
Electronic Journal of Differential Equations, Vol. 1996(1996), No. 11, pp. 1–9.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp (login: ftp) 147.26.103.110 or 129.120.3.113

On the Regularity of Elliptic Differential

Equations Using Symmetry Techniques and

Suitable Discrete Spaces ∗

Christoph Pflaum

Abstract

We present an elementary and short proof for regularity of second or-
der elliptic differential equations with homogeneous Dirichlet boundary
conditions. The proof uses a discrete function space with piecewise mul-
tilinear functions and symmetry techniques on the unit cube.

1 Introduction

In this paper, we prove the regularity of second order elliptic differential equa-
tions with homogeneous Dirichlet boundary conditions on domains whose bound-
ary is locally a smooth deformation of the boundary of the unit cube. In the
two dimensional case, this implies the regularity of Poisson’s equation on every
domain with a piecewise smooth boundary and with no reentrant corner.

The usual approach to prove regularity is to first prove the regularity on
domains with a smooth boundary and then to study each corner (see [2]). Es-
pecially in more than two dimensions, this approach leads to very long proofs.
Here, we will present an elementary and short proof for the regularity of el-
liptic equations for a certain class of domains with corners. However, we can
not analyze every corner in more than two dimension, but we can show the
W 2

2 -regularity of the solution near a lot of corners which appear in application.
The proof of regularity in this paper consists of two ideas. First, we assume

that the domain Ω is the d-dimensional unit cube Ωd :=]0, 1[d. Then, we can
extend every function in a symmetric way to a function on a band or a torus.
Then, with the help of finite difference operators, it is no problem to prove the
regularity of the solution. This is an old technique. But this approach can be
used only for a certain class of elliptic equations (see section 2). The crucial
restriction is that the values of some coefficients have to be zero at the boundary
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2 Regularity of Elliptic Differential Equations EJDE–1996/11

of the domain. The main idea is now not to analyze the regularity of the
continuous problem directly, but to analyze the discrete regularity of a suitable
discrete problem. Now, the above restrictions to the coefficients at the boundary
do not appear (see section 3). In section 4, we show that the discrete regularity
of the discrete problem implies the regularity of the continuous problem. The
last step is to generalize the regularity on the unit cube to the regularity on a
certain class of domains with corners.

Now, let us describe an elliptic equation on the bounded domain Ω ⊂ Rd.
Assume that

B =

 b11 · · · b1d
...

...
bd1 · · · bdd


is a matrix contained in (W 1

∞(Ω))d×d, and that B is a uniformly elliptic matrix.
Then, the bilinear form

a : W 1
2 (Ω)×W 1

2 (Ω) → R, (1)

(u, v) 7→

∫
Ω

(∇u)TB∇v dλ

is W 1
2 (Ω)-elliptic. Furthermore, assume that f ∈ L2(Ω) and let us write

f(v) :=

∫
Ω

fv dλ.

Then, there is a unique solution u ∈W 1
2 (Ω) of the weak equation

a(u, v) = f(v) for every v ∈W 1
2 (Ω). (2)

Our aim is to prove u ∈W 2
2 (Ω) under suitable assumptions on Ω.

2 Regularity Using Symmetry

Using symmetry, very simple regularity proofs can be obtained for a restricted
class of equations. Therefore we first assume Ω = Ωd =]0, 1[d.

The idea of using symmetry is to extend functions defined on the unit cube
to functions on a band. This band is

Bd = S1×]0, 1[d−1

where S1 is the interval ] − 1, 1[ identified at the points {−1, 1}. Formally, we
also can define S1 by

S1 = R/(2Z).
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Figure 1: Extension Operator .̃
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Figure 2: Extension Operator .̂

Therefore S1 is a circle. Obviously, there is a natural embedding

Ωd ↪→ Bd.

This shows that we can restrict every function defined on Bd to a function on
Ωd. But usually, we will omit the restriction operator.

Now, we define two extension operators:

˜: L2(Ωd) → L2(Bd) and

ˆ: L2(Ωd) → L2(Bd).

The operator ˜ is the anti-symmetric operator extension in the direction of
the first coordinate. This means that

ṽ(x1, x2, · · · , xd) = −v(−x1, x2, · · · , xd)

for (x1, x2, · · · , xd) ∈ Ωd (see Figure 1).
The operator ˆ is the symmetric extension operator in the direction of the
first coordinate. This means that

v̂(x1, x2, · · · , xd) = v(−x1, x2, · · · , xd)

for (x1, x2, · · · , xd) ∈ Ωd (see Figure 2).
Furthermore, denote W̃ 1

2 (Bd) the Sobolev space of the symmetric functions

W̃ 1
2 (Bd) :=

{
ũ
∣∣∣ u ∈W 1

2 (Ωd)
}
.

Observe that W̃ 1
2 (Bd) is a subspace of W 1

2 (Bd). The extended bilinear form ã
is defined by

ã : W̃ 1
2 (Bd)× W̃ 1

2 (Bd) → R

(w̃, ṽ) 7→
1

2

∫
Bd

(∇u)T B̄∇v dλ



4 Regularity of Elliptic Differential Equations EJDE–1996/11

where

B̄ :=


b̂11 b̃12 · · · b̃1d
b̃21 b̂22 · · · b̂2d
...

...
. . .

...

b̃d1 b̂d2 · · · b̂dd

 .

Observe that the elements of the matrix B̄ are the symmetric extended elements
of the matrix B with the exception of the elements b̃1i and b̃i1 for i 6= 1. For
example, this implies that

b̂kk ∈W
1
∞(Bd) for 1 ≤ k ≤ d.

But the elements b̃1i and b̃i1 do not have such a property in general. A simple
calculation shows

ã(ũ, ṽ) = a(u, v) for every u, v ∈W 1
2 (Ωd).

At last we need some difference operators. Let 0 < h < 1. Then define

δ1
h(w)(x1) :=

w(x1 + h
2 )− w(x1 −

h
2 )

h
and δ2

h := δ1
h ◦ δ

1
h.

So, these operators act in the direction of the first coordinate.
With these preliminaries, we obtain the following regularity result:

Theorem 1 (Regularity in Case of Diagonal Matrices B) Assume that B
is a diagonal matrix. Then, the solution u of the equation (2) on the unit cube
Ωd satisfies the inequality

‖u‖W2
2 (Ωd) ≤ C‖f‖L2(Ωd) (3)

where C is a constant independent of u.

Proof: By a symmetry argument we obtain (see Figure 1)

δ2
h(ṽ) ∈ W̃ 1

2 (Bd) (4)

for every ṽ ∈ W̃ 1
2 (Bd). We have to prove that

ã(δ1
h(ũ), δ1

h(ṽ)) = −ã(ũ, δ2
h(ṽ)) + S(ũ, δ1

h(ṽ)) (5)

where S is a bilinear form with the property∣∣S(ũ, δ1
h(ṽ)

∣∣ ≤ C‖ũ‖W1
2 (Bd)‖δ

1
h(ṽ)‖W1

2 (Bd).

Equation (5) can be treated as a substitute for integration by parts. For the
proof of equation (5) we need the following simple formula∫

S1

δ1
h(w)bvdx = −

∫
S1

wbδ1
h(v)dx−

∫
S1

Mh

(
w, δ1

h
2
(b)
)
vdx (6)
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for every w, v ∈ L2(S1) and b ∈ L∞(S1), where Mh is the Operator

Mh(w, v)(x) := 1
2

(
w
(
x+ h

2

)
v
(
x+ h

4

)
+ w

(
x− h

2

)
v
(
x− h

4

))
.

Now, we obtain (5) by the fact that the non-diagonal elements of B̄ are zero
and that the diagonal elements are contained in W 1

∞(Bd).
Equations (2), (4), and (5) imply

‖δ1
h(ũ)‖2W1

2 (Ωd) ≤ C1‖δ
1
h(ũ)‖2W1

2 (Bd)

≤ C2ã(δ1
h(ũ), δ1

h(ũ))

= −C2ã(ũ, δ2
h(ũ)) + C2S(ũ, δ1

h(ũ))

= −C2a(u, δ2
h(ũ)) + C2S(ũ, δ1

h(ũ))

= −C2f(δ2
h(ũ)) + C2S(ũ, δ1

h(ũ))

≤ C3

(
‖f‖L2(Ωd) + ‖ũ‖W1

2 (Bd)

)
‖δ1
h(ũ)‖W1

2 (Bd)

≤ C4‖f‖L2(Ωd)‖δ
1
h(ũ)‖W1

2 (Ωd)

where C1, C2, C3, C4 are suitable constants. Thus, we obtain

‖δ1
h(ũ)‖W1

2 (Ωd) ≤ C4‖f‖L2(Ωd).

The limit h→ 0 shows (see Satz 9.5 in [4])∥∥∥∥ ∂

∂x1
(ũ)

∥∥∥∥
W1

2 (Ωd)

≤ C5‖f‖L2(Ωd).

A symmetry argument completes the proof.
q.e.d.

3 Discrete Regularity on Discrete Spaces

The proof of Theorem 1 can not be extended to general matrices B, because
the extended matrix elements b̃1i and b̃i1 are not very smooth at the boundary
of Ωd. A different situation appears, if we study the discrete regularity in a
suitable discrete space. Then, the idea of the proof of Theorem 1 can be used
for general matrices B. This we will show now.

For h = 1
N and N ∈ N let Vh be the finite element space with the following

properties:

• every function in Vh has homogeneous Dirichlet boundary conditions,

• every function in Vh is a piecewise multilinear function on the uniform
tensor product grid of mesh size h.
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Let uh ∈ Vh be the solution of the weak equation

a(uh, vh) = f(vh) for every vh ∈ Vh. (7)

Theorem 2 (Discrete Regularity) The solution uh of the equation (7) sat-
isfies the inequality

‖δ1
h(ũh)‖W1

2 (Ωd) ≤ C‖f‖L2(Ωd)

where C is a constant independent of uh.

Proof: The proof of Theorem 1 shows, that we only have to prove

ã(δ1
h(ũ), δ1

h(ṽ)) = −ã(ũ, δ2
h(ṽ)) + S(ũ, δ1

h(ṽ))

where S is a bilinear form with the property∣∣S(ũ, δ1
h(ṽ)

∣∣ ≤ C‖ũ‖W1
2 (Bd)‖δ

1
h(ṽ)‖W1

2 (Bd).

Furthermore observe that we only have to study the following terms of ã(δ1
h(ũ), δ1

h(ṽ))
: ∫

Bd
b̃1i
∂δ1
h(ũ)

∂x1

∂δ1
h(ṽ)

∂xi
dλ and

∫
Bd
b̃i1
∂δ1
h(ũ)

∂xi

∂δ1
h(ṽ)

∂x1
dλ.

for i 6= 1. The other terms can be treated like in the proof of Theorem 1. By
integration by parts we obtain∫
Bd
b̃1i
∂δ1
h(ũ)

∂x1

∂δ1
h(ṽ)

∂xi
dλ =

=

∫
Bd
b̃1i
∂δ1
h(ũ)

∂xi

∂δ1
h(ṽ)

∂x1
dλ−

∫
Bd

∂b̃1i

∂x1
δ1
h(ũ)

∂δ1
h(ṽ)

∂xi
dλ+

∫
Bd

∂b̃1i

∂xi
δ1
h(ũ)

∂δ1
h(ṽ)

∂x1
dλ.

The last two terms of this sum are of low order. This shows that we only have
to prove for a function b ∈W 1

∞(Ωd)∫
Bd
b̃
∂δ1
h(ũ)

∂xi

∂δ1
h(ṽ)

∂x1
dλ = −

∫
Bd
b̃
∂ũ

∂xi

∂δ2
h(ṽ)

∂x1
dλ+ S′(ũ, δ1

h(ṽ))

where S′ is a bilinear form with the property∣∣S′(ũ, δ1
h(ṽ)

∣∣ ≤ C‖ũ‖W1
2 (Bd)‖δ

1
h(ṽ)‖W1

2 (Bd).

By the formula (6), we obtain∫
Bd
b̃
∂δ1
h(ũ)

∂xi

∂δ1
h(ṽ)

∂x1
dλ =

= −

∫
Bd
b̃
∂ũ

∂xi

∂δ2
h(ṽ)

∂x1
dλ−

∫
Bd
Mh

(
∂ũ

∂xi
, δ1

h
2
(b̃)

)
∂δ1
h(ṽ)

∂x1
dλ =

= −

∫
Bd
b̃
∂ũ

∂xi

∂δ2
h(ṽ)

∂x1
dλ− 2

∫
Ωd
Mh

(
∂ũ

∂xi
, δ1

h
2
(b̃)

)
∂δ1
h(ṽ)

∂x1
dλ.
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Figure 3: Functions ṽ, δ1
h(ṽ), and ∂

∂x1
δ1
h(ṽ) in x-direction and restricted on the

interval [0, 1].

Thus, it is enough to prove∣∣∣∣∫
Ωd
Mh

(
∂ũ

∂xi
, δ1

h
2
(b̃)

)
∂δ1
h(ṽ)

∂x1
dλ

∣∣∣∣ ≤ C‖ũ‖W1
2 (Ωd)‖δ

1
h(ṽ)‖W1

2 (Ωd).

Now, look to Figure 3. The function
∂δ1h(ṽ)
∂x1

is zero on the domain

Φh :=]0, h2 [×]0, 1[d−1
⋃

]1− h
2 , 1[×]0, 1[d−1.

Therefore, we get∣∣∣∣∫
Ωd
Mh

(
∂ũ

∂xi
, δ1

h
2
(b̃)

)
∂δ1
h(ṽ)

∂x1
dλ

∣∣∣∣ =

=

∣∣∣∣∣
∫

Ωd\Φh

Mh

(
∂ũ

∂xi
, δ1

h
2
(b̃)

)
∂δ1
h(ṽ)

∂x1
dλ

∣∣∣∣∣ ≤
≤

∥∥∥δ1
h
2
(b̃)
∥∥∥
L∞
(

Ωd\Φh
2

) ‖ũ‖W1
2 (Ωd)‖δ

1
h(ṽ)‖W1

2 (Ωd) ≤

≤ ‖b‖W1
∞(Ωd) ‖ũ‖W1

2 (Ωd)‖δ
1
h(ṽ)‖W1

2 (Ωd).

This completes the proof.
q.e.d.

4 General Regularity

Theorem 3 (Regularity in Case of General Matrices B) The solution u
of the equation (2) on the unit cube Ωd satisfies the inequality

‖u‖W2
2 (Ωd) ≤ C‖f‖L2(Ωd)

where C is a constant independent of u.
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Proof: Theorem 2 and the limit h→ 0 imply that∥∥∥∥ ∂2uh

∂xk∂xl

∥∥∥∥
L2(Ωd)

≤ C‖f‖L2(Ωd)

for k 6= l. Furthermore V h is dense in W 1
2 (Ωd). Thus, we get

lim
h→0
‖u− uh‖W1

2 (Ωd) = 0.

Therefore, we obtain∣∣∣∣∫
Ωd
u

∂2ϕ

∂xk∂xl
dλ

∣∣∣∣ =

∣∣∣∣ limh→0

∫
Ωd
uh

∂2ϕ

∂xk∂xl
dλ

∣∣∣∣ =

=

∣∣∣∣ limh→0

∫
Ωd

∂2uh

∂xk∂xl
ϕ dλ

∣∣∣∣ ≤ C‖f‖L2(Ωd)‖ϕ‖L2(Ωd)

for every ϕ ∈ C∞(Ωd). This shows that∥∥∥∥ ∂2u

∂xk∂xl

∥∥∥∥
L2(Ωd)

≤ C‖f‖L2(Ωd). (8)

Now, we write B = Bdiag +Brest, where Bdiag is the diagonal matrix of B. Let
us define

F (v) := f(v)−

∫
Ωd

(∇u)TBrest∇v dλ and adiag(u, v) :=

∫
Ωd

(∇u)TBdiag∇v dλ.

By (2) and (8), we obtain

adiag(u, v) = F (v) for every v ∈W 1
2 (Ωd) and

|F (v)| ≤ C‖v‖L2(Ωd).

Theorem 1 implies that

‖u‖W2
2 (Ωd) ≤ C‖f‖L2(Ωd).

q.e.d.

Theorem 3 shows the regularity of elliptic equations on the unit cube Ωd.
Now, we generalize this result to more general domains. Let us assume that Ω
is a domain with the following properties:

• Ω ⊂ Rd is open and Ω̄ is compact,

• for every x ∈ Ω exists an open neighborhood Ux of x in Ω, a point x′ ∈ Ωd,
an open neighborhood U ′x′ of x′ in Ωd, and a C2-diffeomorphism

Φx : Ūx 7→ Ū ′x′

such that
Φx (∂Ux ∩ ∂Ω) = ∂Ū ′x′ ∩ ∂Ωd.
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Now, we obtain the following Corollary:

Corollary 1 (Regularity in Case of General Domains Ω) Let us assume
that the domain Ω satisfies the above assumptions. Let u be the solution of
equation (2). Then, there is a constant C independent of u such that

‖u‖W2
2 (Ω) ≤ C‖f‖L2(Ω).

The proof of this Corollary is analogous to the proof of Satz 9.1.4 in [3] or
Theorem 8.12. in [1].
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