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On a mixed problem for a coupled nonlinear

system ∗

M.R. Clark. & O.A. Lima

(Dedicated to professor Luiz A. Medeiros for his 70th birthday)

Abstract

In this article we prove the existence and uniqueness of solutions to
the mixed problem associated with the nonlinear system

utt −M(

∫
Ω

|∇u|2dx)∆u+ |u|ρu+ θ = f

θt −∆θ + ut = g

where M is a positive real function, and f and g are known real functions.

1 Introduction

Let Ω be an open and bounded subset of Rm, with smooth boundary Γ. Let Q
be the cylinder Q = Ω×]0, T [ and

∑
its lateral boundary. Let us denote the

usual norm in Hm
0 (Ω) by ‖ ·‖ and the usual norm in L2(Ω) by | · |, where Hm

0 (Ω)
is the closure of C∞0 (Ω) in Hm(Ω), and Hm(Ω) is the standard Sobolev space.

We shall consider the nonlinear system

utt −M(
∫

Ω
|∇u|2dx)∆u+ |u|ρu+ θ = f in Q (1)

θt − ∆θ + ut = g in Q (2)

u = θ = 0 on
∑

(3)

u(0) = u0; u
′(0) = u1; θ(0) = θ0 (4)

When M(s) is a positive constant α and θ = 0, the dynamical part of the
above system is a nonlinear perturbation of the linear wave equation utt−α∆u =
f , (cf. Lions [6]). When M(s) = m0 +m1s, with m0 and m1 positive constants
and θ = 0, Equation (1) is a nonlinear perturbation of the canonical Kirchhoff-
Carrier’s model which describes small vibrations of a stretched string when
tension is assumed to have only a vertical component at each point of the string

∗1991 Mathematics Subject Classifications: 35M10.
Key words and phrases: Mixed problem, nonlinear system, weak solutions, uniqueness.
c©1997 Southwest Texas State University and University of North Texas.

Submitted: November 26, 1996. Published March 6, 1997.

1



2 On a mixed problem for a coupled nonlinear system EJDE–1997/06

(cf. Pohozhaev [10], Arosio-Spagnolo [1]). For θ = 0, Hosoya-Yamada [9],
investigate the existence, uniqueness and regularity of solutions of (1.1).

In [7], L. A. Medeiros studies the equation (1) when θ = 0 and the nonlinear
perturbation is equal to u2. Lastly, in [8] Maciel-Lima, studied the existence of
a local weak solution of the mixed problem for the perturbed Kirchhoff-Carrier’s
equation

u′′ −M(

∫
Ω

|∇u|2dx)∆u+ λ|u|ρu = f ,

when λ = −1, M : [0,∞) → [0,∞) is a C1 function such that M(s) ≥ m0 >
0,∀s ∈ R, where ρ ∈ R and satisfies 0 < ρ ≤ 2/(n − 4) if n ≥ 5 or ρ ≥ 0 if
n = 1, 2, 3, or 4. For other perturbations of Kirchhoff-Carrier’s operator, among
several works, we cite D’ancona-Spagnolo [3], and Bisognin [2].

In the present work we discuss the existence of a weak solution for the coupled
nonlinear system (1)–(3) where we impose the appropriate assumptions on M ,
ρ,f and g. For the proof of existence, we employ the Galerkin’s approximation
method plus a compactness argument (see, e.g., Lions [5]).

2 Notation and main result

We make the following assumptions:

M ∈ C1[0,∞) and M(s) ≥ m0 > 0 for s ≥ 0. (A.1)

0 < ρ ≤
2

n− 2
if n ≥ 5 and 0 ≤ ρ <∞ if n = 1, 2, 3 or 4 (A.2)

f, g ∈ C0(0, T ;H1
0 (Ω)) (A.3)

The main result of the present work is given in the following theorem.

Theorem 1 Assume (A.1)–(A.3). For

u0 ∈ H
1
0 (Ω) ∩H2(Ω), u1 ∈ H

1
0 (Ω), and θ0 ∈ H

1
0 (Ω)

there exist T0 ∈ R, 0 < T0 < T such that (1)–(4) has a unique weak solution
{u, θ} on [0, T0] satisfying (1) and (2) in the following sense:

d
dt

(u′(t), w) +M(
∫

Ω
|∇u(t)|dx)a(u(t), w) + (|u(t)|ρu(t), w) + (θ(t), w) = (f(t), w)

d
dt

(θ(t), w) + a(θ(t), w) + (u′(t), w) = (g(t), w)

for all w ∈ H1
0 (Ω) in the sense of D′(0, T ).

u(0) = u0, u
′(0) = u1, θ

′(0) = θ0
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Proof of Theorem 1. Let w1, ..., wm be the eigenfunctions of the Laplacian
on Ω and let Vm be the space generated by the first m eigenfunctions. Now let
us consider the approximated system

(u′′m(t), wk)−M(‖um(t)‖2)(∆um(t), wk)

+(|um(t)|ρum(t), wk) + (θm(t), wk) = (f(t), wk) (5)

(θ′m(t), wk)− (∆θm(t), wk) + (u′m(t), wk) = (g(t), wk) (6)

um(0) = u0m −→ u0 strongly in H1
0 (Ω) ∩H2(Ω) (7)

u′m (0) = u1m −→ u1 strongly in H1
0 (Ω) (8)

θm(0) = θ0m −→ θ0 strongly in H1
0 (Ω) (9)

where 1 ≤ k ≤ m. Then there exist functions ckm and dmk such that

um(t) =
m∑
k=1

ckm(t)wk and θm(t) =
m∑
k=1

dkm(t)wk

are the unique local solutions of the above system on some interval [0, tm[, where
tm ∈ [0, T [.

The estimates that we obtain below will allow us to extend the solutions
{um, θm} to the interval [0, T [.

Estimate (i). Multiply (5) by c′km(t) and multiply (6) by dkm(t), then sum
over k to obtain:

1

2

d

dt
{|u′m(t)|2 + M̂(‖um(t)‖2)}+

1

p

d

dt
‖um(t)‖pLp(Ω) (10)

= −(θm(t), u′m(t)) + (f(t), u′m(t)) (11)

where p = ρ+ 2.

1

2

d

dt
{|θm(t)|2 + ‖θm(t)‖2} = −(u′m(t), θm(t)) + (g(t), θm(t)) (12)

Define

E(u(t), θ(t)) =
1

2
{|u′(t)|2 + |θ(t)|2 + M̂(‖u(t)‖2) + ‖θ(t)‖2}+

1

p
‖u(t)‖pLp(Ω)

where M̂(λ) =
∫ λ

0
M(s)ds.

Sum (11) and (12). Using the inequality ab ≤ 1
2

(
a2 + b2

)
and the Poincaré

inequality we integrate from 0 to t ≤ tm to obtain

1

2
{|u′m(t)|2 + |θm(t)|2 +m0‖um(t)‖2 + ‖θm(t)‖2}+

1

p
‖um(t)‖p

Lp(Ω)

≤ E(um(t), θm(t))

≤ E(u0m, θ0m) +
1

2

∫ T

0

‖f(s)‖2 +
1

2

∫ T

0

‖g(s)‖2ds

+
3

2

∫ t

0

‖u′m(s)‖2ds+

∫ t

0

|θm(s)|2ds
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From (7)–(9) and hypotheses (A.3), it follows from Gronwall’s inequality
that

|u′m(t)|2 + |θm(t)|2 +m0‖um(t)‖2 + ‖θm(t)‖2 +
1

2
‖um(t)‖pLp

≤ {2E(u0, θ0) +

∫ T

0

‖f(s)‖2ds+

∫ T

0

‖g(s)‖2ds}eT

Then we extend the approximate solution {um(t), θm(t)} to the interval [0, T [
and we have the estimates

|u′m(t)| ≤ C1, ‖um(t)‖ ≤ C2, and ‖θm(t)‖ ≤ C1 (13)

where C1 = {2E(u0, θ0) +
∫ T

0 ‖f(s)‖2ds+
∫ T

0 ‖g(s)‖2ds}eT and C2 = C1m
−1
0 .

From now on we denote by C various positive constants independent of m
and t in [0, T [.

Estimate (ii). Observe that the system (5), (6) is equivalent to

(u′′m(t), w) −M(‖um(t)‖2)(∆um(t), w) + (|um(t)|ρum(t), w) + (θm(t), w)

= (f(t), w) (14)

(θ′m(t), w) − (∆θm(t), w) + (u′m(t), w) = (g(t), w) (15)

for all w ∈ Vm. Putting w = −∆u′m(t) ∈ Vm in (14) and w = −∆θm(t) ∈ Vm in
(15) we have

1

2

d

dt
{‖u′m(t)‖2 +M(‖um(t)‖2)|∆um(t)|2} (16)

= −(∇(|um(t)|ρum(t),∇u′m (t)) +M ′(‖u′m(t)‖2)(∇um(t),∇u′m(t))|∆um(t)|2

−(∇u′m (t) ,∇θm(t)) + (∇f(t),∇u′m(t))

1

2

d

dt
‖θm(t)‖2 + |∆θm(t)|2 = −(∇u′m (t) ,∇θm(t)) + (∇g(t),∇θm(t)) (17)

Adding equations (16) and (17) we have:

1

2

d

dt
{‖u′m(t)‖2 + ‖θm(t)‖2 +M(‖um(t)‖2)|∆um(t)|2}+ |∆θm(t)|2 (18)

= −(∇(|um(t)|ρum(t)),∇u′m(t)) +M ′(|u′m(t)|2)(∇um(t),∇u′m(t))|∆um(t)|2

−2(∇u′m (t) ,∇θm(t)) + (∇f(t),∇u′m (t)) + (∇g(t),∇θm(t))

We have that

| (∇(|um(t)|ρum(t)),∇u′m (t)) | ≤

(ρ+ 1)
∫

Ω |u(t)|ρ|∇um(t)‖∇u′m (t) |dx(ρ+ 1)|u(t)|ρLρq · |∇um(t)|Lr · ‖u′m (t) ‖

with 1/q + 1/r = 1/2.
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From hypotheses (A.2) we can take q and r such that

1

q
≥
ρ(n− 4)

2n
and

1

r
≥
n− 2

2n
.

Sobolev’s inequality gives

|∇um(t)|Lr ≤ C|um(t)|H2 and |um(t)|Lρq ≤ C|um(t)|H2

and the regularity theory for elliptic equations ensures that

|um(t)|H2 ≤ C|∆um(t)|

(see, e. g., Friedman [4]).
Therefore,

| (∇(|um(t)|ρum(t)),∇u′m (t)) | ≤ C|∆um(t)|ρ+1‖u′m(t)‖ (19)

The second, third, fourth, and fifth terms of the right side in (18) are bounded
as follows∣∣M ′(|u′m(t)|2) (∇um(t),∇u′m(t)) |∆um(t)|2

∣∣ ≤M1C2‖u
′
m(t)‖ · |∆um(t)|2

where M1 = max{|M ′(s)|; 0 ≤ s ≤ C2},

2|(∇u′m (t) ,∇θm(t))| ≤ ‖u′m(t)‖2 + ‖θm(t)‖2 (20)

|(∇f(t),∇u′m (t))| ≤
1

2
‖f(t)‖2 +

1

2
‖u′m(t)‖2 (21)

|(∇g(t),∇θm(t))| ≤
1

2
‖g(t)‖2 +

1

2
‖θm(t)‖2 (22)

Let us define the functional

F (u(t), θ(t)) = ‖u′m(t)‖2 + ‖θm(t)‖2 +M(‖u(t)‖2)|∆u(t)|2 + |∆θ(t)|2 .

Then by (13) we have

‖u′m(t)‖2 + ‖θm(t)‖2 +m0|∆um(t)|2 + |∆θm(t)|2

≤ F (um(t), θm(t)) (23)

≤ ‖u′m(t)‖2 + ‖θm(t)‖2 +M2|∆um(t)|2 + |∆θm(t)|2

where M2 = max{M(s); 0 ≤ s ≤ C2
2}. Making use of inequalities (19)–(23) in

(18) it follows that

d

dt
F (um(t), θm(t))

≤ 2C|∆um(t)|ρ+1 · ‖u′m(t)‖+ 2M1C2‖u
′
m(t))‖ · |∆um(t)|2

+‖f(t)‖2 + ‖g(t)‖2 + 3‖u′m(t)‖2 + 3‖θm(t)‖2
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By (23) we have,

d

dt
F (um(t), θm(t))

≤ C
{
F (um(t), θm(t))

ρ+2
2 + F (um(t), θm(t))

3
2 + F (um(t), θm(t))

}
+‖f(t)‖2 + ‖g(t)‖2

A simple computation shows that

d

dt
F (um(t), θm(t)) ≤ C{F (um(t), θm(t))γ + ‖f(t)‖2 + ‖g(t)‖2},

with γ = max{(ρ + 2)/2, 3/2}. Here we need the following lemma which will
be proved later.

Lemma 1 Let µ a positive and differentiable function such that

µ′(t) ≤ θ(t) + αµ(t) + βµγ(t) (24)

where θ(t) is a positive function, θ ∈ L1(0, T ), α, β, and γ are positive constants,
with γ > 1. Then there exists T0 ∈ R, where 0 < T0 < T , such that µ is bounded
on [0, T0].

By Lemma 1, there exist T0 > 0 such that

F (um(t), θm(t)) ≤ C for 0 ≤ t ≤ T0

Hence, we have

‖u′m(t)‖ ≤ C (25)

|∆um(t)| ≤ C (26)

|∆θm(t)| ≤ C (27)

‖θm(t)‖ ≤ C (28)

for 0 ≤ t ≤ T0. Putting w = θ′m(t) in (15) we have

|θ′m(t)|2 ≤ (|g(t)|+ |∆θm(t)|+ |u′m(t)|) |θ′m(t)|

|θ′m(t)| ≤ |g(t)|+ |∆θm(t)|+ |u′m(t)|

Now, using the Sobolev embedding H1
0 (Ω) ↪→ L2(Ω), it follows from (25) and

(27) that
|θ′m(t)| ≤ C + |g(t)| or |θ′m(t)|2 ≤ C + 2|g(t)|2 .

Integrating from 0 to T0, we have∫ T0

0

|θ′m(t)|2dt ≤ C (29)
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Estimate (iii). Putting w = u′′m(t) in (14) we have

|u′′m(t)|2 = M(‖um(t)‖2)(∆um(t), u′′m(t))− (|um(t)|ρum(t), u′′m(t))

−(θm(t), u′′m(t)) + (f(t), u′′m(t))

Then estimating we obtain

|u′′m(t)|2 ≤ M2|∆um(t)| |u′′m(t)|+ |um(t)|ρ+1
L2(ρ+1) |u

′′
m(t)|

+|θm(t)| |u′′m(t)|+ |f(t)| |u′′m(t)|

|u′′m(t)| ≤ M2|∆um(t)| + |um(t)|ρ+1
L2(ρ+1) + |θm(t)|+ |f(t)|

By (A.3), it follows that H1
0 (Ω) ↪→ L2(ρ+1). Using (13), (25) and Sobolev’s

embedding theorem, from (26) we get

|u′′m(t)| ≤ C .

Passage to the limit

From estimates (13) and (25) we have that (um) and (θm) are bounded in
L∞(0, T0;H1

0 (Ω) ∩ H2(Ω)) and L∞(0, T0;H1
0 (Ω)), respectively. From (25) the

sequence (u′m) is bounded in L∞(0, T0;H1
0 (Ω)), and, by (2.35), the sequence

(u′′m) is bounded in L∞(0, T0;L2(Ω)). Because the embedding from H1
0 (Ω) ∩

H2(Ω) into H1
0 (Ω) is compact we can extract a subsequence, again denoted by

(um), such that:

um −→ u strongly in L2(0, T0;H1
0 (Ω))

Analogously, from (28), (29), the compact embedding H1
0 (Ω) into L2(Ω),

and the Aubin-Lions lemma (see, e.g., [5]) it follows that

θm −→ θ strongly in L2(0, T0;L2(Ω)) .

Then taking the limit in equations (5)–(6), when m −→∞, we have that {u , θ}
is a weak solution of the system (1)–(4).

Proof of the Lemma 1. Multiply (24) by e−αt to obtain

(µ(t)e−αt)′ ≤ θ(t) + βµγ(t) (30)

(Note that e−αt ≤ 1). Integrating (30) in [0, t[⊂ [0, T [ we obtain

µ(t) ≤

[
µ(0) +

∫ T

0

θ(s)ds+ β

∫ t

0

µγ(s)ds

]
eαT

Letting

K1 =

[
µ(0) +

∫ T

0

θ(s)ds

]
eαT and K2 = βeαT
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it follows that

µ(t) ≤ K1 +K2

∫ t

0

µγ(s) , ds . (31)

If we denote by z(t) the function z(t) =
∫ t

0
µγ(s)ds, it follows that z(0) = 0

and z′(t) = µγ(t). Then,
z′(t)

(K1 +K2z(t))γ
≤ 1

Choosing T0 such that
K1 +K2z(t) ≤ K3 ,

where

K3 =

{
[

K1−γ
1

K2(γ − 1)
− T0]1/(γ−1) · [K2(γ − 1)]1/(γ−1)

}−1

Thus, from (31), we obtain µ(t) ≤ K3, if 0 ≤ t ≤ T0. This concludes the
proof of this Lemma.

3 Uniqueness

Let [u, θ] and [û, θ̂] be solutions of (1)–(4) under the conditions of Theorem 1.

Let w = u− û and v = θ − θ̂. Then [w, v] satisfies

d

dt
(w′, z) +M(

∫
Ω

|∇u|2dx)(∇w,∇z) + (|u|ρu− |û|ρû, z) + (v, z)]

= M(

∫
Ω

|∇û|2dx)(∇û,∇z)−M(

∫
Ω

|∇u|2dx)(∇û,∇z) (32)

d

dt
(v, z) + (∇v,∇z) + (w′, z) = 0 (33)

w(0) = 0, w′(0) = 0 and v(0) = 0 (34)

Taking z = w′ in (32) and z = v in (33), we obtain

d

dt
|w′|2 +M(

∫
Ω

|∇u|2dx)
d

dt
‖w‖2 +

∫
Ω

(|u|ρu− |û|ρû)w′dx+ (v, w′)

= M(

∫
Ω

|∇û|2dx)(∇û,∇w′)−M(

∫
Ω

|∇u|2dx)(∇û,∇w′) (35)

d

dt
|v|2 + ‖v‖2 + (w′, v) = 0 (36)

in the D′(0, T ) sense. Adding (35) to (36) we have

d

dt
|w′|2 +M(

∫
Ω

|∇u|2dx)
d

dt
‖w‖2 +

d

dt
|v|2 + ‖v‖2

=

∫
Ω

(|û|ρû− |u|ρu)w′dx− 2(v, w′) +M(

∫
Ω

|∇û|2dx)(∇û,∇w′)
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−M(

∫
Ω

|∇u|2dx)(∇û,∇w′)

≤

∣∣∣∣∫
Ω

(|û|ρû− |u|ρu)w′dx

∣∣∣∣+ 2|(v, w′)|

+

∣∣∣∣M(

∫
Ω

|∇û|2dx)−M(

∫
Ω

|∇u|2dx)

∣∣∣∣ |(∇û,∇w′)|
On the other hand, by Holder’s inequality with 1

q
+ 1

n
+ 1

2 = 1, we have∣∣∣∣∫
Ω

(|û|ρû− |u|ρu)w′dx

∣∣∣∣ ≤ (ρ+ 1)

∫
Ω

sup(|u|ρ, |û|ρ)|w| |w′|dx

≤ C
(
‖ |u|ρ‖Ln(Ω) + ‖ |û|ρ‖

Ln(Ω)

)
‖w‖Lq(Ω)|w

′|L2(Ω)

By condition (A.2), we have ρn ≤ q and from the immersionH1
0 (Ω) ↪→ Lq(Ω)

with 1/q = 1/2− 1/n, we have∣∣∣∣∫
Ω

(|û|ρû− |u|ρu)w′dx

∣∣∣∣ ≤ C(‖u‖ρ + ‖û‖ρ) ‖w‖ |w′|

and since u, û ∈ L∞(0, T ;H1
0(Ω)), we have∣∣∣∣∫

Ω

(|û|ρû− |u|ρu)w′dx

∣∣∣∣ ≤ C‖w‖ |w′| (37)

2|(v, w′)| ≤ 2|v| |w′| (38)

Observe that ∣∣∣∣M(

∫
Ω

|∇û|2dx) −M(

∫
Ω

|∇u|2dx)

∣∣∣∣ |(∇û,∇w′)|
≤ |M ′(ξ)|

∣∣|∇û|2 − |∇u|2∣∣ |(−∆)û| |w′|

where ξ is between |∇û|2 and |∇u|2. Then we have∣∣∣∣M(

∫
Ω

|∇û|2dx) −M(

∫
Ω

|∇u|2dx)

∣∣∣∣ |(∇û,∇w′)|
≤ C ||∇û|+ |∇u|| ||∇û| − |∇u|| |(−∆)û| |w′| (39)

≤ C‖û− u‖ |(−∆)û| |w′|

≤ C‖w‖ |w′|

Substituting (37)–(39) in (35) and noting that

M(

∫
Ω

|∇u|2dx)
d

dt
|∇w|2

=
d

dt

(
M(

∫
Ω

|∇u|2dx)|∇w|2
)
−

[
d

dt
M(

∫
Ω

|∇u|2dx)

]
|∇w|2
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we obtain:

d

dt

{
|w′|2 + |v|2 +M(

∫
Ω

|∇u|2dx)|∇w|2
}

+ ‖v‖2

≤ |v|2 + C|w′|2 + C‖w‖2 +

∣∣∣∣ ddtM(

∫
Ω

|∇u|2dx)

∣∣∣∣ |∇w|2 (40)

≤ C
{
|v|2 + |w′|2 + ‖w‖2

}
Integrating (40) from 0 to t ≤ T0, we have

|w′(t)|2 + |v(t)|2 +m0‖w(t)‖2 +

∫ T

0

‖v(s)‖2ds

≤ C

∫ t

0

{
|v(s)|2 + |w′(s)|2 + ‖w(s)‖2

}
ds

By Gronwall’s Lemma it follows that

|v(s)|2 + |w′(s)|2 + ‖w(s)‖2 ≤ 0 .

This implies that v(t) = w(t) = 0 ∀t ∈ [0, T ]. Or u(t) = û(t) and θ(t) =

θ̂(t) ∀t ∈ [0, T ]. This concludes the proof of uniqueness.

Acknowledgment. We would like to express our sincere thanks to Professor
Aldo Maciel for our useful conversations about this work.
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[9] Hosoya, M. & Yamada, Y., On some nonlinear wave equation I- local ex-
istence and regularity of solutions, Journal Fac. Sci. Tokyo, Sec IA, Math.
38(1991), 225-238.

[10] Pohozhaev, S. I., On a class of quasilinear hyperbolic equations, Mat. Sbor-
nic 96 (138)(1)(1975), 152-166 (Mat. Sbornic 25(1)(1975), 145-158, english
translation).

M. R. Clark

Universidade Federal da Paráıba - PB - Brasil
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