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Elliptic and Parabolic Problems ∗

Maria do Rosário Grossinho & Pierpaolo Omari

Abstract

We prove the existence of infinitely many solutions for a class of quasi-
linear elliptic and parabolic equations, subject respectively to Dirichlet
and Dirichlet–periodic boundary conditions. We assume that the primi-
tive of the nonlinearity at the right-hand side oscillates at infinity. The
proof is based on the construction of upper and lower solutions, which
are obtained as solutions of suitable comparison equations. This method
allows the introduction of conditions on the potential for the study of
parabolic problems, as well as to treat simultaneously the singular and
the degenerate case.

1 Introduction and statements

Let us consider the following quasilinear elliptic and parabolic problems:{
− div a(x,∇u) = b(x, u,∇u) in Ω,

u = 0 on ∂Ω
(1.1)

and  ut − divx a(x,∇xu) = c(x, t, u,∇xu) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) on Ω.
(1.2)

We assume that Ω ⊂ RN is a bounded domain, with boundary ∂Ω of class C2,
and T is a fixed positive number. We set Q := Ω×]0, T [ and Σ := ∂Ω×]0, T [.
We suppose that the coefficient function a : Ω×RN → RN is such that a(x, ξ) =
∇ξA(x, ξ) for all (x, ξ) ∈ Ω × RN , for some A : Ω × RN → R satisfying A ∈
C1(Ω×RN ,R), A(x, ·) ∈ C2(RN \{0},R) for all x ∈ Ω and∇ξA(·, ξ) ∈ C1(Ω,R)
for all ξ ∈ RN . The following structure conditions of Leray–Lions type (cf. [12],
[11], [4]) are also assumed:
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(i1) there exist constants p > 1, γ1, γ2 > 0 and κ ∈ [0, 1] such that

γ1(κ+ |ξ|)p−2 |s|2 ≤
N∑

i,j=1

∂2A

∂ξi∂ξj
(x, ξ) si sj ≤ γ2(κ+ |ξ|)p−2 |s|2

for all x ∈ Ω, ξ ∈ RN \ {0} and s ∈ RN ,

and

(i2) there exist constants p > 1 and γ3 > 0 such that

max
i,j=1...N

∣∣∣∣ ∂2A

∂xi∂ξj
(x, ξ)

∣∣∣∣ ≤ γ3(1 + |ξ|)p−1

for all x ∈ Ω and ξ ∈ RN .

It is understood that conditions (i1) and (i2) hold with the same exponent p. We
further suppose that the functions b : Ω×R×RN → R and c : Q×R×RN → R
are continuous and satisfy, respectively,

(i3) there exist two continuous functions f, g : R→ R such that

f(s) ≤ b(x, s, ξ) ≤ g(s)

for all x ∈ Ω, s ∈ R and ξ ∈ RN ,

and

(i4) there exist two continuous functions f, g : R→ R such that

f(s) ≤ c(x, t, s, ξ) ≤ g(s)

for all x ∈ Ω, t ∈ [0, T ], s ∈ R and ξ ∈ RN .

We finally set F (s) =
∫ s

0 f(σ)dσ and G(s) =
∫ s

0 g(σ)dσ.

The aim of this paper is to establish the existence of infinitely many solutions
to problems (1.1) (1.2), placing only conditions on the functions F and G, which
are assumed to have an oscillatory behaviour at infinity. In this way we are able
to generalize to (1.1) a similar statement recently obtained in [13] for the less
general elliptic problem{

− div a(∇u) = d(u) + e(x) in Ω,
u = 0 on ∂Ω,

(1.3)

as well as to extend it to the parabolic problem (1.2). In this way we obtain
a result which is completely new within the framework of parabolic equations,
where it is fairly unusual to introduce conditions on the potential, on account
of the lack of variational structure. The study of the elliptic problem and that
of the parabolic problem proceed in a quite parallel way and depend, in both
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cases, on the analysis of some auxiliary elliptic equations, for which some ideas
introduced in [13] are employed. We stress that even the sole extension of the
result in [13], from (1.3) to (1.1), is not trivial, since a step of the proof in [13]
(cf. Lemma 2.2 therein) relies in an essential way on the autonomous character
of the coefficient function a in (1.3).

Before stating our results, we recall that a solution of (1.1) is a function
u ∈W 1,p

0 (Ω) ∩ L∞(Ω) such that∫
Ω

a(x,∇u)∇w dx =

∫
Ω

b(x, u,∇u)wdx

for all w ∈W 1,p
0 (Ω). Whereas, a solution of (1.2) is a function u ∈ V0 ∩L∞(Q),

with V0 := Lp(0, T ;W 1,p
0 (Ω)), having distributional derivative ut ∈ V0

∗+Lq(Q)
for some q > 1, which satisfies u(0) = u(T ) and

<ut, w> +

∫∫
Q

a(x,∇x u)∇xw dxdt =

∫∫
Q

c(x, t, u,∇xu)wdxdt

for all w ∈ V0 ∩ L∞(Q), where < ·, · > denotes the duality pairing between
V0
∗+Lq(Q) and V0 ∩Lq/(q−1)(Q). Of course, the exponent p, which appears in

these definitions, comes from (i1) and (i2). Note also that the convergence of
the integrals at the right hand side is guaranteed by assumptions (i3) and (i4)
on b and c, respectively, and by the boundedness of the solution u.

Theorem 1.1 Assume (i1), (i2), and (i3). Moreover, suppose that

(j1) lim inf
s→+∞

G(s)

sp
≤ 0,

(j2) −∞ < lim inf
s→+∞

F (s)

sp
≤ lim sup

s→+∞

F (s)

sp
= +∞,

(j3) lim inf
s→−∞

F (s)

|s|p
≤ 0,

(j4) −∞ < lim inf
s→−∞

G(s)

|s|p
≤ lim sup

s→−∞

G(s)

|s|p
= +∞.

Then, problem (1.1) has two sequences (un)n and (vn)n of solutions, satisfying

sup
Ω
un → +∞ and inf

Ω
vn → −∞.

Theorem 1.2 Assume (i1), (i2), (i4), (j1), (j2), (j3), and (j4). Then prob-
lem (1.2) has two sequences (un)n and (vn)n of solutions, satisfying

sup
Q
un → +∞ and inf

Q
vn → −∞.
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We remark that the solutions un and vn of the elliptic problem (1.1) possess
more regularity since they belong to C1,σ(Ω), for some σ > 0. Further, they
satisfy the ordering condition

. . . ≤ vn ≤ . . . ≤ v1 ≤ u1 ≤ . . . ≤ un ≤ . . . in Ω.

This information is only partially retained for the solutions of the parabolic
problem (1.2). Indeed, we can prove that they satisfy

. . . ≤ vn ≤ . . . ≤ v1 ≤ u1 ≤ . . . ≤ un ≤ . . . in Q,

provided that p ≥ 2. Anyhow, we stress that, except for this detail, we are able
to obtain exactly the same multiplicity result both for the singular parabolic
problem, corresponding to 1 < p < 2, and for the degenerate one, corresponding
to p > 2. This is due to the fact that the main tool in our proofs is the upper-
and-lower-solutions method, which is a principle valid in either situation (see
[6]).

At this point, it is worth commenting on the proofs of Theorems 1.1 and
1.2, which, as already pointed out, proceed in a parallel way and essentially rely
on the use of the upper-and-lower- solutions method. Indeed, to get a sequence
(un)n of solutions, with supun → +∞, the main task is to build a sequence
(βn)n of upper solutions and a sequence (αn)n of lower solutions, which are
both of class C1 and satisfy minβn ≥ maxαn → +∞. The upper solutions βn,
both of problem (1.1) and of problem (1.2), are obtained as upper solutions of
the “upper” comparison problem{

− div a(x,∇u) = g(u) in Ω,
u = 0 on ∂Ω.

(1.4)

These βn are in turn constructed as solutions of the quasilinear ordinary differ-
ential equation

−(q |z′|p−2 z′)
′

= r g(z) in [a, b], (1.5)

where ]a, b[ is the projection of Ω on, say, the x1–axis and q, r are suitable
positive weight–functions. Indeed, assumption (j1) on G yields the existence of
a sequence (zn)n of concave, decreasing, arbitrarily-large positive solutions of
(1.5). Then, the functions βn defined by

βn(x1, . . . , xN ) := zn(x1) in Ω

form a sequence of upper solutions of (1.4), satisfying minβn → +∞. Con-
versely, the lower solutions αn are solutions of the “lower” comparison problem{

− div a(x,∇u) = f(u) in Ω,
u = 0 on ∂Ω.

(1.6)

The existence of these solutions αn is obtained using again the upper-and-lower-
solutions method, applied to (1.6) and combined, as in [13], with an elementary
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variational argument. The upper solutions of (1.6) are the βn previously ob-
tained, while the lower solutions of (1.6) are constructed, using assumption (j3),
by the same argument described above applied to an equation similar to (1.5)
but involving the function f . Condition (j2) is used in order to prove that
such solutions αn of (1.6) satisfy maxαn → +∞. A completely similar argu-
ment allows us to build sequences (vn)n of solutions of problems (1.1) and (1.2),
satisfying inf vn → −∞.

Let us observe that the class of quasilinear differential operators we consider
here includes operators of the type

−div(|A(x)∇u|p−2AT (x)A(x)∇u)

and
ut − divx(|A(x)∇xu|

p−2AT (x)A(x)∇xu),

where p > 1 and A : Ω → RN2

is a C1 matrix–valued function, with A(x)
nonsingular for each x ∈ Ω. It is clear that, if A(x) is the identity matrix for
each x, these operators become, respectively, −∆pu and ut −∆pu, where ∆p is
the p–Laplacian with respect to the space variable. Hence, the following simple
consequence of Theorem 1.2 can be stated.

Corollary 1.1 Assume that d : R → R and e : Q → R are continuous func-
tions. Moreover, suppose that

lim inf
s→±∞

D(s)

|s|p
= 0 and lim sup

s→±∞

D(s)

|s|p
= +∞,

where D =
∫ s

0 d(σ) dσ. Then, the same conclusions of Theorem 1.2 hold for ut − divx(|∇xu|p−2∇xu) = d(u) + e(x, t) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) on Ω.
(1.7)

Actually, Theorems 1.1 and 1.2 are new, even when the differential operators
are linear, as is the case of the following problems{

−div(M(x)∇u) = b(x, u,∇u) in Ω,
u = 0 on ∂Ω ,

and  ut − divx(M(x)∇xu) = c(x, t, u,∇xu) in Q,
u(x, t) = 0 on Σ,

u(x, 0) = u(x, T ) on Ω,

whereM(x) = AT (x)A(x). Evidently, within this framework, one can say much
more about the regularity of the solutions, which lie in W 2,r(Ω) for every r > 1,
in the elliptic case, and in W 1,2

r (Q) for every r > 1, in the parabolic case.
We also remark that our method can be used, in some situations, to obtain

multiple solutions having a prescribed sign. We produce a model result in this
direction only for the parabolic problem. It is stated for the sake of simplicity
in the setting of Corollary 1.1.
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Proposition 1.1 Assume that d : [0,+∞[→ R and e : Q → R are continuous
functions, satisfying

d(0) + e(x, t) ≥ 0 in Q.

Moreover, suppose that

lim inf
s→+∞

D(s)

sp
= 0 and lim sup

s→+∞

D(s)

sp
= +∞,

where D =
∫ s

0 d(σ) dσ. Then, problem (1.7) has a sequence (un)n of solutions
which satisfy

inf
Q
un = 0 and sup

Q
un → +∞.

We further note, and it will be clear from the proofs given below, that the
mere existence of a solution of problem (1.1), or respectively (1.2), without
information about the multiplicity, is achieved assuming only conditions (j1)
and (j3), in addition to (i1), (i2), (i3) for problem (1.1), and (i1), (i2), (i4)
for problem (1.2). This statement generalizes in various directions previous
existence results obtained in [8], [7], [13, Sec. 3] and [9, Th. 2.4].

We conclude by observing that more general conditions than (i1) and (i2)
could be considered (see the beginning of the next section). Furthermore, the
continuity assumptions could be replaced by suitable Carathéodory conditions.

2 Proofs

We begin by deriving some consequences of assumptions (i1) and (i2), which
will be used in the course of this section.

First of all, it is plain that we can assume without loss of generality that

a(x, 0) = 0 in Ω. (2.1)

Otherwise we could replace a(x, ξ) by ã(x, ξ) := a(x, ξ) − a(x, 0) and the equa-
tions in (1.1) and (1.2) by the equivalent ones

− div ã(x,∇u) = b(x, u,∇u) + div a(x, 0)

and, respectively,

ut − divxã(x,∇xu) = c(x, t, u,∇xu) + divxa(x, 0).

Next, observe that from (2.1) we have for all x ∈ Ω and ξ ∈ RN \ {0}

a(x, ξ) = a(x, ξ)− lim
ε→0+

a(x, εξ)

= lim
ε→0+

∫ 1

ε

HξA(x, t ξ)ξ dt =

∫ 1

0

HξA(x, t ξ)ξ dt, (2.2)

where HξA denotes the Hessian matrix of A with respect to the ξ variable.
Notice that the last integral is finite due to the upper estimate in (i1).



EJDE–1997/08 Maria do Rosário Grossinho & Pierpaolo Omari 7

¿From (2.2) and the lower estimate in (i1), we also derive for all x ∈ Ω and
ξ ∈ RN \ {0}, with |ξ| ≥ 1, the inequality

a(x, ξ)·ξ =

∫ 1

0

HξA(x, t, ξ)ξ ·ξ dt

≥ γ1

(∫ 1

0

(κ+ t |ξ|)p−2 dt

)
|ξ|2 ≥

{
γ12p−2 |ξ|p if 1 < p < 2
γ1

p−1 |ξ|
p if p ≥ 2.

Hence, we can find two constants c1, c2 > 0 such that for all x ∈ Ω and ξ ∈ RN

a(x, ξ) · ξ ≥ c1 |ξ|
p − c2.

Similarly, we can prove that for all x ∈ Ω and ξ 6= ξ′ ∈ RN

(a(x, ξ) − a(x, ξ′)) · (ξ − ξ′) =

∫ 1

0

HξA(x, ξ + t (ξ − ξ′))(ξ − ξ′) · (ξ − ξ′) dt

≥ γ1

(∫ 1

0

(κ+ |ξ + t (ξ − ξ′)|)p−2 dt

)
|ξ − ξ′|2 > 0.

Using again (2.2) and the upper estimate in (i1), we obtain for all x ∈ Ω and
ξ ∈ RN , with |ξ| ≥ 1,

|a(x, ξ)| ≤

∫ 1

0

|HξA(x, t ξ)| |ξ| dt ≤ γ2

(∫ 1

0

(κ+ t |ξ|)p−2 dt

)
|ξ|

≤

{ γ2

p−1 |ξ|
p−1 if 1 < p < 2

γ22p−2 |ξ|p−1 if p ≥ 2.

Hence, we can find two constants c3, c4 > 0 such that for all x ∈ Ω and ξ ∈ RN

|a(x, ξ)| ≤ c3 |ξ|
p−1 + c4.

Moreover, we can write for all x ∈ Ω and ξ ∈ RN

A(x, ξ) = A(x, 0) + a(x, 0) ξ +

∫ 1

0

(1− t)HξA(x, tξ) ξ · ξ dt,

where the last integral is finite by (i1). Hence, using (i1) and (2.1) and arguing
as above, we get the existence of constants c5, c6, c7 > 0 such that for all x ∈ Ω
and ξ ∈ RN

c5 |ξ|
p − c6 ≤ A(x, ξ) ≤ c7 |ξ|

p + c6.

Finally, from (i2), we easily derive that, for each i = 1, . . . , N and for all x, y ∈ Ω
and ξ ∈ RN

|ai(x, ξ)− ai(y, ξ)| ≤ sup
(z,ξ)∈Ω×RN

|∇ξ ai(z, ξ)| δ(x, y)

≤ N γ3 (1 + |ξ|)p−1 δ(x, y),
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where δ(x, y) denotes the geodetic distance in Ω between x and y. Since ∂Ω is of
class C2 and therefore the geodetic distance is globally Lipschitz, we conclude
that there exists a constant c8 > 0 such that for all x, y ∈ Ω and ξ ∈ RN

|a(x, ξ)− a(y, ξ)| ≤ c8 (1 + |ξ|)p−1 |x− y|.

Moreover, from (i2) there exists a constant γ4 > 0 such that for all x ∈ Ω and
ξ ∈ RN , with |ξ| ≥ 1, ∣∣∣∣∣

N∑
i=1

∂ai

∂xi
(x, ξ)

∣∣∣∣∣ ≤ γ4|ξ|
p−1. (2.3)

According to this discussion, we can conclude that conditions (0.3a), (0.3b),
(0.3c), (0.3d) of Theorem 1 in [11] are satisfied, as well as conditions (A1), (A2),
(A3) in [5] and (A1), (A2), (A3), (A4) in [6].

Now we state some preliminary lemmas which will eventually lead to the
proof of Theorems 1.1 and 1.2. Let us consider the quasilinear elliptic problem{

− div a(x,∇u) = h(u) in Ω,
u = 0 on ∂Ω,

(2.4)

where a satisfies conditions (i1) and (i2) and h : R→ R is continuous. We also
set H(s) =

∫ s
0
h(σ) dσ. Of course, the meaning of a solution of (2.4) is the same

as explained in the introduction.
The first result provides the existence of an unbounded sequence of positive

upper solutions of (2.4).

Lemma 2.1 Assume that

lim inf
s→+∞

H(s)

sp
≤ 0. (2.5)

Then, problem (2.4) has a sequence (βn)n of upper solutions, with βn ∈ C2(Ω)
and

min
Ω
βn+1 > max

Ω
βn → +∞. (2.6)

Proof of Lemma 1. We begin by observing that if

sup{s ≥ 0|h(s) ≤ 0} = +∞,

then there exists a sequence (βn)n of constant upper solutions with βn → +∞.
Therefore, we can suppose that there exists s0 ≥ 0 such that

h(s) > 0 for all s > s0. (2.7)

In order to build upper solutions of (2.4), we study some properties of a related
one-dimensional initial value problem. Let a < b be given constants and let
q, r : [a, b]→ R be two functions, with q of class C1 and r continuous, satisfying

0 < q0 := min
[a,b]

q ≤ max
[a,b]

q =: q∞, (2.8)
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max
[a,b]

q′ ≤ 0 (2.9)

and
0 < min

[a,b]
r ≤ max

[a,b]
r =: r∞. (2.10)

Let us consider the quasilinear ordinary differential equation

−(q |u′|p−2 u′)
′

= r h(u) . (2.11)

By a solution of (2.11), we mean a function u ∈ C1(I) with q |u′|p−2 u′ ∈ C1(I)
on some interval I ⊂ [a, b].

Claim 1 For every c > s0, there is d > c such that (2.11) has a solution u,
which is defined and of class C2 on [a, b] and satisfies

c ≤ u(t) ≤ d, u′(t) ≤ −1, u′′(t) ≤ 0 on [a, b]. (2.12)

Proof of Claim 1. Let us define the functions

ϕp(s) := sign(s)|s|p−1

and

Φ∗p(s) :=

∫ s

0

ϕ−1
p (σ) dσ =

∫ s

0

sign(σ) |σ|
1
p−1 dσ =

p− 1

p
|s|

p
p−1 .

Let c > s0 be given and consider the initial value problem
−(q ϕp(u

′))
′

= r h(u)
u(a) = d

u′(a) = −( q∞
q0

)
1
p−1 (i.e. ϕp(u

′(a)) = − q∞
q0

),

(2.13)

where d > c is a real parameter. Since problem (2.13) is equivalent to the system{
u′ = ϕ−1

p (vq )

v′ = −r h(u)
(2.14)

with initial conditions

u(a) = d and v(a) = −q(a)
q∞

q0
,

the existence of a local solution of (2.13) and its continuability to a right maximal
interval of existence are standard facts. Let us set

ω := sup{t ∈ ]a, b] |u is defined and u > c on [a, t]}

Of course, it is ω > a. Integrating (2.11) on [a, t], for any t ∈]a, ω[, we obtain
that

ϕp(u
′(t)) =

q(a)

q(t)
ϕp(u

′(a))−
1

q(t)

∫ t

a

r h(u) ds .
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Hence, by (2.7), (2.8) and (2.10),

u′(t) ≤ −ϕ−1
p

(
q(a)

q0

q∞

q(t)

)
≤ −1. (2.15)

¿From (2.14) and (2.15) we derive that

v(t)

q0
≤
v(t)

q(t)
≤
v(t)

q∞
< 0 on [a, ω[.

This implies that u′ = ϕ−1
p (vq ) is of class C1 on [a, ω[. So that q ϕp(u

′) =

−q |u′|p−1 can be differentiated. Thus, from (2.11), (2.9), (2.7) and (2.10), we
obtain

(p− 1) q |u′|p−2 u′′ = q′ |u′|p−1 − r h(u) ≤ 0 on [a, ω[,

which implies that, by (2.8),

u′′ ≤ 0 on [a, ω[ .

Assume now by contradiction that

ω < b (< +∞). (2.16)

By (2.15) there exists
lim
t→ω−

u(t) = c.

Accordingly, we can set
u(ω) := c (2.17)

and hence u can be continued as a solution to ω.
Define, for t ∈ [a, ω], the energy function

E(t) :=
r∞

q∞
H(u(t)) + Φ∗p

(
v(t)

q∞

)
.

We easily get, for t ∈ [a, ω],

E′(t) =
r∞

q∞
h(u(t))u′(t) + ϕ−1

p

(
v(t)

q∞

)
v′(t)

q∞

=
r∞

q∞
h(u(t))ϕ−1

p

(
v(t)

q(t)

)
− ϕ−1

p

(
v(t)

q∞

)
r(t)

q∞
h(u(t))

≤
r∞

q∞
h(u(t))ϕ−1

p

(
v(t)

q∞

) (
1−

r(t)

r∞

)
≤ 0.

Accordingly, since Φ∗p is even, we have, for t ∈ [a, ω],

E(t) =
r∞

q∞
H(u(t)) + Φ∗p

(
v(t)

q∞

)
≤

r∞

q∞
H(d) + Φ∗p

(
q(a)

q0

)
= E(a)



EJDE–1997/08 Maria do Rosário Grossinho & Pierpaolo Omari 11

and then(
p− 1

p

)(
q0

q∞

) p
p−1

|u′(t)|p ≤

(
p− 1

p

)(
q(t)

q∞

) p
p−1

|u′(t)|p

= Φ∗p

(
q(t)

q∞
ϕp(u

′(t))

)
≤

r∞

q∞
(H(d)−H(u(t))) + Φ∗p

(
q(a)

q0

)
≤

r∞

q∞
(H(d)−H(c)) + Φ∗p

(
q∞

q0

)
.

Hence, by the mean value theorem, we obtain, using (2.16) and (2.17), that

|d− c|p = |u(a)− u(ω)|p = |u′(τ)|p |ω − a|p

≤

(
p

p− 1

)(
q∞

q0

) p
p−1
(
r∞

q∞
(H(d)−H(c)) + Φ∗p

(
q∞

q0

))
|b− a|p. (2.18)

Finally, by condition (2.5), we can find a sequence (dn)n, with dn → +∞, such
that

H(dn)

dn
p → 0.

Taking d = dn in (2.13) and (2.18), dividing (2.18) by dn
p and passing to the

limit, we obtain a contradiction. This shows that ω = b and the claim follows,
extending u to b as a solution.

Now, we prove the following:

Claim 2 For each c > s0, there is d > c and an upper solution β ∈ C2(Ω) of
problem (2.4) such that

c ≤ β ≤ d in Ω.

Proof of Claim 2. Let ]a, b[ be the projection of Ω on, say, the x1–axis and
consider the quasilinear ordinary differential equation

−
γ1

2
|u′|p−2 u′′ + γ4 |u

′|p−2 u′ = h(u) on [a, b], (2.19)

where γ1 and γ4 are given, respectively, in (i1) and (2.3). By a solution of (2.19),
we mean a function u ∈ C2([a, b]), with u′ < 0 on [a, b]. If we set, for t ∈ [a, b],

q(t) := exp

(
−

2(p− 1)γ4

γ1
t

)
and r(t) :=

2(p− 1)

γ1
q(t),

then equation (2.19) can be rewritten in the form

−
(
q|u′|p−2 u′

)′
= r h(u) on [a, b], (2.20)
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where q and r satisfy conditions (2.8), (2.9) and (2.10). By Claim 1, for any
c > s0 there is d > c and a solution u of class C2 of (2.20) which satisfy (2.12).
Hence, u is also a solution of (2.19). Let us set

β(x1, . . . , xN ) := u(x1) for (x1, . . . , xN ) ∈ Ω.

Clearly, β ∈ C2(Ω) and satisfies

c ≤ β(x1, . . . , xN ) ≤ d and |∇β(x1, . . . , xN )| = |u′(x1)| ≥ 1 in Ω.

Therefore, using (i1), (2.3) and (2.12), we get

− div a(x,∇β(x)) = −
N∑
i=1

∂

∂xi
ai(x1, . . . , xN , u

′(x1), 0, . . . , 0)

= −
∂a1

∂ξ1
(x1, . . . , xN , u

′(x1), 0, . . . , 0)u′′(x1)

−
N∑
i=1

∂ai

∂xi
(x1, . . . , xN , u

′(x1), 0, . . . , 0)

≥ −γ1(κ+ |u′(x1)|)p−2u′′(x1)− γ4|u
′(x1)|p−1

≥ −
γ1

2
|u′(x1)|p−2u′′(x1) + γ4|u

′(x1)|p−2u′(x1)

= h(u(x1)) = h(β(x)).

This shows that β is a (classical) upper solution of problem (2.4). Thus, the
proof of Claim 2 is concluded.

Finally, using Claim 2, one can build the required sequence of upper solutions
(βn)n of problem (2.4) satisfying condition (2.6).

In a completely similar way, we can prove the following

Lemma 2.2 Assume that

lim inf
s→−∞

H(s)

sp
≤ 0.

Then, problem (2.4) has a sequence (αn)n of lower solutions, with αn ∈ C2(Ω)
and

max
Ω

αn+1 < min
Ω
αn → −∞. (2.21)

Now, we discuss the solvability of problem (2.4).

Lemma 2.3 Assume that problem (2.4) admits a lower solution α and a se-
quence of upper solutions (βn)n satisfying (2.6). Moreover, suppose that

−∞ < lim inf
s→+∞

H(s)

sp
≤ lim sup

s→+∞

H(s)

sp
= +∞. (2.22)
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Then, problem (2.4) has a sequence (zn)n of solutions belonging to C1,σ(Ω), for
some σ > 0, and satisfying

α ≤ z1 ≤ . . . ≤ zn ≤ . . . in Ω (2.23)

and

max
Ω

zn → +∞. (2.24)

Proof of Lemma 3. We closely follow an argument introduced in [13]. Let
us define the functional

φ : W 1,p
0 (Ω) ∩ L∞(Ω)→ R

by setting

φ(w) =

∫
Ω

A(x,∇w) dx −

∫
Ω

H(w) dx.

Claim 1 Assume that there exists a lower solution α and an upper solution β
of problem (2.4), satisfying α ≤ β in Ω. Then, problem (2.4) has a solution z
belonging to C1,σ(Ω), for some σ > 0, such that

α ≤ z ≤ β in Ω and φ(z) = min
w∈W1,p

0
(Ω)

α≤w≤β

φ(w).

The proof of Claim 1 employs a standard argument based on the minimiza-
tion of the functional associated with a truncated equation. In particular, the
observations made at the beginning of this section yield the weak lower semi-
continuity of the functional, the validity of a weak comparison principle and, by
[11, Th. 1], the regularity of the solution.

Let us take now a non–empty open set Ω0, with Ω0 ⊂ Ω, and a function
ζ ∈ C1(Ω) such that ζ(x) = 1 on Ω0, ζ(x) = 0 and ∂ζ

∂ν
(x) < 0 on ∂Ω, where ν

is the outer normal to ∂Ω. The proof of the following claim can be carried out
exactly as in [13, Lemma 2.3].

Claim 2 Assume (2.22). Then, there is a sequence of real numbers (sn)n,
with sn → +∞, such that

φ(sn ζ)→ −∞.

Finally, we are in position to build a sequence of solutions of (2.4). Take an
upper solution, say β1, such that β1 ≥ α in Ω. We get a solution z1 in C1,σ(Ω),
for some σ > 0, of (2.4), with

α ≤ z1 ≤ β1 in Ω and φ(z1) = min
w∈W

1,p
0

(Ω)

α≤w≤β1

φ(w).



14 A Multiplicity Result EJDE–1997/08

Select a number, say s1, such that

z1 ≤ s1 ζ in Ω and φ(s1 ζ) < φ(z1).

Take an upper solution, say β2, such that β2 ≥ s1 ζ in Ω. We find a solution z2

in C1,σ(Ω) of (2.4), with

z1 ≤ z2 ≤ β2 in Ω and φ(z2) = min
w∈W1,p

0
(Ω)

z1≤w≤β2

φ(w).

Since φ(z2) ≤ φ(s1 ζ) < φ(z1), we conclude that z1 6= z2 and maxΩ z2 >
minΩ β1. Iterating this argument, we construct the required sequence of so-
lutions of problem (2.4).

In a similar way, we can prove the following:

Lemma 2.4 Assume that problem (2.4) admits an upper solution β and a se-
quence of lower solutions (αn)n satisfying (2.21). Moreover, suppose that

−∞ < lim inf
s→−∞

H(s)

sp
≤ lim sup

s→−∞

H(s)

sp
= +∞.

Then, problem (2.4) has a sequence (yn)n of solutions, belonging to C1,σ(Ω), for
some σ > 0, and satisfying

. . . ≤ yn ≤ . . . ≤ y1 ≤ β in Ω

and
min

Ω
yn → −∞.

Proof of Theorem 1.1. Let us consider the following comparison problems{
− div a(x,∇u) = f(u) in Ω,

u = 0 on ∂Ω
(2.25)

and {
− div a(x,∇u) = g(u) in Ω,

u = 0 on ∂Ω.
(2.26)

¿From (j1), using Lemma 2.1 with h = g, we deduce the existence of a sequence
(βn)n of upper solutions of problem (2.26) satisfying (2.6). It is clear that each
βn is also an upper solution of problem (2.25). From (j3), using Lemma 2.2 with
h = f , we deduce the existence of a sequence (αn)n of lower solutions of problem
(2.25) satisfying (2.21). ¿From (j2), using Lemma 2.3 with h = f , we deduce
the existence of a sequence (zn)n of solutions of problem (2.25), satisfying (2.23)
and (2.24). Let us set, for each n,

β̂n := βn and α̂n := zn.
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It is clear that β̂n and α̂n are, respectively, an upper solution and a lower
solution of problem (1.1). Moreover, possibly passing to subsequences, we can
suppose that

max
Ω

α̂n < min
Ω
β̂n < max

Ω
α̂n+1 < min

Ω
β̂n+1,

with maxΩ α̂n → +∞. Hence, by [5], we find for each n a solution ûn of problem
(1.1) such that

α̂n ≤ ûn ≤ β̂n in Ω.

Now, set u1 := û1. From [3, Lemma 3.1 and Remark 3.3], we have that, for
each n ≥ 1, there exists a solution un+1 of (1.1) such that

max{un, ûn+1} ≤ un+1 ≤ β̂n+1 in Ω.

Using this fact, we can finally build a sequence (un)n of solutions of problem
(1.1) satisfying

u1 ≤ . . . ≤ un ≤ un+1 ≤ . . . in Ω and max
Ω

un → +∞.

In a completely similar way, we construct a sequence (vn)n of solutions of
problem (1.1) satisfying

u1 ≥ v1 ≥ . . . ≥ vn ≥ vn+1 ≥ . . . in Ω and min
Ω
vn → −∞.

Hence, Theorem 1.1 is proved.

Proof of Theorem 1.2. We proceed exactly as in the proof of Theorem
1.1, observing that any lower solution of the elliptic problem (2.25) is a lower
solution of the parabolic problem (1.2) and any upper solution of (2.26) is an
upper solution of (1.2). Of course, here we have to use [6] instead of [5].

Regarding the ordering of the solutions, we can exploit, when p ≥ 2, a
parabolic counterpart of the result in [3]. This statement can be proved by a
modification (as suggested in [2]) of the argument produced in [1] for the initial
value problem. Another proof can be found in [10].

Proof of Proposition 1.1. The preceding argument yields the conclusion,
as soon as one observes that α = 0 is a lower solution.
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