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Nonlinear weakly elliptic 2× 2 systems of

variational inequalities with unilateral obstacle

constraints∗

D.R. Adams & H.J. Nussenzveig Lopes†

Abstract

We study 2×2 systems of variational inequalities which are only weakly
elliptic; in particular, these systems are not necessarily monotone. The
prototype differential operator is the (vector-valued) p-Laplacian. We
prove, under certain conditions, the existence of solutions to the unilateral
obstacle problem. This work extends the results by the authors in [Annali
di Mat. Pura ed Appl., 169(1995), 183–201] to nonlinear operators.

In addition, we address the question of determining function spaces
on which the p-Laplacian is a bounded nonlinear operator. This question
arises naturally when studying existence for these systems.

Introduction

In [4] the authors studied the existence of solutions to a linear 2× 2 system of
variational inequalities with unilateral obstacle constraints. More precisely, we
obtained existence results for the differential operator L = A∆−BI, assuming
only weak ellipticity (see [2]), which in this case reduces to A being invertible
with additional sign restrictions on the entries of the constant matrices A−1 and
A−1B. In particular, these assumptions allowed for non-monotone systems.

The purpose of the present work is to extend the results of [4] to nonlinear
operators. We observe that, while many of the arguments used in [4] can be car-
ried through in an analogous manner, certain new and unexpected restrictions
appear.

Let Ψ = (ψ1, ψ2) be a smooth obstacle and set

K = {V ∈ (W 1,p
0 (Ω) ∩ L2(Ω))2 |V i ≥ ψi a.e. Ω, i = 1, 2} ,
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for some 1 < p <∞. We study the existence of a solution U ≡ (u1, u2)t ∈ K to
the system of variational inequalities:

〈LU, V − U〉 ≥ 0 (1)

for all V ∈ K. Here Ω ⊂ Rn, n ≥ 2, is a bounded domain, L is a possibly
nonlinear differential operator and the brackets 〈·, ·〉 denote duality pairings.

We consider differential operators of the form:

LU ≡ Adiv[~F (x,∇U)] −BU, (2)

where div[~F (x,∇U)] = (div ~F1(x,∇u1),div ~F2(x,∇u2))t, and A and B are 2×2

constant, real matrices. We assume that each component operator div ~Fi has
the same structure as those considered by J. Heinonen, T. Kilpeläinen and O.
Martio in [11]; the prototype operator we have in mind is the p-Laplacian ∆p,

for which ~Fi = |∇ui|p−2∇ui.
The study of variational inequalities with unilateral constraints has applica-

tions in modeling many problems in elasticity subject to obstacles. Applications
include the study of vibrating systems such as the double-pendulum problem or
double vibrating springs, which can be modeled by variational inequalities with
differential operators in the form (2), see [15]. From a mathematical point-of-
view, variational inequalities distinguish “ellipticity” of the associated differen-
tial operator. Consider, for example, the scalar obstacle problem: Find u ∈ K
such that

〈a∆u, v − u〉 ≥ 0 ∀v ∈ K = {v ∈W 1,2
0 (Ω) | v ≥ ψ a.e. Ω} , (3)

where a 6= 0, ψ ∈ C∞(Ω), ψ < 0 near ∂Ω and maxΩ ψ > 0. It is easy to see
that (3) has a solution if and only if a < 0. Hence the variational inequality
distinguishes, at the level of existence of solutions, between −∆ and ∆, while
the partial differential equation:{

a∆u = f, in Ω
u = 0, on ∂Ω,

does not.
As in [4], we assume that the system (1) is weakly elliptic, i.e. elliptic in

the sense of Cauchy-Kowalewski (see [2]). For an operator of the form (2)
this means we require A to be invertible. In particular A is allowed to have
eigenvalues of opposite signs, something clearly not allowed for either rank-one
convex or monotone systems. Even for linear systems very little is known unless
strong ellipticity is assumed (see [12] and references therein). The analysis for
systems is more difficult than for scalar problems mainly due to the absence of
maximum principles (which were used in deriving the necessary and sufficient
condition for the existence of a solution to (3)). In addition, it is much simpler
to analyze the variational formulation of a scalar variational inequality than
that of a system of variational inequalities, and thereby conclude or rule out
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existence. One of our main contributions in this paper is to show that there
exists a solution to (1) provided we assume the same sign restrictions on the
entries of A−1 and A−1B as in [4], but only for a restricted set of smooth
obstacles and for p > 2n/(n+ 2). (This is the content of Theorem 1.1).

The sign restrictions on the entries of A−1 and A−1B are the following:

a) The entries of A−1 are negative on the diagonal and non-
positive off the diagonal;

b) The entries of A−1B are non-negative on the diagonal and
negative off the diagonal;

c) The smallest eigenvalue λ0 of the symmetric part of A−1B,
denoted by (A−1B)S , is positive.

(4)

These conditions arise when we derive a priori estimates for an approximate
problem. We use the penalty method, where the approximate problem consists
of solving a penalized system. The restrictions on the entries of A−1 and A−1B
imply that the penalized system can be written as a strongly elliptic system of
the form:

−div ~F (x,∇Uε) = −A−1BUε + Fε, (5)

where each component of Fε is nonnegative and A−1B is an M-matrix. A
matrix C is called an M-matrix if the diagonal entries of C are non-negative
and the off-diagonal entries are non-positive (see [5] for the basic properties

of M-matrices). We note that systems of this form, when − div ~F (x,∇U) ≡
−∆, are cooperative systems, for which a number of interesting properties are
known (see [6] and references therein). In particular, these (linear) systems
were studied in [6], where a necessary and sufficient condition for maximum
principles was derived. (By a maximum principle we mean the property that
the components of solutions of (5) which vanish on the boundary of a bounded
set Ω are nonnegative whenever the components of Fε are nonnegative.) The
special properties of M-matrices played an important role in obtaining this result
(see [6] for details). Finally, condition 4c) on the smallest eigenvalue of A−1B
keeps the solutions of the penalized system away from possible eigenvectors, for
which there can be no a priori estimates.

In the case of the p-Laplacian, the existence and regularity of solutions of
N × N systems of variational inequalities has been established for diagonal
systems with natural growth in [7, 8, 9]. A diagonal system is one in which
the p-Laplacian of the i-th component of the solution appears only in the i-th
inequality. This would correspond to A being diagonal for our L. The condition
of “natural growth” is that lower-order terms grow as |∇U |p. In contrast, the
operators we study are coupled in the highest-order terms, yet the lower-order
terms are linear. We observe that it is possible to obtain at least the a priori
estimates of Theorem 1.2 for more general systems for which the operator L
has an additional, nonlinear, lower-order term C(x,U). The nonlinear term
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must satisfy the following hypothesis: C(x,U) grows at most linearly, C(x, 0)
is essentially bounded, the derivatives of C(x,U) with respect to both x and U ,
denoted DxC(x,U) and DUC(x,U), are globally bounded and their L∞-norms
are sufficiently small.

We will not carry out this analysis in the interest of clarity, however the
treatment of this case is a simple adaptation of the proof of Theorem 1.2.

The proof of Theorem 1.1 follows the same pattern as that of Theorem 2.1
in [4]. We establish a priori estimates for the penalized system, and then pass
to the limit using standard compactness arguments, recovering the principal
problem and with it existence. The a priori estimates are derived analogously
to Theorem 1.1 of [4], replacing the linearity of ∆ with monotonicity properties

of the component operators div ~Fi.

The result in Theorem 1.1 is valid only for nonlinearities such that p >
2n/(n+2) and also only for a restricted set of smooth obstacles. This differs from
Theorem 2.1 of [4]. The compactness argument we use requires that W 1,p

0 (Ω) be
compactly imbedded in L2(Ω), which holds as long as p > 2n/(n+ 2). (Observe
that 2 > 2n/(n + 2), hence this issue did not arise in [4].) We note that in
the scalar case and for the operator −∆pu + λu, λ > 0, it is easy to obtain
existence for all p > 1 by means of variational methods, since the functional∫

Ω
(|∇u|p/p+ λu2/2)dx is weakly lower-semi-continuous over

K = {v ∈W 1,p
0 (Ω) ∩ L2(Ω) | v ≥ ψ on Ω} 6= φ .

See [13] for details. These methods do not apply to the problem at hand because
the operator L is not monotone.

Surprisingly, we must also impose restrictions on the set of admissible smooth
obstacles. In order for the a priori estimates to be meaningful, the L2–norms
of div ~Fi(·,∇ψi) and the Lp–norms of ∇div ~Fi(·,∇ψi) must be finite. This can
be quite restrictive, as seen by considering the prototype operator ∆p, p 6= 2,
and the C∞(Ω)-obstacle ψ(x) = 1 − x2

1, x = (x1, x2, ..., xn), for which the
conditions ∆pψ

i ∈ L2(Ω) and ∇∆pψ
i ∈ Lp(Ω) may fail, depending on p. Hence

the question: ‘on which function spaces are the (nonlinear) operators div ~Fi and

∇div ~Fi bounded?’ arises naturally for this problem. Another important result
in this work is a condition on p and q for the boundedness of ∆p from W 3,q

loc to
L2

loc. We show: 1) a sufficient condition for ∆pψ ∈ Lq for ψ ∈ C2
c (Ω) ∩ C3(Ω)

is that p > max{3/2, 2− 1/q} (this condition is also necessary if q = 2), and 2)
a sufficient condition for ∇∆pψ ∈ Lq, ψ ∈ C2

c (Ω) ∩ C3(Ω), is p > 3− 1/q.

The paper is divided into three sections. In Section 1, we prove existence of
solutions to the unilateral obstacle problem (6). In Section 2, we investigate the
restrictiveness of the conditions on the obstacle Ψ in the case of the p-Laplace
operator. We employ the familiar interpolation theorem of E.M. Stein for linear
analytic families of operators. We also discuss relaxations of the conditions on
the obstacle, which still imply existence. In particular, if we use the concept of
Choquet integrals with respect to variational capacity, then both conditions on
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ψi, mentioned above, can be expressed more simply as∫
Ω

(−∆pψ
i)p+ dCp <∞,

which confines our attention to second order derivatives. In Section 3, we collect
additional results. First we show that solutions to problem (6) are bounded
(assuming (− divFi(·,∇ψi))+ ∈ L∞(Ω) for i = 1, 2). Then we analyze an
example in which A has opposite-signed eigenvalues and p > 2. We prove that
the components of any solution are comparable and non-negative. This is a
maximum principle result, which holds for a small class of systems including this
example, satisfying certain algebraic constraints. (The constraints are mutually
contradictory if 1 < p ≤ 2.) These results complement those in [6], where the
case p = 2 was treated.

1 Existence

The main result of this section is Theorem 1.1. The proof will be accomplished
in several stages. First we derive a priori estimates for the solutions of the
penalized system (9). Then we prove existence for the penalized system and a
priori higher regularity estimates. Finally, we pass to the limit as the penalty
parameter ε→ 0.

Let us begin by fixing notation. Throughout, Ω is a bounded, smooth domain
in Rn. We denote by C∞c (Ω) the space of infinitely differentiable functions
with compact support in Ω. We use standard notation for the Sobolev spaces
W 1,p

0 (Ω), 1 < p <∞, and their duals W−1,p′(Ω), where p′ = p/(p−1). Let A ∈
M2×2(R) be an invertible matrix, and B ∈ M2×2(R). Consider the mappings
~Fi : Ω × Rn → Rn, i = 1, 2, and assume they satisfy the following structure
conditions (as in [11]):

(i) x → ~Fi(x, ζ) is measurable for all ζ ∈ Rn, ζ → ~Fi(x, ζ) is continuous for
a.e. x ∈ Ω;

(ii) (Growth) There exist constants a0 > 0, b0 > 0, such that: |~Fi(x, ζ)| ≤

a0|ζ|p−1, a.e. x ∈ Ω, and ~Fi(x, ζ) · ζ ≥ b0|ζ|p, a.e. x ∈ Ω;

(iii) (Monotonicity) (~Fi(x, ζ) − ~Fi(x, ξ)) · (ζ − ξ) > 0 for ζ 6= ξ, i = 1, 2;

(iv) (Homogeneity) ~Fi(x, λζ) = |λ|p−2λ~Fi(x, ζ) for every λ ∈ R, λ 6= 0.

Let L be the differential operator given by

LU ≡ A

[
div ~F1(x,∇u1)

div ~F2(x,∇u2)

]
−B

[
u1

u2

]
,

where U =

[
u1

u2

]
. We seek a solution to the problem:

Find U ∈ K such that 〈LU , V − U〉 ≥ 0 , (6)
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for all V in the admissible set

K = {V ∈ (W 1,p
0 (Ω) ∩ L2(Ω))2 | V i ≥ ψi a.e. Ω, i = 1, 2} .

The brackets 〈·, ·〉 denote the obvious duality pairings. Throughout this paper
we assume the obstacle Ψ = (ψ1, ψ2) ∈ (C3(Ω))2 to be such that ψi < 0 near
∂Ω and maxΩ ψ

i > 0. Note that, in the case p > 2n/(n + 2), K above can be
defined using only W 1,p

0 (Ω) ⊂ L2(Ω).
We assume that the matrix A is invertible, and that the sign conditions

(4) on the entries of A−1 and A−1B hold. We note that condition 4c) can
be significantly weakened. Consider, for instance, matrices A and B satisfying
conditions 4a)–b), which do not satisfy 4c), but such that detA−1B > 0. Now,
multiply each column of A by positive numbers k1 and k2. Then the rows of
A−1 are multiplied by 1/k1 and 1/k2, respectively, and the same happens with
the rows of A−1B. This does not alter the conditions 4a)–b). Additionally, it is
easy to see that there are numbers k1 > 0, and k2 > 0 such that this procedure
generates a matrix Ã, which, together with the original B, satisfies all three
conditions. Hence, by re-defining the mappings Fi, it is possible to relax 4c) to:
detA−1B > 0.

It is also possible to relax 4c) for p ≥ 2, allowing some λ0 < 0, by refining the
estimates below. We choose not to develop this here in the interest of clarity.

Throughout this section we assume the mappings Fi and the matrices A and
B, are fixed and satisfy (i)–(iv) and 4a)–c), respectively. We now state the main
result of this section.

Theorem 1.1 Let p > 2n/(n + 2). Suppose the obstacle Ψ = (ψ1, ψ2) ∈
(C3(Ω))2, with ψi < 0 near ∂Ω, and Ψ is such that

αi ≡ ‖(−div ~Fi(·,∇ψ
i))+‖

2
L2 (7)

and

βi ≡ ‖∇(−div ~Fi(·,∇ψ
i))+‖

p
Lp (8)

i = 1, 2, are finite. Then problem (6) has a solution U ∈ (W 1,p
0 (Ω))2. If, in

addition, (− divFi(·,∇ψi))+ ∈ L∞(Ω), then U also belongs to (L∞(Ω))2.

We give the proof of this theorem at the end of this section. Let us introduce
the corresponding penalized system of equations. Let η ∈ C∞(R) be such
that η(t) ≡ 0 for all t ≥ 0 and η′(t) ≥ 0 for all t ∈ R. Consider a solution
Uε = (u1

ε, u
2
ε)
t ∈ (W 1,p

0 (Ω) ∩ L2(Ω))2 , ε > 0 of:

A

 div ~F1(x,∇u1
ε)

div ~F2(x,∇u2
ε)

−BUε =

 − 1
εη(u1

ε − ψ
1)

− 1
ε
η(u2

ε − ψ
2)

 , in Ω . (9)

Below we establish uniform a priori estimates for Uε in (W 1,p
0 ∩ L2)2(Ω).
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Theorem 1.2 Let Uε be a solution of (9). Then there exists a constant Q > 0,
independent of ε, such that

‖∇Uε‖
p
Lp + ‖Uε‖

2
L2 ≤ Q

(
‖Ψ+‖

2
L2 + ‖∇Ψ+‖

p
Lp + +

2∑
i=1

(αi + βi)

)
. (10)

Proof: The entries of the matrices A and B will be denoted by Aij and Bij
respectively, and those of A−1 and A−1B, by Aij and M ij , respectively.

Multiply (9) by −A−1. Take the inner product of the result with (u1
ε, u

2
ε)
t,

then integrate by parts over Ω. Then (ii) and 4c) imply that the left-hand-side
exceeds

b0‖∇Uε‖
p
Lp + λ0‖Uε‖

2
L2, (11)

whereas the right-hand-side is

1

ε

∫
Ω

2∑
i,j=1

Aij uiε η(ujε − ψ
j) dx. (12)

For the diagonal terms of (12), using 4a)-4b), we have:

1

ε

∫
Ω

Aii uiε η(uiε − ψ
i) dx ≤

1

ε

∫
Ω

Aii ψi+ η(uiε − ψ
i) dx (13)

=

∫
Ω

ψi+ Aii
2∑
k=1

(−Aik div ~Fk(x,∇ukε) +Bik u
k
ε) dx

≤ Q

2∑
k=1

(‖∇ψi+‖Lp‖~Fk(·,∇ukε)‖Lp′ + ‖ψi+‖L2‖ukε‖L2)

≤ Q(δ1‖∇Uε‖
p
Lp + δ2‖Uε‖

2
L2) +Q′(‖∇ψi+‖Lp + ‖ψi+‖

2
L2)

where the last two inequalities follow from (ii) and Young’s inequality – with δ1

and δ2, small parameters to be chosen later.
Next we estimate the non-diagonal terms of (12). We use the equations (9)

together with 4b) to write:

1

ε

∫
Ω

Aij uiε η(ujε − ψ
j) dx (14)

≤
1

ε

∫
Ω

Aij

M ji
η(ujε − ψ

j) (div ~Fj(x,∇u
j
ε)−M

jj ujε) dx .

The first term on the right side of (14) can be estimated using condition (iii):

add and subtract the quantity div ~Fj(x,∇ψj) and integrate by parts observing
(4a)–4b). The result is bounded from above by:

−
1

ε

∫
Ω

Aij

M ji
η(ujε − ψ

j)(− div ~Fj(x,∇ψ
j))+ dx
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=

∫
Ω

Aij

M ji
(− div ~Fj(x,∇ψ

j))+

[
2∑
k=1

Ajk div ~Fk(x,∇ukε)−Bjk u
k
ε

]

≤ Q(δ1‖∇Uε‖
p
Lp + δ2‖Uε‖

2
L2) +Q

 2∑
j=1

(αj + βj)

 ,

again by Young’s inequality.
The second term on the right-hand-side of (14), can be estimated from above,

using 4b) and (ii), by:

−
1

ε

∫
Ω

Aij

M ji
M jj η(ujε − ψ

j)ψj+

=

∫
Ω

Aij

M ji
M jjψj+

[
2∑
k=1

Ajk div ~Fk(x,∇ukε)−Bjk u
k
ε

]
dx

≤ Q(δ1‖∇Uε‖
p
Lp + δ2‖Uε‖

2
L2) +Q′(‖∇Ψ+‖

p
Lp + ‖Ψ+‖

2
L2) .

Putting together (11) and the estimates (13) and (14) for the diagonal and
non-diagonal terms of (12) (and choosing δ1 and δ2 sufficiently small) we obtain
(10).

Next we show that the penalized system (9) has a solution, at least for
p > 2n/(2n+ 2). We use the Leray-Schauder fixed point theorem (see [10]).

Theorem 1.3 Suppose the penalty function η ∈ C∞(R) is such that η′(t) ≤ 1,
for all t ∈ R. Let p > 2n/(n+ 2). Then there exists a solution Uε = (u1

ε, u
2
ε)
t ∈

(W 1,p
0 (Ω))2 of system (9).

Proof: We first note that if G = (G1, G2) ∈ (Lp(Ω))2, p ≥ 2 and vi ∈ Lp(Ω),
i = 1, 2, then each of the equations:

− divF1(x,∇u1) +M11u1 = G1 −M12v2 (15)

− divF2(x,∇u2) +M22u2 = G2 −M21v1

has a solution ui ∈W 1,p
0 (Ω). To see this first note that the operators

Ai(ϕ) ≡ − div ~Fi(x,∇ϕ) +M iiϕ

are pseudo-monotone and semi-coercive from W 1,p
0 to W−1,p′ , for i = 1, 2. In-

deed, pseudo-monotonicity follows from Lemma 4.12 in [18] since it can be
easily checked, using the structure conditions (i) and (iii), that these operators
are bounded (from W 1,p

0 to W−1,p′), hemicontinuous and monotone. The semi-
coercivity of Ai follows from condition 4b). Next we use Theorem 4.18 in [18]
to conclude that (15) has a solution ui ∈W 1,p

0 (Ω).
Similarly, when 2n/(n+ 2) < p < 2, and Gi, vi ∈ L2(Ω) it also follows that

(15) has a solution ui ∈W
1,p
0 (Ω).
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Use (15) to define the solution operator T (v) = u, from (Lp(Ω))2 into itself
for p ≥ 2, and from (L2(Ω))2 into itself for 2n/(n+ 2) < p < 2. Recall that, to
use the Leray-Schauder fixed-point theorem, we need to show that the solutions
of v = σT (v) are uniformly bounded in W 1,p

0 (Ω) for any 0 ≤ σ ≤ 1. This
uniform bound can be obtained by deriving estimates in the same way as was
done in the proof of Theorem 1.2 and by using condition 4c) on the eigenvalues
of A−1B. Therefore we can apply the Leray-Schauder fixed point theorem to
conclude that − div ~F1(x,∇u1)

− div ~F2(x,∇u2)

+A−1B

 u1

u2

 = A−1

 1
ε η(w1 − ψ1)

1
ε
η(w2 − ψ2)

 ≡
 G1

G2


(16)

has a solution in (W 1,p
0 (Ω))2 for wi ∈ Lp(Ω), if p ≥ 2 or for wi ∈ L2(Ω) if

2n/(n+ 2) < p < 2.
Now consider the solution operator defined by (16), S(w) = u. This operator

is compact from Lp to Lp, if p ≥ 2, and from L2 to L2 if 2n/(n + 2) < p < 2,
since W 1,p

0 is compactly imbedded in L2. Once again, it is possible to derive
estimates in the same way as was done in the proof of Theorem 1.2 to show
that the solutions of w = σS(w) are uniformly bounded in W 1,p

0 (Ω) for any
0 ≤ σ ≤ 1. Therefore we can apply the Leray-Schauder fixed point theorem
and it is easy to see that the fixed point lies in (W 1,p

0 (Ω))2. Hence there exists
a solution Uε in (W 1,p

0 (Ω))2 of (9), as we wished.

Remark. To conclude the above argument, we used strongly that W 1,p
0 (Ω) is

compactly imbedded in L2(Ω) for p > 2n/(n+2). It is possible to prove a reverse
Hölder inequality for system (16), and conclude that Uε ∈ (L2+ε

loc (Ω))2. With
this, we can conclude compactness again in L2

loc and hence obtain a solution to
(9) for 1 < p ≤ 2n/(n+ 2). However, since we are not able to pass to the limit
as ε→ 0 in this case, we choose not to pursue this here.

Observe that any solution Uε to the penalized system (9) must satisfy

〈LUε, V − Uε〉 ≥ 0 (17)

for all V ∈ K. Our goal is to pass to the limit, as ε→ 0, in (17), at least for some
subsequence. From Theorem 1.2, we can extract a subsequence which converges
W 1,p-weakly to some U ∈ (W 1,p

0 (Ω))2 as well as L2-strongly to U (observe that
here we need to have p > 2n/(n + 2)). Further regularity is needed in order
to show that this U satisfies (6). Below we establish a priori higher regularity
estimates.

Lemma 1.4 Let 2 ≤ q <∞. Then, every solution Uε to (9) satisfies

‖
1

ε
η(uiε − ψ

i)‖Lq ≤ Q
[
‖(−div ~Fi(·,∇ψ

i))+‖Lq + ‖ψi+‖Lq + ‖ujε‖Lq
]
, (18)

for each i = 1, 2, j 6= i, and for some constant Q independent of ε.
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Proof: Set fr(t) = |t|r−1t for r ≥ 1 Using 4a), it is easy to see that the q-th
power of the left side of (18) is at most

−
1

Aii

∫
Ω

fq−1

(
1

ε
η(uiε − ψ

i)

)[
div ~Fi(x,∇u

i
ε)−

2∑
k=1

M ikukε

]
dx. (19)

The first term of (19) can be handled exactly as in Theorem 1.2 – by adding
and subtracting the quantity

−
1

Aii
fq−1

(
1

ε
η(uiε − ψ

i)

)
div ~Fi(x,∇ψ

i)

and integrating by parts – to yield terms that are dominated by

1

Aii

∫
Ω

fq−1

(
1

ε
η(uiε − ψ

i)

)(
− div ~Fi(x,∇ψ

i)
)

+
dx. (20)

The remaining terms of (19) can be estimated by

1

Aii

∫
Ω

fq−1

(
1

ε
η(uiε − ψ

i)

)
[M iiψi+ +M ijujε] dx (21)

≤ Q‖
1

ε
η(uiε − ψ

i)‖q−1
Lq [‖ψi+‖Lq + ‖ujε‖Lq ] .

Hölder’s inequality on (20) plus (21) yield (18).

Hereafter, fix a subsequence of solutions of (9), {Uεk}, converging weakly
in (W 1,p(Ω))2 and strongly in (L2(Ω))2, as well as almost everywhere to U ∈
(W 1,p(Ω))2.

Using Lemma 1.4 we immediately have that the weak limit U ∈ K. This
follows since∫

Ω

|η(ui − ψi)|2 dx ≤ lim inf
εk→0

(εk)2

∫
Ω

|
1

εk
η(uiεk − ψ

i)|2 dx = 0.

Hence ui ≥ ψi a.e. on Ω. Before we give the proof of Theorem 1.1 we will need
to show the sequence {Uεk} is compact in W 1,p.

Lemma 1.5 Let Uεk be the sequence fixed above. Then the sequence {∇Uεk}
converges strongly in Lp.

Proof: Multiply the difference of (9) for ε = εk and εl by (Uεk −Uεl)
tA−1 and

integrate over Ω, to get:∫
Ω

2∑
i=1

[~Fi(x,∇u
i
εk

)− ~Fi(x,∇u
i
εl

)] · [∇uiεk −∇u
i
εl

], dx+ λ‖Uεk − Uεl‖
2
L2

≤ Q‖Uεk − Uεl‖L2

2∑
i=1

(
‖

1

εk
η(uiεk − ψ

i)‖L2 + ‖
1

εl
η(uiεl − ψ

i)‖L2

)
(22)

≤ Q′‖Uεk − Uεl‖L2 .
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Above Q′ depends on ψi but not on k and l. With this we conclude that the
first term of (22) tends to zero as k, l→∞.

In Lemma 2.7 of [14] it was shown that, if A is a mapping satisfying the

same structure conditions as ~Fi, i = 1, 2, then

lim
k→∞

∫
Ω

[A(x,∇vk)−A(x,∇v)] · [∇vk −∇v] dx = 0

if and only if ∇vk →∇v strongly in Lp(Ω). A simple modification of the proof
of Lemma 2.7 [14] together with (22) gives that {∇Uεk} is a Cauchy sequence
in Lp.

Proof of Theorem 1.1: Start by observing that

〈LUεk , V − Uεk〉 =

∫
Ω

(∇V −∇Uεk)tA

 ~F1(x,∇u1
εk

)

~F2(x,∇u2
εk

)

− (V − Uεk)tBUεk .

Hence, to pass to the limit in (17) it is enough to show that the terms
∫

Ω(∇vi−

∇uiεk)Aij ~Fj(x,∇ujεk ) converge to
∫

Ω(∇vi − ∇ui)Aij ~Fj(x,∇uj). Use Egorov’s
theorem to show that, for any ϕ ∈ Lp, then∫

Ω

|ϕ||∇ujεk |
p−1 dx→

∫
Ω

|ϕ||∇uj |p−1 dx

as εk → 0, passing to a further subsequence if needed. Then, use the structure
condition (ii) and the Generalized Dominated Convergence theorem (see Theo-

rem 16, page 89 in [16]) to conclude that ~Fj(x,∇ujεk) converges weakly in Lp
′

to ~Fj(x,∇uj). Since ∇vi −∇uiεk converges Lp-strongly to ∇vi −∇ui, we have

what we wished.

We postpone the proof of boundedness of the solutions in Theorem 1.1 to
Section 3; see Lemma 3.1 and the subsequent remarks.

2 Regularity restrictions on the obstacle

In this section we will restrict ourselves to the p-Laplacian operator, ∆p, for

which ~Fi = |∇ui|p−2∇ui. We examine the condition that αi and βi, in (7) and
(8) respectively, be finite.

For the p-Laplacian, this means:

(−∆pψ)+ ∈ L
2(Ω) (23)

and
∇(−∆pψ)+ ∈ L

p(Ω), (24)

respectively. These conditions can be quite restrictive. To illustrate this, con-
sider the following example of a C∞c (Ω)-obstacle for which (23) and (24) may
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fail. Let 0 ∈ Ω, x = (x1, x2, ..., xn), and set ψ0(x) = φ(x)(1 − x2
1) for some

φ ∈ C∞c (Ω), with φ ≡ 1 in a neighborhood of the origin. Then in this neighbor-
hood −∆pψ0 = (p− 1)2p−1|x1|p−2. A simple calculation shows that (23) holds

only for p > 3
2 and (24), only for p > 3

2 +
√

5
2 ≈ 3.736 and for p = 2. In Theorem

2.1 we prove that this is, in fact, the worst case scenario. Subsequently, we
discuss a weaker condition that replaces (24) and contains (23).

Theorem 2.1 Let q ≥ 1. Then:

a) For any p > max{3/2, 2− 1/q} there exists a constant Q1 > 0 such that

‖∆pψ‖Lq ≤ Q1 ‖ψ‖
p−1
C3 ,

for all ψ ∈ C2
c (Ω) ∩ C3(Ω).

b) For any p > 3− 1/q there exists a constant Q2 > 0 such that

‖∇∆pψ‖Lq ≤ Q2 ‖ψ‖
p−1
C3 ,

for all ψ ∈ C2
c (Ω) ∩ C3(Ω).

It is immediate that a) holds for all p ≥ 2 and b) for all p ≥ 3. Also, it
follows from the proof below that one can formulate an important case of part
a) above as:

∆p : W 3,q
loc (Ω)→ L2

loc (Ω) (25)

is a bounded nonlinear operator for all p > 3
2 , if q ≥ 2n(p− 1)/(n+ 4p− 6).

For the proof of Theorem 2.1, we will need the following estimate.

Lemma 2.2 If ψ ∈ C2
c (Ω) ∩ C3(Ω), then∫

Ω

|∇2ψ|2[ 1 + |∇ψ|2 ]r/2 dx ≤

√
n

1− |r|

∫
Ω

|∇3ψ|[ 1 + |∇ψ|2 ](r+1)/2 dx

whenever |r| < 1. Here |∇kψ| denotes the l2-norm of all k-th order derivatives
of ψ.

Proof: Integrate by parts to get:∫
Ω

|ψxixj |
2[ 1 + |∇ψ|2 ]r/2 dx (26)

= −

∫
Ω

ψxixjxjψxi [ 1 + |∇ψ|2 ]r/2 dx

−r

∫
Ω

ψxixjψxi [1 + |∇ψ|2](r−2)/2
∑
k

ψxkψxkxj dx

Thus the left side of (26) is at most

√
n

∫
Ω

|∇3ψ||∇ψ|[ 1 + |∇ψ|2 ]r/2 dx

+ |r|

∫
Ω

|∇2ψ|2|∇ψ|2[ 1 + |∇ψ|2 ](r−2)/2 dx
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and hence the lemma follows.

Corollary 2.3 If ψ ∈ C2
c (Ω) ∩ C3(Ω), then∫

Ω

|∇2ψ|2|∇ψ|r dx ≤

√
n

1− |r|

∫
Ω

|∇3ψ| |∇ψ|r+1 dx ∀|r| < 1 .

Proof: In Lemma 2.2, replace ψ by ψ/ε, ε > 0, and then let ε→ 0.

We are now ready to give

Proof of Theorem 2.1: We use Lemma 2.2 together with an interpolation
theorem due to E.M. Stein (“interpolation for an analytic family of operators”;
see [17]). We begin by defining the family of operators Tz: for v ∈ L2(Ω) and
ψ ∈ C2

c (Ω) ∩C3(Ω), set

Tzv ≡ |∇
2ψ| · [ ε2 + |∇ψ|2 ]

s−2
2 (1−z) · v .

Above ε ∈ (0, 1], 3
2 < s < 2, and z = σ+iη is a complex variable with 0 ≤ σ ≤ 1

and η ∈ R. Then, using Lemma 2.2 we have∫
Ω

| Tiη v| dx ≤ ‖v‖L2 ‖ |∇2ψ| [ ε2 + |∇ψ|2 ](s−2)/2‖L2

≤ C0‖v‖L2 ‖ψ‖s−1
C3 .

Also ∫
Ω

|T1+iη v| dx ≤ ‖v‖L1 ‖∇2ψ‖L∞ ≤ ‖v‖L1 ‖ψ‖C3.

The Stein Interpolation Theorem gives (0 < σ < 1)∫
Ω

|Tσv| dx ≤ Cσ ‖v‖Lr ‖ψ‖
p−1
C3 ,

where p = (1− σ)s+ 2σ and r = 2/(1 + σ). By duality we obtain:

‖ |∇2ψ| [ ε2 + |∇ψ|2 ](p−2)/2‖L2/(1−σ) ≤ Cσ ‖ψ‖
p−1
C3 . (27)

Note that p > 3
2 + σ

2 = 2 − (1 − σ)/2 = 2 − 1/q. The result in a) follows by
letting ε→ 0 in (27), since all the terms of ∆pψ behave like |∇2ψ| |∇ψ|p−2.

To prove b), note that all terms of ∇∆pψ behave like either |∇3ψ| |∇ψ|p−2

or |∇2ψ|2|∇ψ|p−3. Thus, if we now set

Tzv ≡ |∇
2ψ|2 [ ε2 + |∇ψ|2 ](s−3)/2+z/2 · v ,

for 2 < s < 3, then we can use Lemma 2.2 to obtain an estimate which implies:

Tiη : L∞ → L1,
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and one easily has:
T1+iη : L1 → L1.

Thus, again by the Stein Interpolation Theorem, we have∫
Ω

|Tσv| dx ≤ Cσ ‖v‖Lr ‖ψ‖
p−1
C3 , (28)

where now p = s + σ and r = 1/σ, 0 < σ < 1. Sending ε → 0 in the dual
statement to (28) gives

‖ |∇2ψ|2 |∇ψ|p−3‖L1/(1−σ) ≤ Cσ ‖ψ‖
p−1
C3 .

This, together with the form of ∇∆pψ, yields b), since p > 2 + σ = with
3− (1− σ) = 3− 1/q.

To see (25), we can assume without loss of generality that u ∈ C3
c (Ω). Since

all terms of ∆pu are dominated by some constant multiple of |∇2u| · |∇u|p−2,
we apply Corollary 2.1 with r = 2(p − 2). Now Hölder’s inequality, with the
resulting q-norm on |∇3u| and (2p− 3)q′-norm on |∇u|, q′ = q/(q − 1), yields
the result, since Sobolev’s inequality implies that (2p− 3)q′ can not, in general,
exceed nq/(n− 2q), at least when q ≤ n/2.

We conclude this section with a discussion of a weaker condition on the
obstacles which still implies existence in the special case of the p-Laplacian. Let
e ⊂ Ω be a Borel set and recall the definition of the p-conductor capacity Cp(e):

Cp(e) ≡ inf{

∫
|∇φ|p dx |φ ∈ C∞c (Ω), φ ≥ 1 on e, ē ⊂ Ω}.

We observe that it suffices to replace condition (24) by the weaker require-
ment: ∫

Ω

(−∆pψ)p+ dCp <∞. (29)

The integral in (29) is the usual Choquet integral, taken in the sense∫ ∞
0

Cp(Ω ∩ [(−∆pψ)+ > t]) dtp. (30)

The Choquet integral arises as a capacity functional: if f is a smooth non-

negative function on Ω with compact support in Ω, then the integral

∫
Ω

fp dCp

is comparable to

inf

∫
|∇φ|p dx, (31)

where the infimum is taken over all φ ∈ W 1,p
0 (Ω) such that φ ≥ f , a.e. on Ω.

For this and related results see [1] and [3].
Using the functional (31) it follows that condition (29) can be used as a

replacement for (24). Indeed, whenever an integral of the form

Q

∫
η(u− ψ)∆pψ dx (32)
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appears in the a priori estimates of Section 1, with Q a positive constant, then
for any φ ∈W 1,p

0 (Ω) for which φ ≥ (−∆pψ)+ a.e. on Ω, we estimate (32) by

−Q

∫
η(u− ψ)φdx .

Then, substituting for η, as in our proofs in Section 1, we integrate by parts,
obtaining an estimate in terms of ‖∇φ‖p. Finally, (31) relates this estimate to
(29) and (30).

It should also be noted that[∫
Ω

(−∆pψ)2
+ dx

]1/2

≤ Q

[∫
Ω

(−∆pψ)p+ dCp

]1/p

,

whenever p > 2n/(n+ 2). This follows from the Sobolev inequality. Thus both
conditions on ψ in Theorem 1.1, (23) and (24), can be replaced by the single
condition (29) when p > 2n/(n+ 2).

Condition (29) is a bit more satisfying than (23) and (24) since (29) deals
only with two derivatives of ψ. Also (29) clearly holds for smooth ψ when p ≥ 2.
The following example shows that it is possible to have an obstacle ψ for which
(−∆pψ)+ is unbounded, (29) is finite, and p < 2. Let x̄ = (x1, x2, 0, 0, ..., 0)
and fix 0 ∈ Ω, φ ∈ C∞c (Ω), with φ ≡ 1 in some neighborhood of 0. Set
ψ(x) = φ(x)(1−|x̄|θ), 2 < θ < 3. Then an easy calculation gives that (−∆pψ)+

behaves like Q|x̄|α, α = (θ − 1)(p− 2) + (θ − 2) < 0, for p < θ/(θ − 1), while
(29) holds for p > 2/(θ − 1). (This last result is a consequence of the estimates
for the capacity of an n-rectangle given in [1].)

3 Additional results

3.1 Boundedness of solutions

Here we will give an outline of the proof that solutions of problem (6) under
the assumptions of Theorem 1.1, are bounded. We do this by applying the
Moser iteration method to solutions of (9). Again, this result is only valid for
p > 2n/(n+ 2). Of course, only p ≤ n are of eventual interest here.

Lemma 3.1 Let Uε be a solution of (9) and assume that the obstacle Ψ satis-
fies the hypothesis in Theorem 1.1. In addition, suppose (−div Fi(·,∇ψi))+ ∈
L∞(Ω). Then there exists a constant Q, independent of ε, such that

‖Uε‖
s
L∞ ≤ Q(‖Uε‖L2 + 1) (33)

for s = 1 + n
2 −

n
p

; p > 2n/(n+ 2).

Proof: We begin as in the proof of Theorem 1.2, but this time we take the
inner product with the function (−fr(u1

ε),−fr(u
2
ε))

t, where fr is as in the proof
of Lemma 1.4. Observe that we have:

|uiε|
r−1|∇uiε|

p = |∇(f(r−1)/p+1(uiε))|
p.
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Hence we can use the Sobolev inequality to write:

Kr

(∫
Ω

|Uε|
(r+p−1)σ dx

)1/σ

≤ Q

(∫
Ω

|Uε|
r+1 dx+

∫
Ω

|gε|
r+1 dx

)
(34)

where Q is independent of ε and r, and gε =
(

1
εη(u1

ε − ψ
1), 1

εη(u2
ε − ψ

2)
)
;

Kr = b0rp
p/(r + p− 1)p and σ = n/(n− p).

Using Lemma 1.4, we have:

‖gε‖
q
Lq ≤ Q(‖Uε‖

q
Lq + 1), (35)

where Q depends on ψi, but is independent of ε. Thus, we can write (34) as(∫
Ω

|Uε|
(r+p−1)σ dx

)1/σ

≤
Q

Kr
(‖Uε‖

r+1
Lr+1 + 1). (36)

Now iterate (36), first taking r = r1 = 1 and then r = rj = qj−1 − 1, where

qj = 2σj + (p− 2)

j∑
k=1

σk = −
(p− 2)σ

σ − 1
+ σj

[
2 +

(p− 2)σ

σ − 1

]
.

Thus, for example, we have for r = r2(∫
Ω

|Uε|
(pσ+p−2)σ dx

)1/σ

≤
Q

Kr2

{
Qσ

Kσ
r1

(‖Uε‖
2
L2 + 1)σ + 1

}
≤

Q

Kr2

·
Q

Kr1

· 4σ(‖Uε‖
2σ
L2 + 1)

since we can assume Q/Kr1 ≥ 1 and apply the estimate (a+ 1)σ + 1 ≤ 2σ(aσ +
1) + 1 ≤ 4σ(aσ + 1), for any a ≥ 0. And then in general,

‖Uε‖
qN/σ
LqN ≤

N∏
j=1

(4Q)σ
j−1

N∏
j=1

Kσj−1

rj

(‖U‖2σ
N−1

L2 + 1). (37)

Now take the 2σN−1 root of both sides of (37) and let N →∞. This yields the
desired result since

qN

2σN
→ 1 +

(p− 2)σ

2(σ − 1)
= 1 +

n

2
−
n

p
.

Note 1 + n
2 −

n
p
> 0 if and only if p > 2n/(n+ 2).

Lemma 3.1 together with the estimates (10) and (33) give the final claim of
Theorem 1.1, namely that U ∈ (L∞(Ω))2. Note that in order to guarantee that
the exponents qj are increasing without bound, it is necessary to require pσ > 2
i.e. p > 2n/(n+ 2).
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3.2 Maximum principles

In this subsection we will discuss a small class of non-monotone systems for
which the components of the solutions to the corresponding obstacle problems
are comparable and non-negative. As we observed in the Introduction, this is
referred to as a maximum principle. These results complement those obtained
in [6] where the case p = 2 was studied.

We will first consider a particular example. Let:

A =

[
1 −1
−2 1

]
B =

[
2 −2

−(2 + θ) 1 + 2/θ

]
,

where θ = 21/(p−1), 2 < p < ∞. Now the penalized system (9) with Fi =
|ζ|p−2ζ, i = 1, 2, implies that:

∆pu
1
ε −∆pu

2
ε − 2u1

ε + 2u2
ε ≥ 0

−2∆pu
1
ε + ∆pu

2
ε + (2 + θ)u1

ε − (1 + 2/θ)u2
ε ≥ 0

 in Ω. (38)

Thus we have:

−∆pu
2
ε + 2u2

ε ≥ −∆pu
1
ε + 2u1

ε

−∆pũ
1
ε + (1 + 2/θ)ũ1

ε ≥ −∆pu
2
ε + (1 + 2/θ)u2

ε

 in Ω, (39)

where ũ1 = θu1
ε. The following lemma then implies

u2
ε ≥ u

1
ε ≥

1

θ
u2
ε, in Ω. (40)

Lemma 3.2 If Wj ∈W
1,p
0 ∩ L2(Ω) and satisfies

−∆pW1 + λW1 ≥ −∆pW2 + λW2, in Ω

with λ ≥ 0, then W1 ≥W2, a.e. Ω.

Proof: Set S = Ω ∩ [W2 ≥W1]. Using the function (W2 −W1)+, we can write∫
S

(|∇W2|
p−2∇W2 − |∇W1|

p−2∇W1)(∇W1 −∇W2) dx+λ

∫
S

(W1 −W2)2 dx ≤ 0 .

This easily implies W1 ≥W2 in Ω.

We deduce from above that the solutions (u1
ε, u

2
ε) of (38) satisfy

u1
ε ≥ 0, u2

ε ≥ 0, in Ω. (41)

Finally, appealing to the proof of Theorem 1.1, we conclude that (40) and (41)
remain valid in the limit as ε→ 0 and p > 2.

The same conclusions deduced above for this special example, namely (40)
and (41), remain valid for any system satisfying the following six conditions.
We use the notation introduced in the proof of Theorem 1.2.
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1. det (A) < 0

2. Aij < 0, i, j = 1, 2

3. M ij = (A−1B)ij > 0, i = j; M ij < 0, i 6= j

4. The minimum eigenvalue of (A−1B)S is greater than zero

5. B11 = −σB12, B22 = −ξB21, where now

σ =

∣∣∣∣A1,1

A1,2

∣∣∣∣1/(p−1)

, ξ =

∣∣∣∣A2,2

A2,1

∣∣∣∣1/(p−1)

6. M11 +M12σ ≥ 0 and M21ξ +M22 ≥ 0.

Conditions 1–4 imply (via Theorem 1.1) that problem (6) has a solution in
(W 1,p

0 (Ω)∩L∞(Ω))2, p > 2n/(n+ 2). Conditions 5 and 6 imply (40) and (41)
for p > 2. These conditions are mutually contradictory if 1 < p ≤ 2.

Any symmetric matrix A satisfying both conditions 1 and 2 has, of course,
eigenvalues of opposite signs. Therefore these matrices give rise to operators of
the form A∆p −B which are not monotone and for which there is a maximum
principle property.

3.3 The scalar problem

We conclude this section with some remarks about the scalar case. Consider
solving 〈−∆pu + λu, v − u〉 ≥ 0 with u ∈ K = {v ∈ W 1,p

0 (Ω) ∩ L2(Ω) | v ≥
ψ a.e. Ω} by finding:

min

∫
Ω

(
1

p
|∇u|p +

λ

2
u2

)
dx, (42)

where the minimum is taken over all u ∈ K. For λ ≥ 0 the existence of a
minimizer is immediate for all p > 1. However, if λ < 0, it is easy to see that
problem (42) has no solution for 1 < p < 2. To see this, just choose uk = ψ++ϕk
where

ϕk(x) = min (|x|−α, k)− 1

on the ball Ω = B(0, 1), centered at the origin and of radius 1. Then ‖ϕk‖22
behaves like k2−n/α as k → ∞ for α > n/2. Also, ‖∇ϕk‖pp is O(1) for α <

n/p − 1,and it is O(k(1+1/α)p−n/α) when α > n/p − 1, as k → ∞. Thus

for p < 2n/(n + 2), (42) is −∞ for α ∈
(
n
2 ,

n
p
− 1
)

, whereas it is −∞ for

2n/(n+ 2) < p < 2 when α satisfies

n

p
− 1 ≤

n

2
≤

p

2− p
< α.

For p ≥ 2, (42) has a solution. To see this, start by observing that any
minimizing sequence is bounded a priori in L2. This follows from the Poincaré
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and Hölder inequalities, as long as −λ is sufficiently small (−λ < Qp, where Qp
is the constant appearing in the Poincaré inequality). Hence it is bounded in
W 1,p. The compactness of the imbedding W 1,p ⊂ L2 then allows passage to the
limit using L2-strong convergence and W 1,p-weak lower semi-continuity of the
W 1,p

0 -norm.
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