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ON NEUMANN BOUNDARY VALUE PROBLEMS

FOR SOME QUASILINEAR ELLIPTIC EQUATIONS

Paul A. Binding

Pavel Drábek

Yin Xi Huang

Abstract. We study the role played by the indefinite weight function a(x) on the
existence of positive solutions to the problem

−div (|∇u|p−2∇u) = λa(x)|u|p−2u+ b(x)|u|γ−2u, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω ,

where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 <

γ < Np/(N − p) and γ 6= p. We prove that (i) if
∫
Ω a(x) dx 6= 0 and b satisfies

another integral condition, then there exists some λ∗ such that λ∗
∫
Ω a(x) dx < 0

and, for λ strictly between 0 and λ∗, the problem has a positive solution and (ii) if∫
Ω a(x) dx = 0, then the problem has a positive solution for small λ provided that∫
Ω b(x) dx < 0.

1. Introduction and results.

In this paper we study the existence of positive solutions of the Neumann bound-
ary value problem 

−∆pu+ g(x, u) = 0, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

(1.1)

on a bounded domain Ω ⊂ RN with smooth boundary ∂Ω, where ∆pu = div(|∇u|p−2∇u)
is the p-Laplacian with p > 1, and g(x, u) is a Caratheodory function.

A host of literature exists for this type of problem when p = 2; see, e.g., [AV],
[GO1], [GO2], [G], [TA] and the references therein. Recently Li and Zhen [LZ]
studied (1.1) with p ≥ 2 and obtained some interesting results. In this paper
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we consider a special type of function g(x, u) which was excluded in [LZ]. More
precisely we investigate problems of the type

−∆pu = λa(x)|u|p−2u+ b(x)|u|γ−2u, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

(1.2)λ

where a(x), b(x) ∈ L∞(Ω), and a(x) and b(x) both may change sign. Also 1 < p
and 1 < γ < p∗, where p∗ =∞ if p ≥ N and p∗ = Np/(N − p) if p < N . Here we
say a function f(x) changes sign if the measures of the sets {x ∈ Ω : f(x) > 0} and
{x ∈ Ω : f(x) < 0} are both positive.

We study the influence of the indefinite weight function a(x) on the existence
of positive solutions of (1.2)λ. If c1 ≥ a(x) ≥ c2 > 0, then ‖u‖λa := (

∫
Ω

(|∇u|p −

λa|u|p))1/p defines an equivalent norm on W 1,p(Ω) for λ < 0. Then a standard
variational method can be used to prove the existence of positive solutions to (1.2)λ
(see the proof of Theorem 1 (ii) below). The case −c1 ≤ a(x) ≤ −c2 < 0 can
be dealt with in the same way. The situation where a(x) changes sign is more
complicated because the related functional

I(u) =
1

p

∫
(|∇u|p − λa|u|p)−

1

γ

∫
b|u|γ

may not be coercive. Our method relies on the eigencurve theory developed in
[BH1, BH2]. It turns out that the sign of the integral

∫
Ω
a plays an important role

for the range of λ for which (1.2)λ has a positive solution.
To be more specific, we introduce some notations and recall some results. Con-

sider the eigencurve problem−∆pu = λa(x)|u|p−2u+ µ|u|p−2u, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

(1.3)

where we treat the eigenvalue µ associated with a positive eigenfunction as a func-
tion of λ. By taking

µ(λ) := inf
u∈W 1,p(Ω)\{0}

∫
Ω
|∇u|p − λ

∫
Ω
a|u|p∫

Ω
|u|p

we can establish the following (see, e.g., [BH1, BH2, H])

Proposition 1. Assume that a ∈ L∞(Ω). Then µ(λ) is continuous and concave
and µ(0) = 0. If a(x) > 0, then µ(λ) is decreasing, and if a(x) < 0, then µ(λ) is
increasing. Assume, now, that a changes sign in Ω. (i) If

∫
Ω
a < 0, there exists a

unique λ+
1 > 0 such that µ(λ+

1 ) = 0 and µ(λ) > 0 for λ ∈ (0, λ+
1 ). (ii) If

∫
Ω
a = 0,

then µ(0) = 0 and µ(λ) < 0 if λ 6= 0. (iii) If
∫

Ω
a > 0, then there exists a unique

λ−1 < 0 such that µ(λ−1 ) = 0 and µ(λ) > 0 for λ ∈ (λ−1 , 0).

Remark 1.1. It follows from this proposition that when a changes sign and
∫

Ω
a <

0, the eigenvalue problem−∆pu = λa(x)|u|p−2u, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω
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has a positive eigenvalue λ+
1 associated with a positive eigenfunction.

For a given weight function a(x), we define

λ1(a) =



+∞, if a(x) < 0,

λ+
1 , if a changes sign and

∫
Ω
a < 0,

0, if
∫

Ω
a = 0,

λ−1 , if a changes sign and
∫

Ω
a > 0,

−∞, if a(x) > 0,

where λ+
1 and λ−1 are given in Proposition 1. Let ‖ · ‖ denote the usual norm in

W 1,p(Ω). When λ1(a) is a finite number, we choose a fixed eigenfunction ϕ1 > 0
associated with λ1(a) and satisfying ‖ϕ1‖ = 1. Note that if λ1(a) = 0, then we can
take ϕ1 ≡ 1.

With these constructions, we have

Proposition 2. Assume that a changes sign and
∫

Ω
a 6= 0. Then for any λ strictly

between 0 and λ1(a), the relation ‖u‖λa := (
∫

Ω
(|∇u|p − λa|u|p))1/p defines an

equivalent norm on W 1,p(Ω).

Proof. Suppose the contrary. Then there exist un ∈ W 1,p(Ω) such that ‖un‖ = 1
and

∫
Ω

(|∇un|p − λa|un|p)→ 0. The variational characterization of µ(λ) then gives

‖un‖
p
λa ≥ µ(λ)

∫
Ω
|un|p. Since λ is between 0 and λ1(a), it follows that µ(λ) > 0

so un → 0 in Lp(Ω). This implies
∫

Ω
a|un|p → 0 and hence

∫
Ω
|∇un|p → 0. This

contradicts the fact that ‖un‖ = 1. This proves the proposition. �
Now we can state our main results. From now on we assume 1 < γ < p∗, γ 6= p

and that a and b both change sign. We first consider the situation
∫

Ω
a 6= 0.

Theorem 1. Let
∫

Ω
a 6= 0 and

∫
bϕγ1 < 0. Then there exists a λ∗ 6= 0 with

(λ1(a) − λ∗) ·
∫

Ω
a > 0, such that for λ strictly between 0 and λ∗, (1.2)λ has a

positive solution.

The next result deals with the case where
∫
a = 0.

Theorem 2. Assume
∫

Ω
a = 0 and

∫
b < 0. Then for small enough λ 6= 0, (1.2)λ

has a positive solution.

When λ = 0, we have

Corollary 1. Assume
∫

Ω
b < 0. Then the problem−∆pu = b(x)|u|γ−2u, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω

has a positive solution.

Throughout this paper we use c to denote various positive constants, and the
integrals are always taken on Ω unless otherwise specified. We will use variational
methods in a similar way to those in [DH]. The proof of Theorem 1 will be divided
into three situations: (i) λ = λ1(a), (ii) 0 < |λ| < |λ1(a)| and (iii) |λ| > |λ1(a)|.
The details are presented in Sections 2 and 3. We then study the case

∫
a = 0 in

Section 4. We conclude with some remarks in Section 5.
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2. The case |λ| ≤ |λ1(a)|.
We introduce the functional I on the space W 1,p(Ω) by

I(u) =
1

p

∫
(|∇u|p − λa|u|p)−

1

γ

∫
b|u|γ , (2.1)

and we set
Λ = {u ∈W 1,p(Ω) : (I ′(u), u) = 0}

= {u ∈W 1,p(Ω) :

∫
(|∇u|p − λa|u|p) =

∫
b|u|γ}.

We can see that ϕ1 does not belong to Λ since
∫
bϕγ1 < 0. Note also that Λ is closed

and for u ∈ Λ,

I(u) = (
1

p
−

1

γ
)

∫
(|∇u|p − λa|u|p) = (

1

p
−

1

γ
)

∫
b|u|γ . (2.2)

The following lemma is needed.

Lemma 2.1. Under the conditions of Theorem 1 or Theorem 2, any minimizer or
maximizer z of the functional I on Λ with I(z) 6= 0 gives a solution of (1.2)λ.

Proof. If z is a nonzero maximizer or a minimizer of I on Λ, then there exists µ ∈ R
such that ∫

|∇z|p−2∇z∇ϕ−

∫
λa|z|p−2zϕ−

∫
b|z|γ−2zϕ

= µ
(
p

∫
|∇z|p−2∇z∇ϕ− p

∫
λa|z|p−2zϕ− γ

∫
b|z|γ−2zϕ

)
,

for any ϕ ∈ W 1,p(Ω). We claim that µ = 0, which proves the lemma. If µ 6= 0,
then taking ϕ = z and using the fact that z ∈ Λ we get

(γ − p)

∫
(|∇z|p − a|z|p) = (γ − p)

∫
b|z|γ = 0.

Since I(z) 6= 0, we obtain a contradiction. �
Proof of Theorem 1. (i) Here λ = λ1(a), and we start with the case 1 < γ < p. We
show that I satisfies the Palais-Smale condition on Λ, so we assume that {un} ⊂
Λ, |I(un)| ≤ c and I ′(un) → 0, and we show that {un} contains a convergent
subsequence.

We first prove that such {un} is bounded. Suppose this is not true. Let vn =
un/‖un‖. Without loss of generality we may assume that vn → v0 weakly in
W 1,p(Ω) and strongly in Lp(Ω) and Lγ(Ω). We claim that v0 6= 0. Indeed, dividing
|I(un)| ≤ c by ‖un‖p yields ∫

(|∇vn|
p − λa|vn|

p)→ 0.

If v0 = 0, similarly to the proof of Proposition 2, we have vn → 0 in Lp(Ω) and∫
|∇vn|p → 0. Since ‖vn‖ = 1 and

∫
|∇vn|p → 0, we must have v0 6= 0. This is
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a contradiction. The claim is proved. Thus by the variational characterization of
λ = λ1(a) and the weak convergence of vn to v0 6= 0, we have

0 = µ(λ) ≤

∫
(|∇v0|

p − λa|v0|
p) ≤ lim

n→∞

∫
(|∇vn|

p − λa|vn|
p) = 0.

We conclude that

v0 = kϕ1 for some nonzero constant k. (2.3)

On the other hand, dividing∫
(|∇un|

p − λa|un|
p) =

∫
b|un|

γ (2.4)

by ‖un‖γ we obtain

0 ≤ ‖un‖
p−γ

∫
(|∇vn|

p − λa|vn|
p) =

∫
b|vn|

γ .

The fact that vn → kϕ1 strongly in Lγ(Ω) together with
∫
bϕγ1 < 0 then implies that

the right hand side of the above equality is negative for large n. This contradiction
shows that {un} is bounded.

We now can assume that un → u0 weakly in W 1,p(Ω) and strongly in Lp(Ω) and
Lγ(Ω). Using I ′(un)→ 0 we obtain

(I ′(un)− I ′(u0), un − u0) =

∫
(|∇un|

p−2∇un − |∇u0|
p−2∇u0)∇(un − u0)

−

∫
λa(|un|

p−2un − |u0|
p−2u0)(un − u0)

−

∫
b(|un|

γ−2un − |u0|
γ−2u0)(un − u0)→ 0.

Due to the continuity of the Nemytskij operators u 7→ |u|p−2u and u 7→ |u|γ−2u

from Lp(Ω) into Lp/(p−1)(Ω) and Lp(Ω) into Lγ/(γ−1)(Ω), respectively, the last two
integrals approach zero. Hence, for p′ = p/(p− 1), we have (cf. [DH]){(∫

|∇un|
p
)1/p′

−
(∫
|∇u0|

p
)1/p′}

·
{(∫

|∇un|
p
)1/p

−
(∫
|∇u0|

p
)1/p}

≤

∫
(|∇un|

p−2∇un − |∇u0|
p−2∇u0)∇(un − u0)→ 0,

i.e.,
∫
|∇un|p converges to

∫
|∇u0|p. This together with the weak convergence of

un to u0 in W 1,p(Ω) implies that un → u0 strongly in W 1,p(Ω). Hence I satisfies
the Palais-Smale condition on Λ.

We see that, for 1 < γ < p, I(u) < 0 for u ∈ Λ\{0}. We claim that I is bounded
from below on Λ. If, on the contrary, there exists un ∈ Λ such that I(un)→ −∞,
then clearly ‖un‖ → ∞. Let vn = un/‖un‖. Dividing (2.4) by ‖un‖p we obtain∫

(|∇vn|
p − λa|vn|

p) =

∫
b|vn|

γ · ‖un‖
γ−p. (2.5)
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It then follows from γ < p and ‖vn‖ = 1 that
∫

(|∇vn|p − a|vn|p) → 0. As in the
above proof of (2.3) we conclude that vn converges weakly (and, without loss of
generality, strongly in Lγ(Ω)) to kϕ1 for some constant k. This implies that the
right hand side of (2.5) is negative for large n since

∫
bϕγ1 < 0, contradicting the

variational characterization of λ1(a). Since any minimizer u of I on Λ now must
satisfy I(u) < 0, we find a solution of (1.2)λ by Lemma 2.1. Observe that |u| is
also a minimizer of I on Λ. Then the Harnack inequality (cf. e.g. [TR]) implies
that u > 0. Thus we obtain a positive solution.

For the case γ > p, let Λ0 := Λ \ {0}. We note that in this case I(u) > 0 for
u ∈ Λ0. We first show that 0 is an isolated point of Λ. Suppose, for some un ∈ Λ0,
un → 0. Let vn = un/‖un‖. ¿From (2.5) and Sobolev’s embedding theorem we
obtain as for (2.3) that vn converges in Lγ(Ω) to kϕ1 for some nonzero constant
k. It then follows that the right hand side of (2.5) is negative when n is large, a
contradiction. Now, since Λ is closed and 0 is isolated, Λ0 is a closed set. Thus
any minimizer of I on Λ0 gives us a nontrivial solution. Its positivity is obtained
exactly as for the case 1 < γ < p.

(ii) Observe that, for the case 0 < |λ| < |λ1(a)|, λ is between 0 and λ1(a), so it
follows from Proposition 2 that, for u ∈W 1,p(Ω),∫

|u|p ≤ c

∫
(|∇u|p − λa|u|p).

Thus (2.2) shows that I is bounded from above on Λ if γ < p and is bounded from
below if γ > p. To prove that I satisfies the Palais-Smale condition, we note that if
|I(un)| < c then ‖un‖ is bounded. Indeed, if ‖un‖ → ∞, we divide I(un) by ‖un‖p

and obtain
∫

(|∇vn|p − λa|vn|p)→ 0, where vn = un/‖un‖ and ‖vn‖ = 1. But this
is impossible since λ strictly between 0 and λ1(a) gives µ(λ) > 0. The rest of the
proof can be carried out in a similar manner to that of (i). �
3. The case |λ| > |λ1(a)|.

We divide Λ into three subsets as follows:

Λ+
λ (resp. Λ−λ ,Λ

0
λ) = {u ∈ Λ :

∫
(|∇u|p − λa|u|p) > (resp. <,=)

γ − 1

p− 1

∫
b|u|γ}.

We seek critical points of I on one of these sets. Observe that

Λ+
λ (resp. Λ−λ ,Λ

0
λ) = {u ∈ Λ : (γ − p)

∫
b|u|γ < (resp. >,=)0}. (3.1)

First we have

Lemma 3.1. Let γ > p,
∫
a 6= 0 and

∫
bϕγ1 < 0. Then there exists |λ∗| > |λ1(a)|,

such that for any λ strictly between λ1(a) and λ∗, Λ−λ is closed in W 1,p(Ω) and
open in Λλ.

Proof. The proof is similar to that of [DH, Lemma 3.3].
Assuming this is not true, there exist λn → λ1(a) and un ∈ Λ−λn such that∫
b|un|γ → 0. Observe that, since un ∈ Λ−λn , we also have

0 <

∫
b|un|

γ =

∫
(|∇un|

p − λna|un|
p)→ 0.
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Let vn = un/‖un‖. Then we have

0 <

∫
(|∇vn|

p − λna|vn|
p) =

∫
b|vn|

γ · ‖un‖
γ−p =

∫
b|un|

γ · ‖un‖
−p,

which approaches zero regardless of whether ‖un‖ → ∞ or not. We conclude,
similarly to the proof of Theorem 1 (i), that vn → kϕ1 weakly in W 1,p(Ω) for some
constant k 6= 0. In particular, ∫

b|vn|
γ−2vnϕ→ 0

for all ϕ ∈ W 1,p(Ω). Taking ϕ = kϕ1 in the above we obtain
∫
b|kϕ1|γ = 0, a

contradiction. Thus Λ−λ is closed. �
Proof of Theorem 1. (iii) Assume first that γ > p. We observe that 0 6∈ Λ−λ , and

for u ∈ Λ−λ ,

I(u) =
γ − p

pγ

∫
b|u|γ =

γ − p

pγ

∫
(|∇u|p − λa|u|p) > 0.

Thus we look for a minimizer of I on the set Λ−λ when γ > p. We assume
∫
a < 0,

i.e. λ∗ > λ1(a). The other case can be treated similarly.
Next we verify that I satisfies the (P-S) condition on Λ−λ when λ is close enough

to λ1(a). Let {un} satisfy the hypotheses of the Palais-Smale condition, i.e., {un} ⊂
Λ−λ , |I(un)| ≤ c and I ′(un)→ 0.

We first show that there exist σ > 0 and λ∗ > λ1(a) such that for λ ∈ (λ1(a), λ∗)
and all u ∈ Λ−λ ∫

|∇u|p − λ

∫
a|u|p ≥ σ‖u‖p. (3.2)

Otherwise there are λn > 0 and un ∈ Λ−λn such that∫
|∇vn|

p − λn

∫
a|vn|

p → 0, and λn → λ1(a), (3.3)

where vn = un/‖un‖. Without loss of generality we can assume that vn → v0 weakly
in W 1,p(Ω) and strongly in Lp(Ω), for some v0 ∈W 1,p(Ω). Thus

∫
a|vn|p →

∫
a|v0|p

so (3.3) and the variational characterization of λ1(a) yield

0 ≤

∫
(|∇v0|

p − λ1(a)a|v0|
p) ≤ lim inf

n→∞

∫
(|∇vn|

p − λna|vn|
p) = 0. (3.4)

It follows from (3.4) that either v0 = 0 or λ0 = λ1(a) and v0 = ϕ1. The former
case would imply that vn → 0 in Lp(Ω), a contradiction. In the latter case, ‖vn‖ =
‖ϕ1‖ = 1, so weak convergence of vn to ϕ1 implies that vn → ϕ1 strongly in
W 1,p(Ω), and hence strongly in Lγ(Ω). Since un ∈ Λ−λn , we get

0 <

∫
(|∇un|

p − λna|un|
p) <

γ − 1

p− 1

∫
b|un|

γ ,
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and consequently

0 <

∫
b|vn|

γ →

∫
bϕγ1 < 0,

a contradiction.
Thus by (3.2) we have proved that {un} is bounded. Now we can follow the proof

of Theorem 1 (i, ii) to show that such {un} contains a convergent subsequence. Thus
we conclude that the Palais-Smale condition is satisfied.

The standard procedure then implies that the functional I has a minimizer, say
z, on Λ−λ . Since 0 6∈ Λ−λ , z 6= 0. The fact that z is a positive solution of (1.2)λ then
follows from Lemma 2.1 and the Harnack inequality as in the proof of Theorem 1
(i), so Theorem 1 (iii) is proved for the case γ > p.

For the case γ < p, we observe that the same procedure shows that Λ+
λ is a

closed set. It is apparent that for u ∈ Λ+
λ , I(u) < 0. Then we can find a nonzero

maximizer z of I on Λ+
λ as above and it follows that this z is a positive solution of

(1.2)λ. This concludes the proof of Theorem 1 (iii). �
4. Proof of Theorem 2.

In this section we assume
∫
a = 0. Recall that

Λ+
λ (resp. Λ−λ ,Λ

0
λ) = {u ∈ Λ : (γ − p)

∫
b|u|γ < (resp. >,=)0}.

Lemma 4.1. If
∫
b < 0, then for sufficiently small λ, (i) Λ+

λ is closed in W 1,p(Ω)

and open in Λλ when γ > p, and (ii) Λ−λ is closed in W 1,p(Ω) and open in Λλ when
γ < p.

Proof. (i) Suppose the contrary. Then there exist λn → 0, un ∈ Λ+
λn

, such that

0 >

∫
(|∇un|

p − λna|un|
p) =

∫
b|un|

γ → 0. (4.1)

Let vn = un/‖un‖ and assume that vn → v0 weakly in W 1,p(Ω) and strongly
Lp(Ω) and Lγ(Ω) for some v0 ∈W 1,p(Ω). Dividing (4.1) by ‖un‖p we obtain

0 ≤

∫
|∇v0|

p ≤ lim inf
n→∞

∫
(|∇vn|

p − λna|vn|
p) = lim inf

n→∞
‖un‖

γ−p

∫
b|vn|

γ . (4.2)

We claim that lim inf ‖un‖γ−p
∫
b|vn|γ = 0. Otherwise we obtain from (4.1) and

(4.2) that

0 ≤

∫
b|vn|

γ < 0 (4.3)

for certain n, which is a contradiction. Now, since the right hand side of (4.2) is
zero, v0 must be a constant. If v0 6= 0, then

∫
b < 0 gives

∫
b|vn|γ →

∫
b|v0|γ < 0,

so again we obtain the contradiction (4.3). If v0 = 0, we have
∫
|vn|p → 0 and∫

|∇vn|p → 0 (for a subsequence) from (4.2), contradicting ‖vn‖ = 1. So, for λ

sufficiently small, Λ+
λ is closed.

(ii) The case γ < p is similar. The proof is complete. �
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Lemma 4.2. For sufficiently small λ, I satisfies the (P-S) condition on Λ+
λ if

γ > p and on Λ−λ if γ < p.

Proof. We consider the case γ > p only. The other case can be dealt with in a
similar way. Assume that the contention is false. Then there exist λn → 0 with an
unbounded Palais-Smale sequence in each Λ+

λn
. Moreover (2.2) shows that we can

scale the sequences so that ‖I(u)‖ is bounded independently of n for each sequence.
Thus, by a standard diagonal argument, we can find a sequence un ∈ Λ+

λn
such that

I(un) is bounded, I ′(un) → 0 and ‖un‖ → ∞. Let vn = un/‖un‖. Since I(un) is
bounded, it follows that

∫
b|un|γ is bounded and

∫
b|vn|γ → 0. Thus (4.1) holds

with un replaced by vn, and we obtain a contradiction as in the proof of Lemma
4.1. We then conclude that the Palais-Smale sequences are bounded for sufficiently
small λ. The rest of the proof is similar to that of Theorem 1 (i, ii). This concludes
the proof. �

Now we can find a nonzero maximizer of I on Λ+
λ if γ > p and a nonzero

minimizer of I on Λ−λ if γ < p, which gives a positive solution of (1.2)λ. Theorem 2
is proved.

Proof of Corollary 1. Note that in this case we have, for u ∈ Λ,

I(u) = (
1

p
−

1

γ
)

∫
|∇u|p = (

1

p
−

1

γ
)

∫
b|u|γ .

We show that the functional satisfies the Palais-Smale condition on Λ. We first
claim that any Palais-Smale sequence is bounded. Indeed, suppose for some un ∈ Λ,
|I(un)| ≤ c, I ′(un)→ 0, and ‖un‖ → ∞. Then dividing I(un) by ‖un‖p we obtain∫
|∇vn|p → 0, where vn = un/‖un‖. Let v̄n =

∫
vn/|Ω|. We have,∫

|vn − v̄n|
p ≤ c

∫
|∇vn|

p.

We then conclude that vn converges strongly to some constant v0 6= 0 in Lp(Ω).
Since Ω is bounded and has smooth boundary, it satisfies a uniform interior cone
condition. The embedding theorem given in [GT, p. 158] then implies that vn → v0

in Lγ(Ω) strongly. Now dividing
∫
|∇un|p =

∫
b|un|γ by ‖un‖γ we obtain

0 ≤ ‖un‖
p−γ

∫
|∇vn|

p =

∫
b|vn|

γ .

It then follows from the strong convergence of vn → v0 in Lγ(Ω) that
∫
b ≥ 0,

which contradicts the assumption that
∫
b < 0. We thus conclude that un must be

bounded.
Now we can assume that un has a subsequence converging strongly to some u0

in Lp(Ω) and Lγ(Ω) and weakly in W 1,p(Ω). The conclusion that un converges
strongly to u0 in W 1,p(Ω) then follows from similar arguments to those in the proof
of Lemma 2.1. This shows that the functional I satisfies the Palais-Smale condition.
The rest of the proof can be carried out as for that of Theorem 1 (iii). �
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5. Final Remarks.
(i) When N = 1, the existence of solutions for problem (1.1) with various bound-
ary conditions can be found in [HM], where the Fučik spectrum was studied and
employed.

(ii) Existence of positive solutions for Neumann problems when p = 2 has been
studied in [BPT]. Part of our results in Theorem 1 (the case

∫
Ω
a(x) dx < 0) is

similar to those in [BPT]. Here we only deal with a power type “nonlinearity,” but
we allow a higher growth rate on the variable u. See [TA] for related results. A
special form of Theorem 1 (for p = 2 with λ = λ1(a)) has been given in [BCN].
We note that the proofs of our results originate with eigencurve theory and are
different from those of [BPT] and [BCN]. Even for the case p = 2, our result for
the case

∫
Ω
a(x) dx = 0 is new.

(iii) An important sign condition on the nonlinear term g(x, u), viz., a condition of
the type either g(x, u) · u ≥ 0 for |u| > c or g(x, u) · u ≤ 0 for |u| > c, has been
employed extensively in the literature (see [G] and [ZL]). One easily sees that this
does not hold in our case: when a(x) ≡ 0, which is the case studied in [LZ], b(x)
must change sign.

Acknowledgment: The authors are grateful for the referee’s valuable suggestions.
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