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Existence of continuous and singular ground

states for semilinear elliptic systems ∗

Cecilia S. Yarur

Abstract

We study existence results of a curve of continuous and singular ground
states for the system

−∆u = α(|x|)f(v)

−∆v = β(|x|)g(u) ,

where x ∈ RN \ {0}, the functions f and g are increasing Lipschitz con-
tinuous functions in R, and α and β are nonnegative continuous functions
in R+. We also study general systems of the form

∆u(x) + V (|x|)u+ a(|x|)vp = 0

∆v(x) + V (|x|)v + b(|x|)uq = 0 .

1 Introduction

The purpose of this paper is to prove existence of a curve of positive radially
symmetric continuous ground states, and a curve of singular ground states with
the singularity at zero, for the system

−∆u = α(|x|)f(v)

−∆v = β(|x|)g(u)
x ∈ RN \ {0} . (1.1)

The existence of these curves depends on conditions on the functions f , g, α
and β. For some functions there exists a curve of continuous ground states, and
not a curve of singular ground states and vice versa.
We will assume throughout this paper that f ∈ C(R,R), g ∈ C(R,R),

α ∈ C1(R+,R+), and β ∈ C1(R+,R+). Recall that no smoothness at zero for
the function (α, β) is required. This leads to obtain existence of ground states
for more general systems. Moreover, we assume that f and g are increasing
functions with f(0) = 0 and g(0) = 0. Serrin and Zou [13], proved the existence
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of a curve of ground states for system (1.1) when α = β ≡ 1, (f(v), g(u)) =
(vp, uq) and (p, q) above the critical hyperbola (see (1.6) below with (αo, βo) =
(0, 0)). P.L Lions [9] proved existence of ground states on the hyperbola by
studying the scalar equation

−∆((−∆u)1/p) = uq .

In section 2, we give some preliminary results, such as existence results for the
Cauchy problem, continuous dependence theorem and some properties for the
function (α, β). Section 3 is devoted to prove the existence of a curve of regular
(no classical) ground states. We assume that (f, g) are Lipschitz continuous
functions such that for all u ≥ 0 and v ≥ 0,

vf(v) ≥ (p+ 1)F (v), ug(u) ≥ (q + 1)G(u) , (1.2)

and that the functions α and β satisfy∫ ∞
rα(r)dr =∞,

∫ ∞
rβ(r)dr =∞ . (1.3)

As shown in section 1, condition (1.3) implies that positive radially symmetric
solutions to (1.1) are ground states. The existence of a solution, near zero, to
the Cauchy problem needs∫

0

sα(s)ds <∞, and

∫
0

sβ(s)ds <∞. (1.4)

We also assume the existence of αo and βo such that

rαoα(r), and rβoβ(r) are non-increasing functions, (1.5)

and that
N − αo
p+ 1

+
N − βo
q + 1

≤ N − 2. (1.6)

In section 4, we prove two kinds of results of existence of singular ground states.
The first, will be given as a limit of regular ground states constructed in sec-
tion 3, and the second type will be given by those results of section 3 and the
Kelvin transform. This last type, gives existence of a curve of singular ground
states under the critical hyperbola (1.6) and above the “first critical hyperbola”.
In section 5 we applied results of the previous sections to general systems of the
form

∆u(x) + V (|x|)u + a(|x|)vp = 0

∆v(x) + V (|x|)v + b(|x|)uq = 0

with x in RN \ {0}, and V not necessarily negative. In particular, if V (r) =
−dr−2, d > −(N − 2)2/4, and θ1,0 = (2−N ± ((N − 2)2 +4d)1/2)/2 we get the
following results.
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Corollary 5.1 Assume that there exists (ao, bo) such that r
aoa(r) and rbob(r)

are non-increasing functions for some (ao, bo) satisfying

N − ao
p+ 1

+
N − bo
q + 1

≤ N − 2 .

Also assume that a and b satisfy (5.5) and (5.6). Then, there exists g ∈
C(R+,R+) strictly increasing and such that for any c > 0 there exists a ra-
dially symmetric solution (u, v) to (5.8) such that

lim
r→0

u(r)

rθ1
= g(c), and lim

r→0

v(r)

rθ1
= c .

Corollary 5.2 Assume that there exists (ao, bo) such that r
aoa(r) and rbob(r)

are nondecreasing functions for some (ao, bo) satisfying

N − ao
p+ 1

+
N − bo
q + 1

≥ N − 2.

Also assume that a and b satisfy (5.10) and (5.11). Then, there exists δ ∈
C(R+,R+) strictly increasing and such that for any c > 0 there exists a radially
symmetric solution (u, v) to (5.8) such that

lim
r→∞

u(r)

rθ0
= δ(c), lim

r→∞

v(r)

rθ0
= c.

After this work was completed, we learned of a paper by Serrin and Zou,
[14], in which they prove existence of classical ground states for a general elliptic
Hamiltonian system.

2 Preliminary results

This section is devoted to prove existence, continuous dependence results and
some previous properties of nonnegative solutions to the problem

−u′′(r) − N−1
r
u′(r) = α(r)f(v)

−v′′(r)− N−1
r
v′(r) = β(r)g(u), (2.1)

u(0) = c1, v(0) = c2,

where c1 and c2 are positive constants. In this section, the functions α and β
are C1 functions defined in (0,∞), satisfying∫ ∞

rα(r)dr =∞,

∫ ∞
rβ(r)dr =∞. (2.2)

Condition (2.2) implies that positive radial solutions to (1.1) are ground states,
as is shown below. Moreover,∫

0

sα(s)ds <∞, and

∫
0

sβ(s)ds <∞ (2.3)
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ensures the existence of nonnegative solutions to (2.1). Condition (2.3) ap-
pears usually on existence problems ([1], [11]), and is the Kato class for radially
symmetric functions.
The solutions of (2.1) defined in [0,∞) are radially symmetric continuous

solutions to (1.1), in the sense of distributions in RN . We distinguish the radially
symmetric continuous solutions to (1.1) from those which satisfy

−u′′(r) −
N − 1

r
u′(r) = α(r)f(v),

−v′′(r)−
N − 1

r
v′(r) = β(r)g(u), (2.4)

u(0) = c1, u
′(0) = 0, v(0) = c2, v

′(0) = 0,

by calling these last type classical solutions. Our interest in the study of con-
tinuous solutions and not necessary classical solutions, comes from the existence
of singular ground states treated in Section 4. The classical nature of a solution
to (2.1) with c1 > 0 and c2 > 0 only depends on the functions α and β as is
shown in the following.

Proposition 2.1 Assume that (α, β) satisfies (2.3). Let (u, v) be a solution to
(2.1) with c1 > 0 and c2 > 0. Then

lim
r→0
ru′(r) = 0, and lim

r→0
rv′(r) = 0. (2.5)

Moreover, if

lim
r→0
r1−N

∫ r
0

sN−1α(s)ds = 0, and lim
r→0
r1−N

∫ r
0

sN−1β(s)ds = 0, (2.6)

then, u′(0) = 0, and v′(0) = 0.

Proof. Since u is continuous at zero, limr→0 r
N−1u′(r) = 0, and thus, since

from the system (2.1) −rN−1u′(r) is increasing for r small, we have that u
is decreasing for r small enough. Similarly, v is decreasing for all r small.
Integrating from 0 to r the first equation of (2.1) and if C = maxv∈[c2/2,c2] f(v),
we get

−rN−1u′(r) =

∫ r
0

sN−1α(s)f(v(s)) ds

≤ C

∫ r
0

sN−1α(s)ds ≤ CrN−2
∫ r
0

sα(s) ds ,

and thus (2.5) follows for u, and similarly for v. From the above estimate we
also get u′(0) = 0 assuming (2.6). ♦
The following is a nonexistence result of solutions to (2.1), without condition

(2.3). For a similar result in this direction, see [3].

Proposition 2.2 Assume that (u, v) is a nonnegative solution to (2.1) with
c1 > 0 and c2 > 0, then (α, β) satisfies (2.3). Moreover, if (u, v) is a classical
solution to (2.1), then (α, β) satisfies (2.6).
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Proof. Integrating twice (2.1) from 0 to r0 with r0 small enough such that
c1 ≥ u(r) ≥ c1/2 and c2 ≥ v(r) > c2/2, for all r ∈ [0, r0] , we obtain

c1 −

∫ r0
0

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds ≥ c1/2,

and thus,

m

∫ r0
0

s1−N
[∫ s
0

tN−1α(t)dt

]
ds ≤

∫ r0
0

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds ≤

c1

2
,

where m = minr∈[c2/2,c2]{f(v)}. Therefore,∫ r0
0

s1−N
[∫ s
0

tN−1α(t)dt

]
ds <∞,

which is equivalent to
∫
0
sα(s)ds <∞. Moreover,

−u′(r) = r1−N
∫ r
0

sN−1α(s)f(v(s))ds ≥ mr1−N
∫ r
0

sN−1α(s)ds

and thus if u′(0) = 0,

0 = −u′(0) ≥ m lim
r→0
r1−N

∫ r
0

sN−1α(s)ds.

Similarly, it can be proven that∫
0

sβ(s)ds <∞, and lim
r→0
r1−N

∫ r
0

sN−1β(s)ds = 0 .

♦
Condition (2.2) implies that nonnegative solutions to (2.1) defined in (0,∞)

are ground states, as is proved in the following proposition.

Proposition 2.3 Assume that (α, β) satisfies (2.2) and let (u, v) be a nonneg-
ative solution to (2.1) in (0,∞). Then,

lim
r→∞

u(r) = 0, lim
r→∞

v(r) = 0.

Proof. From [4]), we deduce the following:
Let 0 ≤ h ∈ L1loc(B1(0) \ {0}), and w ∈ L

1
loc(B1(0) \ {0}) be a nonnegative

function, such that −∆w ∈ L1loc(B1(0) \ {0}) in the sense of distributions in
B1(0) \ {0}, and −∆w = h. Then, h ∈ L1loc(B1(0)). Moreover, for a radially
symmetric w; limr→0 r

N−2w(r) exists and it is finite.
Next, we prove that v tends to zero as r tends to infinity. Consider w, be

the Kelvin transform of the function u (see [6]), that is

w(r) = r2−Nu(1/r).
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We easily get that

−∆w = h, where h(x) = |x|−(N+2)α(1/|x|)f(v(1/|x|)),

and thus h ∈ L1loc(B1(0)), and limr→∞ u(r) = limr→0 r
N−2w(r) exists and

is finite. Similarly, there exists limr→∞ v(r) = c. Now, h ∈ L1loc(B1(0)), is
equivalent to ∫ ∞

sα(s)f(v(s)) <∞.

Therefore, from (2.2), we obtain c = 0. ♦

The next results will be needed in the following sections.

Proposition 2.4 Let α be any nonnegative function, and αo ∈ R, be such that∫
0

sα(s)ds <∞ and rαoα(r) is non-increasing. Then, αo < 2, and

limr→0 r
2α(r) = 0.

Proof. Let 0 < r < r0, with r0 small, then∫ r
0

sα(s)ds ≥

∫ r
r/2

sαoα(s)s1−αods ≥ Cr2α(r) ≥ Kr2−αo ,

and the conclusion follows. ♦

For (αo, βo) ∈ R2 and pq > 1 we define,

γ1(αo, βo) =
αo − 2 + (βo − 2)p

pq − 1
, γ2(αo, βo) =

βo − 2 + (αo − 2)p

pq − 1
. (2.7)

We have the following

Proposition 2.5 (i) If pq > 1, then conditions (1.6) and
γ1(αo, βo) + γ2(αo, βo) +N − 2 ≥ 0 are equivalent.

(ii) Assume that pq > 1 and assume that there exist (αo, βo) such that r
αoα(r),

rβoβ(r) are non-increasing functions, and condition (2.3) is satisfied. Then,
γi(αo, βo) < 0, for i = 1, 2.

(iii) Assume that (α, β, p, q) satisfy the hypothesis given on (ii) and (1.6). Then
2− αo − (N − 2)p < 0 and 2− βo − (N − 2)q < 0.

Proof. The proof of (i) is a consequence of the definition of γi for i = 1, 2.
Item (ii) follows from Proposition 2.4. From that proposition 2 − αo > 0 and
2 − βo > 0, and thus N − αo > 0 and N − βo > 0. Therefore, if we are in the
assumption of (iii), we get

N − αo
p+ 1

≤ N − 2− (
N − βo
q + 1

) < N − 2,

and the conclusion follows. ♦
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Theorem 2.1 Assume that (α, β) satisfies (2.3) and f and g are continuous
nonnegative functions defined in R+ ∪ {0}. Then, for any (c1, c2) ∈ R+ × R+,
there exists a solution (u, v) to (2.1) defined in some interval [0, k). Moreover,
the solution (u, v) is a classical solution if (α, β) satisfies (2.6).

Proof. Let

S := {(u, v) ∈ C([0, ε])× C([0, ε])| 0 ≤ u ≤ c1, 0 ≤ v ≤ c2},

where ε > 0 is small enough. In S we define T (u, v) = (T1(u, v), T2(u, v)) as
follows

T1(u, v)(r) = c1 −

∫ r
0

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds

T2(u, v)(r) = c2 −

∫ r
0

s1−N
[∫ s
0

tN−1β(t)g(u(t))dt

]
ds.

Next, we will show that for ε small T (S) ⊂ S. Since, v ≥ 0, from the definition
of T1 it follows that T1(u, v) ≤ c1. We will prove that T1(u, v) ≥ 0. Let
M ≥ max{f(v) : v ∈ [0, c2]}, then if (u, v) ∈ S, we have

0 ≤

∫ ε
0

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds ≤ M

∫ ε
0

s1−N
[∫ s
0

tN−1α(t)dt

]
ds

≤
M

N − 2

∫ ε
0

sα(s)ds,

and thus, if M
N−2

∫ ε
0
sα(s)ds ≤ c1, we obtain that T1(u, v) ≥ 0. A similar

argument can be used to prove 0 ≤ T2(u, v) ≤ c2. It is not difficult to prove
that T is a continuous and compact operator in S, with respect to the uniform
convergence, and thus it has a fixed point, which corresponds to a nonnegative
(u, v) to (2.1). ♦

Lemma 2.1 Let α and β be two nonnegative functions defined in (0,∞), sat-
isfying (2.3). Let f and g be locally Lipschitz continuous functions, and non-
negative near zero. Let (u1, v1), (u2, v2) be nonnegative solutions to (2.1), with
(u1(0), v1(0)) = (c1, c2), (u2(0), v2(0)) = (d1, d2), and c1, c2, d1, d2 positive num-
bers. Consider I1 := [0, r1] to be any interval where the functions ui, and vi,
for i = 1, 2, are defined. Then, there exists a positive constant C such that for
all r ∈ I1

|u1(r) − u2(r)| ≤ Cmax{|c1 − d1|, |c2 − d2|},

|v1(r) − v2(r)| ≤ Cmax{|c1 − d1|, |c2 − d2|}, (2.8)

and

r|u′1(r) − u
′
2(r)| ≤ Cmax{|c1 − d1|, |c2 − d2|},

r|v′1(r) − v
′
2(r)| ≤ Cmax{|c1 − d1|.|c2 − d2|}. (2.9)
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Proof. Consider I1 as in the hypothesis of this lemma. Define b := max{|c1 −
d1|, |c2 − d2|}, then integrating twice (2.1), and since from proposition 2.1,
limr→0 ru

′(r) = 0, we get

|u′1(r)− u
′
2(r)| ≤ r

1−N

∫ r
0

sN−1α(s)|f(v1(s))− f(v2(s))|ds, (2.10)

and

|u1(r) − u2(r)| ≤ b+H, (2.11)

where

H :=

∫ r
0

t1−N
[∫ t
0

sN−1α(s)|f(v1(s))− f(v2(s))|ds

]
dt.

Since

|f(v1(r)) − f(v2(r))| ≤ m|v1(r) − v2(r)| for any r ∈ [0, r1],

where we take m as a Lipschitz constant for f and g, from (2.11) we get

|u1(r) − u2(r)| ≤ b+m

∫ r
0

t1−N
[∫ t
0

sN−1α(s)|v1(s)− v2(s)|ds

]
dt. (2.12)

Arguing as above, but now with the second equation of (2.1), we obtain

|v1(r) − v2(r)| ≤ b+m

∫ r
0

t1−N
[∫ t
0

sN−1β(s)|u1(s)− u2(s)|ds

]
dt. (2.13)

Define

X(r) := b+m

∫ r
0

t1−N
[∫ t
0

sN−1α(s)|v1(s)− v2(s)|ds

]
dt , (2.14)

Y (r) := b+m

∫ r
0

t1−N
[∫ t
0

sN−1β(s)|u1(s)− u2(s)|ds

]
dt . (2.15)

The functions X and Y are nondecreasing functions such that X(0) = Y (0) = b,
and

(rN−1Y ′)′(r) = mrN−1β(r)|u1(r) − u2(r)| ≤ mrN−1β(r)X(r),

(rN−1X ′)′(r) = mrN−1α(r)|v1(r)− v2(r)| ≤ mrN−1α(r)Y (r),
(2.16)

and thus using that Y is increasing in the second inequality of (2.16), we get

X(r) ≤ b+mCαY (r), (2.17)

where Cα := (1/(N−2)
∫ r1
0 sα(s)ds. Using (2.17) in the first inequality of (2.16),

we have that

(rN−1Y ′)′(r) ≤ mrN−1β(r) (b+mCαY (r)) . (2.18)
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Integrating twice (2.18) from 0 to r, we easily get

Y (r) ≤ b(1 +mCβ) +
m2Cα

N − 2

∫ r
0

tβ(t)Y (t)dt, (2.19)

where Cβ is define by replacing β for α in the definition of Cα. From Gronwall’s
inequality and (2.19), we deduce

Y (r) ≤ b(1 +mCβ) exp

{
m2Cα

N − 2

∫ r
0

tβ(t)dt

}
≤ b(1 +mCβ) exp{m

2CαCβ},

and similarly for X , and thus the conclusion follows from the above inequality,
(2.12) and (2.13). For the bound of u′, we use (2.10), and the bound for v. ♦

3 Existence of grounds states

In this section we prove the existence of a curve of ground states for the system
(1.1), under the following conditions: the functions f ∈ C(R) and g ∈ C(R)
are increasing functions, Lipschitz continuous such that f(0) = 0, g(0) = 0.
Moreover, we assume the existence of two positive constants p and q such that
for u ≥ 0 and v ≥ 0

vf(v) ≥ (p+ 1)F (v), ug(u) ≥ (q + 1)G(u), (3.1)

where

F (v) =

∫ v
0

f(t)dt, G(u) =

∫ u
0

g(t) dt .

For the functions α and β we assume that they are nonnegative C1 functions
defined in (0,∞) and such that there exist αo and βo such that

rαoα(r), and rβoβ(r) are non-increasing functions, (3.2)

and
N − αo
p+ 1

+
N − βo
q + 1

≤ N − 2. (3.3)

Moreover, we assume that (2.2) and (2.3) are satisfied.
Nonexistence results can be found in [10], [12] and the references therein.
Consider the system

−u′′(r) −
N − 1

r
u′(r) = αf(v), (3.4)

−v′′(r) −
N − 1

r
v′(r) = βg(u),

and let = (c1, c2) be such that c1 > 0 and c2 > 0, and (u, v) be the solution to
(3.4) such that (u(0), v(0)) = (c1, c2). We define the subsets

U0 := {(c1, c2) ∈ R
+ × R+| such that u(τ) = 0 for some τ > 0},

V0 := {(c1, c2) ∈ R
+ × R+| such that v(τ) = 0 for some τ > 0},

G := {(c1, c2) ∈ R
+ × R+| (u, v) is a ground state}.
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Our main result of this section is the following.

Theorem 3.1 Assume that conditions (2.2), (2.3), (3.1), (3.2) and (3.3) are
satisfied. Then, there exists a function h ∈ C(R+,R+), strictly increasing such
that

1. For any c2 > 0, the solution to (2.1) with c1 = h(c2), is a ground state.

2. U0 = {(c1, c2)| c1 < h(c2)}.

3. V0 = {(c1, c2)| h(c2) < c1}.

Before proving this theorem, we need some preliminary results. The following
is a Pohozaev-Pucci-Serrin identity. The proof can be obtained by a direct
computation.

Proposition 3.1 Let (u, v) be a solution to (3.4) in some interval I, and let a
and b be two constants. For any r ∈ I define

Eab(r) = rN
[
u′(r)v′(r) + ar−1u′(r)v(r)

]
(3.5)

+rN
[
br−1v′(r)u(r) + αF (v) + βG(u)

]
.

Then, the derivative with respect to r of Eab satisfies

E′ab(r) = (a+ b+ 2−N)rN−1u′(r)v′(r) + (rNα)′F (v) (3.6)

−arN−1αvf(v) + (rNβ)′G(u)− brN−1βug(u).

Next, we study the sets U0 and V0.

Theorem 3.2 Assume that conditions in theorem 3.1 are satisfied. We have
the following:

(i) If (c1, c2) ∈ U0 and (u, v) is the solution to (2.1) defined on his maximal
right hand side interval I = [0, k), then there exists τ ∈ I such that

u(τ) = 0, u(r)(τ − r) > 0 r ∈ I \ {τ}

v(r) > 0 r ∈ I, v′(r) < 0 ∈ (0, τ) (3.7)

lim
r→k
u(r) = −∞, lim

r→k
v(r) =∞.

(ii) If (c1, c2) ∈ V0 and (u, v) is the solution to (2.1) defined on his maximal
right hand side interval I = [0, k), then there exists τ ∈ I such that

v(τ) = 0, v(r)(τ − r) > 0 r ∈ I \ {τ}

u(r) > 0 r ∈ I, u′(r) < 0 ∈ (0, τ)

lim
r→k
u(r) =∞, lim

r→k
v(r) = −∞.

(iii) R+ × R+ = G ∪ U0 ∪ V0.
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Proof. If (u, v) is not a ground state, from proposition 2.3 either u or v has a
zero at some point τ <∞, and thus (iii) is proved.
Let (u, v) be a solution to (2.1) defined on his maximal right hand side

interval I = (0, k), (positive or not) and such that u(τ) = 0 with u and v
positive functions in I ′ = (0, τ).
Assertion. rN−2v is increasing on I, and u(r) < 0 for all r ∈ (τ, k).
We prove the assertion in two steps.

Step 1. rN−2v is increasing on I ′.
The functions u and v are non-increasing functions on I ′. For a and b such

that b ≥ (N − βo)/(q+ 1), a ≥ (N − αo)/(p+ 1), and a+ b ≤ N − 2; we obtain
that E′ab(r) is non-positive for all r ∈ I

′. In that case the energy is a decreasing
function of r and thus, Eab(r) ≤ Eab(0). Next, we prove that Eab(0) = 0. From
Proposition 2.1, the three first terms on E′ab(r), goes to zero as r does. The
convergence to zero of the other two terms, follows from Proposition 2.4; Thus
for all r ∈ (0, τ)

Eab(r) ≤ 0. (3.8)

For r ∈ (0, τ), let

d(r) := −
ru′(r)

u(r)
and e(r) := −

rv′(r)

v(r)
. (3.9)

From (3.8) in particular we obtain

e(r)d(r) − ad(r) − be(r) < 0. (3.10)

As a consequence of u(τ) = 0 and the concave nature of w1(s) := su(r), s =
rN−2, there exists r1 < τ satisfying d(r1) = N − 2, and for all r ∈ (r1, τ),
d(r) > N − 2. Therefore,

N − αo
p+ 1

+
N − βo
q + 1

≤ d(r1) = N − 2. (3.11)

For this d(r1) we can choose a, b such that a + b = d(r1) and
N−αo
p+1 ≤ a,

N−βo
q+1 ≤ b. Returning to (3.10) we get e(r1) < d(r1) = N−2. On the other hand,

the function w2(s) := sv(r), s = r
N−2 is a concave function with w2(0) = 0

and thus, e(r) < N − 2 for all r ∈ [0, r1]. Moreover, if for some r2 > r1 we have
that e(r2) = N −2, then arguing as above we get that d(r2) < N −2, which is a
contradiction. Thus we conclude that e(r) < N − 2 for all r ∈ (0, τ). Therefore,
rN−2v(r) is an increasing function in (0, τ). In particular v(τ) > 0.
Step 2. Next, we will prove that u(r) < 0 for all r ∈ (τ, k), and v(r) > 0 for
all r ∈ I. For it, let w2(s) := rN−2v(r) with s = rN−2 and s ∈ (τN−2, kN−2).
Assume that u(r) < 0 for r ∈ (τ, x). Since g(u) ≤ 0, for u ≤ 0, it can be easily
verified that w2 is a convex function for all s ∈ (τN−2, xN−2), and thus in such
interval

dw2

ds
(s) ≥

dw2

ds
(τN−2) ≥ 0,
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which in turn implies that w2(s) ≥ w2(τN−2) > 0, for all s ∈ (τN−2, xN−2).
Now, consider the function w1(s) := r

N−2u(r). Using now, that w2(s) > 0 and
thus v(r) > 0 for all r ∈ (0, x), it can be verified that the function w1 is concave
in (0, x). We have used that f(v) ≥ 0, for v ≥ 0. Therefore, in particular

dw1

ds
(s) ≤

dw1

ds
(τN−2) < 0,

for all s ∈ (τN−2, xN−2), and thus w1(s) is decreasing for s > τN−2 and it
cannot be zero for s > τN−2. Also in the above argument we can take x = k
to conclude that v is positive and rN−2v(r) is increasing on I. Moreover, from
(2.1) and since v is positive we obtain that u is decreasing on I. Thus the
assertion follows.
By changing the role between u and v in the above assertion, we obtain that

U0 ∩ V0 = ∅. Next, we will show that

lim
r→k
u(r) = −∞, lim

r→k
v(r) =∞.

Assume first that k <∞. Since rN−2v(r) is increasing, we obtain the existence
of limr→k v(r) = l. Assume, by contradiction that l <∞, and thus v is bounded.
Integrating the first equation of (2.1) and using the facts that v bounded and
k < ∞, it can be easily verified that u is also bounded. Therefore, (u, v) can
be extended to the right of k, contradicting the definition of k. The proof that
limr→k u(r) = −∞ is analogous to the above.
Now, for k =∞, we prove first that l = limr→∞ v(r) =∞. Integrating twice

the first equation of (2.1) we obtain for any r > 2τ ,

v(r) − v(2τ) = −

∫ r
2τ

s1−N
[∫ s
0

tN−1β(t)g(u(t))dt

]
ds

=
1

N − 2
[r2−N − (2τ)2−N ]

[∫ 2τ
0

tN−1β(t)g(u(t))dt

]

−

∫ r
2τ

s1−N
[∫ s
2τ

tN−1β(t)g(u(t))dt

]
ds. (3.12)

From (3.12) and since |g(u(s))| = −g(u(s)) ≥ |g(u(2τ))|, for all s ≥ 2τ , l = ∞
is implied by

lim
r→∞

∫ r
2τ

s1−N
[∫ s
2τ

tN−1β(t)dt

]
ds =∞.

If r > 4τ , we get∫ r
2τ

s1−N
[∫ s
2τ

tN−1β(t)dt

]
ds ≥

∫ r
4τ

s1−N
[∫ s
2τ

tN−1β(t)dt

]
ds

≥

∫ r
4τ

s1−N

[∫ s
s/2

tN−1−βotβoβ(t)dt

]
ds

≥ C

∫ r
4τ

sβ(s) ds , (3.13)
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in the last inequality of (3.13) we have used that tβoβ(t) is non-increasing. Thus,
from (3.13) and (2.2) we get that l =∞. A similar argument with

−u(r) =

∫ r
τ

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds

≥ f(c)

∫ r
τ

s1−N
[∫ s
0

tN−1α(t)dt

]
ds,

shows that limr→∞ u(r) =∞. ♦
As a consequence of the above result we get the following for the particular

system

−∆u = αf(v), (3.14)

−∆v = αf(u).

Corollary 3.1 Assume that f = g and α = β satisfy conditions in theorem 3.1.
Then,

G = {(c, c)| c > 0}.

Proof. Let c > 0, and let u be a nonnegative solution to

−∆u = αf(u),

defined near zero and such that u(0) = c. Thus, since (u, u) is a solution to
(3.14) with u = v, we get that (c, c) /∈ U0 ∪ V0 (solutions with initial data in
U0∪V0 satisfy that only one between u and v have a zero). Therefore, (c, c) ∈ G.
♦

With some extra conditions, it can be proven that the ground states are the
unique solutions to (2.1) defined in [0,∞).

Theorem 3.3 Assume that conditions in theorem 3.2 are satisfied. Moreover,
assume that f and g are odd functions. If there exist constants α1, β1 and a
positive constant C such that

α(r) ≥ Cr−α1 , β(r) ≥ Cr−β1 , for all r large

with
min {γ1(α1, β1), γ2(α1, β1)} ≤ 0, (3.15)

then for any (c1, c2) with c1 > 0 and c2 > 0, we have that the corresponding
solution (u, v) is either a ground state or the maximal right hand side interval
is (0, k) with k <∞.

Proof. Let (u, v) be a solution which is not a ground state, and thus from
theorem 3.2, we can assume the existence of τ such that u(τ) = 0, u(r) < 0 for
all r ∈ (τ, k), and v(r) > 0 for all r ∈ (0, τ). If k =∞, let u1(r) = −u(r), thus
(u1, v) is a positive solution in an exterior domain to

∆u1 ≥ C|x|−α1f(v)
∆v ≥ C|x|−β1g(u1).

(3.16)
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Now, since u1(r) and v(r) tend to infinity as r does, we have f(v) ≥ Cvp and
g(u1) ≥ Cu

q
1, and thus (u1, v) is a solution to

∆u1 ≥ C|x|−α1vp

∆v ≥ C|x|−β1uq1.

From the hypothesis (3.15) and Theorem 3.1 or Theorem 3.2 in [16], we get that
either u1 or v are bounded, and the contradiction follows. Therefore, k < ∞.
♦

The following lemmas allow us to define the function h given in theorem 3.1.

Lemma 3.1 Assume that conditions on theorem 3.1 are satisfied. Then, for
any c1 > 0 (respectively c2 > 0) there exists at most one c2 > 0 (respectively
c1 > 0) such that (c1, c2) ∈ G.

Proof. Let c1 > 0. Assume that there exists c2 such that (u1, v1) is a ground
state with u1(0) = c1 and v1(0) = c2. Let us prove that solutions (u, v) of
(2.1) corresponding to u(0) = c1 and v(0) = c2 − δ, with 0 < δ < c2, are
not ground states. Assume by contradiction that some of the above (u, v) is
also a ground state. Consider [0, r1) be the maximal right hand side interval
where v1(r) > v(r) > 0, for all r ∈ [0, r1). Integrating twice (2.1) we get for all
r ∈ [0, r1)

u(r)− u1(r) =

∫ r
0

s1−N
[∫ s
0

tN−1α(t)(f(v1(t)) − f(v(t)))dt

]
ds > 0,

and thus, u(r) > u1(r), for all r ∈ [0, r1). Moreover, in such interval,

−rN−1(v′(r) − v′1(r)) =

∫ r
0

tN−1β(t)(g(u(t)) − g(u1(t)))dt]ds > 0,

implying that v1(r) − v(r) is increasing in [0, r1), and thus

v1(r) − v(r) > δ. (3.17)

If r1 <∞, then from the definition of r1 and (3.17) we get v(r1) = 0, and thus
(u, v) is not a ground state. If r1 = ∞, the contradiction follows from (3.17)
and proposition 2.3. Therefore, if (c1, c2) corresponds to a ground state, then
(c1, c2 − δ) does not correspond to a ground state, and thus (c1, c2 + δ) also
cannot correspond to a ground state (if it does, (c1, c2) = (c1, c2 + δ − δ) does
not). ♦

Using similar arguments to those used in the proof of the above lemma, we
have.

Lemma 3.2 Assume that conditions on theorem 3.1 are satisfied. Then,

(i) If (c1, c2) ∈ V0, then [c1,∞)× (0, c2) ⊂ V0.
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(ii) If (c1, c2) ∈ U0, then (0, c1)× [c2,∞) ∈ U0.

Lemma 3.3 Assume that conditions on theorem 3.1 are satisfied. Then,

(i) For any c1 > 0 there exists a c̄2 > 0 such that {c1} × (0, c̄2) ⊂ V0.

(ii) For any c2 > 0 there exists a c̄1 > 0 such that (0, c̄1)× {c2} ⊂ U0.

Proof. We prove (i). Assume by contradiction that for some c1 > 0 there exists
no c̄2 such that {c1} × (0, c̄2) ⊂ V0. In that case, we choose a positive sequence
{c2n} decreasing to zero such that (c1, c2n) ∈ U0. We call (un, vn), the solution
to (2.1) corresponding to un(0) = c1 and vn(0) = c2n. If τn is the point where
un(τn) = 0, we obtain 0 ≤ vn(r) ≤ c2n for all r ∈ (0, τn) and

c1 =

∫ τn
0

s1−N
[∫ s
0

tN−1α(t)f(v(t))dt

]
ds ≤

f(c2n)

N − 2

∫ τn
0

sα(s)ds,

and thus τn tends to infinity as n does.
Next, we will prove that for any a > 0, ({un}n, {vn}n) has a subsequence

which converges uniformly in [0, a] to a solution (u, v) of (2.1). Let n be large
enough such that τn > a, and thus 0 ≤ vn(r) ≤ c2n, for all r ∈ (0, a). Since
{c2n}n tends to zero as n tends to infinity, we get that that v ≡ 0, which is
a contradiction to u(0) = c1. We prove the existence of such a converging
subsequence by showing that ({un}n, {vn}n) is equicontinuous and bounded in
[0, a]. We have

0 ≤ vn(r) ≤ c2n, 0 ≤ un(r) ≤ c1 r ∈ (0, a), (3.18)

and thus integrating twice (2.1) we get

|un(r)− un(x)| ≤

∫ x
r

s1−N
[∫ s
0

tN−1α(t)f(vn(t))dt

]
ds, (3.19)

Therefore from (3.19) and (3.18)

|un(r)− un(x)| ≤ f(c2n)

∫ x
r

s1−N
[∫ s
0

tN−1α(t)dt

]
ds, (3.20)

and thus {un} is equicontinuous. Similarly, we obtain

|vn(r)− vn(x)| ≤ g(c1)

∫ x
r

s1−N
[∫ s
0

tN−1β(t)dt

]
ds.

The proof of (ii) follows the same ideas given on (i). ♦

Lemma 3.4 Assume that conditions on theorem 3.1 are satisfied. Then,

(i) For any c2 > 0 there exists c
+
1 , such that (c

+
1 ,∞)× {c2} ⊂ V0.

(ii) For any c1 > 0 there exists c
+
2 , such that {c1} × (c

+
2 ,∞) ⊂ U0.
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Proof. Assume by contradiction the existence of c2 > 0 and a sequence {c1n}
increasing to infinity such that (c1n, c2) ∈ U0. We consider rn to be such that
un(rn) = c1n/2, where (un, vn) is the solution to (2.1) with (un(0), vn(0)) =
(c1n, c2). Therefore, since vn is decreasing before the zero of un, we get

c1n
2 = un(0)− un(rn) =

∫ rn
0 s

1−N [
∫ s
0 t
N−1α(t)f(vn(t))dt]ds

≤ f(c2)
∫ rn
0 s

1−N [
∫ s
0 t
N−1α(t)dt]ds,

(3.21)

and thus rn tends to infinity as n does. On the other hand, vn(rn) > 0 implies

c2 >

∫ rn
0

s1−N
[∫ s
0

tN−1β(t)g(un(t))dt

]
ds

≥ g(c1n/2)

∫ rn
0

s1−N
[∫ s
0

tN−1β(t)dt

]
ds,

which is a contradiction to (3.21). ♦

Lemma 3.5 Assume that conditions on theorem 3.1 are satisfied. Then, U0
and V0 are open subsets of R+ × R+.

Proof. Let (d1, d2) ∈ U0, then u(τd) = 0, for some τd > 0, and thus

d1 =

∫ τd
0

s1−N [

∫ s
0

tN−1α(t)f(v(t))dt]ds

≤ f(d2)

∫ τd
0

s1−N [

∫ s
0

tN−1α(t)dt]ds (3.22)

≤
f(d2)

N − 2

∫ τd
0

sα(s)ds.

Similarly if (d1, d2) ∈ V0, we get

d2 ≤
g(d1)

N − 2

∫ τd
0

sβ(s)ds. (3.23)

Now, let c := (c1, c2) ∈ U0, and let d := (d1, d2) ∈ R+×R+, with |ci−di| < ε, for
i = 1, 2. Consider (u1, v1) to be the solution to (2.1) associated to c and (u, v)
the corresponding d. Then, if ε < max{c1/2, c2/2}, from (3.22) and (3.23)we
get that the solution (u, v) is at least defined on I1 = [0, τ1], where τ1 satisfies

c1(N − 2)

2f(3c2/2)
≤

∫ τ1
0

sα(s)ds, and
c2(N − 2)

2g(3c1/2)
≤

∫ τ1
0

sβ(s)ds.

Therefore, from Lemma 2.1 for the above interval I1 we get that |u1(τ1) −
u(τ1)| < ε0, |u′1(τ1)−u

′(τ1)| < ε0, |v1(τ1)−v(τ1)| < ε0, and |v′1(τ1)−v
′(τ1)| < ε0,

where ε0 is small. Thus, from classical continuous dependence results for (u1, v1)
defined in [τ1, k0], for any k0 < k, we get that the solution (u, v) is also defined
in [τ1, k0], and it is near to (u1, v1). Since, u1 is negative at some point, we
conclude that u must be negative at that point. ♦
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Proof of theorem 3.1. We first construct the function h. Let c2 > 0, thus

from lemma 3.3 and lemma 3.4 we obtain

0 < h(c2) := sup {c1 > 0 | (0, c1)× {c2} ⊂ U0} <∞.

Next, we will prove that (h(c2), c2) corresponds to a ground state. Since by
lemma 3.5 U0 is open and h(c2) is a supremum, we get that (h(c2), c2) /∈ U0. If
(h(c2), c2) ∈ V0, and since V0 is open (h(c2)−ε, c2) ∈ V0, for some ε small, which
is a contradiction to the definition of h(c2), and thus (h(c2), c2) correspond to
a ground state.
The proof that h is increasing is as follows. Let c∗2 > c2. From the definition

of h(c2) we get that (0, h(c2))×{c2} ⊂ U0, and thus from lemma 3.2 (0, h(c2))×
[c2,∞) ⊂ U0. Therefore from the definition of h(c∗2) we get h(c2) ≤ h(c

∗
2). Now,

since (h(c2), c2) and (h(c
∗
2), c

∗
2) are ground states, from lemma 3.1 h(c2) < h(c

∗
2).

We end by showing item 1 and 2 of the theorem. Let (c1, c2) such that
c1 < h(c2), from the definition of h(c2), we have that (c1, c2) ∈ U0. Assume now
that c1 > h(c2). If (c1, c2) ∈ U0, from lemma 3.2, (h(c2), c2) also belongs to U0,
which is a contradiction, and thus (c1, c2) ∈ V0, for any c1 > h(c2). ♦

The following result has to do with the particular system

u′′(r) +
N − 1

r
u′(r) = −r−αovp,

v′′(r) +
N − 1

r
v′(r) = −r−βouq, (3.24)

u(0) = c1 v(0) = c2.

Corollary 3.2 Let (f(v), g(u)) = (vp, uq), with p ≥ 1, q ≥ 1. Assume that
(α(r), β(r)) = (r−αo , r−βo) with αo < 2, βo < 2, and (αo, βo, p, q) satisfies
(3.3). Then, there exists a positive constant C0 such that h given on theorem
3.1 is

h(x) = C0x
(αo−2+(βo−2)p)/(βo−2+(αo−2)q).

Remark. The above result was proven by Serrin and Zou [13], when αo = βo =
0. The behavior at infinity of the ground states when (3.3) is an equality an
αo = βo = 0 is given in [8].

Proof. Let x positive, then (h(x), x) is an initial value for a ground state. If
(u, v) is such ground state, then for any positive constants a, b and k, we define
(w, y) by

w(r) = au(kr), y(r) = bv(kr).

Thus, (w, y) is a ground state to

∆w + ab−pk2−αor−αoyp = 0,

∆y + ba−qk2−βor−βowq = 0.

If ab−pk2−αo = 1, and ba−qk2−βo = 1, which implies that

a = bν where ν =
αo − 2 + (βo − 2)p

βo − 2 + (αo − 2)q
.



18 Existence of continuous and singular ground states EJDE–1998/01

In that case, (w, y) is a ground state to (3.24) and (w(0), y(0)) = (bνh(c), bc).
Let x be positive and choose b such that x = bc. Since the ground state corre-
sponding to x is unique we get that

h(x) = C0x
ν ,

where C0 = h(c)c
−ν . ♦

4 Existence of singular ground states

In this section we study the problem of existence of singular ground states for
(1.1). A singular ground state means a radially symmetric nonnegative solution
(u, v) to (1.1) such that either limr→0 u(r) =∞, or limr→0 v(r) =∞.
Next, we will prove an existence result of singular radially symmetric ground

state as a limit of ground states constructed in Section 3.

Theorem 4.1 Assume that condition on Theorem 3.1 are satisfied and pq > 1.
Moreover, assume that

f(v) ≥ Cvp, v ≥ 0, g(u) ≥ Cuq, u ≥ 0,

and for any k positive∫
0

tN−1α(t)f(ktγ2)dt <∞,

∫
0

tN−1β(t)g(ktγ1)dt <∞, (4.1)

where γ1 and γ2 are defined by (2.7). Then, there exists a nonnegative singular
ground state to (1.1). Moreover,

lim
r→0
u(r) =∞, and lim

r→0
v(r) =∞.

Remark. If in the above theorem f(v) ≤ Dvp, and g(u) ≤ Duq, and α(r) ≤
Drαo , β(r) ≤ Drβo , for some positive constantD, then condition (4.1) is satisfy,
since ∫

0

tN−1α(s)f(ktγ2)dt ≤ C

∫
0

tN−1−αo+pγ2dt <∞.

The last integral is finite since N − αo + pγ2 = N − 2 + γ1 > 0, and we are in
the region where N − 2 + γ1 + γ2 ≥ 0 and γ1 < 0 and γ2 < 0.

Proof. As usual it can be proved that for any (u, v) nonnegative radially
symmetric solution to (1.1) we have

u(r) ≥ Cvp(r)r2α(r), (4.2)

In the proof of (4.2) we have used that rN−2u(r) is nondecreasing and rαoα(r)
is non-increasing. Similarly, we get

v(r) ≥ Cuq(r))r2β(r), (4.3)
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and thus from (4.2) and (4.3) we obtain

upq−1(r) ≤
C

r2(p+1)βp(r)α(r)
, (4.4)

vpq−1(r) ≤
C

r2(q+1)αq(r)β(r)
, (4.5)

Moreover, for any interval [0, a], there exist a constant A > 0, depending on a
such that rαoα(r) ≥ A, and rβoβ(r) ≥ A, for all r ∈ [0, a]. Thus, we obtain
from (4.4) that for all r ∈ [0, a]

u(r) ≤ Krγ1 , (4.6)

v(r) ≤ Krγ2 , (4.7)

where K is some positive constant depending on a. Let (h(cn), cn) with cn > 0
converging to ∞, and (un, vn) the associated ground state. From (4.4) the
sequence {un, vn)} is uniformly bounded in any compact subset of (0,∞). We
will show that the sequence {un, vn)} is equicontinuous away from zero. Let
x > 0 be fixed, we prove equicontinuity on x. From the definition of (un, vn),
we have

|un(r) − un(x)| ≤

∫ x
r

s1−N
[∫ s
0

tN−1α(s)f(vn(t))dt

]
ds

≤

∫ x
r

s1−N
[∫ s
0

tN−1α(s)f(Ktγ2)dt

]
ds,

and thus from (4.1) we get the equicontinuity of the sequence {(un, vn)}, in x.
Therefore, there exists a subsequence of {(un, vn)}, which converges uniformly
on any compact subset of (0,∞) to a continuous function (u, v). Moreover,
(u, v) is a solution of (1.1) in the sense of distribution in RN \ {0}. ♦
Next, by using Kelvin transform on the results of Section 3, we prove exis-

tence of singular ground states for the system

−∆u = α∗(|x|)vp

−∆v = β∗(|x|)uq
x ∈ RN \ {0}, (4.8)

where, p ≥ 1, q ≥ 1 and pq > 1, under the following conditions∫
0

sN−1−(N−2)pα∗(s)ds =∞,

∫
0

sN−1−(N−2)qβ∗(s)ds =∞, (4.9)

∫ ∞
sN−1−(N−2)pα∗(s)ds <∞,

∫ ∞
sN−1−(N−2)qβ∗(s)ds <∞. (4.10)

Moreover, we will assume the existence of α′0 and β
′
0 such that

rα
′
oα∗(r) and rβ

′
oβ∗(r) are nondecreasing and (4.11)

N − α′o
p+ 1

+
N − β′o
q + 1

≥ N − 2. (4.12)
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Theorem 4.2 Assume that conditions (4.9), (4.10), (4.11) and (4.12) are sat-
isfied. Then, there exists a function h∗ ∈ C(R+,R+), strictly increasing such
that for any c2 > 0 there exists a positive ground state (u, v) such that

lim
r→∞

rN−2u(r) = h∗(c2), and lim
r→∞

rN−2v(r) = c2. (4.13)

Moreover, assume that either rα
′
oα∗(r) or rβ

′
oβ∗(r) are strictly increasing at

some point or (4.12) is not an equality, then

lim
r→0
u(r) =∞, and lim

r→0
v(r) =∞. (4.14)

Proof. The proof of this result is fundamentally based on Kelvin transform and
on theorems of the previous section. If (u, v) is a radially symmetric nonnegative
solution to (4.8), we define

u1(r) := r
2−Nu(r−1), v1(r) := r

2−Nv(r−1),

the Kelvin transform of the function u and v. The pair (u1, v1) is thus a solution
to

−∆u1 = α(|x|)vp1
−∆v1 = β(|x|)uq1

x ∈ RN \ {0}, (4.15)

where the functions α and β are given by

α(r) : = r(N−2)p−(N+2)α∗(r−1)

β(r) : = r(N−2)q−(N+2)β∗(r−1). (4.16)

Define

αo = N + 2− (N − 2)p− α
′
o, βo = N + 2− (N − 2)q − β

′
o,

and thus we easily get that (α, β, p, q) satisfies the hypothesis on Theorem 3.1
and the existence of h∗ follows.
Next, we will show that those ground states satisfy (4.14) if rα

′
oα∗(r) or

rβ
′
oβ∗(r) are strictly increasing at some point or (4.12) is not an equality.
Let (u, v) be a radially symmetric ground state constructed as above. The

functions u and v are decreasing functions such that rN−2u(r) and rN−2v(r)
are increasing. Moreover,

lim
r→0
rN−2u(r) = 0, and lim

r→0
rN−2v(r) = 0, (4.17)

as it follows from the behavior at infinity of (u1, v1). The energy function given
by (see Proposition 3.1)

E∗ab(r) = rN
[
u′(r)v′(r) + ar−1u′(r)v(r) + br−1v′(r)u(r)

]
+rN

[
α∗

p+ 1
vp+1 +

β∗

q + 1
uq+1

]
, (4.18)
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satisfies

(E∗ab)
′(r) = (a+ b+ 2−N)rN−1u′(r)v′(r) + (

rNα∗

p+ 1
)′vp+1 (4.19)

−arN−1α∗vp+1 + (
rNβ∗

q + 1
)′uq+1 − brN−1β∗uq+1.

Moreover, for a = (N − α′o)/(p + 1) and b = (N − β
′
o)/(q + 1), we get that

E∗ab is a nondecreasing function. First, we will prove that limr→∞E
∗
ab(r) = 0.

From (4.13) we get that the first three terms in (4.18) tend to zero as r tends
to infinity. Moreover, from Proposition 2.4, we get that limr→0 r

2α(r) = 0 and
limr→0 r

2β(r) = 0, where (α, β) is given by (4.16). Therefore
limr→∞ r

N−(N−2)pα∗(r) = 0 and limr→∞ r
N−(N−2)qβ∗(r) = 0, and thus the

last two terms in (4.18) tend to zero as r tends to infinity.

Assume by contradiction that limr→0 u(r) = l <∞.
Assertion: If l <∞, then limr→0E∗ab(r) = 0, and thus (E

∗
ab)
′(r) = 0, for all r.

Assume that the assertion is true. If either rα
′
oα∗(r) or rβ

′
oβ∗(r) are in-

creasing functions at some point x, or the inequality in (4.12) is strictly, then
(E∗ab)

′(x) = 0, implies that either u(x) = 0, or v(x) = 0, or u′(x) = 0, or
v′(x) = 0, and the contradiction follows.
Now, we prove the assertion. If u is bounded, the three first term in E∗ab(r),

goes to zero as a consequence of (4.17). For the fourth term, we argue as
follows. Since rN−2u(r) is nondecreasing, v is non-increasing and rα

′
0α∗(r) is

nondecreasing, we get

rN−2u(r) ≥ C

∫ r
r/2

sN−1α∗(s)vp(s)

≥ CrNα∗(r/2)vp(r), (4.20)

and thus, using that u is non-increasing and rN−2v(r) is nondecreasing, we can
change in (4.20) u(r) by Cu(r/2) and vp(r) by Cvp(r/2) to get

u(r) ≥ Cr2α∗(r)vp(r). (4.21)

Therefore, from (4.21) and since l <∞ we get

CrN−2v(r) ≥ C′rN−2u(r)v(r) ≥ rNα∗(r)vp+1(r),

and thus limr→0 r
Nα∗(r)vp+1(r) = 0. Now, from Proposition 2.5 we conclude

that rNβ∗(r) = r(N−2)q−2β(r−1) goes to zero as r does, and thus the last term
in E∗ab(r) goes to zero as r does, and the assertion follows. ♦

Remark. Assume that conditions on theorem 4.2 are satisfied with p = q = 1.
In this case (4.12) is equivalent to

2− α′o + 2− β
′
o ≥ 0. (4.22)
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The conclusion of the above theorem is in this case also valid. If either rα
′
oα∗(r)

or rβ
′
oβ∗(r) is non constant, no changes on the proof of the above result. If

α∗(r) = C1r
−α′o and β∗(r) = C2r

−β′o , then from (4.10) we get that (4.22) is not
an equality, and the proof follows that of the above theorem.
On the other hand, it is known that the existence of radially symmetric

positive solutions to
−∆u = c|x|−2u,

depends on the constant c. For 4c > (N − 2)2, those solutions do not exist.

For system (3.24) we have the following

Corollary 4.1 Assume that α′o > N − (N − 2)p, β
′
o > N − (N − 2)q, and

(α′o, β
′
o, p, q) satisfies (4.12). Then, there exists a positive constant C

∗ such that

h∗(x) = C∗x(2−α
′
o+(2−β

′
o)p)/(2−β

′
o+(2−α

′
o)q).

Moreover, if

(α′o, β
′
o) = (0, 0),

N

p+ 1
+
N

q + 1
> N − 2,

and if (u, v) is a ground state and pq > 1, then there exist two positive constants
c and d such that for all r near zero we have

dr(−2(p+1))/(pq−1) ≤ u(r) ≤ cr(−2(p+1))/(pq−1) ,

dr(−2(p+1))/(pq−1) ≤ v(r) ≤ cr(−2(p+1))/(pq−1) ,

Proof. The proof of the behavior at zero of the ground states follows from
Theorem 3.2 in [5]. ♦

From theorem 4.1 and Kelvin transform, we obtain the following.

Theorem 4.3 Assume that conditions on theorem 4.2 are satisfied. Moreover,
assume that ∫ ∞

s1+pγ2α∗(s)ds <∞ ,

∫ ∞
s1+qγ1β∗(s)ds <∞ , (4.23)

where γ1,2 = γ1,2(α
′
o, β

′
o) are given by (2.7). Then, there exists (u, v) a nonneg-

ative ground state to (4.8), such that

lim
r→∞

rN−2u(r) =∞ , and lim
r→∞

rN−2v(r) =∞ . (4.24)

Moreover, if (4.12) is not an equality, then those ground states satisfy

lim
r→0
u(r) =∞, and lim

r→0
v(r) =∞.

Proof. The existence of a positive solution (u, v) of (4.8) satisfying (4.24)
follows from Theorem 4.1 and Kelvin transform. Next, we will prove that
(u(r), v(r)) tends to zero as r tends to infinity. Similarly to (4.21) we get

v(r) ≥ Cr2β∗(r)uq(r), (4.25)
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and thus from (4.21), (4.25) and since rα
′
oα(r) and rβ

′
oβ(r) are nondecreasing

functions we obtain the existence of r0 and a positive constant C such that for
all r ≥ r0

u(r) ≤ Crγ1(α
′
o,β

′
o), (4.26)

v(r) ≤ Crγ2(α
′
o,β

′
o).

Moreover, from (4.23) we obtain that 2 − α′o + γ2(α
′
o, β

′
o)p < 0, but it can be

easily verified that γ1(α
′
o, β

′
o) = 2 − α

′
o + γ2(α

′
o, β

′
o)p and thus γ1(α

′
o, β

′
o) < 0.

Similarly γ2(α
′
o, β

′
o) < 0. Therefore, the solution (u, v) is a ground state.

Assume now that (4.12) is a strict inequality. To prove that u and v are
singular at zero we use the same argument used on the proof of theorem 4.2.
The unique difference with that proof will be the proof of limr→∞E

∗
ab(r) = 0,

which is as follows: From (4.21), (4.25) and (4.26) we obtain that

rN−2+γ1+γ2 ≥ CrN−2u(r)v(r) ≥ rNβ∗(r)uq+1(r), (4.27)

rN−2+γ1+γ2 ≥ CrN−2u(r)v(r) ≥ rNα∗(r)vp+1(r).

Now since rN−2u and rN−2v are nondecreasing we also get that

rγ1−1 ≥ C|u′(r)|, (4.28)

rγ2−1 ≥ C|v′(r)|.

On the other hand, since condition (4.12) (without equality) is equivalent to
γ1 + γ2 +N − 2 < 0, from (4.27) and (4.28) the conclusion follows. ♦

5 Applications

In this section we will apply the results of the above sections to the more general
system

∆u(x) + V (|x|)u + a(|x|)vp = 0,

∆v(x) + V (|x|)v + b(|x|)uq = 0, in R
N \ {0}. (5.1)

where a and b are nonnegative functions, p ≥ 1, q ≥ 1. The “potential” V is
not necessarily non-positive.

Let V ∈ L∞loc(0,∞), such that the equation

h′′(r) +
N − 1

r
h′(r) + V (r)h(r) = 0, r ∈ (0,∞) (5.2)

is disconjugate in (0,∞); i.e., there exists a positive solution h0 of (5.2) such
that ∫ ∞

r1−Nh−20 (r)dr =∞.
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( See, e.g.,[7], [15] for the definition and properties of disconjugacy.) Note that
for V = 0, (5.2) is disconjugate, and in this case h0 = r

2−N . We define as in
[2], h1(r) = h0(r)

∫ r
0
t1−Nh−20 (t)dt if

D ≡

∫
0

t1−Nh−20 (t)dt <∞,

and h1(r) = h0(r)
∫ r
R
t1−Nh−20 (t)dt if D =∞, where R > 0 is fixed. In any case

h0, h1 are two linearly independent solutions to (5.2). In the sequel we assume
that D < ∞. If (u, v) is a radially symmetric solution to (5.1), then (u1, v1)
given by

u1(s) =
u(r)

h1(r)
, v1(s) =

v(r)

h1(r)
, (5.3)

where s = h1
h0
, and v is a solution for all s > 0 to

u′′1(s) +
2

s
u′1(s) + α(s)v

p
1 = 0,

v′′1 (s) +
2

s
v′1(s) + β(s)u

q
1 = 0, (5.4)

where

α(s) = a(r)hp−11 (r)h40(r)r
2(N−1), β(s) = b(r)hq−11 (r)h40(r)r

2(N−1),

and thus with the appropriate conditions on α and β, the results of the above
sections give existence of positive solutions to (5.1). The function (α(s), β(s))
satisfies (2.3) if and only if (a(r), b(r)) satisfies∫

0

rN−1h0h
p
1a(r)dr <∞,

∫
0

rN−1h0h
q
1b(r)dr <∞, (5.5)

and (α(s), β(s)) satisfies (2.2) if and only if (a(r), b(r)) satisfies∫ ∞
rN−1h0h

p
1a(r)dr =∞,

∫ ∞
rN−1h0h

q
1b(r)dr =∞. (5.6)

We have the following

Theorem 5.1 Assume that a and b satisfy (5.5) and (5.6). Assume that there
exists (αo, βo) such that

3− αo
p+ 1

+
3− βo
q + 1

≤ 1, (5.7)

and
r2(N−1)hp−1+αo1 h4−αo0 a(r), r2(N−1)hq−1+βo1 h4−βo0 b(r)

are non-increasing functions. Then, there exists g ∈ C(R+,R+) strictly increas-
ing and such that for any c > 0 there exists a radially symmetric solution (u, v)
to (5.1) such that

lim
r→0

u(r)

h1(r)
= g(c), and lim

r→0

v(r)

h1(r)
= c.
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For instance, if V (r) = −dr−2, with d > −(N − 2)2/4, the equation

h′′(r) +
N − 1

r
h′(r)−

d

r2
h(r) = 0, r ∈ (0,∞)

has the solutions

h0(r) = r
θ0 and h1(r) = r

θ1 ,

θ1,0 =
2−N ± ((N − 2)2 + 4d)1/2

2
,

and for the system

∆u(x) −
d

|x|2
u+ a(|x|)vp = 0,

∆v(x)−
d

|x|2
v + b(|x|)uq = 0, in R

N \ {0}, (5.8)

we have

Corollary 5.1 Assume that there exists (ao, bo) such that r
aoa(r) and rbob(r)

are non-increasing functions for some (ao, bo) satisfying

N − ao
p+ 1

+
N − bo
q + 1

≤ N − 2. (5.9)

Moreover, assume that a and b satisfy (5.5) and (5.6). Then, there exists g ∈
C(R+,R+) strictly increasing and such that for any c > 0 there exists a radially
symmetric solution (u, v) to (5.8) such that

lim
r→0

u(r)

rθ1
= g(c), and lim

r→0

v(r)

rθ1
= c.

Remark. If in the above corollary d > 0, then for any c > 0, the solution (u, v)
corresponding to (g(c), c) satisfies that u(0) = 0 and v(0) = 0. On the other
hand, if d < 0, the solutions are singular at zero. Moreover, if (a(r), b(r)) =
(r−ao , r−bo) with (ao, bo) satisfying (5.9) and

ao < 2 + (p− 1)θ1, bo < 2 + (q − 1)θ1

then there exists a positive constant D such that g(x) = Dxk, where

k =
ao − 2 + (bo − 2)p− θ1(pq − 1)

bo − 2 + (ao − 2)q − θ1(pq − 1)
.

Now, we will obtain existence of a curve of ground states of (5.1) which
behaves at infinity as h0. To this end, we will apply results of section 4 to
the system (5.4). Condition (4.9) for (α(s), β(s)) in terms of (a(r), b(r)) is the
following ∫

0

rN−1h1h
p
0a(r)dr =∞,

∫
0

rN−1h1h
q
0b(r)dr =∞, (5.10)
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and condition (4.10) for (α(s), β(s)) reads for (a(r), b(r))∫ ∞
rN−1h1h

p
0a(r)dr <∞,

∫ ∞
rN−1h1h

q
0b(r)dr <∞. (5.11)

Theorem 5.2 Assume that a and b satisfy (5.10) and (5.11). Assume that
there exists (α′o, β

′
o) such that

3− α′o
p+ 1

+
3− β′o
q + 1

≥ 1 . (5.12)

and
r2(N−1)h

p−1+α′o
1 h

4−α′o
0 a(r), r2(N−1)h

p−1+β′o
1 h

4−β′o
0 b(r),

are nondecreasing functions. Then, there exists δ ∈ C(R+,R+) strictly increas-
ing and such that for any c > 0 there exists a radially symmetric solution (u, v)
to (5.1) such that

lim
r→∞

u(r)

h0(r)
= δ(c), and lim

r→∞

v(r)

h0(r)
= c .

In particular for system (5.8) we have

Corollary 5.2 Assume that there exists (ao, bo) such that r
aoa(r) and rbob(r)

are nondecreasing functions for some (ao, bo) satisfying

N − ao
p+ 1

+
N − bo
q + 1

≥ N − 2 .

Moreover, assume that a and b satisfy (5.10) and (5.11). Then, there exists
δ ∈ C(R+,R+) strictly increasing and such that for any c > 0 there exists a
radially symmetric solution (u, v) to (5.8) such that

lim
r→∞

u(r)

rθ0
= δ(c), and lim

r→∞

v(r)

rθ0
= c .
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