Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbb{R}^{N *}$

C. O. Alves

Abstract

This article concerns with the problem $$
-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)=\lambda h u^{q}+u^{m^{*}-1}, \quad \text { in } \quad \mathbb{R}^{N}
$$

Using the Ekeland Variational Principle and the Mountain Pass Theorem, we show the existence of $\lambda^{*}>0$ such that there are at least two nonnegative solutions for each λ in $\left(0, \lambda^{*}\right)$.

1 Introduction

In this work, we study the existence of solutions for the problem

$$
\left\{\begin{array}{l}
-\Delta_{m} u=\lambda h u^{q}+u^{m^{*}-1}, \mathbb{R}^{N} \tag{P}\\
u \geq 0, u \neq 0, u \in D^{1, m}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where $\Delta_{m} u=\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right), \lambda>0, N>m \geq 2, m^{*}=N m /(N-m), 0<$ $q<m-1, h$ is a nonnegative function with $L^{\Theta}\left(\mathbb{R}^{N}\right)$ with $\Theta=\frac{N m}{N m-(q+1)(N-m)}$, and

$$
D^{1, m}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{m^{*}}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{i}} \in L^{m}\left(\mathbb{R}^{N}\right)\right.\right\}
$$

endowed with the norm $\|u\|=\left(\int|\nabla u|^{m}\right)^{1 / m}$.
The case $q=0, m=2$ was studied by Tarantello [20], and a more general case with $m \geq 2$ by Cao, LI \& Zhou [5]. In these two references, [5] and [20], it is proved that (P) has multiple solutions. In the case $m=2, h \in L^{p}\left(\mathbb{R}^{N}\right)$ with $p_{1} \leq p \leq p_{2}$ and $1<q<2^{*}-1$, Pan [18] proved the existence of a positive solution for (P). In the more general case, $m \geq 2, h \in L^{\Theta}\left(\mathbb{R}^{N}\right)$, Gonçalves \& Alves [10] proved the existence of a positive solution for (P).

[^0]By a solution to (P), we mean a function $u \in D^{1, m}\left(\mathbb{R}^{N}\right), u \geq 0$ and $u \neq 0$ satisfying

$$
\int|\nabla u|^{m-2} \nabla u \nabla \Phi=\lambda \int h u^{q} \Phi+\int u^{m^{*}-1} \Phi, \quad \forall \Phi \in D^{1, m}\left(\mathbb{R}^{N}\right)
$$

Hereafter, $\int, D^{1, m}, L^{p}$ and $|\cdot|_{p}$ stand for $\int_{\mathbb{R}^{N}}, D^{1, m}\left(\mathbb{R}^{N}\right), L^{p}\left(\mathbb{R}^{N}\right)$ and $|\cdot|_{L^{p}}$ respectively.

In the search of solutions we apply minimizing arguments to the energy functional

$$
\begin{equation*}
I(u)=\frac{1}{m} \int|\nabla u|^{m}-\frac{\lambda}{q+1} \int h\left(u^{+}\right)^{q+1}-\frac{1}{m^{*}} \int\left(u^{+}\right)^{m^{*}} \tag{1}
\end{equation*}
$$

associated to (P), where $u^{+}(x)=\max \{u(x), 0\}$. Note that the condition $h \in L^{\Theta}$ implies that $I \in C^{1}\left(D^{1, m}, \mathbb{R}\right)$.

To show the existence of at least two critical points of the energy functional, we shall use the Ekeland Variational Principle [8], and the Mountain Pass Theorem of Ambrosetti \& Rabinowitz [2] without the Palais-Smale condition. Using the Ekeland Variational Principle, we obtain a solution u_{1} with $I\left(u_{1}\right)<0$, and by the Mountain Pass Theorem we prove the existence of a second solution u_{2} with $I\left(u_{2}\right)>0$. Techniques for finding the solutions u_{1} and u_{2} are borrowed from Cao, Li \& Zhou [5]. Then we combine these techniques with arguments developed by Chabrowski [6], Noussair, Swanson \& Jianfu [17], Jianfu \& Xiping [12], Azorero \& Alonzo [9], Gonçalves \& Alves [10] and Alves, Gonçalves \& Miyagaki [1] to obtain the following result

Theorem 1 There exists a constant $\lambda^{*}>0$, such that (P) has at least two solutions, u_{1} and u_{2}, satisfying

$$
I\left(u_{1}\right)<0<I\left(u_{2}\right) \quad \forall \lambda \in\left(0, \lambda^{*}\right)
$$

2 Preliminary Results

In this section we establish some results needed for the proof of Theorem 1.

Definition. A sequence $\left\{u_{n}\right\} \subset D^{1, m}$ is called a $(P S)_{c}$ sequence, if $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$.

Lemma 1 If $\left\{u_{n}\right\}$ is $a(P S)_{c}$ sequence, then $\left\{u_{n}\right\}$ is bounded, and $\left\{u_{n}^{+}\right\}$is a $(P S)_{c}$ sequence.

Proof. Using the hypothesis that $\left\{u_{n}\right\}$ is a $(P S)_{c}$ sequence, there exist n_{o} and $M>0$ such that

$$
\begin{equation*}
I\left(u_{n}\right)-\frac{1}{m^{*}} I^{\prime}\left(u_{n}\right) u_{n} \leq M+\left\|u_{n}\right\| \quad \forall n \geq n_{o} \tag{2}
\end{equation*}
$$

Now, using (1) and the Hölder's inequality, we have

$$
\begin{equation*}
I\left(u_{n}\right)-\frac{1}{m^{*}} I^{\prime}\left(u_{n}\right) u_{n} \geq \frac{1}{N}\left\|u_{n}\right\|^{m}+c_{1}\left\|u_{n}\right\|^{q+1} \tag{3}
\end{equation*}
$$

where c_{1} is a constant depending of $N, m, q,\|h\|_{\Theta}$ and Θ. It follows from (2) and (3) that $\left\{u_{n}\right\}$ is bounded. Now, we shall show that $\left\{u_{n}^{+}\right\}$is a also $(P S)_{c}$ sequence. Since $\left\{u_{n}\right\}$ is bounded, the sequence $u_{n}^{-}=u_{n}-u_{n}^{+}$is also bounded. Then

$$
I^{\prime}\left(u_{n}\right) u_{n}^{-} \rightarrow 0
$$

and we conclude that

$$
\begin{equation*}
\left\|u_{n}^{-}\right\| \rightarrow 0 \tag{4}
\end{equation*}
$$

From (4) we achieve that

$$
\begin{equation*}
\left\|u_{n}\right\|=\left\|u_{n}^{+}\right\|+o_{n}(1) \tag{5}
\end{equation*}
$$

Therefore, by (4) and (5)

$$
I\left(u_{n}\right)=I\left(u_{n}^{+}\right)+o_{n}(1)
$$

and

$$
I^{\prime}\left(u_{n}\right)=I^{\prime}\left(u_{n}^{+}\right)+o_{n}(1),
$$

which consequently implies that $\left\{u_{n}^{+}\right\}$is a $(P S)_{c}$ sequence.
From Lemma 1, it follows that any $(P S)_{c}$ sequence can be considered as a sequence of nonnegative functions.

Lemma 2 If $\left\{u_{n}\right\}$ is a $(P S)_{c}$ sequence with $u_{n} \rightharpoonup u$ in $D^{1, m}$, then $I^{\prime}(u)=0$, and there exists a constant $M>0$ depending of $N, m, q,|h|_{\Theta}$ and Θ, such that

$$
I(u) \geq-M \lambda^{\Theta}
$$

Proof. If $\left\{u_{n}\right\}$ is a $(P S)_{c}$ sequence with $u_{n} \rightharpoonup u$, using arguments similar to those found in [10], [12] and [17], we can obtain a subsequence, still denoted by u_{n}, satisfying

$$
\begin{align*}
u_{n}(x) & \rightarrow u(x) \text { a.e. in } \mathbb{R}^{N} \tag{6}\\
\nabla u_{n}(x) & \rightarrow \nabla u(x) \text { a.e. in } \mathbb{R}^{N} \tag{7}\\
u(x) & \geq 0 \quad \text { a.e. in } \mathbb{R}^{N} . \tag{8}
\end{align*}
$$

From (6), (7) and using the hypothesis that $\left\{u_{n}\right\}$ is bounded in $D^{1, m}$, we get

$$
\begin{equation*}
I^{\prime}(u)=0 \tag{9}
\end{equation*}
$$

which in implies $I^{\prime}(u) u=0$, and

$$
\|u\|^{m}=\lambda \int h u^{q+1}+\int u^{m^{*}}
$$

Consequently

$$
I(u)=\lambda\left(\frac{1}{m}-\frac{1}{q+1}\right) \int h u^{q+1}+\frac{1}{N} \int u^{m^{*}}
$$

Using Hölder and Young Inequalities, we obtain

$$
I(u) \geq-\frac{1}{N}|u|_{m^{*}}^{m^{*}}-M \lambda^{\Theta}+\frac{1}{N}|u|_{m^{*}}^{m^{*}}=-M \lambda^{\Theta}
$$

where $M=M\left(N, m, q, \Theta,\|h\|_{\Theta}\right)$.
For the remaining of this article, we will denote by S the best Sobolev constant for the imbedding $D^{1, m} \hookrightarrow L^{m^{*}}$.

Lemma 3 Let $\left\{u_{n}\right\} \subset D^{1, m}$ be a $(P S)_{c}$ sequence with

$$
c<\frac{1}{N} S^{N / m}-M \lambda^{\Theta}
$$

where $M>0$ is the constant given in Lemma 2. Then, there exists a subsequence $\left\{u_{n_{j}}\right\}$ that converges strongly in $D^{1, m}$.

Proof By Lemmas 1 and 2, there is a subsequence, still denoted by $\left\{u_{n}\right\}$ and a function $u \in D^{1, m}$ such that $u_{n} \rightharpoonup u$. Let $w_{n}=u_{n}-u$. Then by a lemma in Brezis \& Lieb [3], we have

$$
\begin{align*}
\left\|w_{n}\right\|^{m} & =\left\|u_{n}\right\|^{m}-\|u\|^{m}+o_{n}(1) \tag{10}\\
\left\|w_{n}\right\|_{m^{*}}^{m^{*}} & =\left|u_{n}\right|_{m^{*}}^{m^{*}}-|u|_{m^{*}}^{m^{*}}+o_{n}(1) \tag{11}
\end{align*}
$$

Using the Lebesgue theorem (see Kavian [13]), it follows that

$$
\begin{equation*}
\int h u_{n}^{q+1} \longrightarrow \int h u^{q+1} \tag{12}
\end{equation*}
$$

From (10), (11) and (12), we obtain

$$
\begin{equation*}
\left\|w_{n}\right\|^{m}=\left|w_{n}\right|_{m^{*}}^{m^{*}}+o_{n}(1) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{m}\left\|w_{n}\right\|^{m}-\frac{1}{m^{*}}\left|w_{n}\right|_{m^{*}}^{m^{*}}=c-I(u)+o_{n}(1) \tag{14}
\end{equation*}
$$

Using the hypothesis that $\left\{w_{n}\right\}$ is bounded in $D^{1, m}$, there exists $l \geq 0$ such that

$$
\begin{equation*}
\left\|w_{n}\right\|^{m} \rightarrow l \geq 0 \tag{15}
\end{equation*}
$$

From (13) and (15), we have

$$
\begin{equation*}
\left|w_{n}\right|_{m^{*}}^{m^{*}} \rightarrow l \tag{16}
\end{equation*}
$$

and using the best Sobolev constant S and recalling that

$$
\begin{equation*}
\left\|w_{n}\right\|^{m} \geq S\left(\int\left|w_{n}\right|^{m^{*}}\right)^{m / m^{*}} \tag{17}
\end{equation*}
$$

we deduce from (15), (16) and (17) that

$$
\begin{equation*}
l \geq S l^{m / m^{*}} \tag{18}
\end{equation*}
$$

Now, we claim that $l=0$. Indeed, if $l>0$, from (18)

$$
\begin{equation*}
l \geq S^{N / m} \tag{19}
\end{equation*}
$$

By (14), (15) and (16), we have

$$
\begin{equation*}
\frac{1}{N} l=c-I(u) \tag{20}
\end{equation*}
$$

From (19), (20) and Lemma 2 we get

$$
c \geq \frac{1}{N} S^{N / m}-M \lambda^{\Theta}
$$

but this result contradicts the hypothesis. Thus, $l=0$ and we conclude that

$$
u_{n} \rightarrow u \quad \text { in } \quad D^{1, m}
$$

3 Existence of a first solution (Local Minimization)

Theorem 2 There exists a constant $\lambda_{1}^{*}>0$ such that for $0<\lambda<\lambda_{1}^{*}$ Problem (P) has a weak solution u_{1} with $I\left(u_{1}\right)<0$.

Proof. Using arguments similar to those developed in [5], we have

$$
I(u) \geq\left(\frac{1}{m}-\epsilon\right)\|u\|^{m}+o\left(\|u\|^{m}\right)-C(\epsilon) \lambda^{m /(m-(q+1))}
$$

where $C(\epsilon)$ is a constant depending on $\epsilon>0$. The last inequality implies that for small ϵ, there exist constants γ, ρ and $\lambda_{1}^{*}>0$ such that

$$
I(u) \geq \gamma>0, \quad\|u\|=\rho, \quad \text { and } \quad 0<\lambda<\lambda_{1}^{*}
$$

Using the Ekeland Variational Principle, for the complete metric space $\bar{B}_{\rho}(0)$ with $d(u, v)=\|u-v\|$, we can prove that there exists a $(P S)_{\gamma_{o}}$ sequence $\left\{u_{n}\right\} \subset$ $\bar{B}_{\rho}(0)$ with

$$
\gamma_{o}=\inf \left\{I(u) \mid u \in \bar{B}_{\rho}(0)\right\}
$$

Choosing a nonnegative function $\Phi \in D^{1, m} \backslash\{0\}$, we have that $I(t \Phi)<0$ for small $t>0$ and consequently $\gamma_{o}<0$.

Taking $\lambda_{1}^{*}>0$, such that

$$
0<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \lambda_{1}^{*}\right)
$$

from Lemma 3, we obtain a subsequence $\left\{u_{n_{j}}\right\} \subset\left\{u_{n}\right\}$ and $u_{1} \in D^{1, m}$, such that

$$
u_{n_{j}} \rightarrow u \quad \text { in } \quad D^{1, m}
$$

Therefore,

$$
I^{\prime}\left(u_{1}\right)=0 \quad \text { and } \quad I\left(u_{1}\right)=\gamma_{o}<0
$$

which completes this proof.

4 Existence of a second solution (Mountain Pass)

In this section, we shall use arguments similar to those explored by Cao, Li \& Zhou [5], Chabrowski [6], Noussair, Swanson \& Jianfu [17], Jianfu \& Xiping [12] and Gonçalves \& Alves [10] to obtain the following

Theorem 3 There exists a constant $\lambda_{2}^{*}>0$ such that for $0<\lambda<\lambda_{2}^{*}$ Problem (P) has a weak solution u_{2} with $I\left(u_{2}\right)>0$.

Proof. By arguments found in [5] and [10], we can prove that there exists $\delta_{1}>0$ such that for all $\lambda \in\left(0, \delta_{1}\right)$, the functional I has the Mountain Pass Geometry, that is:
(i) There exist positive constants r, ρ with $I(u) \geq r>0$ for $\|u\|=\rho$
(ii) There exists $e \in D^{1, m}$ with $I(e)<0$ and $\|e\|>\rho$.

Then by [16], there exists a $(P S)_{\gamma_{1}}$ sequence $\left\{v_{n}\right\}$ with

$$
\gamma_{1}=\inf _{g \in \Gamma} \max _{t \in[0,1]} I(g(t))
$$

where

$$
\Gamma=\left\{g \in C\left([0,1], D^{1, m}\right) \mid g(0)=0 \quad \text { and } \quad g(1)=e\right\}
$$

Using the next claim, which is a variant of a result found in [5], we can complete the proof of this theorem.

Claim. There exists $\lambda_{2}^{*}>0$ such that for the constant M given by Lemma 2,

$$
0<\gamma_{1}<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \lambda_{2}^{*}\right)
$$

Assuming this claim, by Lemma 3 there exists a subsequence $\left\{v_{n_{j}}\right\} \subset\left\{v_{n}\right\}$ and a function $u_{2} \in D^{1, m}$ such that $v_{n_{j}} \rightarrow u_{2}$. Therefore,

$$
I^{\prime}\left(u_{2}\right)=0 \quad \text { and } \quad I\left(u_{2}\right)=\gamma_{1}>0
$$

Which concludes the present proof.
Verification of the above claim. For $x \in \mathbb{R}^{N}$, let

$$
\Psi(x)=\frac{\left[N\left(\frac{N-m}{m-1}\right)^{m-1}\right]^{(N-m) / m^{2}}}{\left[1+|x|^{m /(m-1)}\right] \frac{N-m}{m}} .
$$

Then it is well known that (see [7] or [19])

$$
\begin{equation*}
\|\Psi\|^{m}=|\Psi|_{m^{*}}^{m^{*}}=S^{N / m} \tag{21}
\end{equation*}
$$

Let $\delta_{2}>0$ such that

$$
\frac{1}{N} S^{N / m}-M \lambda^{\Theta}>0 \quad \forall \lambda \in\left(0, \delta_{2}\right)
$$

Then from (1) and (21), we have

$$
I(t \Psi) \leq \frac{t^{m}}{m} S^{N / m}
$$

and there exists $t_{o} \in(0,1)$ with

$$
\sup _{0 \leq t \leq t_{o}} I(t \Psi)<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \delta_{2}\right)
$$

Moreover, from (1) and (21), we have

$$
I(t \Psi)=\left(\frac{t^{m}}{m}-\frac{t^{m^{*}}}{m^{*}}\right) S^{N / m}-\frac{\lambda t^{q+1}}{q+1} \int h \Psi^{q+1}
$$

and remarking that

$$
\left(\frac{t^{m}}{m}-\frac{t^{m^{*}}}{m^{*}}\right) \leq \frac{1}{N} \quad \forall t \geq 0
$$

we obtain

$$
I(t \Psi) \leq \frac{1}{N} S^{N / m}-\frac{\lambda t^{q+1}}{q+1} \int h \Psi^{q+1}
$$

therefore,

$$
\sup _{t \geq t_{o}} I(t \Psi) \leq \frac{1}{N} S^{N / m}-\frac{\lambda t_{0}^{q+1}}{q+1} \int h \Psi^{q+1}
$$

Now, taking $\lambda>0$ such that

$$
-\frac{\lambda t_{0}^{q+1}}{q+1} \int h \Psi^{q+1}<-M \lambda^{\Theta}
$$

that is,

$$
0<\lambda<\left(\frac{t_{0}^{q+1} \int h \Psi^{q+1}}{M(q+1)}\right)^{1 /(\Theta-1)}=\delta_{3}
$$

we deduce that

$$
\sup _{t \geq t_{o}} I(t \Psi)<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \delta_{3}\right)
$$

Choosing $\lambda_{2}^{*}=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, we have

$$
\sup _{t \geq 0} I(t \Psi)<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \lambda_{2}^{*}\right)
$$

and consequently

$$
0<\gamma_{1}<\frac{1}{N} S^{N / m}-M \lambda^{\Theta} \quad \forall \lambda \in\left(0, \lambda_{2}^{*}\right)
$$

which proves the claim.

Proof of Theorem 1. Theorem 1 is an immediate consequence of Theorems 2 and 3.

Remark. Using Lemma 3 and the same arguments explored by Azorero \& Alonzo, in the case $0<q<p$ [9], we can easily show that for small λ the following problem has infinitely many solutions with negative energy levels.
$(P)_{*}$

$$
\begin{aligned}
&-\Delta_{m} u=\lambda h|u|^{q-1} u+|u|^{m^{*}-2} u, \quad \text { in } \quad \mathbb{R}^{N} \\
& u \in D^{1, m}
\end{aligned}
$$

This result is obtained using the concept and properties of genus, and working with a truncation of the energy functional associated with $(P)_{*}$.

References

[1] C. O. Alves , J. V. Gonçalves \& O. H. Miyagaki, Multiple Positive Solutions for Semilinear Elliptic Equations in \mathbb{R}^{N} Involving Critical Exponents, preprint (To appear in Nonlinear Analysis-TMA).
[2] A. Ambrosetti \& P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal. 14(1973), 349-381.
[3] H. Brezis \& E. Lieb, A Relation Between Pointwise Convergence of Functions and Convergence of Functionals, Proc. Amer. Math. Soc. 88(1983), 486-490.
[4] H. Brezis \& L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure App. Math 36(1983) 437-477.
[5] Dao-Min Cao, Gong-Bao Li \& Huari-Song Zhou, Multiple Solutions for Non-homogeneous Elliptic Equations with Critical Sobolev Exponent, Proceeding of the Royal Society of Edinburgh, 124A(1994), 1177-1191.
[6] J. Chabrowski, On Multiple Solutions for the Non-homogeneous pLaplacian with a Critical Sobolev Exponent, Differential and Integral Equations, 8(1995) 705-716.
[7] H. Egnell, Existence and Nonexistence Results for m-Laplacian Equations Involving Critical Sobolev Exponents, Arch. Rational Mech. Anal. 104(1988), 57-77.
[8] I. Ekeland, On the Variational Principle, J. Math. Anal. App. 47(1974) 324-353.
[9] J. Garcia Azorero \& I. Peral Alonzo, Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term, Trans. Am. Math. Soc, 323(2)(1991), 887-895.
[10] J. V. Gonçalves \& C. O. Alves, Existence of Positive Solutions for mLaplacian Equations in \mathbb{R}^{N} Involving Critical Exponents, Preprint (1996) (To appear in Nonlinear Analysis TMA)
[11] M. Guedda \& L. Veron, Quasilinear Elliptic Equations Involving Critical Sobolev Exponents, Non. Anal. Appl. 12(8)(1989), 879-902.
[12] Y. Jianfu \& Z. Xiping, On the Existence of Nontrivial Solutions of a Quasilinear Elliptic Boundary Value Problem with Unbounded Domain, Acta Math. Sci. 7(1987) 341-359.
[13] O. Kavian, Introduction à théorie des points critiques et applications aux problémes elleptiques, Université de Nancy, (1993).
[14] G. B. Li, The Existence of Weak Solutions of a Quasilinear Elliptic Equation with Critical Sobolev Exponent on Unbounded Domains, Acta. Math. Sci. 14(1994) 64-74.
[15] P. L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The Limit Case, 1 83 2. Math. Ibero-Americana (1985) 40-46 \& 145-201.
[16] J. Mawhin \& M. Willen, Critical Point Theory and Hamilton Systems, Springer Verlag, Berlin 1989.
[17] E. S. Noussair, C. A. Swanson \& Y. Jianfu, Quasilinear Elliptic Problems with Critical Exponents, Nonlinear Anal. 3(1993), No. 3, 285-301.
[18] X. Pan, Positive Solutions of the Elliptic Equation $\Delta u+u^{(n+2) /(n-2)}+$ $K(x) u^{q}=0$ in \mathbb{R}^{N}, J. Math. Anal. App. 172(1993), 323-338.
[19] G. Talenti, Best Constant in Sobolev Inequality, Ann. Math. 110(1976) 353372.
[20] G. Tarantello, On Nonhomogeneous Elliptic Equations Involving Critical Sobolev Exponent, Ann. Inst. H. Poincaré Anal. Non Lineáire 9(1992), 243261.
C. O. Alves

Universidade Federal da Paraíba - PB - Brazil
E-mail address: coalves@dme.ufpb.br

[^0]: * 1991 Mathematics Subject Classifications: 35J20, 35J25.

 Key words and phrases: Mountain Pass Theorem, Ekeland Variational Principle. © 1997 Southwest Texas State University and University of North Texas.
 Submitted April 22,1997. Published August 19, 1997.

