ON NEUMANN BOUNDARY VALUE PROBLEMS FOR SOME QUASILINEAR ELLIPTIC EQUATIONS

Paul A. Binding
Pavel Drábek
Yin Xi Huang

Abstract. We study the role played by the indefinite weight function $a(x)$ on the existence of positive solutions to the problem

$$
\left\{\begin{aligned}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) & =\lambda a(x)|u|^{p-2} u+b(x)|u|^{\gamma-2} u, \quad x \in \Omega, \\
\frac{\partial u}{\partial n} & =0, \quad x \in \partial \Omega
\end{aligned}\right.
$$

where Ω is a smooth bounded domain in \mathbb{R}^{n}, b changes sign, $1<p<N, 1<$ $\gamma<N p /(N-p)$ and $\gamma \neq p$. We prove that (i) if $\int_{\Omega} a(x) d x \neq 0$ and b satisfies another integral condition, then there exists some λ^{*} such that $\lambda^{*} \int_{\Omega} a(x) d x<0$ and, for λ strictly between 0 and λ^{*}, the problem has a positive solution and (ii) if $\int_{\Omega} a(x) d x=0$, then the problem has a positive solution for small λ provided that $\int_{\Omega} b(x) d x<0$.

1. Introduction and results.

In this paper we study the existence of positive solutions of the Neumann boundary value problem

$$
\left\{\begin{align*}
-\Delta_{p} u+g(x, u) & =0, & & x \in \Omega, \tag{1.1}\\
\frac{\partial u}{\partial n} & =0, & & x \in \partial \Omega,
\end{align*}\right.
$$

on a bounded domain $\Omega \subset \mathbb{R}^{N}$ with smooth boundary $\partial \Omega$, where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian with $p>1$, and $g(x, u)$ is a Caratheodory function.

A host of literature exists for this type of problem when $p=2$; see, e.g., [AV], [GO1], [GO2], [G], [TA] and the references therein. Recently Li and Zhen [LZ] studied (1.1) with $p \geq 2$ and obtained some interesting results. In this paper

[^0]we consider a special type of function $g(x, u)$ which was excluded in [LZ]. More precisely we investigate problems of the type
\[

\left\{$$
\begin{align*}
-\Delta_{p} u & =\lambda a(x)|u|^{p-2} u+b(x)|u|^{\gamma-2} u, \quad x \in \Omega \tag{1.2}\\
\frac{\partial u}{\partial n} & =0, \quad x \in \partial \Omega
\end{align*}
$$\right.
\]

where $a(x), b(x) \in L^{\infty}(\Omega)$, and $a(x)$ and $b(x)$ both may change sign. Also $1<p$ and $1<\gamma<p^{*}$, where $p^{*}=\infty$ if $p \geq N$ and $p^{*}=N p /(N-p)$ if $p<N$. Here we say a function $f(x)$ changes sign if the measures of the sets $\{x \in \Omega: f(x)>0\}$ and $\{x \in \Omega: f(x)<0\}$ are both positive.

We study the influence of the indefinite weight function $a(x)$ on the existence of positive solutions of $(1.2)_{\lambda}$. If $c_{1} \geq a(x) \geq c_{2}>0$, then $\|u\|_{\lambda a}:=\left(\int_{\Omega}\left(|\nabla u|^{p}-\right.\right.$ $\left.\left.\lambda a|u|^{p}\right)\right)^{1 / p}$ defines an equivalent norm on $W^{1, p}(\Omega)$ for $\lambda<0$. Then a standard variational method can be used to prove the existence of positive solutions to (1.2) λ_{λ} (see the proof of Theorem 1 (ii) below). The case $-c_{1} \leq a(x) \leq-c_{2}<0$ can be dealt with in the same way. The situation where $a(x)$ changes sign is more complicated because the related functional

$$
I(u)=\frac{1}{p} \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)-\frac{1}{\gamma} \int b|u|^{\gamma}
$$

may not be coercive. Our method relies on the eigencurve theory developed in [BH1, BH2]. It turns out that the sign of the integral $\int_{\Omega} a$ plays an important role for the range of λ for which (1.2) ${ }_{\lambda}$ has a positive solution.

To be more specific, we introduce some notations and recall some results. Consider the eigencurve problem

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda a(x)|u|^{p-2} u+\mu|u|^{p-2} u, \quad x \in \Omega, \tag{1.3}\\
\frac{\partial u}{\partial n} & =0, \quad x \in \partial \Omega
\end{align*}\right.
$$

where we treat the eigenvalue μ associated with a positive eigenfunction as a function of λ. By taking

$$
\mu(\lambda):=\inf _{u \in W^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}-\lambda \int_{\Omega} a|u|^{p}}{\int_{\Omega}|u|^{p}}
$$

we can establish the following (see, e.g., $[\mathrm{BH} 1, \mathrm{BH} 2, \mathrm{H}]$)
Proposition 1. Assume that $a \in L^{\infty}(\Omega)$. Then $\mu(\lambda)$ is continuous and concave and $\mu(0)=0$. If $a(x)>0$, then $\mu(\lambda)$ is decreasing, and if $a(x)<0$, then $\mu(\lambda)$ is increasing. Assume, now, that a changes sign in Ω. (i) If $\int_{\Omega} a<0$, there exists a unique $\lambda_{1}^{+}>0$ such that $\mu\left(\lambda_{1}^{+}\right)=0$ and $\mu(\lambda)>0$ for $\lambda \in\left(0, \lambda_{1}^{+}\right)$. (ii) If $\int_{\Omega} a=0$, then $\mu(0)=0$ and $\mu(\lambda)<0$ if $\lambda \neq 0$. (iii) If $\int_{\Omega} a>0$, then there exists a unique $\lambda_{1}^{-}<0$ such that $\mu\left(\lambda_{1}^{-}\right)=0$ and $\mu(\lambda)>0$ for $\lambda \in\left(\lambda_{1}^{-}, 0\right)$.
REMARK 1.1. It follows from this proposition that when a changes sign and $\int_{\Omega} a<$ 0 , the eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta_{p} u & =\lambda a(x)|u|^{p-2} u, \quad x \in \Omega, \\
\frac{\partial u}{\partial n} & =0, \quad x \in \partial \Omega
\end{aligned}\right.
$$

has a positive eigenvalue λ_{1}^{+}associated with a positive eigenfunction.
For a given weight function $a(x)$, we define

$$
\lambda_{1}(a)= \begin{cases}+\infty, & \text { if } a(x)<0 \\ \lambda_{1}^{+}, & \text {if } a \text { changes sign and } \int_{\Omega} a<0 \\ 0, & \text { if } \int_{\Omega} a=0 \\ \lambda_{1}^{-}, & \text {if } a \text { changes sign and } \int_{\Omega} a>0 \\ -\infty, & \text { if } a(x)>0\end{cases}
$$

where λ_{1}^{+}and λ_{1}^{-}are given in Proposition 1. Let $\|\cdot\|$ denote the usual norm in $W^{1, p}(\Omega)$. When $\lambda_{1}(a)$ is a finite number, we choose a fixed eigenfunction $\varphi_{1}>0$ associated with $\lambda_{1}(a)$ and satisfying $\left\|\varphi_{1}\right\|=1$. Note that if $\lambda_{1}(a)=0$, then we can take $\varphi_{1} \equiv 1$.

With these constructions, we have
Proposition 2. Assume that a changes sign and $\int_{\Omega} a \neq 0$. Then for any λ strictly between 0 and $\lambda_{1}(a)$, the relation $\|u\|_{\lambda a}:=\left(\int_{\Omega}\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)\right)^{1 / p}$ defines an equivalent norm on $W^{1, p}(\Omega)$.
Proof. Suppose the contrary. Then there exist $u_{n} \in W^{1, p}(\Omega)$ such that $\left\|u_{n}\right\|=1$ and $\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p}-\lambda a\left|u_{n}\right|^{p}\right) \rightarrow 0$. The variational characterization of $\mu(\lambda)$ then gives $\left\|u_{n}\right\|_{\lambda a}^{p} \geq \mu(\lambda) \int_{\Omega}\left|u_{n}\right|^{p}$. Since λ is between 0 and $\lambda_{1}(a)$, it follows that $\mu(\lambda)>0$ so $u_{n} \rightarrow 0$ in $L^{p}(\Omega)$. This implies $\int_{\Omega} a\left|u_{n}\right|^{p} \rightarrow 0$ and hence $\int_{\Omega}\left|\nabla u_{n}\right|^{p} \rightarrow 0$. This contradicts the fact that $\left\|u_{n}\right\|=1$. This proves the proposition.

Now we can state our main results. From now on we assume $1<\gamma<p^{*}, \gamma \neq p$ and that a and b both change sign. We first consider the situation $\int_{\Omega} a \neq 0$.
Theorem 1. Let $\int_{\Omega} a \neq 0$ and $\int b \varphi_{1}^{\gamma}<0$. Then there exists a $\lambda^{*} \neq 0$ with $\left(\lambda_{1}(a)-\lambda^{*}\right) \cdot \int_{\Omega} a>0$, such that for λ strictly between 0 and $\lambda^{*},(1.2)_{\lambda}$ has a positive solution.

The next result deals with the case where $\int a=0$.
Theorem 2. Assume $\int_{\Omega} a=0$ and $\int b<0$. Then for small enough $\lambda \neq 0,(1.2)_{\lambda}$ has a positive solution.

When $\lambda=0$, we have
Corollary 1. Assume $\int_{\Omega} b<0$. Then the problem

$$
\left\{\begin{aligned}
-\Delta_{p} u & =b(x)|u|^{\gamma-2} u, \quad x \in \Omega, \\
\frac{\partial u}{\partial n} & =0, \quad x \in \partial \Omega
\end{aligned}\right.
$$

has a positive solution.
Throughout this paper we use c to denote various positive constants, and the integrals are always taken on Ω unless otherwise specified. We will use variational methods in a similar way to those in [DH]. The proof of Theorem 1 will be divided into three situations: (i) $\lambda=\lambda_{1}(a)$, (ii) $0<|\lambda|<\left|\lambda_{1}(a)\right|$ and (iii) $|\lambda|>\left|\lambda_{1}(a)\right|$. The details are presented in Sections 2 and 3. We then study the case $\int a=0$ in Section 4. We conclude with some remarks in Section 5.
2. The case $|\lambda| \leq\left|\lambda_{1}(a)\right|$.

We introduce the functional I on the space $W^{1, p}(\Omega)$ by

$$
\begin{equation*}
I(u)=\frac{1}{p} \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)-\frac{1}{\gamma} \int b|u|^{\gamma} \tag{2.1}
\end{equation*}
$$

and we set

$$
\begin{aligned}
\Lambda & =\left\{u \in W^{1, p}(\Omega):\left(I^{\prime}(u), u\right)=0\right\} \\
& =\left\{u \in W^{1, p}(\Omega): \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)=\int b|u|^{\gamma}\right\} .
\end{aligned}
$$

We can see that φ_{1} does not belong to Λ since $\int b \varphi_{1}^{\gamma}<0$. Note also that Λ is closed and for $u \in \Lambda$,

$$
\begin{equation*}
I(u)=\left(\frac{1}{p}-\frac{1}{\gamma}\right) \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)=\left(\frac{1}{p}-\frac{1}{\gamma}\right) \int b|u|^{\gamma} \tag{2.2}
\end{equation*}
$$

The following lemma is needed.
Lemma 2.1. Under the conditions of Theorem 1 or Theorem 2, any minimizer or maximizer z of the functional I on Λ with $I(z) \neq 0$ gives a solution of $(1.2)_{\lambda}$.
Proof. If z is a nonzero maximizer or a minimizer of I on Λ, then there exists $\mu \in \mathbb{R}$ such that

$$
\begin{aligned}
& \int|\nabla z|^{p-2} \nabla z \nabla \varphi-\int \lambda a|z|^{p-2} z \varphi-\int b|z|^{\gamma-2} z \varphi \\
& =\mu\left(p \int|\nabla z|^{p-2} \nabla z \nabla \varphi-p \int \lambda a|z|^{p-2} z \varphi-\gamma \int b|z|^{\gamma-2} z \varphi\right)
\end{aligned}
$$

for any $\varphi \in W^{1, p}(\Omega)$. We claim that $\mu=0$, which proves the lemma. If $\mu \neq 0$, then taking $\varphi=z$ and using the fact that $z \in \Lambda$ we get

$$
(\gamma-p) \int\left(|\nabla z|^{p}-a|z|^{p}\right)=(\gamma-p) \int b|z|^{\gamma}=0
$$

Since $I(z) \neq 0$, we obtain a contradiction.
Proof of Theorem 1. (i) Here $\lambda=\lambda_{1}(a)$, and we start with the case $1<\gamma<p$. We show that I satisfies the Palais-Smale condition on Λ, so we assume that $\left\{u_{n}\right\} \subset$ $\Lambda,\left|I\left(u_{n}\right)\right| \leq c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$, and we show that $\left\{u_{n}\right\}$ contains a convergent subsequence.

We first prove that such $\left\{u_{n}\right\}$ is bounded. Suppose this is not true. Let $v_{n}=$ $u_{n} /\left\|u_{n}\right\|$. Without loss of generality we may assume that $v_{n} \rightarrow v_{0}$ weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(\Omega)$ and $L^{\gamma}(\Omega)$. We claim that $v_{0} \neq 0$. Indeed, dividing $\left|I\left(u_{n}\right)\right| \leq c$ by $\left\|u_{n}\right\|^{p}$ yields

$$
\int\left(\left|\nabla v_{n}\right|^{p}-\lambda a\left|v_{n}\right|^{p}\right) \rightarrow 0
$$

If $v_{0}=0$, similarly to the proof of Proposition 2 , we have $v_{n} \rightarrow 0$ in $L^{p}(\Omega)$ and $\int\left|\nabla v_{n}\right|^{p} \rightarrow 0$. Since $\left\|v_{n}\right\|=1$ and $\int\left|\nabla v_{n}\right|^{p} \rightarrow 0$, we must have $v_{0} \neq 0$. This is
a contradiction. The claim is proved. Thus by the variational characterization of $\lambda=\lambda_{1}(a)$ and the weak convergence of v_{n} to $v_{0} \neq 0$, we have

$$
0=\mu(\lambda) \leq \int\left(\left|\nabla v_{0}\right|^{p}-\lambda a\left|v_{0}\right|^{p}\right) \leq \lim _{n \rightarrow \infty} \int\left(\left|\nabla v_{n}\right|^{p}-\lambda a\left|v_{n}\right|^{p}\right)=0 .
$$

We conclude that

$$
\begin{equation*}
v_{0}=k \varphi_{1} \quad \text { for some nonzero constant } k \tag{2.3}
\end{equation*}
$$

On the other hand, dividing

$$
\begin{equation*}
\int\left(\left|\nabla u_{n}\right|^{p}-\lambda a\left|u_{n}\right|^{p}\right)=\int b\left|u_{n}\right|^{\gamma} \tag{2.4}
\end{equation*}
$$

by $\left\|u_{n}\right\|^{\gamma}$ we obtain

$$
0 \leq\left\|u_{n}\right\|^{p-\gamma} \int\left(\left|\nabla v_{n}\right|^{p}-\lambda a\left|v_{n}\right|^{p}\right)=\int b\left|v_{n}\right|^{\gamma} .
$$

The fact that $v_{n} \rightarrow k \varphi_{1}$ strongly in $L^{\gamma}(\Omega)$ together with $\int b \varphi_{1}^{\gamma}<0$ then implies that the right hand side of the above equality is negative for large n. This contradiction shows that $\left\{u_{n}\right\}$ is bounded.

We now can assume that $u_{n} \rightarrow u_{0}$ weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(\Omega)$ and $L^{\gamma}(\Omega)$. Using $I^{\prime}\left(u_{n}\right) \rightarrow 0$ we obtain

$$
\begin{aligned}
\left(I^{\prime}\left(u_{n}\right)-I^{\prime}\left(u_{0}\right), u_{n}-u_{0}\right) & =\int\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right) \nabla\left(u_{n}-u_{0}\right) \\
& -\int \lambda a\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{n}-u_{0}\right) \\
& -\int b\left(\left|u_{n}\right|^{\gamma-2} u_{n}-\left|u_{0}\right|^{\gamma-2} u_{0}\right)\left(u_{n}-u_{0}\right) \rightarrow 0 .
\end{aligned}
$$

Due to the continuity of the Nemytskij operators $u \mapsto|u|^{p-2} u$ and $u \mapsto|u|^{\gamma-2} u$ from $L^{p}(\Omega)$ into $L^{p /(p-1)}(\Omega)$ and $L^{p}(\Omega)$ into $L^{\gamma /(\gamma-1)}(\Omega)$, respectively, the last two integrals approach zero. Hence, for $p^{\prime}=p /(p-1)$, we have (cf. [DH])

$$
\begin{aligned}
& \left\{\left(\int\left|\nabla u_{n}\right|^{p}\right)^{1 / p^{\prime}}-\left(\int\left|\nabla u_{0}\right|^{p}\right)^{1 / p^{\prime}}\right\} \cdot\left\{\left(\int\left|\nabla u_{n}\right|^{p}\right)^{1 / p}-\left(\int\left|\nabla u_{0}\right|^{p}\right)^{1 / p}\right\} \\
& \leq \int\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right) \nabla\left(u_{n}-u_{0}\right) \rightarrow 0
\end{aligned}
$$

i.e., $\int\left|\nabla u_{n}\right|^{p}$ converges to $\int\left|\nabla u_{0}\right|^{p}$. This together with the weak convergence of u_{n} to u_{0} in $W^{1, p}(\Omega)$ implies that $u_{n} \rightarrow u_{0}$ strongly in $W^{1, p}(\Omega)$. Hence I satisfies the Palais-Smale condition on Λ.

We see that, for $1<\gamma<p, I(u)<0$ for $u \in \Lambda \backslash\{0\}$. We claim that I is bounded from below on Λ. If, on the contrary, there exists $u_{n} \in \Lambda$ such that $I\left(u_{n}\right) \rightarrow-\infty$, then clearly $\left\|u_{n}\right\| \rightarrow \infty$. Let $v_{n}=u_{n} /\left\|u_{n}\right\|$. Dividing (2.4) by $\left\|u_{n}\right\|^{p}$ we obtain

$$
\begin{equation*}
\int\left(\left|\nabla v_{n}\right|^{p}-\lambda a\left|v_{n}\right|^{p}\right)=\int b\left|v_{n}\right|^{\gamma} \cdot\left\|u_{n}\right\|^{\gamma-p} . \tag{2.5}
\end{equation*}
$$

It then follows from $\gamma<p$ and $\left\|v_{n}\right\|=1$ that $\int\left(\left|\nabla v_{n}\right|^{p}-a\left|v_{n}\right|^{p}\right) \rightarrow 0$. As in the above proof of (2.3) we conclude that v_{n} converges weakly (and, without loss of generality, strongly in $\left.L^{\gamma}(\Omega)\right)$ to $k \varphi_{1}$ for some constant k. This implies that the right hand side of (2.5) is negative for large n since $\int b \varphi_{1}^{\gamma}<0$, contradicting the variational characterization of $\lambda_{1}(a)$. Since any minimizer u of I on Λ now must satisfy $I(u)<0$, we find a solution of (1.2) λ_{λ} by Lemma 2.1. Observe that $|u|$ is also a minimizer of I on Λ. Then the Harnack inequality (cf. e.g. [TR]) implies that $u>0$. Thus we obtain a positive solution.

For the case $\gamma>p$, let $\Lambda_{0}:=\Lambda \backslash\{0\}$. We note that in this case $I(u)>0$ for $u \in \Lambda_{0}$. We first show that 0 is an isolated point of Λ. Suppose, for some $u_{n} \in \Lambda_{0}$, $u_{n} \rightarrow 0$. Let $v_{n}=u_{n} /\left\|u_{n}\right\|$. ¿From (2.5) and Sobolev's embedding theorem we obtain as for (2.3) that v_{n} converges in $L^{\gamma}(\Omega)$ to $k \varphi_{1}$ for some nonzero constant k. It then follows that the right hand side of (2.5) is negative when n is large, a contradiction. Now, since Λ is closed and 0 is isolated, Λ_{0} is a closed set. Thus any minimizer of I on Λ_{0} gives us a nontrivial solution. Its positivity is obtained exactly as for the case $1<\gamma<p$.
(ii) Observe that, for the case $0<|\lambda|<\left|\lambda_{1}(a)\right|$, λ is between 0 and $\lambda_{1}(a)$, so it follows from Proposition 2 that, for $u \in W^{1, p}(\Omega)$,

$$
\int|u|^{p} \leq c \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right) .
$$

Thus (2.2) shows that I is bounded from above on Λ if $\gamma<p$ and is bounded from below if $\gamma>p$. To prove that I satisfies the Palais-Smale condition, we note that if $\left|I\left(u_{n}\right)\right|<c$ then $\left\|u_{n}\right\|$ is bounded. Indeed, if $\left\|u_{n}\right\| \rightarrow \infty$, we divide $I\left(u_{n}\right)$ by $\left\|u_{n}\right\|^{p}$ and obtain $\int\left(\left|\nabla v_{n}\right|^{p}-\lambda a\left|v_{n}\right|^{p}\right) \rightarrow 0$, where $v_{n}=u_{n} /\left\|u_{n}\right\|$ and $\left\|v_{n}\right\|=1$. But this is impossible since λ strictly between 0 and $\lambda_{1}(a)$ gives $\mu(\lambda)>0$. The rest of the proof can be carried out in a similar manner to that of (i).
3. The case $|\lambda|>\left|\lambda_{1}(a)\right|$.

We divide Λ into three subsets as follows:

$$
\Lambda_{\lambda}^{+}\left(\text {resp. } \Lambda_{\lambda}^{-}, \Lambda_{\lambda}^{0}\right)=\left\{u \in \Lambda: \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)>(\text { resp. }<,=) \frac{\gamma-1}{p-1} \int b|u|^{\gamma}\right\} .
$$

We seek critical points of I on one of these sets. Observe that

$$
\begin{equation*}
\Lambda_{\lambda}^{+}\left(\operatorname{resp} . \Lambda_{\lambda}^{-}, \Lambda_{\lambda}^{0}\right)=\left\{u \in \Lambda:(\gamma-p) \int b|u|^{\gamma}<(\text { resp. }>,=) 0\right\} . \tag{3.1}
\end{equation*}
$$

First we have
Lemma 3.1. Let $\gamma>p, \int a \neq 0$ and $\int b \varphi_{1}^{\gamma}<0$. Then there exists $\left|\lambda^{*}\right|>\left|\lambda_{1}(a)\right|$, such that for any λ strictly between $\lambda_{1}(a)$ and $\lambda^{*}, \Lambda_{\lambda}^{-}$is closed in $W^{1, p}(\Omega)$ and open in Λ_{λ}.

Proof. The proof is similar to that of [DH, Lemma 3.3].
Assuming this is not true, there exist $\lambda_{n} \rightarrow \lambda_{1}(a)$ and $u_{n} \in \Lambda_{\lambda_{n}}^{-}$such that $\int b\left|u_{n}\right|^{\gamma} \rightarrow 0$. Observe that, since $u_{n} \in \Lambda_{\lambda_{n}}^{-}$, we also have

$$
0<\int b\left|u_{n}\right|^{\gamma}=\int\left(\left|\nabla u_{n}\right|^{p}-\lambda_{n} a\left|u_{n}\right|^{p}\right) \rightarrow 0 .
$$

Let $v_{n}=u_{n} /\left\|u_{n}\right\|$. Then we have

$$
0<\int\left(\left|\nabla v_{n}\right|^{p}-\lambda_{n} a\left|v_{n}\right|^{p}\right)=\int b\left|v_{n}\right|^{\gamma} \cdot\left\|u_{n}\right\|^{\gamma-p}=\int b\left|u_{n}\right|^{\gamma} \cdot\left\|u_{n}\right\|^{-p}
$$

which approaches zero regardless of whether $\left\|u_{n}\right\| \rightarrow \infty$ or not. We conclude, similarly to the proof of Theorem 1 (i), that $v_{n} \rightarrow k \varphi_{1}$ weakly in $W^{1, p}(\Omega)$ for some constant $k \neq 0$. In particular,

$$
\int b\left|v_{n}\right|^{\gamma-2} v_{n} \varphi \rightarrow 0
$$

for all $\varphi \in W^{1, p}(\Omega)$. Taking $\varphi=k \varphi_{1}$ in the above we obtain $\int b\left|k \varphi_{1}\right|^{\gamma}=0$, a contradiction. Thus Λ_{λ}^{-}is closed.
Proof of Theorem 1. (iii) Assume first that $\gamma>p$. We observe that $0 \notin \Lambda_{\lambda}^{-}$, and for $u \in \Lambda_{\lambda}^{-}$,

$$
I(u)=\frac{\gamma-p}{p \gamma} \int b|u|^{\gamma}=\frac{\gamma-p}{p \gamma} \int\left(|\nabla u|^{p}-\lambda a|u|^{p}\right)>0 .
$$

Thus we look for a minimizer of I on the set Λ_{λ}^{-}when $\gamma>p$. We assume $\int a<0$, i.e. $\lambda^{*}>\lambda_{1}(a)$. The other case can be treated similarly.

Next we verify that I satisfies the (P-S) condition on Λ_{λ}^{-}when λ is close enough to $\lambda_{1}(a)$. Let $\left\{u_{n}\right\}$ satisfy the hypotheses of the Palais-Smale condition, i.e., $\left\{u_{n}\right\} \subset$ $\Lambda_{\lambda}^{-},\left|I\left(u_{n}\right)\right| \leq c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$.

We first show that there exist $\sigma>0$ and $\lambda^{*}>\lambda_{1}(a)$ such that for $\lambda \in\left(\lambda_{1}(a), \lambda^{*}\right)$ and all $u \in \Lambda_{\lambda}^{-}$

$$
\begin{equation*}
\int|\nabla u|^{p}-\lambda \int a|u|^{p} \geq \sigma\|u\|^{p} \tag{3.2}
\end{equation*}
$$

Otherwise there are $\lambda_{n}>0$ and $u_{n} \in \Lambda_{\lambda_{n}}^{-}$such that

$$
\begin{equation*}
\int\left|\nabla v_{n}\right|^{p}-\lambda_{n} \int a\left|v_{n}\right|^{p} \rightarrow 0, \quad \text { and } \quad \lambda_{n} \rightarrow \lambda_{1}(a), \tag{3.3}
\end{equation*}
$$

where $v_{n}=u_{n} /\left\|u_{n}\right\|$. Without loss of generality we can assume that $v_{n} \rightarrow v_{0}$ weakly in $W^{1, p}(\Omega)$ and strongly in $L^{p}(\Omega)$, for some $v_{0} \in W^{1, p}(\Omega)$. Thus $\int a\left|v_{n}\right|^{p} \rightarrow \int a\left|v_{0}\right|^{p}$ so (3.3) and the variational characterization of $\lambda_{1}(a)$ yield

$$
\begin{equation*}
0 \leq \int\left(\left|\nabla v_{0}\right|^{p}-\lambda_{1}(a) a\left|v_{0}\right|^{p}\right) \leq \liminf _{n \rightarrow \infty} \int\left(\left|\nabla v_{n}\right|^{p}-\lambda_{n} a\left|v_{n}\right|^{p}\right)=0 . \tag{3.4}
\end{equation*}
$$

It follows from (3.4) that either $v_{0}=0$ or $\lambda_{0}=\lambda_{1}(a)$ and $v_{0}=\varphi_{1}$. The former case would imply that $v_{n} \rightarrow 0$ in $L^{p}(\Omega)$, a contradiction. In the latter case, $\left\|v_{n}\right\|=$ $\left\|\varphi_{1}\right\|=1$, so weak convergence of v_{n} to φ_{1} implies that $v_{n} \rightarrow \varphi_{1}$ strongly in $W^{1, p}(\Omega)$, and hence strongly in $L^{\gamma}(\Omega)$. Since $u_{n} \in \Lambda_{\lambda_{n}}^{-}$, we get

$$
0<\int\left(\left|\nabla u_{n}\right|^{p}-\lambda_{n} a\left|u_{n}\right|^{p}\right)<\frac{\gamma-1}{p-1} \int b\left|u_{n}\right|^{\gamma},
$$

and consequently

$$
0<\int b\left|v_{n}\right|^{\gamma} \rightarrow \int b \varphi_{1}^{\gamma}<0
$$

a contradiction.
Thus by (3.2) we have proved that $\left\{u_{n}\right\}$ is bounded. Now we can follow the proof of Theorem 1 (i, ii) to show that such $\left\{u_{n}\right\}$ contains a convergent subsequence. Thus we conclude that the Palais-Smale condition is satisfied.

The standard procedure then implies that the functional I has a minimizer, say z, on Λ_{λ}^{-}. Since $0 \notin \Lambda_{\lambda}^{-}, z \neq 0$. The fact that z is a positive solution of $(1.2)_{\lambda}$ then follows from Lemma 2.1 and the Harnack inequality as in the proof of Theorem 1 (i), so Theorem 1 (iii) is proved for the case $\gamma>p$.

For the case $\gamma<p$, we observe that the same procedure shows that Λ_{λ}^{+}is a closed set. It is apparent that for $u \in \Lambda_{\lambda}^{+}, I(u)<0$. Then we can find a nonzero maximizer z of I on Λ_{λ}^{+}as above and it follows that this z is a positive solution of (1.2) ${ }_{\lambda}$. This concludes the proof of Theorem 1 (iii).

4. Proof of Theorem 2.

In this section we assume $\int a=0$. Recall that

$$
\Lambda_{\lambda}^{+}\left(\text {resp. } \Lambda_{\lambda}^{-}, \Lambda_{\lambda}^{0}\right)=\left\{u \in \Lambda:(\gamma-p) \int b|u|^{\gamma}<(\text { resp. }>,=) 0\right\} .
$$

Lemma 4.1. If $\int b<0$, then for sufficiently small λ, (i) Λ_{λ}^{+}is closed in $W^{1, p}(\Omega)$ and open in Λ_{λ} when $\gamma>p$, and (ii) Λ_{λ}^{-}is closed in $W^{1, p}(\Omega)$ and open in Λ_{λ} when $\gamma<p$.
Proof. (i) Suppose the contrary. Then there exist $\lambda_{n} \rightarrow 0, u_{n} \in \Lambda_{\lambda_{n}}^{+}$, such that

$$
\begin{equation*}
0>\int\left(\left|\nabla u_{n}\right|^{p}-\lambda_{n} a\left|u_{n}\right|^{p}\right)=\int b\left|u_{n}\right|^{\gamma} \rightarrow 0 . \tag{4.1}
\end{equation*}
$$

Let $v_{n}=u_{n} /\left\|u_{n}\right\|$ and assume that $v_{n} \rightarrow v_{0}$ weakly in $W^{1, p}(\Omega)$ and strongly $L^{p}(\Omega)$ and $L^{\gamma}(\Omega)$ for some $v_{0} \in W^{1, p}(\Omega)$. Dividing (4.1) by $\left\|u_{n}\right\|^{p}$ we obtain

$$
\begin{equation*}
0 \leq \int\left|\nabla v_{0}\right|^{p} \leq \liminf _{n \rightarrow \infty} \int\left(\left|\nabla v_{n}\right|^{p}-\lambda_{n} a\left|v_{n}\right|^{p}\right)=\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|^{\gamma-p} \int b\left|v_{n}\right|^{\gamma} \tag{4.2}
\end{equation*}
$$

We claim that $\lim \inf \left\|u_{n}\right\|^{\gamma-p} \int b\left|v_{n}\right|^{\gamma}=0$. Otherwise we obtain from (4.1) and (4.2) that

$$
\begin{equation*}
0 \leq \int b\left|v_{n}\right|^{\gamma}<0 \tag{4.3}
\end{equation*}
$$

for certain n, which is a contradiction. Now, since the right hand side of (4.2) is zero, v_{0} must be a constant. If $v_{0} \neq 0$, then $\int b<0$ gives $\int b\left|v_{n}\right|^{\gamma} \rightarrow \int b\left|v_{0}\right|^{\gamma}<0$, so again we obtain the contradiction (4.3). If $v_{0}=0$, we have $\int\left|v_{n}\right|^{p} \rightarrow 0$ and $\int\left|\nabla v_{n}\right|^{p} \rightarrow 0$ (for a subsequence) from (4.2), contradicting $\left\|v_{n}\right\|=1$. So, for λ sufficiently small, Λ_{λ}^{+}is closed.
(ii) The case $\gamma<p$ is similar. The proof is complete.

Lemma 4.2. For sufficiently small λ, I satisfies the ($P-S$) condition on Λ_{λ}^{+}if $\gamma>p$ and on Λ_{λ}^{-}if $\gamma<p$.
Proof. We consider the case $\gamma>p$ only. The other case can be dealt with in a similar way. Assume that the contention is false. Then there exist $\lambda_{n} \rightarrow 0$ with an unbounded Palais-Smale sequence in each $\Lambda_{\lambda_{n}}^{+}$. Moreover (2.2) shows that we can scale the sequences so that $\|I(u)\|$ is bounded independently of n for each sequence. Thus, by a standard diagonal argument, we can find a sequence $u_{n} \in \Lambda_{\lambda_{n}}^{+}$such that $I\left(u_{n}\right)$ is bounded, $I^{\prime}\left(u_{n}\right) \rightarrow 0$ and $\left\|u_{n}\right\| \rightarrow \infty$. Let $v_{n}=u_{n} /\left\|u_{n}\right\|$. Since $I\left(u_{n}\right)$ is bounded, it follows that $\int b\left|u_{n}\right|^{\gamma}$ is bounded and $\int b\left|v_{n}\right|^{\gamma} \rightarrow 0$. Thus (4.1) holds with u_{n} replaced by v_{n}, and we obtain a contradiction as in the proof of Lemma 4.1. We then conclude that the Palais-Smale sequences are bounded for sufficiently small λ. The rest of the proof is similar to that of Theorem 1 (i, ii). This concludes the proof.

Now we can find a nonzero maximizer of I on Λ_{λ}^{+}if $\gamma>p$ and a nonzero minimizer of I on Λ_{λ}^{-}if $\gamma<p$, which gives a positive solution of (1.2) ${ }_{\lambda}$. Theorem 2 is proved.

Proof of Corollary 1. Note that in this case we have, for $u \in \Lambda$,

$$
I(u)=\left(\frac{1}{p}-\frac{1}{\gamma}\right) \int|\nabla u|^{p}=\left(\frac{1}{p}-\frac{1}{\gamma}\right) \int b|u|^{\gamma} .
$$

We show that the functional satisfies the Palais-Smale condition on Λ. We first claim that any Palais-Smale sequence is bounded. Indeed, suppose for some $u_{n} \in \Lambda$, $\left|I\left(u_{n}\right)\right| \leq c, I^{\prime}\left(u_{n}\right) \rightarrow 0$, and $\left\|u_{n}\right\| \rightarrow \infty$. Then dividing $I\left(u_{n}\right)$ by $\left\|u_{n}\right\|^{p}$ we obtain $\int\left|\nabla v_{n}\right|^{p} \rightarrow 0$, where $v_{n}=u_{n} /\left\|u_{n}\right\|$. Let $\bar{v}_{n}=\int v_{n} /|\Omega|$. We have,

$$
\int\left|v_{n}-\bar{v}_{n}\right|^{p} \leq c \int\left|\nabla v_{n}\right|^{p}
$$

We then conclude that v_{n} converges strongly to some constant $v_{0} \neq 0$ in $L^{p}(\Omega)$. Since Ω is bounded and has smooth boundary, it satisfies a uniform interior cone condition. The embedding theorem given in [GT, p. 158] then implies that $v_{n} \rightarrow v_{0}$ in $L^{\gamma}(\Omega)$ strongly. Now dividing $\int\left|\nabla u_{n}\right|^{p}=\int b\left|u_{n}\right|^{\gamma}$ by $\left\|u_{n}\right\|^{\gamma}$ we obtain

$$
0 \leq\left\|u_{n}\right\|^{p-\gamma} \int\left|\nabla v_{n}\right|^{p}=\int b\left|v_{n}\right|^{\gamma} .
$$

It then follows from the strong convergence of $v_{n} \rightarrow v_{0}$ in $L^{\gamma}(\Omega)$ that $\int b \geq 0$, which contradicts the assumption that $\int b<0$. We thus conclude that u_{n} must be bounded.

Now we can assume that u_{n} has a subsequence converging strongly to some u_{0} in $L^{p}(\Omega)$ and $L^{\gamma}(\Omega)$ and weakly in $W^{1, p}(\Omega)$. The conclusion that u_{n} converges strongly to u_{0} in $W^{1, p}(\Omega)$ then follows from similar arguments to those in the proof of Lemma 2.1. This shows that the functional I satisfies the Palais-Smale condition. The rest of the proof can be carried out as for that of Theorem 1 (iii).

5. Final Remarks.

(i) When $N=1$, the existence of solutions for problem (1.1) with various boundary conditions can be found in [HM], where the Fučik spectrum was studied and employed.
(ii) Existence of positive solutions for Neumann problems when $p=2$ has been studied in [BPT]. Part of our results in Theorem 1 (the case $\int_{\Omega} a(x) d x<0$) is similar to those in [BPT]. Here we only deal with a power type "nonlinearity," but we allow a higher growth rate on the variable u. See [TA] for related results. A special form of Theorem 1 (for $p=2$ with $\lambda=\lambda_{1}(a)$) has been given in [BCN]. We note that the proofs of our results originate with eigencurve theory and are different from those of $[\mathrm{BPT}]$ and $[\mathrm{BCN}]$. Even for the case $p=2$, our result for the case $\int_{\Omega} a(x) d x=0$ is new.
(iii) An important sign condition on the nonlinear term $g(x, u)$, viz., a condition of the type either $g(x, u) \cdot u \geq 0$ for $|u|>c$ or $g(x, u) \cdot u \leq 0$ for $|u|>c$, has been employed extensively in the literature (see [G] and [ZL]). One easily sees that this does not hold in our case: when $a(x) \equiv 0$, which is the case studied in [LZ], $b(x)$ must change sign.

Acknowledgment: The authors are grateful for the referee's valuable suggestions.

References

[AV] D. Arcoya and S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at $-\infty$ and superlinear at $+\infty$, Math. Z. 219 (1995), 499-513.
[BPT] C. Bandle, M.A. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems, Math. Z. 199 (1988), 257-278.
[BCN]H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Problémes elliptiques indéfinis et théorémes de Liouville non linéaires, C.R. Acad. Sci. Paris 317 I (1993), 945-950.
[BH1] P.A. Binding and Y.X. Huang, Two parameter problems for the p-Laplacian, Proc. First Int. Cong. Nonl. Analysts, eds. V. Lakshmikantham, Walter de Gruyter ,New York (1996.), 891-900.
[BH2] P.A. Binding and Y.X. Huang, The principal eigencurve for the p-Laplacian, Diff. Int. Eqns. 8 (1995), 405-414.
[DH] P. Drábek and Y.X. Huang, Multiple positive solutions of quasilinear elliptic equations in \mathbb{R}^{N}, preprint.
[GT] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer-Verlag, New York, 1983.
[GO1] J.P. Gossez and P. Omari, A necessary and sufficient condition of nonresonance for a semilinear Neumann problem, Proc. Amer. Math. Soc. 114 (1992), 433-442.
[GO2] J.P. Gossez and P. Omari, On a semilinear elliptic Neumann problem with asymmetric nonlinearities, Trans. Amer. Math. Soc. 347 (1995), 2553-2562.
[G] C.P. Gupta, Perturbations of second order linear elliptic problems by unbounded nonlinearities, Nonl. Anal. 6 (1982), 919-933.
[H] Y.X. Huang, On eigenvalue problems for the p-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184.
[HM] Y.X. Huang and G. Metzen, The existence of solutions to a calss of semilinear differential equations, Diff. Int. Eqns. 8 (1995), 429-452.
[LZ] W. Li and H. Zhen, The applications of sums of ranges of accretive operators to nonlinear equations involving the p-Laplacian operator, Nonl. Anal. 24 (1995), 185-193.
[OT] M. Otani and T. Teshima, On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan Acad. 64 Ser. A (1988), 8-10.
[TA] G. Tarantallo, Multiplicity results for an inhomogeneous Neumann Problem with critical exponent, Manu. Math. 81 (1993), 57-78.
[TR] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747.

Department of Mathematics \& Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

E-mail address: binding@acs.ucalgary.ca
Department of Mathematics, University of West Bohemia, P.O. Box 314, 30614 Pilsen, Czech Republic

E-mail address: pdrabek@kma.zcu.cz
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA

E-mail address: huangy@mathsci.msci.memphis.edu

[^0]: 1991 Mathematics Subject Classifications: 35J65, 35J70, 35P30.
 Key words and phrases: p-Laplacian, positive solutions, Neumann boundary value problems. © 1997 Southwest Texas State University and University of North Texas.
 Submitted: September 11, 1996. Published: January 30, 1997.
 The research of the authors was supported by NSERC of Canada and the I.W. Killam Foundation, the Grant \# 201/94/0008 of the Grant Agency of the Czech Republic, and a University of Memphis Faculty Research Grant respectively

