}^{\infty} .
$$

Again by Lemma 4

$$
\inf _{\partial B_{\rho}} I \geq r>0 \quad \text { and } \quad \frac{\inf }{\overline{B_{\rho}}} I<0
$$

Choose $\epsilon>0$ such that

$$
0<\epsilon<\inf _{\partial B_{\rho}} I-\inf _{\overline{B_{\rho}}} I
$$

Hence

$$
I\left(u_{\epsilon}\right)<\inf _{\partial B_{\rho}} I
$$

so that

$$
u_{\epsilon} \in B_{\rho} .
$$

Hence letting

$$
F(u) \equiv I(u)+\epsilon\left\|u-u_{\epsilon}\right\|
$$

we notice that $u_{\epsilon}$ is a point of minimum of $F$ on $\overline{B_{\rho}}$ and so

$$
\frac{I\left(u_{\epsilon}+\delta v\right)-I\left(u_{\epsilon}\right)}{\delta}+\epsilon\|v\| \geq 0
$$

which by passing to the limit as $\delta \rightarrow 0$ gives that

$$
\left\langle I^{\prime}\left(u_{\epsilon}\right), v\right\rangle+\epsilon\|v\| \geq 0
$$

and hence $\left\|I^{\prime}\left(u_{\epsilon}\right)\right\| \leq \epsilon$. Therefore, there is a sequence $u_{n} \in \overline{B_{\rho}}$ such that

$$
I\left(u_{n}\right) \rightarrow c^{*} \equiv \inf _{\overline{B_{\rho}}} I<0 \text { and } I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Since of course $u_{n}$ is bounded,

$$
u_{n} \rightharpoonup u^{*} \text { in } E
$$

and

$$
u_{n} \rightarrow u^{*} \text { a.e. in } \mathbb{R}^{N}
$$

Now passing to the limit in

$$
o(1)=\int\left(\nabla u_{n} \nabla \phi+a u_{n} \phi\right)-\lambda \int u_{n+}^{q} \phi-\int u_{n+}^{2^{*}-1} \phi, \quad \phi \in E
$$

we infer that $I^{\prime}\left(u^{*}\right)=0$ showing that $u^{*}$ is a solution of problem $(*)$.
In order to show that $u^{*} \not \equiv 0$, we follow the arguments in [6]. Assume that $u^{*} \equiv 0$ and that

$$
\left\|u_{n}\right\|^{2} \rightarrow \ell \geq 0
$$

Using $I^{\prime}\left(u_{n}\right) \rightarrow 0$ we have

$$
\left\|u_{n}\right\|^{2}-\int u_{n+}^{2^{*}}=o(1)
$$

so that $\int u_{n+}^{2^{*}} \rightarrow \ell$ and from the expression

$$
c^{*}+o(1)=\lambda\left(\frac{1}{2}-\frac{1}{q+1}\right) \int u_{n+}^{q+1}+\frac{1}{N} \int u_{n+}^{2^{*}}
$$

we infer that

$$
c^{*}=\frac{\ell}{N}
$$

which is impossible.
Proof of Theorem 2. By Lemma 4 and the Mountain Pass Theorem, there exists a sequence $u_{n}$ in $E$ such that

$$
I\left(u_{n}\right) \rightarrow c \text { and } I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

where

$$
c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I(\gamma(t)), \quad c \geq r
$$

and

$$
\Gamma=\{\gamma \in C([0,1], X) \mid \gamma(0)=0, \gamma(1)=e\}
$$

where $e \in E$ satisfies $I(e) \leq 0$.

Claim. There is $e \equiv e_{\lambda}$ such that $0<c<\frac{1}{N} S^{\frac{N}{2}}, 0<\lambda<\lambda^{*}$.
From the expression

$$
\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle-2^{*} I\left(u_{n}\right)=\left(1-\frac{2^{*}}{2}\right)\left\|u_{n}\right\|^{2}+\lambda\left(\frac{2^{*}}{2}-1\right) \int u_{n+}^{2}
$$

one shows, by taking $\lambda^{*}>0$ smaller than the one found in lemma 4 , that $u_{n}$ is bounded. So that, passing to subsequences,

$$
u_{n} \rightharpoonup u \text { in } E \text { and } u_{n} \rightarrow u \text { a.e. in } \mathbb{R}^{N}
$$

for some $u \in E$.

Remark. $\quad I\left(u_{n+}\right) \rightarrow c$ and $I^{\prime}\left(u_{n+}\right) \rightarrow 0$.
Indeed, $u_{n-}$ is also bounded so that

$$
o(1)=\left\langle I^{\prime}\left(u_{n}\right), u_{n-}\right\rangle=\int\left(\left|\nabla u_{n-}\right|^{2}+a u_{n-}^{2}\right)
$$

Moreover, if $\phi \in E$ then

$$
\begin{aligned}
\left\langle I^{\prime}\left(u_{n+}\right), \phi\right\rangle & =\left\langle u_{n+}, \phi\right\rangle-\lambda \int u_{n+} \phi-\int u_{n+}^{2^{*}-1} \phi \\
& =\left\langle I^{\prime}\left(u_{n}\right), \phi\right\rangle-\left\langle u_{n-}, \phi\right\rangle
\end{aligned}
$$

so that, $I^{\prime}\left(u_{n+}\right) \rightarrow 0$. On the other hand,

$$
\begin{aligned}
& I\left(u_{n}\right)-\frac{1}{2} \int\left(\left|\nabla u_{n-}\right|^{2}+a u_{n-}^{2}\right) \\
& \quad=\frac{1}{2} \int\left(\left|\nabla u_{n+}\right|^{2}+a u_{n+}^{2}\right)-\frac{\lambda}{2} \int u_{n+}^{2}-\frac{1}{2^{*}} \int u_{n+}^{2^{*}} \\
& \quad=I\left(u_{n+}\right),
\end{aligned}
$$

which gives $I\left(u_{n+}\right) \rightarrow c$. So we may assume that $u_{n} \geq 0$ and thus $u \geq 0$.
Now as in the proof of Theorem 1 one shows that $u$ satisfies the equation in $(*)$. Again arguing as in [6] we assume that $u \equiv 0$. Then

$$
\left\|u_{n}\right\|^{2} \rightarrow \ell \text { for some } \ell \geq 0
$$

and using the facts that

$$
I\left(u_{n}\right) \rightarrow c, \quad I^{\prime}\left(u_{n}\right) \rightarrow 0
$$

we infer that $c \geq \frac{1}{N} S^{N / 2}$, contradicting $0<c<\frac{1}{N} S^{N / 2}$ given by the Claim.
Proof of the Claim. (Arguments adapted from [6].)
Consider the cut-off function $\phi \in \mathcal{C}_{o}^{\infty}$ such that

$$
\phi \equiv 1 \quad \text { on } \quad B_{r_{0}}, \quad \phi \equiv 0 \quad \text { on } \mathbb{R}^{N} \backslash B_{2 r_{0}} .
$$

Now consider the function

$$
w_{\epsilon}(x)=\frac{[N(N-2) \epsilon]^{(N-2) / 4}}{\left(\epsilon+|x|^{2}\right)^{(N-2) / 2}}, \quad x \in \mathbb{R}^{N}, \epsilon>0
$$

which satisfies

$$
-\Delta w_{\epsilon}=w_{\epsilon}^{2^{*}-1} \text { in } \mathbb{R}^{N}
$$

It is well known (see e.g. Talenti [5], Aubin [11] ) that

$$
\left\|w_{\epsilon}\right\|_{1}^{2}=\left|w_{\epsilon}\right|_{2^{*}}^{2^{*}}=S^{N / 2}
$$

Let

$$
\psi_{\epsilon}=\phi w_{\epsilon}
$$

and let $v_{\epsilon} \in \mathcal{C}_{o}^{\infty}$ given by

$$
v_{\epsilon}=\frac{\psi_{\epsilon}}{\left(\int \psi_{\epsilon}^{2 *}\right)^{1 / 2^{*}}}
$$

Now it can be shown (see e.g. [6], [10]) that $X_{\epsilon} \equiv \int\left|\nabla v_{\epsilon}\right|^{2}$ satisfies

$$
X_{\epsilon} \leq S+O\left(\epsilon^{(N-2) / 2}\right)
$$

Moreover there is some $t_{\epsilon}>0$ such that

$$
\max _{t \geq 0} I\left(t v_{\epsilon}\right)=I\left(t_{\epsilon} v_{\epsilon}\right)
$$

and

$$
\left.\frac{d}{d t} I\left(t v_{\epsilon}\right)\right|_{t=t_{\epsilon}}=0
$$

which gives

$$
0<t_{\epsilon}<X_{\epsilon}^{1 /\left(2^{*}-2\right)} \equiv t_{0}
$$

Notice that $a=0$ on $B_{2 r_{0}}$ and $v_{\epsilon}=0$ on $\mathbb{R}^{N} \backslash B_{2 r_{0}}$. Moreover $t_{\epsilon} \geq d_{0} \equiv d_{0}\left(r_{0}\right)$ for some $d_{0}>0$. Otherwise since $X_{\epsilon}$ is bounded, if $t_{\epsilon} \rightarrow 0$, then $I\left(t_{\epsilon} v_{\epsilon}\right) \rightarrow 0$ contradicting

$$
I\left(t_{\epsilon} v_{\epsilon}\right)=\max _{t \geq 0} I\left(t v_{\epsilon}\right) \geq r>0
$$

given by lemma 4 (i). On the other hand

$$
\begin{aligned}
I\left(t v_{\epsilon}\right) & =\frac{t^{2}}{2} \int\left|\nabla v_{\epsilon}\right|^{2}-\frac{t^{2^{*}}}{2^{*}}-\frac{\lambda t^{2}}{2} \int v_{\epsilon}^{2} \\
& \leq\left(\frac{t^{2}}{2} t_{0}^{2^{*}-2}-\frac{t^{2^{*}}}{2^{*}}\right)-\frac{\lambda t^{2}}{2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2}
\end{aligned}
$$

Now recalling that as a function of $t$,

$$
\left(\frac{t^{2}}{2} t_{0}^{2^{*}-2}-\frac{t^{2^{*}}}{2^{*}}\right)
$$

increases on the interval $\left(0, t_{0}\right)$ we get

$$
\begin{aligned}
I\left(t_{\epsilon} v_{\epsilon}\right) & \leq t_{0}^{2^{*}}\left(\frac{1}{2}-\frac{1}{2^{*}}\right)-\frac{\lambda t_{\epsilon}^{2}}{2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2} \\
& \leq \frac{1}{N} t_{0}^{2^{*}}-\frac{\lambda d_{0}^{2}}{2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2} \\
& \leq \frac{1}{N}\left[S+O\left(\epsilon^{(N-2) / 2}\right)\right]^{2^{*} /\left(2^{*}-2\right)}-\frac{\lambda d_{0}^{2}}{2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2} \\
& =\frac{1}{N}\left[S+O\left(\epsilon^{(N-2) / 2}\right)\right]^{N / 2}-\frac{\lambda d_{0}^{2}}{2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2}
\end{aligned}
$$

Using the inequality

$$
(b+c)^{\alpha} \leq b^{\alpha}+\alpha(b+c)^{\alpha-1} c \quad b, c \geq 0, \alpha \geq 1
$$

with $b=S, c=O\left(\epsilon^{(N-2) / 2}\right)$ and $\alpha=N / 2$ we get

$$
I\left(t_{\epsilon} v_{\epsilon}\right) \leq \frac{1}{N} S^{N / 2}+O\left(\epsilon^{(N-2) / 2}\right)-c_{0} \lambda \int_{B_{2 r_{0}}} v_{\epsilon}^{2}
$$

Therefore,

$$
I\left(t_{\epsilon} v_{\epsilon}\right) \leq \frac{1}{N} S^{N / 2}+\epsilon^{(N-2) / 2}\left\{M-c_{0} \lambda \epsilon^{(2-N) / 2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2}\right\}
$$

where $c_{0}=d_{0}^{2} / 2$ and $M$ is a positive constant.
We shall show that

$$
\epsilon^{(N-2) / 2}\left\{M-c_{0} \lambda \epsilon^{(N-2) / 2} \int_{B_{2 r_{0}}} v_{\epsilon}^{2}\right\}<0, \quad \text { for small } \epsilon>0
$$

So that

$$
I\left(t_{\epsilon} v_{\epsilon}\right)<\frac{1}{N} S^{N / 2}
$$

and hence

$$
0<c<\frac{1}{N} S^{N / 2}
$$

Noticing that

$$
d_{1} \leq \int_{B_{2 r_{0}}} \psi_{\epsilon}^{2^{*}} \leq d_{2}, \text { for some } d_{1}, d_{2}>0
$$

(see [6]), it follows by a change of variables that

$$
I\left(t_{\epsilon} v_{\epsilon}\right) \leq \frac{1}{N} S^{N / 2}+\epsilon^{(N-2) / 2}\left\{M-c_{0} \lambda \epsilon^{(4-N) / 2} \int_{0}^{r_{0} \epsilon^{-1 / 2}} \frac{s^{N-1} d s}{\left(1+s^{2}\right)^{N-2}}\right\}
$$

We are going to consider separately the cases $N=4$ and $N \geq 5$.

Case $N=4$. We have

$$
\begin{aligned}
I\left(t_{\epsilon} v_{\epsilon}\right) & \leq \frac{1}{4} S^{2}+\epsilon\left\{M-c_{0} \lambda \int_{0}^{r_{0} \epsilon^{-1 / 2}} \frac{s^{3} d s}{\left(1+s^{2}\right)^{2}}\right\} \\
& \leq \frac{1}{4} S^{2}+\epsilon\left\{M-c_{0} \lambda \ln \left(r_{0} \epsilon^{-1 / 2}\right)\right\}
\end{aligned}
$$

Now since

$$
c_{0} \lambda \ln \left(r_{0} \epsilon^{-1 / 2}\right) \rightarrow \infty \text { as } \epsilon \rightarrow 0
$$

we infer that

$$
I\left(t_{\epsilon} v_{\epsilon}\right)<\frac{1}{4} S^{2}, \text { for small } \epsilon>0
$$

Case $N \geq 5$. Noticing that

$$
c_{0} \lambda \epsilon^{(4-N) / 2} \int_{0}^{r_{0} \epsilon^{-1 / 2}} \frac{s^{N-1} d s}{\left(1+s^{2}\right)^{N-2}} \rightarrow \infty \text { as } \epsilon \rightarrow 0
$$

we infer that

$$
I\left(t_{\epsilon} v_{\epsilon}\right)<\frac{1}{N} S^{N / 2} \text { for small } \epsilon>0
$$

which concludes the proof of this claim.

## References

[1] A. Ambrosetti, H. Brézis \& G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, Preprint.
[2] D. Costa, On a nonlinear elliptic problem in $\mathbb{R}^{N}$, Preprint.
[3] E. S. Noussair, C. A. Swanson \& Y. Jianfu, Positive finite energy solutions of critical semilinear elliptic problems, Canadian J. Math. 44(1992) 10141029.
[4] J. G. Azorero \& I. P. Alonzo, Multiplicity of solutions for elliptic problems with critical exponents with a nonsymmetric term, Trans. Amer. Math. Society 323(1991) 877-895.
[5] G. Talenti, Best constant in Sobolev inequality, Ann. Math. 110 (1976) 353-372.
[6] H. Brézis \& L.Nirenberg, Some Variational problems with lack of compactness. Proc. Symp. Pure Math. (AMS) 45(1986) 165-201.
[7] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104(1988) 57-77.
[8] I. Ekeland, On the variational principle. J. Math. Anal. App. 47(1974) 324-353.
[9] M. Guedda \& L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Non. Anal. 12(1989) 879-902.
[10] O. Miyagaki, On a class of semilinear elliptic problems in $\mathbb{R}^{n}$ with critical growth, CMS Technical Report, Univ. Wisconsin (1994).
[11] T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Diff. Geometry 11(1976) 573-598.
[12] V. Benci \& G. Cerami, Existence of positive solutions of the equation $-\Delta u+$ $a(x) u=u^{(n+2) /(n-2)}$ in $\mathbb{R}^{n}$, J. Funct. Anal. 88(1990) 90-117.
[13] W. Omana \& M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Diff. Int. Equations 5(1992) 1115-1120.
[14] Y. Jianfu \& Z. Xiping, On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains, Acta Math. Sci. 7(1987) 341-359.
C.O. Alves

Dep. Mat. Univ. Fed. Paraiba
58109-970 - Campina Grande(PB), Brasil
E-mail coalves@dme.ufpb.br
J.V. Goncalves

Dep. Mat. Univ. Brasília
70.910-900 Brasilia(DF), Brasil

E-mail jv@mat.unb.br
O.H. Miyagaki

Dep. Mat. Univ. Fed. Viçosa
36570-000 Viçosa(MG), Brasil
E-mail olimpio@mail.ufv.br


[^0]:    * 1991 Mathematics Subject Classifications: 35J20, 35K20.

    Key words and phrases: Elliptic equations, unbounded domains, critical exponents, variational methods.
    © 1996 Southwest Texas State University and University of North Texas.
    Submitted: August 7, 1996. Published October 22, 1996.
    Partially supported by CNPq/Brasil.

