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Existence and Multiplicity Results for Homoclinic

Orbits of Hamiltonian Systems ∗

Chao-Nien Chen & Shyuh-yaur Tzeng

Abstract

Homoclinic orbits play an important role in the study of qualitative
behavior of dynamical systems. Such kinds of orbits have been studied
since the time of Poincaré. In this paper, we discuss how to use varia-
tional methods to study the existence of homoclinic orbits of Hamiltonian
systems.

Introduction

In the theory of differential equations, a trajectory which is asymptotic to a
constant state as |t| → ∞ is called a homoclinic orbit. Such kinds of orbits have
been found in various models of dynamical systems and they frequently have
tremendous effect to the dynamics of such nonlinear systems. The homoclinic
orbits have been studied since the time of Poincaré but mainly by perturbation
methods. It is only relatively recently that some new tools have been developed
in the calculus of variations to show the existence of homoclinic solutions of
nonlinear differential equations.

In this article, a class of second order Hamiltonian systems is considered:

q̈ − L(t)q + V ′(t, q) = 0 (HS)

where q ∈ Rn. The n×n matrix L(t) is continuous, symmetric and satisfies the
following condition:

(L) There are µ1, µ2 ∈ (0,∞) such that µ1|y|2 ≤ L(t)y · y ≤ µ2|y|2 for all
t ∈ R, y ∈ Rn.

The basic assumption for the function V (t, y) is

(V1) V ∈ C2(R × Rn,R), V ′(t, 0) ≡ DyV (t, 0) = 0, D2
yV (t, 0) = 0 and

lim|y|→0
V ′(t,y)
|y| = 0 uniformly in t ∈ R. For any r > 0, there is a K = K(r)

such that
sup

t∈R, |y|≤r
‖DyV (t, y)‖∞ + ‖D2

yV (t, y)‖∞ ≤ K.
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The hypothesis (V1) implies that 0 is a constant solution of (HS). A non-
constant solution of (HS) which tends to 0 as |t| → ∞ will be called a homoclinic
solution or a homoclinic orbit.

In [13], Rabinowitz proved existence of homoclinic orbits for (HS) when:

(P) L and V are T-periodic in t, and

(V2) there is a µ > 2 such that 0 < µV (t, y) ≤ y · V ′(t, y) for all y ∈
Rn\{0} and inf

|y|=1, t∈R
V (t, y) > 0.

Subsequently, Coti Zelati and Rabinowitz [5] obtained multibump homoclinic
solutions for this system. For the first-order-time-periodic Hamiltonian system,
the existence of multibump homoclinic solutions was proved by Séré [17]; there
the one-bump solution had been obtained earlier in [3]. Subsequently there have
been further extensions for using variational methods to study such problems
in various directions [4, 6, 8, 9, 15, 18, 19]. The interested reader may consult
[16] for more references.

In this paper we intend to investigate the existence of homoclinic orbits of
(HS) when L and V are not necessarily periodic in t. The approach to (HS)
will involve the use of variational methods of a mini-max nature. Let E be the
space W 1,2(R,Rn) under the norm(∫ ∞

−∞
(|q̇|2 + |q|2)dt

)1/2

.

It is known that E ⊂ C0(R,Rn), the space of continuous functions q on R such
that q(t) → 0 as |t| → ∞. The solutions of (HS) are the critical points of the
functional J given by

J(q) =

∫ ∞
−∞

[
1

2
(|q̇|2 + L(t)q · q)− V (t, q)

]
dt

=
1

2
‖q‖2 −

∫ ∞
−∞

V (t, q)dt,

where by assumption (L),

‖q‖2 =

∫ ∞
−∞

(|q̇|2 + L(t)q · q)dt

is taken as an equivalent norm on E.
Note that assumption (V1) implies that J ∈ C1(E,R). Moreover, critical

points of J are classical solutions of (HS), satisfying q̇(t)→ 0 as |t| → ∞. Thus
q is a homoclinic solution of (HS). Let Iα = {q ∈ E|J(q) ≤ α}. It is not difficult
to see from (V1) and (V2) that V (t, q) = o(|q|2) as |q| → 0 and V (t, q)|q|−2 →∞
as |q| → ∞. Thus

J(q) =
1

2
‖q‖2 + o(‖q‖2) as q → 0 (0.1)
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and I0\{0} is non-empty. By the Mountain Pass Theorem J would have a
critical value β > 0 given by

β = inf
γ∈Γ

max
θ∈[0,1]

J(γ(θ)) , (MP )

where
Γ = {γ ∈ C([0, 1], E)|γ(0) = 0 and γ(1) ∈ I0\{0}},

provided that

(PS) whenever J(um) is bounded and J ′(um) → 0 as m → ∞, the sequence
{um} possesses a (strongly) convergent subsequence in E.

Unfortunately the Palais-Smale condition (PS) is not always satisfied. For
example, let q(t) be a homoclinic solution of (HS) obtained in [13]. Note that
by (P)

J(τmq) = J(q)

if m ∈ Z and
τmq(t) = q(t−mT ) .

Therefore, J(τmq) → J(q) > 0 and J ′(τmq) → 0 as m → ∞. Nevertheless,
the sequence {τmq} does not possess a convergent subsequence in E. The same
kind of difficulty occurs in dealing with homoclinic orbits of first order Hamil-
tonian systems (e.g. [3, 17]), there the authors used the idea of concentration-
compactness to treat the Palais-Smale sequences.

Although the mini-max structure of (MP) cannot guarantee that there is a
critical point u ∈ E with J(u) = β, we find a way to justify whether β is a
critical value of J . Our method is based on the following comparison argument.

Let Ωk = R\[−k, k], and Ek = W 1,2
o (Ωk,Rn) with the norm

‖u‖k =

(∫
Ωk

(L(t)u · u+ |u̇|2)dt

)1/2

.

Since w ∈ Ek+1 can be identified with an element of Ek by extending w to be
zero on Ωk\Ωk+1, the inclusions

Ek+1 ⊂ Ek ⊂ · · ·E (0.2)

will be used without mentioned explicitly, and Jk will be the restriction of J to
Ek.

Definition A sequence {um} ⊂ E is called a (PS)c sequence if J(um) → c
and J ′(um)→ 0 as m→∞.

Let Λ be the set of positive numbers c such that there exists a (PS)c sequence.
The set Λ in particular contains all the positive critical values of J . Let δ be
the infimum of Λ.

It will be shown that Λ is a nonempty set and δ is a positive number. On
the restriction Jk, we define the set Λk and its infimum δk similarly.
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Theorem 1 There exists a homoclinic solution q of (HS) with J(q) = δ, pro-
vided that δ 6∈ Λk for some k ∈ N.

Remark 1 We may take Ωk = R\[ak, bk], where {ak} is a decreasing sequence
with limk→∞ ak = −∞ and {bk} is an increasing sequence with limk→∞ bk =∞.

When β > δ, (HS) may possess more than one homoclinic orbit.

Theorem 2 There exist a homoclinic solution q with J(q) = δ and a homoclinic
solution q̂ with J(q̂) = β, if δ < β < δk for some k ∈ N.

The proofs of Theorems 1 and 2 will be given in section 2. Section 1 contains
several preliminary results such as a detailed analysis of Palais-Smale sequences.
A sufficient condition for δ = β will be given in section 3. In section 4, some
applications of the above theorems will be discussed, including the investigation
of perturbations of time periodic Hamiltonian systems.

1 Preliminaries

This section contains several technical results such as various smoothness and
qualitative properties of J . As mentioned in the introduction, the Mountain
Pass Theorem cannot be directly applied to obtain the existence of homoclinic
solutions of (HS), since verification of (PS) may not be possible. An alternative
approach is to analyze the behavior of Palais-Smale sequences. In doing so, we
begin with the Fréchet differentiability of J . A detailed proof of Proposition 1
can be found in [5].

Proposition 1 If V satisfies (V1), then J ∈ C1(E,R).

Next we prove the boundedness of Palais-Smale sequences.

Lemma 1 If {um} is a (PS)c sequence then there is a constant A such that

‖um‖ ≤ A (1.1)

and
‖um‖L∞ ≤

√
2A . (1.2)

Proof. Since J ′(um)→ 0 as m→∞, if m is large then

‖um‖
2 −

∫ ∞
−∞

V ′(t, um) · umdt = J ′(um)um = o(1) · ‖um‖ . (1.3)

Hence

c = J(um) + o(1)

= J(um)−
1

2
J ′(um)um + o(1) · (1 + ‖um‖)

=

∫ ∞
−∞

[
1

2
V ′(t, um) · um − V (t, um)]dt+ o(1) · (1 + ‖um‖)

≥ (
1

2
−

1

µ
)

∫ ∞
−∞

V ′(t, um) · umdt+ o(1) · (1 + ‖um‖) , (1.4)
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where the last inequality follows from (V2). Substituting (1.3) into (1.4) yields

c ≥ (
1

2
−

1

µ
)‖um‖

2 + o(1) · (1 + ‖um‖), (1.5)

which completes the proof of (1.1). Then (1.2) follows from the inequality
‖u‖L∞ ≤

√
2‖u‖.

Corollary 1 If {um} is a (PS)c sequence then

lim
m→∞

sup ‖um‖ ≤

(
2µc

µ− 2

)1/2

.

The proof of the above corollary follows directly from (1.5) and Lemma 1.

Corollary 2 If q ∈ E, and J ′(q) = 0 then

J(q) ≥
µ− 2

2µ
‖q‖2. (1.6)

Proof. Note that (1.6) is trivially satisfied when q ≡ 0. If q 6≡ 0, (1.6) follows
from (1.5) by setting um = q for all m.

Lemma 2 There exists a (PS)β sequence, where β is the number defined in
(MP).

This lemma is proved using deformation theory, as Theorem A4 is proven in
[14]. From (MP) and (0.1), it is clear that β > 0. Thus Lemma 2 shows that Λ
is non-empty.

Proposition 2 If (V1), (V2) and (L) are satisfied then δ > 0.

Proof. Choose ρ > 0 such that

|y · V ′(t, y)| ≤
µ1

2
|y|2

if |y| ≤ ρ. Let {um} be a (PS)c sequence. Pick c̄ > 0 such that (3µc̄/(µ− 2))1/2 =
ρ/
√

2. By Corollary 1

‖um‖ <

(
3µc̄

µ− 2

)1/2

if c ∈ (0, c̄) and m is large. Since ‖um‖L∞ ≤
√

2‖um‖ < ρ,

J ′(um)
um

‖um‖
≥ ‖um‖

−1

(
‖um‖

2 −
µ1

2

∫ ∞
−∞
|um|

2dt

)
≥

1

2
‖um‖

which implies ‖um‖ → 0 and consequently J(um)→ 0 as m→∞. This violates
the fact that limn→∞ J(um) = c > 0. Therefore there is no (PS)c sequence if
c ∈ (0, c̄). So δ ≥ c̄ > 0.

Let ξ : R→ [0, 1] be a C∞-function which satisfies

ξ(t) =

{
0 if t ∈ [−(k + 1), k + 1]
1 if t 6∈ [−(k + 2), k + 2] .

(1.7)
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Lemma 3 Let {um} be a (PS)c sequence. Assume there is an increasing se-
quence {tm} such that tm →∞ and∫ tm

−tm

|um|
2dt→ 0 (1.8)

as m → ∞. Let wm be the restriction of ξum on Ωk. Then wm ∈ Ek and
Jk(wm)→ c and J ′k(wm)→ 0 as m→∞.

Proof. It suffices to show that

lim
m→∞

|Jk(wm)− J(um)| = 0 (1.9)

and
lim
m→∞

sup
‖φ‖k≤1

|J ′k(wm)φ− J ′(um)φ| = 0 . (1.10)

By a direct computation,

J ′k(wm)φ− J ′(um)φ =

∫
t≥|k|

[L(t)(ξ(t) − 1)um · φ+ (ξ(t) − 1)u̇mφ̇

+umξ̇φ̇+ (V ′(t, wm)− V ′(t, um)) · φ]dt (1.11)

Let Q = [−(k + 2),−k] ∪ [k, k + 2]. Applying Schwarz inequality yields∣∣∣∣∣
∫
t≥|k|

L(t)(ξ(t) − 1)um · φdt

∣∣∣∣∣ ≤
(
µ2

∫
Q

|um|
2dx

)1/2

, (1.12)∣∣∣∣∣
∫
t≥|k|

umξ̇φ̇dt

∣∣∣∣∣ ≤ ‖ξ̇‖L∞

(∫
Q

|um|
2dx

)1/2

, (1.13)∣∣∣∣∣
∫
t≥|k|

(ξ(t) − 1)u̇mφ̇dt

∣∣∣∣∣ ≤
(∫

Q

|u̇m|
2dt

)1/2

, (1.14)

and ∣∣∣∣∣
∫
t≥|k|

(V ′(t, wm)− V ′(t, um)) · φdt

∣∣∣∣∣
≤ 2A1

∫
Q

|um||φ|dt (1.15)

≤ 2A1

(∫
Q

|φ|2dt

)1/2 (∫
Q

|um|
2dt

)1/2

,

where A1 = max{
∣∣D2

yV (t, y)
∣∣ : |y| ≤

√
2A, t ∈ Q}, by making use of Lemma

1. Since Q ⊂ [−tm, tm] if m is large, (1.10) follows from (1.11)-(1.15) and (1.8),
provided that ∫

Q

|u̇m|
2dt→ 0 as m→∞. (1.16)
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We now prove (1.16). Note that by passing to a subsequence if necessary
we may assume tm+1 − tm > 2. Let ξm be a C∞0 (R) function which satisfies
0 ≤ ξm ≤ 1, |ξ̇m| ≤ 1 and

ξm(t) =

{
1 if t ∈ [−tm, tm]
0 if t 6∈ (−tm+1, tm+1) .

Then by Lemma 1 there is a C1 > 0 such that

‖ξmum‖
2 ≤

∫ ∞
−∞

µ2|um|
2dt+ 2

∫ ∞
−∞
|um|

2|ξ̇m|
2dt+ 2

∫ ∞
−∞

ξ2
m|u̇m|

2dt ≤ C1 .

If m is large then∫ tm

−tm

L(t)um · ξmumdt+

∫ tm

−tm

ξ̇mum · u̇mdt−

∫ tm

−tm

V ′(t, um)ξmumdt

+

∫ tm

−tm

ξm|u̇m|
2dt = J ′(um)ξmum = o(1). (1.17)

Arguing like above and using (1.8), we conclude that the first three integrals of
(1.17) tend to zero as m→∞ and consequently∫

Q

|u̇m|
2dt ≤

∫ tm−1

−tm−1

|u̇m|
2dt ≤

∫ tm

−tm

ξm|u̇m|
2dt→ 0 as m→∞.

Observe that

Jk(wm)− J(um) =

∫
Q

1

2
[(ξ2 − 1)(L(t)um · um + |u̇m|

2)

+|ξ̇|2|um|
2 + 2ξξ̇um · u̇m] + [V (t, um)− V (t, wm)]dt

−

∫ k

−k
[
1

2
(L(t)um · um + |u̇m|

2)− V (t, um)]dt.

Thus (1.9) follows from several estimates which are similar to the above.
The next two lemmas indicate the relationship between Palais-Smale se-

quences and critical points of J . We refer to [5] for detailed proofs.

Lemma 4 Let {um} be a (PS)c sequence. Then there exists a subsequence
{umj} such that

umj → u weakly in E and strongly in L∞loc(R,Rn) (1.18)

for some u ∈ E which satisfies J ′(u) = 0 and J(u) ≤ c.

Lemma 5 Let {um} be a (PS)c sequence. Assume {um} converges to u ∈ E
both weakly in E and strongly in L∞loc(R,Rn). If vm = um − u, then

lim
m→∞

J ′(vm) = 0 and lim
m→∞

J(vm) = c− J(u) .
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2 Existence results

We now prove the existence of homoclinic orbits of (HS).

Theorem 3 Suppose there exists a (PS)c sequence such that c > 0 and

c 6∈ Λk (2.1)

for some k ∈ N, then there is a homoclinic solution q of (HS) and

c ≥ J(q) ≥ δ. (2.2)

Proof Let {um} be a (PS)c sequence. By Lemma 4, there exist a q ∈ E and
a subsequence, still denoted by {um}, such that

um → q weakly in E and strongly in L∞loc(R,Rn),

J ′(q) = 0, and (2.3)

J(q) ≤ c . (2.4)

We claim that q 6≡ 0. This is true if there exist k, l ∈ N and b > 0 such that if
m ≥ l then ∫ k

−k
|um|

2dt ≥ b. (2.5)

Suppose (2.5) is false. Then there exist a sequence {tm} with limm→∞ tm =∞,
and a subsequence, still denoted by {um}, such that

lim
m→∞

∫ tm

−tm

|um|
2dt = 0 .

Let ξ be defined as in (1.7) and wm be the restriction of ξum to Ωk. Invoking
Lemma 3 yields

c ∈ Λk

which contradicts (2.1). Therefore (2.5) holds and q 6≡ 0. This together with
(2.3) and Corollary 2 shows that J(q) > 0. Moreover (2.2) follows from the
definition of δ and (2.4).

Since E ⊂ C0(R,Rn), q(t) → 0 as |t| → ∞. This together with (HS) and
(V1) shows that q̈ ∈ L2(R,Rn). Then q ∈ W 2,2(R,Rn) implies q̇ ∈ C0(R,Rn).
Thus q is a homoclinic solution of (HS).

Proof of Theorem 1. By the definition of Λ and Proposition 2, there is a
(PS)δ sequence. Applying Theorem 3 gives a homoclinic solution q of (HS)
with J(q) = δ.
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Proof of Theorem 2. Since δ 6∈ Λk, by Theorem 1 there is a homoclinic
solution q of (HS) with J(q) = δ. Invoking Lemma 2 and Lemma 3, we get a
(PS)β sequence {um} which converges to q̂ both weakly in E and strongly in
L∞loc(R,Rn). Moreover J ′(q̂) = 0 and J(q̂) ≤ β. Since β 6∈ Λk, it follows from
the same reasoning as the proof of Theorem 3 that q̂ is a homoclinic solution of
(HS). Suppose q̂ = q. Setting vm = um−q, we see from Lemma 5 that {vm} is a
(PS)β−δ sequence. Since 0 < β − δ < δk, repeating the above arguments shows
that {vm} converges weakly to some v̄ ∈ E\{0}. This contradicts the fact that
um converges weakly to q. So q̂ 6= q.

Remark 2 This proof shows that Theorem 2 still holds if δ < β and β 6∈ Λk,
δ 6∈ Λj, β − δ 6∈ Λi for some i, j, k ∈ N.

3 A sufficient condition for δ = β

Although it has been shown that δ > 0, in general it seems to be difficult to
obtain an optimal lower bound for δ. Here we illustrate a condition which ensures
δ = β :

(V3) For all t ∈ R, |y| = 1, ρ−1V ′(t, ρy) · y is an increasing function of ρ if
ρ ∈ (0,∞).

Proposition 3 If (V1)-(V3) and (L) are satisfied then δ = β.

To Prove Proposition 3, we need the following proposition.

Proposition 4 If (V1)-(V3) and (L) are satisfied then

β = inf
u∈E
u6≡0

max
θ∈[0,∞)

J(θu). (3.1)

Since the proof of this proposition is similar to that of Proposition 2.14 in
[7], we omit it.

Corollary 3 If (V1)-(V3) and (L) are satisfied, then β ≤ βk ≤ βk+1, where

βk = inf
u∈Ek
u6≡0

max
θ∈[0,∞)

Jk(θu) .

The proof of this corollary follows easily from (0.2).

Proof of Proposition 3. It suffices to show that δ ≥ β, since the reversed
inequality is always true. Let {um} be a (PS)c sequence with c > 0. Then there
is an ε1 > 0 such that for large m

‖um‖ ≥ ε1. (3.2)

For um 6≡ 0, we set
gm(ρ) = J(ρum). (3.3)
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It is clear that gm(0) = 0. Since

g′m(ρ) = ρ‖um‖
2 −

∫ ∞
−∞

V ′(t, ρum) · umdt, (3.4)

it follows from (V1) that g′m(ρ) > 0 if ρ is a sufficiently small positive number.
Moreover, we know from (V2) that

lim
ρ→∞

gm(ρ) = −∞.

Hence there is a ρm ∈ (0,∞) such that

g′m(ρm) = 0 (3.5)

and
gm(ρm) = max

ρ∈[0,∞)
gm(ρ) . (3.6)

By Proposition 4
β ≤ gm(ρm) . (3.7)

Let R(z) = {t ∈ R||t − z| ≤ 1
2}. We claim there exist a sequence {zm} ⊂ Z

and an ε2 > 0 such that
‖um‖L∞(R(zm)) ≥ ε2 . (3.8)

Suppose (3.8) is false. Then there is a subsequence, still denoted by {um}, such
that

sup
z∈Z
‖um‖L∞(R(z)) → 0 as m→∞ . (3.9)

Given ε3 > 0, by (V1) there is an s > 0 such that

|V ′(t, y) · y| ≤ ε3|y|
2 for |y| ≤ s . (3.10)

If m is large, (3.9) and (3.10) imply that∣∣∣∣∫ ∞
−∞

V ′(t, um) · umdt

∣∣∣∣ ≤ ε3 ∫ ∞
−∞
|um|

2dt.

Since

‖um‖
2 = J ′(um)um +

∫ ∞
−∞

V ′(t, um) · umdt ≤ o(1)‖um‖+ ε3‖um‖
2,

it follows from Lemma 1 that

‖um‖
2 ≤

1

4
ε21 +A2ε3 .

Choosing ε3 < ε21/(4A
2) yields

‖um‖
2 <

1

2
ε21 (3.11)
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which contradicts (3.2). Therefore (3.8) must hold.
Let vm(t) = um(t+zm). Since ‖vm‖ is bounded, there is a subsequence, still

denoted by {vm}, such that

vm → v̄ in L∞loc(R,Rn)

and
‖v̄‖L∞[−1/2,1/2] ≥ ε2 .

Since vm and v̄ are continuous on [−1/2, 1/2], there is a subinterval [a, b] of
[−1/2, 1/2] such that

min
t∈[a,b]

|vm(t)| ≥ ε4 for all large m, (3.12)

where ε4 = ε2/2. By (3.4) and (3.5)

‖um‖
2 =

1

ρm

∫ ∞
−∞

V ′(t, ρmum) · umdt.

Let Dm = [a+ zm, b+ zm]. Since (V2) implies that

y · V ′(t, y)

|y|2
≥
µV (t, y)

|y|2
→∞ uniformly in t as |y| → ∞,

We get

‖um‖
2 ≥

1

ρm

∫
Dm

V ′(t, ρmum(t)) · um(t)dt

=

∫
Dm

ρ−2
m |um(t)|−2V ′

(
t, ρm|um(t)|

um(t)

|um(t)|

)
×

ρm|um(t)|
um(t)

|um(t)|
|um(t)|2dt

≥ ε24

∫
Dm

ρ−2
m |um(t)|−2V ′

(
t, ρm|um(t)|

um(t)

|um(t)|

)
×

ρm|um(t)|
um(t)

|um(t)|
dt→∞ as ρm →∞. (3.13)

It follows from Lemma 1 that {ρm} is bounded. Let

h(ρ) =
1

2
ρ2

∫ ∞
−∞

V ′(t, um) · umdt−

∫ ∞
−∞

V (t, ρum)dt.

Since

h′(ρ) = ρ

∫ ∞
−∞

V ′(t, um) · umdt−

∫ ∞
−∞

V ′(t, ρum) · umdt,

it follows from (V3) that h′(ρ) > 0 if ρ ∈ (0, 1) and h′(ρ) < 0 if ρ ∈ (1,∞).
Therefore,

h(1) = max
ρ∈[0,∞)

h(ρ).
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Since

gm(ρm) =
1

2
ρ2
mJ
′(um)um +

1

2
ρ2
m

∫ ∞
−∞

V ′(t, um) · umdt

−

∫ ∞
−∞

V (t, ρmum)dt = h(ρm) + o(1),

we have

β ≤ lim
m→∞

inf gm(ρm)

≤ lim
m→∞

inf

∫ ∞
−∞

[
1

2
V ′(t, um) · um − V (t, um)]dt

= lim
m→∞

inf[
1

2
‖um‖

2 −

∫ ∞
−∞

V (t, um)dt−
1

2
J ′(um)um]

= lim
m→∞

J(um) = c.

Since c is arbitrary, it follows that β ≤ δ. This completes the proof.

Remark 3 Under the hypothesis of Proposition 3, it follows that

δk = βk . (3.14)

and

δk ≤ δk+1 . (3.15)

In this case, Theorem 1 can be recast as follows.

Theorem 4 There exists a homoclinic solution of (HS) if

β < lim
k→∞

δk. (3.16)

4 Examples

In this section some existence and nonexistence results for the homoclinic orbits
of (HS) will be discussed. For the time-periodic Hamiltonian system of the form
(HS), it has been shown (e.g. [13, 5]) that there exists at least one homoclinic
orbit.

Proposition 5 If (L) (P) (V1) and (V2) are satisfied, then (HS) possesses a
homoclinic orbit q ∈W 1,2(R,Rn) such that J(q) = δ.

Remark 4 If (V3) is also satisfied, then by Proposition 3 there is a homoclinic
orbit q of (HS) with J(q) = β.

Lemma 6 If (L),(P) and (V1)-(V3) are satisfied then βk = β for all k.
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Proof. As noted in Remark 1, we may take Ωk = R\[−kT, kT ]. Let q be a
homoclinic orbit of (HS) with J(q) = β. If

um(t) =


q(t−mT ) for t ∈ [(k + 1)T,∞)
t−kT
T

q((k −m+ 1)T ) for t ∈ [kT, (k + 1)T )
0 for t ∈ (−∞,−kT ],

then by a direct computation

lim
m→∞

max
θ∈[0,∞)

Jk(θum) = β. (4.1)

Since limθ→∞ Jk(θum) = −∞, (4.1) implies

βk ≤ β. (4.2)

On the other hand, W 1,2
0 (Ωk,Rn) ⊂W 1,2(R,Rn) yields

βk ≥ β. (4.3)

Combining (4.2) with (4.3) gives βk = β.
In the use of comparison arguments in what follows, we let

q̈ − L̃(t)q + Ṽ ′(t, q) = 0 (HS)∼

be a Hamiltonian system having the same form as (HS). The corresponding
functional associated with (HS)∼ is

J̃(q) =

∫ ∞
−∞

[
1

2

(
|q̇|2 + L̃(t)q · q

)
− Ṽ (t, q)

]
dt.

Here Ṽ and L̃ as well as V and L are assumed to satisfy (V1), (V2) and (L).

In the same way as β is defined in (MP), let β̃ be the mountain pass minimax

value of J̃ . Similarly, we define δ̃, J̃k, β̃k, and δ̃k by the same manner. It is
clear from (MP) that

β̃ ≤ β (4.4)

if
(L(t)− L̃(t))y · y ≥ 0 (4.5)

and
Ṽ (t, y) ≥ V (t, y) (4.6)

for all t ∈ R and y ∈ Rn.
We now investigate the existence of homoclinic orbits of (HS) when a time-

periodic Hamiltonian system is perturbed. Let A = {y|α < |y| < α̂}, where
0 ≤ α < α̂. Set B = (a, b) × A, where −∞ < a < b < ∞. In the next two

examples, it is assumed that L and V satisfy (P) and (V3), L̃ = L,

Ṽ (t, y) > V (t, y) for (t, y) ∈ B (4.7)

Ṽ (t, y) = V (t, y) for (t, y) ∈ Rn+1\B (4.8)



14 Existence and Multiplicity Results EJDE–1997/07

Example 1. The perturbed system (HS)∼ possesses at least one homoclinic
solution q̃. Indeed, by Proposition 5 and Remark 4 there is a homoclinic solution
q1 of (HS) with J(q1) = β. If the set L = {(t, q1(t))|t ∈ R} does not intersect B
then q1 is also a homoclinic solution of (HS)∼. Suppose L ∩ B 6= ∅. Then by
(4.7) and (4.8),

J̃(q1) < J(q1)

and
J̃(θq1) ≤ J(θq1) for θ ∈ [0,∞).

It follows that maxθ∈[0,∞) J̃(θq1) < β. This together with limθ→∞ J̃(θq1) = −∞

and (MP) implies that β̃ < β. On the other hand, it is clear from Lemma 6 and

(3.14) that β = βk = β̃k = δ̃k for large k. Hence (HS)∼ possesses a homoclinic

solution q̃ with J̃(q̃) = β̃.

Example 2 In Example 1, if α is a sufficiently small positive number and
α̂ is sufficiently large, then (HS)∼ possesses two homoclinic solutions q and

q̃ such that J̃(q̃) = β̃ < β = J̃(q). Note that q1(t) → 0 as |t| → ∞. Letting
q(t) = q1(t+ lT ), we see that if l is sufficiently large then |q(t)| < α for t ∈ (a, b).
Thus q is a homoclinic solution of (HS)∼. On the other hand, by choosing a
suitable j, the set {(t, q1(t + jT ))|t ∈ R} must intersect B, since, by the basic
existence and uniqueness theorem of ordinary differential equations, the point
t at which |q(t)| = 0 is isolated if such a point exists. We may proceed as in

Example 1 to obtain a homoclinic solution q̃ for (HS)∼ with J̃(q̃) = β̃.

Remark 5 We may proceed as in Example 2 to perturb a time-periodic Hamil-
tonian system (HS) in a suitable way to obtain any finite number of homoclinic
solutions for the perturbed system (HS)∼, and all these solutions have different

critical values for J̃ .

In the next two examples, we investigate the homoclinic orbits of (HS)∼ for

the case where L̃ = L,

Ṽ (t, y) < V (t, y) for (t, y) ∈ B̃ (4.9)

Ṽ (t, y) = V (t, y) for (t, y) ∈ Rn+1\B̃. (4.10)

Here B̃ is not necessarily a connected set. Also, L and V are assumed to satisfy
(P) and (V3).

Example 3. Let B̃ = B, α = 0 and α̂ = ∞. Assume that Ṽ satisfies (V3).

Then there is no homoclinic solution q̃ of (HS)∼ with J̃(q̃) = β̃. Note that

β̃ ≥ β (4.11)

by (4.9) and (4.10). Moreover, if q is a homoclinic solution of (HS) with J(q) =
β, letting um(t) = q(t−mT ) yields

lim
m→∞

max
θ∈[0,∞)

J̃(θum) = β, (4.12)
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by making use of the fact that

lim
m→∞

|um(t)| = 0 if t ∈ [a, b].

Since limθ→∞ J̃(θum) = −∞, (4.12) implies β̃ ≤ β. This together with (4.11)
yields

β̃ = β . (4.13)

Suppose there were a homoclinic solution q̃ of (HS)∼ with J̃(q̃) = β̃. Arguing

as in Example 1, we would obtain β̃ > β which contradicts (4.13).

Example 4. When Ṽ satisfies (4.9) and (4.10), the perturbed system (HS)∼

may possess a homoclinic solution q̃ with J̃(q̃) > β̃. Here we construct an
example as follows. Let W (t, y) be a function which satisfies

W (t, y) < V (t, y) for (t, y) ∈ B , (4.14)

and
W (t, y) = V (t, y) for (t, y) ∈ ([0, T ]× Rn)\B , (4.15)

where B = (a, b) × A, A = {y|α < |y| < ∞}, 0 < α and 0 < a < b <
T . Moreover, let W satisfy (P), (V1), (V2) and (V3). By Proposition 5 and
Remark 4, (HS) possesses a homoclinic solution q with J(q) = β, and the
Hamiltonian system

q̈ − L(t)q +W ′(t, q) = 0

possesses a homoclinic solution q̃. If α, a and T − b are sufficiently small,
the set L1 = {(t, q(t))|t ∈ R} intersects Bl for some l ∈ Z, where Bl = {(t +
lT, y)|(t, y) ∈ B}. Since α > 0 and lim|t|→∞ |q̃(t)| = 0, the set L2 = {(t, q̃(t))|t ∈
R} intersects only a finite number of Bl.

Let B̃ be the union of Bl for which Bl ∩ L2 6= ∅. Define Ṽ (t, y) by

Ṽ (t, y) =

{
W (t, y) if (t, y) ∈ B̃.

V (t, y) if (t, y) ∈ Rn+1\B̃.

Clearly, q̃ is a homoclinic solution of (HS)∼. Moreover, q1 is also a homoclinic
solution of (HS)∼ if q1(t) = q(t + jT ) and j is sufficiently large. Consequently

β̃ = β. Finally the fact that L2 intersects Bl shows that J̃(q̃) > β = β̃.

Remark 6 In Examples 1-4, all these perturbations can be made arbitrarily
“small”.

Example 5. If V satisfies (V3), and there exist t0 ∈ R and T > 0 such that
for all y ∈ Rn

V (t, y) ≥ V (t+ T, y), (L(t)− L(t+ T ))y · y ≤ 0 if t ≥ t0 (4.16)

V (t, y) ≥ V (t− T, y), (L(t)− L(t− T ))y · y ≤ 0 if t < t0 + T, (4.17)
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then (HS) possesses a homoclinic solution q with J(q) = β.

To show this, we let Ṽ (t, y) = V (t, y), L̃(t) = L(t) for t∈ [t0, t0 + T ], y ∈ R.

Let Ṽ and L̃ satisfy (P). By Proposition 5 and Remark 4, (HS)∼ possesses a

homoclinic solution q̃ with J̃(q̃) = β̃. Let

L3 = {(t, y)|Ṽ (t, y) > V (t, y) or (L̃(t)− L(t))y · y < 0)} .

If the set L4 = {(t, q̃(t))|t ∈ R} does not intersect L3 then q̃ is also a homoclinic

solution of (HS). Otherwise, we may proceed as in Example 1 to get β < β̃.
Then δk > β for some k and consequently (HS) possesses a homoclinic solution
q with J(q) = β, provided that

δk ≥ β̃. (4.18)

Indeed, by Lemma 6,
β̃k = β̃. (4.19)

for all k. Moreover it follows from (3.14) that

δk = βk. (4.20)

Since (4.16) and (4.17) imply that

βk ≥ β̃k, (4.21)

putting (4.19)-(4.21) together gives (4.18).

Remark 7 The results of Example 5 still hold if instead of (V3), V satisfies

(V3)’ There is a t1 > 0 such that, for all t ∈ (−∞,−t1] ∪ [0, T ] ∪ [t1,∞) and
|y| = 1, ρ−1V ′(t, ρy) · y is an increasing function of ρ if ρ ∈ (0,∞).

Example 6. Consider (HS) where L satisfies (P) and there is a t0 ∈ R such
that for all y ∈ Rn

V (t, y) = V (t− T, y) if t ≤ t0

V (t, y) = V (t+ T, y) if t ≥ t0 . (4.22)

Set L̃ = L. Without loss of generality, we may assume that t0 = 0. Let β+ = β̃,
when

Ṽ satisfies (P) and Ṽ (t, y) = V (t, y) for t ≥ 0. (4.23)

Let β = β̃, when

Ṽ satisfies (P) and Ṽ (t, y) = V (t, y) for t ≤ 0 (4.24)

If β ≤ β+, V satisfies (V3) and there is an α1 > 0 such that

V (t, y) > V (t− T, y) for t ∈ (0, T ) and |y| < α1, (4.25)
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then (HS) possesses a homoclinic solution q. This can be done by proving
β < β , since δk = β if k is large. When (4.24) holds, let q̃ be a homoclinic

solution of (HS)∼ with J̃(q̃) = β . Let θ0 > 0 be fixed such that

J̃(θ0q̃) < 0.

If t is sufficiently large then θ0|q̃(t)| < α1. Let q1(t) = q̃(t + lT ) and choose l
large enough such that θ0|q1(t)| = θ0|q̃(t + lT )| < α1 for t ≥ 0. Then invoking
(4.25) yields

J(θq1) < J̃(θq1) for θ ∈ [0, θ0] .

Hence
max
θ∈[0,θ0]

J(θq1) < max
θ∈[0,θ0]

J̃(θq1) = β

and
J(θ0q1) < J̃(θ0q1) < 0 .

It follows from (MP) that β < β .

Remark 8 (a) It is easy to see that in Example 6 (HS) still possesses a ho-
moclinic solution if (4.25) is replaced by

V (t, y) ≥ V (t− T, y) for t ∈ [0, T ] and |y| < α1.

(b) As a similar case to Example 6, we may consider

L(t) = L(t− T ), V (t, y) = V (t− T, y) if t ≤ t0

L(t) = L(t+ T1), V (t, y) = V (t+ T1, y) if t ≥ t0,

where T1 > 0.

As illustrated in the above examples, Proposition 3 has been applied as a good
way to obtain an optimal lower bound for δk if condition (V3) is satisfied. In
the next example, our aim is to find estimates of δk to fulfill the requirement of
Theorem 1 in the situation where (V3) does not hold.

Example 7. Let V (t, y) = H(t)V̂ (y), where inft∈RH(t) > 0. Let β0 be the
mountain pass minimax value of J on the subspace W 1,2

0 ((−k, k),Rn) of E.
Clearly

β0 ≥ β .

In view of the proof of Proposition 2, c̄ = (µ− 2)ρ2/(6µ) is a lower bound of δk,
where ρ can be chosen as large as possible; so that, for |t| ≥ k, if |y| ≤ ρ then

|H(t)y · V̂ ′(y)| ≤
µ1

2
|y|2 .

Since this inequality holds when sup|t|≥kH(t) ≤ λ and

|y · V̂ ′(y)|

|y|2
≤
µ1

2λ
,

we see that c̄ > β0 and consequently δk > β if λ is small enough.
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