
Electronic Journal of Differential Equations, Vol. 1997(1997), No. 21, pp. 1–14.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp (login: ftp) 147.26.103.110 or 129.120.3.113

A spectral problem with an indefinite weight for

an elliptic system ∗

Mamadou Sango

Abstract

We establish the completeness and the summability in the sense of
Abel-Lidskij of the root vectors of a non-selfadjoint elliptic problem with
an indefinite weight matrix and the angular distribution of its eigenvalues.

1 Introduction

Spectral problems with an indefinite weight for typically non-selfadjoint elliptic
problems (not obtained by perturbation of selfadjoint ones) have been initially
investigated by (Faierman 1990). He obtained the completeness of the root
vectors and the angular distribution of eigenvalues for a regular scalar elliptic
problem. We refer to his paper for further references on this topic. Similar
problems for non-selfadjoint elliptic systems have not yet been investigated.
The present paper aims to initialize such investigations. In a bounded region Ω
in Rn with a (n− 1)–dimensional boundary Γ, we consider the boundary value
problem with an indefinite weight matrix

(A− λEω) u = 0 in Ω; Bku = 0 (k = 1, . . . , r) on Γ, (1)

where, A is a square matrix of dimension N consisting of differential operators of
order 2m with complex coefficients,Bk (k = 1, . . . , r = Nm) areN– dimensional
rows whose components are differential operators of order mk ≤ 2m − 1 with
complex coefficients and Eω is a diagonal matrix whose diagonal entries are
real-valued functions.

In this work, we establish some results on the completeness and the summa-
bility by Abel’s method (see e.g., Lidskij 1962, Agranovish 1977, Kostyuchenko-
Razdievskij 1974, for details) of the root vectors of problem (1), and the angular
distribution of its eigenvalues. In order to derive our results, we establish the
unique solvability of an auxilliary elliptic transmission problem with a param-
eter. We note that our smoothness assumptions on problem (1) are slightly
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weaker than in (Faierman 1990), since we do not use the formally adjoint prob-
lem to (1). This approach can be successfully used to investigate similar prob-
lems for elliptic systems in the sense of Douglis-Nirenberg. We refer to (Agra-
novish 1990, Kozhevnikov 1973), where such problems have been investigated
in the case when Eω is the unit N × N matrix. We also note the important
earlier contributions of (Agmon 1962) and (Grisvard and Geymonat 1967). The
work is organized as follows. Section 2 is devoted to the formulation of the
main assumptions. In section 3, we establish the unique solvability of an ellip-
tic transmission problem with a parameter. In section 4, we derive our main
results.

2 Basic assumptions

Let x = (x1, . . . , xn), Dj = −i ∂
∂xj

, D = (D1, . . . , Dn), Dα = Dα1
1 . . . Dαn

n ,

where α = (α1, . . . , αn) ∈ Zn+ and |α| =
∑n
j=1 αj ,

A = A (x,D) =

 ∑
|α|≤2m

aijα (x)Dα


N

i,j=1

,

Bk = Bk (x,D) =

 ∑
|β|≤mk

bkjβ (x)Dβ


j=1,...,N

(k = 1, . . . , Nm).

We assume throughout that the operators A, Bk (k = 1, . . . , Nm) and
the domain Ω satisfy the following smoothness conditions: the region Ω is of
class C2m, the coefficients aijα (x) in A are continuous in Ω̄, for |α| = 2m and

bounded for |α| ≤ 2m− 1, the coefficients bkjβ (x) in Bk belong to C2m−mk (Γ)
for |β| = mk and bounded together with their derivatives of order up to 2m−mk

for |β| ≤ mk−1. Here Cl denotes the space of all functions continuous together
with their derivatives of order up to l.

Let Hl (Ω, N) (l is an integer) be the direct product of N Sobolev spaces
W l

2 (Ω). When l = 0, we write H0 (Ω, N) = L2 (Ω, N). We denote by Hl− 1
2

(Γ)

(l ≥ 1) the space of boundary values of functions fromW l
2 (Ω) and byHl− 1

2
(Γ, N)

the direct product of N such spaces. The norms in Hl (Ω, N) and Hl− 1
2

(Γ) are

respectively denoted by || ||l,Ω and || ||l− 1
2 ,Γ

.

Next we turn to the assumptions concerning the weight matrixEω(x). They
will be closely related to a certain partition of the domain Ω into appropriate
subdomains.

Assumption 1. Let there be given some (n−1)–dimensional manifolds Γ1, . . . ,Γq
each of class C2m, lying inside Ω, having no point in common with Γ and such
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that Γl ∩ Γk = ∅ for l 6= k. They divide Ω into subdomains

Ω1, . . . ,Ωq+1.

We assume that the diagonal entries ωs (x) (s = 1, . . . , N) of Eω (x) are contin-
uous in each Ω̄l, can pertain a discontinuity of first kind and change sign while
crossing any Γp and

|ωs (x)| > 0 (s = 1, . . . , N).

Since the functions ωs (x) (s = 1, . . . , N) are assumed to be discontinuous
across Γp, the solution of (1) may not belong to the functional space H2m (Ω, N)
which is of interest to us. Thus, in order to preserve the membership of the so-
lution to this space, we impose, among others, the following natural conjugation
conditions:

Dj
nu(l) (x) = Dj

nu(l′) (x) ; (j = 0, . . . , 2m− 1) on each Γp, (2)

where u(l) and u(l′) are the restrictions of the function u to Ωl and Ωl′
respectively, Γp separates Ωl from Ωl′ and Dn is the derivative along the inward
normal to Γp.

Definition 1 A complex number λ will be called an eigenvalue of the boundary
problem (1) if the problem (1) with the transmission conditions (2) admits at
least a non-trivial solution u ∈ H2m (Ω, N); this solution is refered to as the
eigenfunction of (1) corresponding to λ; otherwise the number λ is called regular
point of (1) .

Next, let A0(x, ξ) and B0k(x, ξ) ( k = 1, . . . , Nm) be respectively the prin-
cipal parts of the operators A and Bk ( k = 1, . . . , Nm). Let also

Ξ(θ1, θ2) = {λ : θ1 ≤ argλ ≤ θ2}

be an angular sector in the complex plane and λ an element of Ξ(θ1, θ2).

Assumptions 2.

(i) We require the matrix

A0(x, ξ)− λEω(x) (3)

to be invertible for all ξ ∈ Rn; |ξ|+|λ| 6= 0 and all x ∈ Ω̄p (p = 1, . . . , q + 1 ).

(ii) Let x0 be any point on Γ. We shall turn the coordinates axes such that,
the axis xn takes the direction of the inward normal to Γ at x0. For
simplicity, we suppose that the operators A, Bk are written in the system
of coordinates connected with x0. We consider the following problem on
the ray.

(A0(x0, ξ
′, Dt)− λEω(x0))v(t) = 0, t > 0 (4)
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B0k(x0, ξ
′, Dt)v(t)|t=0 = gk (k = 1, . . . , Nm), (5)

where ξ′ = (ξ1, . . . , ξn−1) and Dt = −i d
dt

.

For any ξ′ ∈ Rn−1, |ξ′| + |λ| 6= 0, the space of solutions of system (4),
exponentially decreasing in modulus when t → ∞, is Nm -dimensional
and the problem (4)-(5) is uniquely solvable for any gk , in this space.

(iii) Let Al (Al′) and Eωl (Eωl′) be respectively the restriction of the matrix A
and the matrix Eω to Ωl (Ωl′) and assume that Γp separates Ωl and Ωl′ .
We take a point x0 ∈ Γp and turn the coordinate axes such that, the axis
xn takes the direction of the inward normal to Γp at x0. We consider the
following transmission problem on the line,

(Al0(x0, ξ
′, Dt)− λEωl(x0)) vl(t) = 0 , t > 0 (6)

(Al′0(x0, ξ
′, Dt)− λEωl′(x0)) vl′(t) = 0, t < 0 (7)

Dµ
t vl(0)−Dµ

t vl′(0) = hµp , µ = 0, . . . , 2m− 1. (8)

For any ξ′ ∈ Rn−1; |ξ′| + |λ| 6= 0, the space of solutions of the system
(6)-(7), exponentially decreasing in modulus when |t| → ∞, is 2Nm–
dimensional and the problem (6)-(8) is uniquely solvable in this space for
any
N -dimensional column hµp.

We define an exponentially decreasing solution of (6)-(7) as a vector v =
(vl, vl′), where vl and vl′ are respectively solutions of (6) and (7) and vl (t)→
0 when t→ +∞ while vl′ (t)→ 0 when t→ −∞.

3 An auxilliary result

In this section we establish an auxilliary result on the unique solvability of an
elliptic transmission problem with a parameter. This result plays a central role
in our investigations.

Let us consider the following non-homogeneous transmission problem in-
duced by the boundary value problem (1) and the conjugation conditions (2):

Llu (x) = (Al (x,D)− λEωl (x))ul (x) = fl (x) in Ωl (l = 1, . . . , q + 1), (9)

[Dµ
nu]p = Dµ

nul (x)−Dµ
nul′ (x) = hµp (x) on Γp (µ = 0, . . . , 2m−1; p = 1, . . . , q),

(10)
Bk (x,D)u (x) = gk (x) on Γ (k = 1, . . . , Nm), (11)

where Al, Eωl and Γp have the same meaning as in Assumption 2(iii), fl and
hµp are vector-columns of height N defined respectively in Ωl and Γp, gk are
scalar functions defined on Γ.
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Now let U be the operator connected with the problem (9)-(11), defined by

Uu =
{
L1u1, . . . , Lq+1uq+1, [u]1 , . . . ,

[
D2m−1
n u

]
1
, . . . , [u]q , . . . ,

[
D2m−1
n u

]
q
,

B1u, . . . , BNmu} (12)

and acting from

H
(

Ω(l), N
)

= H2m (Ω1, N)× · · · ×H2m (Ωq+1, N) (13)

to

H
(

Ω,Γ(p),Γ
)

(14)

=

q+1∏
p=1

L2 (Ωl, N)×
q∏
p=1

2m−1∏
µ=0

H2m−µ− 1
2

(Γp, N)×
Nm∏
k=1

H2m−mk−
1
2

(Γ) .

We introduce in Hl (Ω, N) and Hl− 1
2

(Γ) respectively the norms

||| |||l,Ω = || ||l,Ω + |λ|
l

2m || ||0,Ω ,

||| |||l− 1
2 ,Γ

= || ||l− 1
2 ,Γ

+ |λ|
l− 1

2
2m || ||0,Γ .

Theorem 1 Let Assumptions 1 and 2 be satisfied. Then for sufficiently large
λ ∈ Ξ (θ1, θ2), for each fl ∈ L2 (Ωl, N), hµp ∈ H2m−µ− 1

2
(Γp, N) and gk ∈

H2m−mk−
1
2

(Γ), the problem (9)-(11) has a unique solution u ∈ H
(
Ω(l), N

)
which satisfies the estimate

C−1 |||u|||H(Ω(l),N) ≤ |||Uu|||H(Ω,Γ(p),Γ) ≤ C |||u|||H(Ω(l),N) , (15)

where C is a positive number independent of u and λ.

The proof of this theorem follow from some lemmas corresponding to model
problems in Rn and Rn

+. Let us consider the following operators

Ll0 (D,λ) =

 ∑
|α|=2m

aijlαD
α − λωijl δij


N

i,j=1

(l = 1, . . . , q + 1 ) ;

(δij denotes the symbol of Kronecker) and Bk0 (D) =
{∑

|β|=mk
bkjβ D

β
}

(k =

1, . . . , Nm) with constant coefficients aijlα, ωijl and bkjβ respectively. For conve-
nience, we assume that ∂Ωq+1 ∩ Γ 6= ∅.

The following two results are from ( Agranovish and Vishik 1964, Roitberg
and Serdyuk 1991 ).
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Lemma 1 Suppose that the operators Ll0 (D,λ) satisfy Assumption 2(i). Then
for |λ| sufficiently large and any f ∈ L2 (Rn, N), the system of equations

Ll0 (D,λ)u (x) = f (x) in Rn ( l = 1, . . . , q + 1) (16)

has one and only one solution u ∈ H2m (Rn, N) and there exists a constant
C > 0 not depending on u and λ such that the following estimate holds

C−1 |||u|||2m,Rn ≤ ||Ll0u||0,Rn ≤ C |||u|||2m,Rn ( l = 1, . . . , q + 1) . (17)

Lemma 2 Suppose that L(q+1)0 satisfies Assumption 2(i) and together with the

Bk0’s Assumption 2(ii). Then for |λ| sufficiently large, for each f ∈ L2

(
Rn

+, N
)

and gk ∈ H2m−mk−
1
2

(
Rn−1

)
( k = 1, . . . , Nm ), the problem in the half-space

L(q+1)0 (D,λ) u (x) = f (x) in Rn
+, (18)

Bk0 (D) u (x) |xn=0 = gk (x′) (k = 1, . . . , Nm) (19)

is uniquely solvable in H2m

(
Rn

+, N
)

and there exists a positive constant C in-
dependent of u and λ, such that

C−1 |||u|||2m,Rn
+
≤

∣∣∣∣L(q+1)0u
∣∣∣∣

0,Rn
+

+
Nm∑
k=1

|||Bk0u|||2m−mk− 1
2 ,R

n−1

≤ C |||u|||2m,Rn
+
. (20)

We prove

Lemma 3 Suppose that the operators Ll0and Ll′0 are given in Rn
+ and Rn

−

respectively, satisfy Assumption 2(i) and together with Dµ (µ = 0, . . . , 2m −
1) Assumption 2(iii). Then for |λ| sufficiently large, for each f = (fl, fl′) ∈
L2 (Rn, N) = L2

(
Rn

+, N
)
× L2

(
Rn
−, N

)
and hµ ∈ H2m−µ− 1

2

(
Rn−1, N

)
, the

problem
Ll0 (D,λ) ul (x) = fl (x) in Rn

+ , (21)

Ll′0 (D,λ)ul′ (x) = fl′ (x) in Rn
−, (22)

[Dµ
nu (x′, 0)] = Dµ

nul (x
′, 0)−Dµ

nul′ (x
′, 0) = hµ (x′) (µ = 0, . . . , 2m− 1) , (23)

is uniquely solvable in H2m (Rn, N) = H2m

(
Rn

+, N
)
×H2m

(
Rn
−, N

)
and there

exists a constant C not depending on u and λ, such that for a solution u ∈
H2m (Rn, N) of problem (21)-(23) the following apriori estimate holds

C−1 |||u|||H2m(Rn,N) ≤ |||f |||L2(Rn,N) +
2m−1∑
µ=0

|||hµ|||2m−µ− 1
2 ,R

n−1 (24)

≤ C |||u|||H2m(Rn,N) .
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Proof. We derive the assertions of the lemma from Lemma 2 by reducing the
problem (21)-(23) to a problem in the half-space Rn

+. In fact setting

ũ = (ul, ũl′) ; ũl′ (x
′, xn) = ul′ (x

′,−xn) (25)

in (21)-(23), we obtain the problem

L̃0 (D,λ) ũ (x) = f̃ (x) in Rn
+, (26)

Bµ (D) ũ (x′, 0) = hµ (x′) (µ = 0, . . . , 2m− 1) , (27)

where

L̃0 (D, q) =

(
Ll0 (D,λ) 0

0 L̃l′0 (D,λ)

)
is a square matrix of dimension 2N ;

L̃l0 (D, q) =

 ∑
|α|=2m

(−1)αn aijl′αD
α − λωijl′ δij


N

i,j=1

,

Bµ (D) =
(
Dµ
nE, (−1)

µ+1
Dµ
nE
)

(µ = 0, . . . , 2m− 1) ;

E is the unit N ×N matrix,

f̃ (x) =
(
fl (x) , f̃l′ (x)

)
; f̃l′ (x) = fl′ (x

′,−xn) .

Since the problem (21)-(23) is elliptic with a parameter, it follows that (26)-
(27) is also elliptic with a parameter. Thus from Lemma 2 we have that for |λ|
sufficiently large the problem (26)-(27) is uniquely solvable in H2m

(
Rn

+, 2N
)

and the solutions ũ belonging to this space satisfy the apriori estimate

C−1
1

{∣∣∣∣∣∣f̃∣∣∣∣∣∣
0,Rn

+

+
2m−1∑
µ=0

|||hµ|||2m−µ− 1
2 ,R

n
+

}
≤ |||ũ|||2m,Rn

+

≤ C1

{∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
0,Rn

+

+
2m−1∑
µ=0

|||hµ|||2m−µ− 1
2 ,R

n−1

}
, (28)

the constant C1 is independent of ũ and λ. Let rewrite the second inequality in
(28) in the form

|||ul|||2m,Rn
+

+ |||ũl′ |||2m,Rn
+

(29)

≤ C1

{
||fl||0,Rn

+
+
∣∣∣∣∣∣f̃l′∣∣∣∣∣∣

0,Rn
+

+
2m−1∑
µ=0

|||hµ|||2m−µ− 1
2 ,R

n−1

}
.
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Making the change of variable xn → −xn in the norms of the functions ũl′ and
f̃l′ in (29), we get

|||u|||H2m(Rn,N) ≤ C1

{
||f ||L2(Rn,N) +

2m−1∑
µ=0

|||hµ|||2m−µ− 1
2 ,R

n−1

}
; (30)

This is the first inequality in (24). From it, follows the uniqueness of a solution
(provided it exists) of (21)-(23). The proof of the second inequality in (24)
follows similarly. It is clear that the existence of a solution to problem (21)-(23)
follows from the existence of a solution to (26)-(27) as seen from the following
commutative diagram

H2m (Rn, N)
U
→

H (Rn) = L2 (Rn, N)×
∏2m−1
µ=0 H2m−µ− 1

2

(
Rn−1, N

)
↓ r1 ↓ r2

H2m

(
Rn

+, 2N
) U′

→
H
(
Rn

+

)
= L2

(
Rn

+, 2N
)
×
∏2m−1
µ=0 H2m−µ− 1

2

(
Rn−1, N

) ,
(31)

where r1 is the reflexion about the hyperplane Rn−1 associating u ∈ H2m (Rn, N)
with the function ũ ∈ H2m

(
Rn

+, 2N
)

defined by (25), r2 is also a reflexion

about the hyperplane Rn−1 mapping H (Rn) onto H
(
Rn

+

)
, U′ is the op-

erator assigning to a solution ũ ∈ H2m

(
Rn

+, 2N
)

of problem (26)-(27) the

row
(
f̃ , h0, . . . , h2m−1

)
∈ H

(
Rn

+

)
; from the unique solvability of (26)-(27)

it is clear that U′ is one-to-one and bounded (from (28)), U is the opera-
tor assigning to a solution u ∈ H2m (Rn, N) of problem (21)-(23) the row
(f, h0, . . . , h2m−1) ∈ H (Rn). We set U = r−1

2 ◦ U′ ◦ r1; U is obviously a
bounded ( from (24)) and invertible operator. This completes the proof of the
lemma. 2

Now the proof of Theorem 1 follows from Lemmas 1, 2 and 3 by using a
sufficiently fine partition of the unity and arguing exactely as in (Agranovich-
Vishik 1964, Chap. 4 and 5), with the obvious changes. This process is lengthy
but technically simple.

Remark 1 From Banach’s open mapping theorem, it follows from Theorem
1 that the operator U defined in (12) establishes an isomorphism between the
spaces (13)-(14). Further, following (Agranovich-Vishik 1964, Chap. 4) it can
be easily shown that for |λ| sufficiently large, the validity of the apriori estimate
(15) for all u ∈ H2m (Ω, N) implies the fullfilment of Assumptions 2 (i), (ii),
(iii).

4 Main results

Let A be the unbounded operator with the domain

D (A) = {u ∈ H2m (Ω, N) : Bku = 0 (k = 1, . . . , Nm)}
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acting by Au = A (x,D) u, for all u ∈ D (A), and T the bounded operator
induced by the multiplication by the matrix Eω inL2 (Ω, N). Clearly the domain
of the operator A is dense in L2 (Ω, N). We rewrite problem (1) in the form

T−1Au = λu, u ∈ D (A) (32)

and call λ an eigenvalue of problem (1) if λ is an eigenvalue of (32) and refer to
the root vectors of T−1A corresponding to λ as those of (1) corresponding to λ.
Lastly let S (λ) = A − λT be the pencil acting in L2 (Ω, N) with the domain
D (S) = D (A) and ρ(S) the set of its regular points. Under the conditions of
Theorem 1, it is clear that the operators A and T−1A are closed.
As a consequence of Theorem 1, we have the following resolvent estimate, of
crucial importance for our investigations.

Theorem 2 Let the Assumptions 1 and 2 be satisfied. Then there exists a
positive number C such that λ ∈ ρ(S) and∣∣∣∣S−1(λ)

∣∣∣∣
L2(Ω,N)→L2(Ω,N)

≤ C |λ|−1
(33)

for λ ∈ Ξ (θ1, θ2) and sufficiently large in modulus.

Proof. Let the boundary conditions (10) and (11) be homogeneous. Thus
from Theorem 1, it follows that the operator (A (x,D)− λEω (x)) establishes
an isomorphism between H2m (Ω, N) and L2 (Ω, N) and the estimate

||u||2m,Ω + |λ| ||u||0,Ω ≤ C ||(A (x,D)− λEω (x))u||0,Ω (34)

holds for u ∈ H2m (Ω, N), with |λ| sufficiently large; C is a positive constant
independent of u and λ. Furthermore the operatorA is closed. Now the estimate
(33) immediately follows from the inequality (34) and the closed graph theorem.
2

Assume that 0 ∈ ρ (S) (this is always possible; if necessary by a shift in
the spectral parameter λ) . We are now in the position to establish our main
results. We have

Theorem 3 Let Assumptions 1 be satisfied Suppose that Assumptions 2 are also
satisfied along certain rays Ξ(θj) (j = 1, . . . , k) in the complex plane emanating
from the origin and making an angle θj with the positive real axis, and in this
connection let the maximal angle between successive rays not exceed 2mπ/n.

Then the spectrum of problem (1) is discrete and its root vectors are complete
in L2(Ω, N).

Proof. Under the conditions of the theorem, it is clear that the Ξ (θj)’s are

rays of minimal growth of the operator
(
T−1A− λE

)−1
, i.e., this operator exists

for λ ∈ Ξ (θj), satisfies the inequality∣∣∣∣∣∣(T−1A− λE
)−1
∣∣∣∣∣∣ ≤ const |λ|−1

(35)
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( from Theorem 2) for |λ| sufficiently large and is compact in L2 (Ω, N). This

implies the first assertion of the theorem. Furthermore
(
T−1A− λE

)−1
belongs

to the Von Neuman-Schatten class C n
2m+ε; ε > 0. Thus, the completeness of

the root vectors of problem (1) follows from the inequality (35) and (Dunford
and Schwartz 1963, Chapter XI, Sect. 9, Corollary 31). 2

In order to formulate our next result we state an abstract result on the
summability by Abel’s method introduced by (Lidskij 1962).

Summability in the sense of Abel-Lidskij. Let X be a separable Hilbert
space and A an unbounded linear operator in X with a dense domain of defi-
nition D(A) in X having a discrete spectrum σ(A). To each vector f ∈ X we
associate its formal Fourier series in the root vectors esj corresponding to the
eigenvalues λs (with multiplicity ms) of the operator A,

∞∑
s=1

ms∑
j=1

csjesj , (36)

where the Fourier coefficients csj = (f, gsj) {gsj} ( j = 1, 2, . . . ,ms) is a system
biorthogonal to {esj} ( j = 1, 2, . . . , ms). In general even if the root vectors of
A are complete in X, the series (36) may be divergent. Let us impose on the
operator A the following

Condition (α, θ). Let R be a positive number. We assume that all the
eigenvalues λs of the operator A except a finite number lie in the disjoint angular
sectors

Ξp,R = {λ : |argλ− θp| < αp, |λ| > R} ( p = 1, 2, . . . , P ) . (37)

Definition 2 We shall say that the system of root vectors {es} of the operator
A is summable by the method A (X, θp, βp) in the sequence {λs} if for any vector
f ∈ X, there exists a monotonely increasing sequence Rl ( l = 1, 2, . . .) ; R1 = 0
tending to ∞ such that for all t > 0, the series

P∑
p=1

∞∑
l=1

∞∑
s=1

λs∈Ξp,R
Rl≤|λs|≤Rl+1

ms∑
j=1

c
(p)
sj esj , (38)

converges, where the coefficients in (38) are determined by evaluating the integral

−
1

2πi

∫
γs

e−λ
βp t (A− λI)

−1
fdλ,

where λβp = |λ|βp eiβp arg λ (with βpαp ≤
π
2 ) and γs is a contour about a single

corresponding eigenvalue λs.
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For λ ∈ ρ (A), let R (λ,A) = (A− λI)−1 (I is the unit operator in X) be
the resolvent of the operator A. Now we are in the position to formulate the
theorem on the summability by the method A (X, θp, βp).

Theorem 4 Let A be an unbounded linear operator with a dense domain of
definition D (A) in X and having a discrete spectrum. Let sj, (j = 1, 2, . . .) be

the eigenvalues of the positive selfadjoint operator
√
RR∗ enumarated so that

s1 ≥ s2 ≥ · · · ≥ sp ≥ · · ·. Let the following conditions be satisfied

(i)
sj ≤ Cj

−ρ for some ρ > 0 and C > 0

(ii) The spectrum of the operator A lies in the angular regions Ξp,R ( p =
1, .2, . . . , P ), 0 < αp <

πρ
2 and each ray not in Ξp,R is a ray of minimal

growth of R (λ,A), i.e., the following estimate holds

||R (λ,A)|| ≤ C |λ|−1
, λ /∈ Ξp,R .

Then for βp ∈
(
ρ−1,

πα−1
p

2

)
, the system of root vectors of the operator A is

summable by the method A (X, θp, βp).

This theorem is a reformulation of a variant of Lidskji’s theorem due to
(M.S Agranovich 1977 page 345) in the case when the eigenvalues lie in more
than one angle. The present formulation was inspired from (Kostyuchenko and
Radzievskij 1974, Theorem 1) and (Kozhevnikov and Yakubov 1995 p. 229-
230). We note that when p = 1 and θp = 0, the definition 2 and the theorem 4
coincides with those introduced in Lidskii’s original paper.

Now we have

Theorem 5 Under the assumptions of Theorem 3, the system of root vec-
tors of problem (1) is summable by the method A (L2 (Ω, N) , αj , βj) (αj =

|θj+1 − θj | , j = 1, . . . , k − 1) for βj ∈
(
n

2m ,
π
αj

)
.

Proof. Since
(
T−1A− λE

)−1
is of class C n

2m
+ε; ε > 0 and Inequality (35)

holds on the rays Ξ (θj) ( j = 1, . . . , k), the affirmation the theorem is an
immediate consequence of Theorem 4. 2

The following result deals with the angular distribution of the eigenvalues of
problem (1).

Theorem 6 Let Assumptions 1 be satisfied and suppose that there exist the rays
{Ξ(θj)} (j = 1, 2)in the complex plane such that

(i) 0 < θ2 − θ1 < min{2π, 2mπ/n};

(ii) Assumptions 2 are satisfied for θ = θj ( j = 1, 2).
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Suppose also that for some θ′ ( θ1 < θ′ < θ2) at least one of the assumptions 2
(i), (ii) or (iii) is violated for θ = θ′.

Then there are infinitely many eigenvalues of the problem (1) in the sector
θ1 < argλ < θ2.

This theorem is proved exactely as in (Agmon 1962 Theorem 3.3).

Example. Suppose that in (1), the operator A (x,D) is strongly elliptic and
the boundary conditions are of Dirichlet type. Then the assumptions 2 (i), (ii)
are immediately satisfied (the set of the corresponding λ’s depends on the sign
of the diagonal entries of Eω in the region adjacent to Γ). The proof is similar to
( Agmon, Douglis and Nirenberg 1964, Agranovish and Vishik 1964 (Chap. 4))
where the question of ellipticity for the Dirichlet problem for strongly elliptic
systems has been considered. Following the same arguments as in these papers,
one can show that if at least one of the diagonal entries of the weight matrix Eω
changes sign inside Ω, then assumption 2 (iii) is satisfied only when argλ = ±π2 .
Thus the revolvent set of the pencil S (λ) is located on the imaginary axis in
the complex plane and the rays argλ = ±π2 are the rays of minimal growth of
S−1 (λ). Furthermore from theorem 3 the spectrum of S (λ) is discrete and is
located in the half-planes Imλ < 0 and Imλ > 0. We obtain also that when
2m > n, the root vectors are complete in L2 (Ω, N) and summable by the
method A (L2 (Ω, N) , αj , βj) for βj ∈

(
n

2m , 1
)

(j = 1, 2); here αj = π.

Remark 2 When the restriction on the order of the boundary operators {Bk}
Nm
1 ,

mk < 2m is lifted, the investigation of the completeness of root vectors becomes
more complicated. But following (Agranovich 1990), we can obtain the com-
pleteness of root vectors in spaces defined by boundary conditions. Let s be
an integer ≥ max {2m, m1 + 1, . . . ,mNm + 1}. We consider the unbounded
operator A with the domain

D (A) = {u ∈ Hs (Ω, N) : Bku = 0 (k = 1, . . . , Nm)} , (39)

acting by Au = A (x,D)u for all u ∈ D (A). We have Au ∈ Hs−2m (Ω, N)
but A may fail to be densely defined in this space. In this situation, under the
fulfilment of Assumptions 1 and 2 and the corresponding smoothness conditions
on the coefficients and the domains ((i)aijα (x) ∈ Cs−2m

(
Ω̄
)

for |α| = 2m and

Dµaijα (x) ∈ L∞ (Ω) for |α| < 2m (|µ| ≤ s − 2m), (ii) bkjβ (x) ∈ Cs−mk (Γ)

for |β| = mk and Dµbkjβ (x) ∈ L∞ (Γ) for |β| < mk (|µ| ≤ s − mk), (iii) Γ
and Γp (p = 1, . . . , q) are of class Cs, in the conditions of conjugation (2)
j = 0, . . . , s − 1), the resolvent S−1 (λ) exists along some rays, is compact in
Hs−2m (Ω, N) and for |λ| sufficiently large, satisfies the estimate∣∣∣∣S−1 (λ)

∣∣∣∣
Hs−2m(Ω,N)→Hs−2m(Ω,N)

≤ const |λ|σ ,
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where σ is an integer ≥ −1. Furthermore under the conditions of Theorem 3,
we obtain the completeness of root vectors of problem (1) in the closure of the
subspace

D
(
Aσ+2

)
=

{
u ∈ Hs (Ω, N) : BkA

σ+1u = 0 on Γ (k = 1, . . . , Nm),

s−mk − 2m(σ + 1) >
1

2
, s− 2m(σ + 2) ≥ 0

}
;

σ = −1, 0, 1, . . .

in Hs−2m (Ω, N), and in L2 (Ω, N). The proof follows as in (Agranovish 1990),
where more general problems have been considered.
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