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Stable multiple-layer stationary solutions of a

semilinear parabolic equation in two-dimensional

domains ∗

Arnaldo Simal do Nascimento

Dedicated to the memory of Ennio De Giorgi (1928-1996)

Abstract

We use Γ–convergence to prove existence of stable multiple–layer sta-
tionary solutions (stable patterns) to a reaction–diffusion equation. Given
nested simple closed curves in R2, we give sufficient conditions on their
curvature so that the reaction–diffusion problem possesses a family of sta-
ble patterns. In particular, we extend to two-dimensional domains and
to a spatially inhomogeneous source term, a previous result by Yanagida
and Miyata.

1 Introduction

This paper is a contribution to the investigation of some diffusion processes,
wherein the interplay between diffusivity and a source term gives rise to stable
multiple-layer stationary solutions. This kind of solution will be referred to
as a multiple-layer pattern. At the same time, along with [23] and [24], it
consolidates the use of the Γ–convergence technique to show the existence of
multiple-layer patterns of some semilinear parabolic equations which involve a
small parameter.

Specifically we will be focusing on processes governed by the evolution prob-
lem

∂vε

∂t
= ε2 div (k1(x)∇vε) + k2(x)(vε − α)(β − vε)(vε − γε(x)) ,

for (x, t) ∈ Ω× R+ (1.1)

vε(x, 0) = v0
∂vε

∂n̂
= 0 , for x ∈ ∂Ω , t > 0
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2 Stable multiple-layer stationary solutions EJDE–1997/22

where n̂ is the inward normal to ∂Ω; α, β ∈ R, α < β, with ε a small positive
parameter; ki(x), i = 1, 2, are positive functions in C1(Ω); Ω ⊂ R2 has smooth
boundary ∂Ω, say of class C3; and

γε(x) =
(
α+β

2

)
+ gε(x), α < β, γε ∈ C(Ω)

gε(x) = o(ε), uniformly in Ω as ε→ 0 . (1.2)

In [21], the existence of multiple-layer patterns has been proved for the one-
dimensional case, i.e, Ω = [0, 1], with the hypotheses that k2(x) ≡ 1, γε =
1/2 + a1ε+ o(ε2),a1 constant, α = 0, and β = 1. Here, besides considering any
two-dimensional domain Ω, we allow for spatially inhomogeneous perturbations
of the state v = [(α+ β)/2].

The procedure used in [21] was to construct super and sub-solutions by mod-
ifying a traveling wave solution of (1.1), with the aforementioned restrictions,
to obtain a multiple-layer pattern. However, this procedure is not suitable for
a generalization to two-dimensional domains. Herein a technique known as Γ–
convergence devised by De Giorgi [11] and developed by many others is used.

When seeking stable stationary solutions to some classes of semilinear parabolic
equations, the Γ–convergence approach turns out to be very useful. This ap-
proach replaces the original problem of minimizing a family of functionals by a
more tractable problem in the space of functions of bounded variation, BV (Ω),
which usually yields more precise information on the geometric structure of the
minimizers.

The prototype for the source term in (1.1) is the case α = 0, β = 1 and
0 < γε < 1, which stems from the theory of population genetics where α, β and
γε denote some probability measures. The case in which Ω = [0, 1], α = 0, β = 1
and γε(x) = a(x), 0 < a(x) < 1, is studied in [1].

There are many works dealing with the existence of multiple or double-layer
patterns for equations similar to (1.1). Most of these deal with the unidimen-
sional case. Among those which bear more resemblance to (1.1) are [7, 13, 14].

In [8], the generation and propagation of internal layers for a related problem
are studied for the case Ω = R. See also [5]. For a physical background on
Problem (1.1) the interested reader is referred to [1, 12].

2 Main Result

Let γi be smooth simple closed curves whose traces lie inside Ω and which
are nested, in the sense that if Oi denotes the open region enclosed by γi, i.e.

γi = ∂Oi, i = 1, . . . , p, then O1 ⊂ O2 ⊂ · · · ⊂ Op+1
def
= Ω and ∂Oi ∩ ∂Oi+1 =

∅ , i = 1, . . . , p. We abuse the notation and denote by γi the map as well as the
trace of the curve itself and set throughout

Ω1
def
= O1 , Ω2 = O2\O1, . . . ,Ωp = Op\Op−1 , Ωp+1 = Ω\Op .
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For future reference, we consider the following function

v0 = αχΩ0
α

+ βχΩ0
β

(2.1)

where χA stands for the characteristic function of the set A and

Ω0
α

def
=

⋃
1≤j≤p+1

j is odd

Ωj , Ω0
β

def
=

⋃
1≤j≤p+1

j is even

Ωj . (2.2)

Let γi be arc–length parametrized, i.e., γi(s), 0 ≤ s ≤ Li, where Li is the total
arc length of γi. Let n̂i be the unit inner normal to γi, and κi(y), y ∈ γi, its
signed curvature. Around each narrow enough tubular neighbourhood of γi, we
set a principal coordinate system as follows. See [10] for more details.

If d(x, γi) denotes the usual signed distance function which is positive inside
Ωi and negative outside Ωi, we set

Nδ,i
def
= {x ∈ Ω : |d(x, γi)| < δ} .

For δ small enough, the change of coordinate map

Σi : γi × (−δ, δ) −→ Nδ,i

defined by Σi(s, d) = γi(s) + d n̂i(s) , 0 ≤ s < Li , −δ < d < δ, is a diffeomor-
phism. Moreover the Jacobian of Σi(s, d) is given by

JΣi(s, d) = (1− dκi(s)), 0 ≤ s ≤ Li , i = 1, . . . , p .

Note that for δ small enough JΣi > 0 and Σi(s, 0) = γi(s).

Let us also set k̃1(s, d) = k1(Σ(s, d)) , k̃2(s, d) = k2(Σ(s, d)) and regarding
(1.1) put

k(x)
def
= [k1(x)k2(x)]

1/2
.

We now state our main result.

Theorem 2.1 Suppose that γi, i = 1, . . . , p, is a νi–level curve of k, i.e.,

k(x) = νi , for x ∈ γi , i = 1, . . . , p .

Let k̃(s, d) = k(Σ(s, d)) and Λi(s, d) = k̃(s, d)JΣi (s, d), (s, d) ∈ [0, Li]× (−δ, δ).
Suppose that

Λi(s, d) > Λi(s, 0) = νi , for d ∈ (−δ, δ), d 6= 0, i = 1, . . . , p (H1)

Then there is a family {vε}0<ε≤ε0 , with ε0 small, of stationary solutions of (1.1)
such that for each ε ∈ (0, ε0):

(2.1.i) vε ∈ C2,σ(Ω), 0 < σ < 1 and α < vε(x) < β, ∀x ∈ Ω.
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(2.1.ii) ‖vε − v0‖L1(Ω) −→ 0, as ε→ 0.

(2.1.iii) For each λ ∈ (0, (β − α)/2) and Ωλε = {x ∈ Ω : α+ λ < vε(x) < β − λ}
it holds that

∣∣Ωλε ∣∣ −→ 0, as ε→ 0, where | · | is the 2-dimensional Lebesgue
measure.

(2.1.iv) vε is a stable stationary solution of (1.1).

Next we give necessary conditions for (H1) to be satisfied.

Lemma 2.1 Suppose that each γi, i = 1, . . . , p, satisfies

∂k̃(s, 0)

∂d
= νi κi(s), 0 ≤ s ≤ Li

∂2 k̃(s, 0)

∂d2
> 2 νi κ

2
i (s), 0 ≤ s ≤ Li

(H2)

Then hypothesis (H1) is satisfied.

Remark. An example of a function which satisfies (H2) can be easily con-
structed. For instance, let γi ⊂ Ω ⊂ R2 with γi = {x ∈ Ω : ‖x‖ = 1}. Then the
function k̃(s, t) = 1 + t+ 2 t2 with t ∈ (−δ, δ), δ small, and s ∈ [0, 2π), satisfies
(H2) with νi = 1.

Remark. The hypothesis on γi could have been slightly more general. It
would suffice to have γi, i = 1, . . . , p, a subset of a ν1

i –level set of k1 and also a
subset of a ν2

i –level set of k2. Then γi would be a νi–level curve of k(x) where

νi =
(
ν1
i ν

2
i

)1/2
.

Remark. The two conditions in (H2) dictate the behavior of k in a neigh-
bourhood of the limiting transition-phase curve γi. The first condition requires
that k(x) increase or decrease as x crosses γi along the direction of n̂i accord-
ing to the sign of the curvature κi, its slope being proportional to |κi| at the
crossing-point, provided νi 6= 0. The second one, for a fixed s relates the con-

cavity of k(Σ(s, d)) with the curvature κi(s) of γi at s. Note that ∂k̃
∂d

changes
sign whenever the curvature of γi does so.

Each limiting phase-transition curve γi acts through (H2) as a barrier which
prevents a, say, diffusing substance whose initial concentration evolves in time
according to (1.1), to spread homogeneously in space and eventually settling
down in a uniform concentration.

Actually this would be the case if for instance we had Ω convex, k1(x) ≡
const., k2(x) ≡ const. and gε(x) ≡ 0. See [17, 3] for this matter. An example
where this occurs, in despite of the fact that the diffusion function k2 is not
constant, can be found in [22].
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Remark. The stability referred to in (2.1.iv) should be understood in the
following sense: a stationary solution v(x) of (1.1) is said to be stable in the
H1(Ω)-norm, say, if for any µ > 0 there exists δ > 0 such that T (t)ψ exists for
all t > 0 (here T (t) denotes the nonlinear semigroup generated by (1.1) ) and

‖T (t)ψ − v‖H1(Ω) < µ , 0 < t <∞ ,

for any ψ ∈ H1(Ω) which satisfies ‖ψ − v‖H1(Ω) < δ. Here T (0)ψ = ψ. If in
addition

lim
t→∞

‖T (t)ψ − v‖H1(Ω) = 0

then v is said to be strongly stable.

Remark. It might be worthwhile to mention that each limiting phase-transition
curve γi, i = 1, . . . , p, is a νi–level curve of k̃ and a curve of minima of
Λi(s, d) = k̃(s, d)(1 − dκi(s)). Of course if γi contains a segment of straight

line `i, say, then Λi(s, d) = k̃(s, d) on `i and the two notions coincide there.

3 Preliminaries on BV -functions

Before proving the main result we recall some notation on measures, and re-
sults on functions of bounded variation. The reader is referred to [26, 4, 9] for
further background. The Lebesgue measure in Rn is denoted by | · | and the
m–dimensional Hausdorff measure by Hm, m ∈ [0, 2].

If µ is a Borel measure on Ω with values in [0,+∞[ or in Rk, k ≥ 1, its total
variations is denoted by |µ|. If F is a Borel subset of Ω, the measure µ F
is defined by (µ F )(B) = µ(B ∩ F ) for any Borel set B ⊂ Ω. For every µ-
integrable function f , the measure fµ is defined by (fµ)(B) =

∫
B
fdµ for every

Borel set B ⊂ Ω. We shall use also the notation
∫
B
fµ.

The space BV (Ω) of functions of bounded variation in Ω is defined as the set
of all functions u ∈ L1(Ω) whose distributional gradient Du is a Radon measure
with bounded total variation in Ω. We denote by BV (Ω; {α, β}) the class of all
u ∈ BV (Ω) which take values α, β only.

The essential boundary of a set E ⊂ Rn is the set ∂∗E of all points in Ω
where E has neither density 1 nor density 0. A set E ⊂ Ω has finite perimeter
in Ω if its characteristic function χE belongs to BV (Ω). In this case ∂∗E is
rectifiable, and we may endow it with a measure theoretic normal νE so that
the measure derivative DχE is represented as

DχE(B) =

∫
B∩∂∗E

νEdH
1 for every Borel set B ⊂ Ω .

The following result is a simple generalization of the total variation of a BV
function, and we omit the proof.
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Lemma 3.1 Let A ⊂ Ω be an open set and v ∈ BV (Ω). Let {vj} be a sequence
of functions in BV (Ω) converging to v in L1(Ω). Then∣∣∣∣ ∂v∂xi

∣∣∣∣ (A) ≤ lim inf
j→+∞

∣∣∣∣∂vj∂xi

∣∣∣∣ (A) for i = 1, 2.

The next lemma plays an important role in the proof of the main results.
For simplicity, since we consider γi one of the curves introduced in Section 2,
we drop the index i in the statement and in the proof.

Lemma 3.2 Let v ∈ BV (Ω) and set µ = Dv. Let Σ, δ, Nδ, JΣ be defined
as in Section 2. Let ṽ = v(Σ) : γ × (−δ, δ) → R for δ small enough, and
Ñδ = Σ−1(Nδ). Then, for any Borel set B ⊂ Nδ, we have

|µ|(B) ≥
(

(|µ̃1|(B̃))2 + (|µ̃2|(B̃))2
)1/2

,

where B̃ = Σ−1(B), µ̃1 =
∂ṽ

∂s
, and µ̃2 = JΣ

∂ṽ

∂d
.

Proof: Let vj be a sequence of functions of class C∞(Nδ) converging in
L1(Nδ) to v and such that | 5 vj |(Nδ) → |Dv|(Nδ) as j → +∞. Following the
notation of Section 2, a direct computation yields

∣∣M−1
Σ ∇ṽj

∣∣ =

[(
∂ṽj

∂s

)2

J−2
Σ +

(
∂ṽj

∂d

)2
]1/2

,

where MΣ denotes the Jacobian matrix corresponding to the coordinate map
Σ, and ṽj = vj(Σ). If B ⊂ Nδ is a Borel set, we then have∫

B

|Dv| = lim
j→+∞

∫
B

|∇vj | = lim
j→+∞

∫
B̃

JΣ

∣∣M−1
Σ ∇ ṽj

∣∣
= lim

j→+∞

∫
B̃

[(
∂ṽj

∂s

)2

+ J2
Σ

(
∂ṽj

∂d

)2
]1/2

≥ lim
j→+∞

[(∫
B̃

∣∣∣∣∂ṽj∂s
∣∣∣∣)2

+

(∫
B̃

JΣ

∣∣∣∣∂ṽj∂d
∣∣∣∣)2
]1/2

where the last inequality follows by the inequality
∫
|z| ≥ |

∫
z|, z ∈ R2. Then,

using Lemma 3.1, we conclude this proof.

4 Local Minimizers Via Γ–convergence

A stationary solution of (1.1) satisfies the boundary value problem

ε2 div [k1(x)∇v] + k2(x)fε(x, v) = 0 , x ∈ Ω

∇v(x) · n̂(x) = 0 , for x ∈ ∂Ω (4.1)
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where fε(x, v) = (v − α)(β − v)(v − (θ + gε(x)) and, for convenience, we set
θ = (α+ β)/2.

If Fε(x, v) =
∫ v
θ
fε(x, ξ)dξ then Fε(x, v) = F 0(v) − gε(x)F 1(v) where

F 0(v) =

∫ v

θ

(ξ − α)(β − ξ)(ξ − θ)dξ and F 1(v) =

∫ v

θ

(ξ − α)(β − ξ)dξ .

Next we define a family of functionals Eε : L1(Ω)→ R,

Eε(v) =


∫

Ω

{ε k1(x)

2
|∇v|2 + ε−1k2(x)

[
F (α)− F 0(v)

]
+ε−1gε(x)k2(x)F 1(v)

}
dx , if v ∈ H1(Ω)

∞ , otherwise.

(4.2)

The term ε−1k2(x)F (α) has been artificially added since it does not affect
Eε, as long as existence of minimizers is concerned and what is more important,
the potential function

F̃ (v)
def
= F (α) − F 0(v)

satisfies

F̃ (α) = F̃ (β) = 0 , F̃ ∈ C2(R)

F̃ (v) > 0 for any v ∈ R , v 6= α , v 6= β (4.3)

F̃ ′(α) = F̃ ′(β) = 0 , F̃ ′′(α) > 0 , F̃ ′′(β) > 0 .

It is easy to see that any local minimizer vε of Eε will be a solution to (H1)
and, by regularity, vε ∈ C2,ν(Ω), 0 < ν < 1.

Therefore, it is our aim now to find a family of local minimizers of Eε.
To that end we will need the concept of Γ–convergence and of a local isolated
minimizer of Eε. See for example [16].

Definition A family {Eε}0<ε≤ε0 of real-extended functionals defined in L1(Ω)
is said to Γ–converge, as ε→ 0, to a functional E0, at v and we write

Γ(L1(Ω)−)− lim
ε→0

Eε(v) = E0(v)

if

• For each v ∈ L1(Ω) and for any sequence {vε} in L1(Ω) such that vε → v
in L1(Ω), as ε→ 0, it holds that E0(v) ≤ lim inf

ε→0
Eε(vε).

• For each v ∈ L1(Ω) there is a sequence {wε} in L1(Ω) such that wε → v
in L1(Ω), as ε→ 0 and also E0(v) ≥ lim sup

ε→0
Eε(wε).
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Definition. We say that v0 ∈ L1(Ω) is an L1-local minimizer of E0 if there is
ρ > 0 such that

E0(v0) ≤ E0(v) whenever 0 < ‖v − v0‖L1(Ω) < ρ .

Moreover, if E0(v0) < E0(v) for 0 < ‖v − v0‖L1(Ω) < ρ, then v0 is called an
isolated L1-local minimizer of E0.

De Giorgi’s Γ–convergence provides, for equicoercive functionals, the con-
vergence of global minimizers to a global minimizer of the Γ–limit. Concerning
convergence of local minimizers, the following theorem extends an observation
made by Kohn and Sternberg in [K,S]; the proof is the same as the one in [15].

Theorem 4.1 Suppose that a family of extended–real functionals {Eε}, Γ–
converges, as ε → 0, to a extended–real functional E0 and the following hy-
potheses are satisfied:

(4.1.i) Any sequence {uε}ε>0 such that Eε(uε) ≤ const. <∞, ε > 0, is compact
in L1(Ω).

(4.1.ii) There exists an isolated L1-local minimizer v0 of E0.

Then there exists ε0 > 0 and a family {vε}0<ε≤ε0 such that:

• vε is an L1-local minimizer of Eε

• ‖vε − v0‖L1(Ω) → 0, as ε→ 0.

Let us consider the family of functionals defined by (4.2). For the case

in which gε(x) ≡ 0 and F̃ satisfies (4.3), the Γ–convergence of this type of
functionals has been treated in [25, 19, 20].

In (4.2) the presence of the term ε−1gε(x)k2(x)F 1(v) adds no additional
difficulty because its smoothness makes of it a continuous perturbation with re-
spect to L1–convergence. Moreover by virtue of (1.2) the perturbation term∫

Ω
ε−1gε(x)k2(x)F 1(vε)dx vanishes when one takes the Γ–limit. Hence the

above results can be evoked thus yielding the following theorem.

Theorem 4.2 Consider the family of functionals given by (4.2). Then

Γ(L1(Ω)−)− lim
ε→0

Eε(v) = E0(v)

where

E0(v) =


C0

∫
Ω

k
∣∣Dχ{v=β}

∣∣ , if v ∈ BV (Ω, {α, β}) ,

0 < |{v = β}| < |Ω|;
∞ otherwise.

(4.4)

and C0 = (β − α)
∫ β
α

(F̃ (t))1/2dt.
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Our next goal is to apply Theorem 4.1 to {Eε}, 0 < ε ≤ ε0 and to E0, as
defined in (4.2) and (4.4). We only have to worry about (4.1.ii) since (4.1.i) has
essentially been proved in [15, 20]. Their proof can be easily adapted to fit our
case.

As for (4.1.ii) it has been proved in [23] and [24] for the case of just one
limiting transition–phase curve. We give here a neater and more geometric
proof for this case and then consider the case of p limiting transition–phase
curves.

For the single curve case the proof presented in the references above uses the
approximation result mentioned at the beginning of the proof of Lemma 3.2.
This approach is somehow cumbersome since it has to deal with sequences and
subsequences throughout the proof and unnatural since it avoids to work with
the geometry of BV –spaces which is the setting our problem is naturally casted
into. This approximation approach can be avoided by resorting to Lemma 3.1.

In the next theorem we will be dealing with the single curve case, i.e., p = 1,
and therefore we set for simplicity γ = γ1. Thus Nδ = Nδ(γ) will denote its
tubular neighbourhood, Σ the corresponding coordinate map and we drop the
subindex 1 in all other definitions. The proof is a modification of a similar proof
given in [15].

Theorem 4.3 With the notation of Section 2, suppose that γ ⊂ Ω is a simple
closed ν–level curve of k and that (H1) is satisfied with Ω = Ω1 ∪ γ ∪Ω2. Then

v0(x) = αχΩ1(x) + β χΩ2(x) , x ∈ Ω

is an L1-local isolated minimizer of E0.

Proof: It suffices to prove that, if v ∈ BV (Ω; {α, β}) and 0 < ‖v−v0‖L1(Nδ) <
ρ for a suitable ρ > 0, then∫

Nδ(γ)

k|Dv| >

∫
Nδ(γ)

k|Dv0|.

Let us start by computing E0(v0). By the coarea formula (see [6]) we obtain

E0(v0) =

∫
Nδ(γ)

k|Dv0| =

∫ β

α

∫
Nδ∩∂∗{v0>ξ}

kdH1dξ

= (β − α)

∫
γ

kdH1 = (β − α)ν L ,

where L is the total arc–length of γ. For a fixed d ∈ (−δ, δ) define

`d = {(s, d) , 0 < s < L} .

Then the trace of ṽ(·, d) is well-defined on `d, a.e. in (−δ, δ); because each `d is
C1 (actually Lipschitz would suffice).

Suppose that
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i) ṽ = ṽ0, along `
d̃
∪ `−d̃, in the sense of traces, for some d̃ ∈ (δ/2, δ).

Recall that Λ(s, d) = k̃(s, d)JΣ(s, d). We say that v is an admissible function
if ‖v − v0‖L1(Nδ) > 0 and v ∈ BV (Nδ(γ); {α, β}). For any such function v and
with the use of Lemma 3.2 we have:

E0(v) =

∫
Nδ

k|Dv|

≥

∫
Ñδ

k̃
(
|µ̃1|

2 + |µ̃2|
2
)1/2
≥

∫
Ñδ

k̃|µ̃2|

≥ ν

∫ L

0

∫ δ

−δ

∣∣∣∣∂ṽ∂d
∣∣∣∣ (by (H1) and definition of µ̃2)

≥ ν(β − α)L ,

since i) implies that
∫ δ
−δ

∣∣∂ṽ
∂d

∣∣ ≥ (β − α) for any s ∈ [a, b].
We claim that E0(v0) < E0(v). If this were not the case then for any

admissible function v, the coarea formula would yield

(β − α)νL =

∫
Nδ

k|Dv| =

∫ ∞
−∞

(∫
Nδ∩∂{v>ξ}

k|Dv|

)
dξ

=

∫ ∞
−∞

(∫
Nδ∩∂∗{v>ξ}

kdH1

)
dξ

=

∫ ∞
−∞

(∫
Ñδ∩∂∗{ṽ>ξ}

Λ(s, t)dH1

)
dξ

= (β − α)

∫
Ñδ∩∂∗{ṽ=β}∩∂∗{ṽ=α}

Λ(s, t)dH1 (4.5)

To deduce (4.5) we use that

|Dṽ| = H1 (∂∗{ṽ = α} ∩ ∂∗{ṽ = β})

taking into account that ∂{ṽ = α} ∩ ∂{ṽ = β} is a set of finite perimeter in Ñδ.
Also our hypothesis implies∫

Ñδ

k̃
(
|µ̃1|

2 + |µ̃2|
2
)1/2

=

∫
Ñδ

k̃|µ̃2|.

But the above equality holds if and only if |µ̃1| ≡ 0 on Ñδ, what is to say that
ṽ(·, d) is H1-a.e. constant along each `d, for a.e. d ∈ (−δ, δ). Hence,

Ñδ ∩ ∂∗{ṽ = α} ∩ ∂∗{ṽ = β} = ∪mj=1`dj ,
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for some m ∈ N and −δ < dj < δ, j = 1, . . . ,m. Note that

Ñδ ∩ ∂{ṽ0 = α} ∩ ∂{ṽ0 = β} = `0 .

Therefore by virtue of (H1), (4.5) holds if and only if m = 1 and d1 = 0, i.e.,

ṽ = ṽ0 a.e. in Ñδ. This is a contradiction since v is an admissible function and
as such ‖ṽ − ṽ0‖L1(Ñδ)

> 0.

This takes care of our theorem in the case in which i-) holds. Now if i)
does not hold then one of the following cases would occur, in the sense of traces
of BV -functions:

ii) ṽ is not const. H1–a.e. along `
d̃
, for a.e. d̃ ∈ (δ/2 , δ)

iii) ṽ is not const. H1–a.e. along `−d̃, for a.e. d̃ ∈ (δ/2 , δ)

iv) ṽ ≡ α H1-a.e. along `d̃ and ṽ ≡ β ,H1-a.e. along `−d̃ , for a. e. d̃ ∈ (δ/2, δ).

Following ideas set forth in [15], we define a set ∆ ⊂ (0, δ),

∆
def
=


d̃ ∈ (0, δ) :

∫ L

0

{
|ṽ − ṽ0|(s, d̃)JΣ(s, d̃) + |ṽ − ṽ0|(s,−d̃)JΣ(s,−d̃)

}
ds

> 4ρ/δ, where

∫
Ñδ

|ṽ − ṽ0|JΣ < ρ


Hence |∆| < δ/4. Now if iv) does not hold, then by choosing ρ < δL(β − α)/2
we obtain∫ L

0

{
|ṽ − ṽ0|(s, d̃)JΣ(s, d̃) + |ṽ − ṽ0|(s,−d̃)JΣ(s,−d̃)

}
= 2L (β − α) > (4ρ/δ) ,

which by definition implies that d̃ ∈ ∆. But then for a.e. d̃ ∈ ((δ/2, δ)\∆),
either ii) or iii) holds.

For any admissible v, Lemma 3.1 allows us to conclude that

E0(v) =

∫
Nδ

k |Dv| ≥

∫
Nδ\Nδ/2

k |Dv|+

∫
Nδ/2

k |Dv|

=

∫
Ñδ\Ñδ/2

k̃
(
|µ̃1|

2 + |µ̃2|
2
)1/2

+

∫
Ñδ/2

k̃
(
|µ̃1|

2 + |µ̃2|
2
)1/2

≥

∫
Ñδ\Ñδ/2

k̃

∣∣∣∣∂ṽ∂s
∣∣∣∣+

∫
Ñδ/2

Λ

∣∣∣∣∂ṽ∂d
∣∣∣∣

= I1 + I2

where I1 and I2 denote respectively the first and the second integrals in the last
term of the above inequalities.
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If km = minx∈Ω k(x) then by virtue of ii) and iii), for a.e. d̃ ∈ (δ/2, δ)\∆
it holds that ∫ L

0

{
k̃(s, d) |µ̃1|(s, d̃) + k̃(s,−d̃) |µ̃1|(s,−d̃)

}
≥ km

{
ess V L0

[
ṽ(·, d̃)

]
+ ess V L0

[
ṽ(·,−d̃)

]}
≥ km(β − α),

where ess V L0

[
ṽ(·, d̃)

]
stands for the essential variation of ṽ(·, d̃) on [0, L]. Note

that since ṽ ∈ BV (Ñδ, {α, β}), the function

d̃ −→ ess V L0 [ṽ(·, d̃)] =

∣∣∣∣∣∂ṽ(·, d̃)

∂s

∣∣∣∣∣ (0, L)

is integrable in (δ/2, δ). See [26, 4]. Then by integrating over (δ/2, δ)\∆,

I1 ≥ km

∫ δ

δ/2

{
ess V L0

[
ṽ(·, d̃)

]
+ ess V L0

[
ṽ(·,−d̃)

]}
≥ (δ/4)km(β − α).

In order to obtain a lower estimate for I2 we begin by remarking that since

|(0, δ/2)\∆| ≥ δ/4

and ṽ is an admissible function then there is d ∈ (0, δ/2)\∆ such that (s, d)

and (s,−d) are points of approximate continuity of ṽ(s, d̃), for a.e. s ∈ [0, L].
Also by the definition of ṽ0,

|ṽ(s, d̃)− ṽ(s,−d̃)| ≥ (β − α)−
{
|ṽ0 − ṽ|(s, d̃) + |ṽ0 − ṽ|(s,−d̃)

}
for any (s, d̃) ∈ Ñδ such that ṽ is approximately continuous at (s, d̃). Hence

I2 =

∫
Ñδ/2

Λ

∣∣∣∣∂ṽ∂d
∣∣∣∣ ≥ ν ∫ L

0

∫ δ/2

−δ/2

∣∣∣∣∂ṽ∂d
∣∣∣∣

= ν

∫ L

0

ess V
δ/2
−δ/2 [ṽ(s, ·)] ds ≥ ν

∫ L

0

|ṽ(s, d)− ṽ(s,−d)|ds

≥ ν

∫ L

0

{
(β − α)−

[
|ṽ − ṽ0|(s, d) + |ṽ − ṽ0|(s,−d)

]}
ds

≥

{
ν L(β − α)−

4 ρ ν

δ Jm(−δ, δ)

}
,

where

Jm(−δ, δ) = min
−δ≤d≤δ

{
min

0≤s≤L
JΣ(s, d) , min

0≤s≤L
JΣ(s,−d)

}
.
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These estimates finally yield

E0(v) ≥ I1 + I2 ≥

[
δ

4
km(β − α) + ν L(β − α)−

4 ρ ν

δ Jm(−δ, δ)

]
> ν(β − α)L = E0(v0) ,

as long as we take

ρ < min

{
km(β − α)δ2Jm(−δ, δ)

16ν
,
δ L(β − α)

2

}
(4.6)

Now our claim follows by extending v0 to be constant on each connected
component of Ω\γ and observing that |Dv0| (Ω\γ) = 0. 2

The next task is to generalize Theorem 3.1 to the case of p limiting phase-
transition curves. Recall the notation set forth in Section 2 where Nδ,i is a
δ-tubular neighbourhood around each limiting phase-transition curve γi, i =
1, 2, . . . , p.

Corollary 4.1 Let γi, i = 1, . . . , p, Ωi, k be as in Section 2. If (H1) is satisfied,
then the function v0 is a L1–local minimizer of E0.

Proof: For any v ∈ BV (Ω, {α, β}), ||v− v0||L1(Ω) < ρ, where ρ satisfies (4.6)
with ν = max{νi, i = 1, ..., p}, let

Ωα
def
= {x ∈ Ω : v(x) = α} , Ωβ

def
= {x ∈ Ω : v(x) = β}

and consider the sets Ω0
α and Ω0

β defined by (2.2).
Then the set (Ωα ∪ Ωβ) ∩ Ω has finite perimeter. By applying Theorem 4.3

to each γi, i = 1, . . . , p we obtain, using the coarea formula

E0(v) =

∫
Ω

k|Dv| = (β − α)

∫
∂∗Ωα∩∂∗Ωβ∩Ω

k dH1

≥ (β − α)

p∑
i=1

∫
∂∗Ωα∩∂∗Ωβ capNδ,i

k dH1

> (β − α)

p∑
i=1

∫
∂∗Ω0

α∩∂∗Ω
0
α∩Nδ,i

k dH1

= (β − α)

∫
⋃p
i=1γi

k dH1 =

∫
Ω

k |Dv0| = E0(v0) .

5 Proof of Theorem 2.1

In this section we show how the previous sequence of lemmas can be used to
accomplish the proof of Theorem 2.1.
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In view of Corollary 4.1 and previous remarks, Theorem 4.1 yields a family
{vε}0<ε≤ε0 of L1–local minimizers of Eε, where Eε is given by 4.2. Clearly any
such minimizer vε is a weak solution (H1-sense) of (4.1) and regularity theory
implies vε ∈ C2,σ(Ω), 0 < σ < 1. An application of the maximum principle
then gives α < vε(x) < β, ∀x ∈ Ω and (2.1.i) is proved.

As for (2.1.ii) it is obtained from Theorem 4.1. In order to prove (2.1.iii) we

examine the potential function F̃ (v) = F (α)− F 0(v).
Suppose by contradiction that there is a sequence εj , εj → 0 as j →∞, and

τ > 0 such that ∣∣∣Ωλεj ∣∣∣ ≥ τ > 0 ,

for a fixed λ and ∀ j. Since ‖vεj − v0‖L1(Ω)
j→∞
−→ 0 it follows that {εj} has a

subsequence, still denoted by {εj} such that vεj → v0, a.e. in Ω. Thus, (4.3)

allows us to invoke the Lebesgue convergence theorem to conclude that

lim
j→0

∫
Ω

F̃ (vεj )dx = 0 .

But this is a contradiction to∫
Ω

F̃ (vεj )dx ≥ min
{
F̃ (α+ λ), F̃ (β + λ)

} ∣∣∣Ωλεj ∣∣∣ ≥ F̃ (α+ λ) τ > 0 ,

for a fixed λ and ∀ j. Note that F̃ (α+ λ) = F̃ (β − λ).
It remains to prove 2.1.iv) , which concerns stability of the family {vε},

0 < ε ≤ ε0. From the fact that vε is also a H1-local minimizer of Eε, 0 < ε ≤ ε0,
it follows that

〈E′′ε (vε)ψ , ψ〉H1,H∗ ≥ 0 , ∀ψ ∈ H1(Ω) (5.1)

where H∗ stands for the dual of H1(Ω).
Consider now the linearized eigenvalue problem

ε2 div [k1(x)∇ψ] + k2(x)f ′ε(x, vε)ψ = λψ , x ∈ Ω
∂ψ
∂n

= 0 on ∂Ω (5.2)

where f ′ε(x, v) =
∂fε(x, v)

∂v
.

Denoting by {λn}n, n = 1, 2, . . ., the sequence of eigenvalues of (5.2) then,
taking into account (5.1), and using the variational characterization of the eigen-
values, we infer that λn ≤ 0, n = 1, 2, . . .. By well-known results from linearized
stability and semigroup theory we conclude that in the case that the first eigen-
value λ1 is negative then vε is a strongly stable stationary solution of (1.1).

Now if λ1 = 0 a classical application of the Krein-Rutman theorem gives
that zero is a simple eigenvalue of (5.2). In this case there is a local one dimen-
sional critical manifold Mc(vε), tangent to [ψ1] (the eigenspace spanned by the
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principal eigenfunction ψ1 ), at vε, such that if vε is stable in Mc(vε) then it is
also stable in H1(Ω).

For this matter we refer to Theorem 6.2.1 in [12], which proof can be adapted
to fit our case. But now the stability of vε in Mc(vε) follows from the fact that
the semigroup {T (t)}t≥0 generated by (1.1) defines a gradient flow in H1(Ω).
To be more specific the functionals Eε[vε(x, t)] defines a Lyapunov function and
along each solution vε(x, t) it holds that

d

dt
Eε[vε(x, t)] ≤ 0, t ≥ 0 .

This concludes the proof of Theorem 2.1. 2

Remark. Condition (2.1.iii) actually shows the multiple–layer profile of vε,
for small ε, and it should hold that vε → v0, as ε → 0, uniformly on compact
sets of Ω\ ∪pi=1 γi. This should be done following ideas set forth in [2].

Remark. The difficulties when trying to generalize our results to higher space
dimensions are of technical nature and inherent to the proof of Theorem 4.3.
For instance, in this case one would no longer have a global parametrization of
the limiting phase-transition hypersurface.

Remark. Other types of patterns can be considered rather than just the case
of nested limiting phase–transition curves. For instance, let γi, i = 1, . . . , p, be
smooth simple closed curves in Ω with Oi denoting the open region enclosed by
γi, and Oi its closure, then ∩pi=1Oi is empty. Then Theorem 4.3 and Corollary
4.1 still hold with

v0 = αχ∪pi=1Oi
+ βχΩ\∪pi=1Oi

.

A suitable combination of the two patterns referred to above could also be
considered.

References

[1] Angenent, S.B, Mallet-Paret, J. and Peletier, L.A., “Stable transition layers
in a semilinear boundary value problem”. J. Diff. Eqns. 67 (1987), 212-242.

[2] Caffarelli, L.A. and Cordoba, A., “Uniform convergence of a singular per-
turbation problem”. Communications on Pure and Applied Math., vol.
XLVIII (1995), 1-12.

[3] Casten, R.G. and Holland, C.J., “Instability results for reaction-diffusion
equation with Neumann boundary conditions”. J. Diff. Eqns., vol. 108, No.
2 (1994), 296-325.



16 Stable multiple-layer stationary solutions EJDE–1997/22

[4] Evans, L. and Gariepy, R., Measure Theory and Fine Properties of Func-
tions. Studies in Advanced Mathematics, CRC Press (1992).

[5] Evans, L. C. and Souganidis, P. E., “A PDE approach to geometric optics
for certain reaction-diffusion equations”. Ind. Univ. Math. J. 38 (1989),
141-172.

[6] Federer, H., Geometric Measure Theory. Springer Verlag, N. York, 1969.

[7] Fusco, G. and Hale, J. K., “Stable equilibria in a scalar parabolic equation
with variable diffusion”. SIAM J. Math. Anal. 16, No. 6 (1985), 1152-1164.

[8] Fife, P. C. and Hsiao, L., “The generation and propagation of internal
layers”. Nonlinear Anal., T., M. & A. 12, No. 1 (1988), 19-41.

[9] Giusti, E., Minimal Surfaces and Functions of Bounded Variation.
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