
Electronic Journal of Differential Equations, Vol. 1998(1998), No. 03, pp. 1–10.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp (login: ftp) 147.26.103.110 or 129.120.3.113

A scaled characteristics method for the

asymptotic solution of weakly nonlinear wave

equations ∗

Chirakkal V. Easwaran

Abstract

We formulate a multi-scale perturbation technique to asymptotically
solve weakly nonlinear hyperbolic equations. The method is based on
a set of scaled characteristic coordinates. We show that this technique
leads to a simplified system of ordinary differential equations describing
the weakly nonlinear interaction between left and right running waves.
Using this method, a uniformly valid first order solution of a prototype
nonlinear equation is derived.

1 Introduction

In this paper we consider initial-boundary value problems for weakly non-linear
hyperbolic wave equations of the form

utt − uxx + εh(u, ut, ux) = 0, t, x > 0, 0 < ε� 1 (1)

u(x, 0) = a(x); ut(x, 0) = b(x); u(0, t) = ρ(t), t, x > 0 . (2)

Such equations occur in many models in science and engineering (See [2, 3, 4, 6]).
We assume that a(0) = ρ(0), b(0) = ρ′(0), that a(x), ρ(t) are twice continuously
differentiable, b(x) is continuously differentiable, and that h is analytic in its
arguments. One can formally write the solution of this system as two separate
equations, one valid in the region 0 ≤ t ≤ x and the other valid for t ≥ x ≥ 0
[5],

u(x, t) =
1

2
[a(x+ t) + a(x− t)] +

1

2

∫ x+t
x−t

b(λ)dλ (3)

+
ε

2

∫ t
0

dτ

∫ x+(t−τ)
x−(t−τ)

h(u, uτ(λ, τ), uλ(λ, τ))dλ, 0 ≤ t ≤ x,
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u(x, t) = ρ(t− x) +
1

2
[a(t+ x) + a(t− x)] +

1

2

∫ t+x
t−x

b(λ)dλ (4)

+
ε

2

∫ t
0

dτ

∫ x+(t−τ)
|x−(t−τ)|

h(u, uτ(λ, τ), uλ(λ, τ))dλ, t ≥ x ≥ 0.

Using the above representation of solutions, and the assumptions on the regular-
ity of initial and boundary conditions, one can show that a twice continuously
differentiable solution u(x, t; ε) of the hyperbolic system exists in a rectangle
0 ≤ t, x ≤ O(

√
ε). This solution depends continuously on the initial data, and

formal perturbation series expansions asymptotically converge to the solution
in this rectangle.

Developing uniformly valid perturbation solutions to hyperbolic systems of
the above type has been a difficult task. When the boundary condition is zero,
a multi-scale perturbation scheme based on a “slow” time scale T = εt has
been developed [2]. For signaling problems in which the initial conditions are
zero and one wishes to study the propagation of boundary data, a perturbation
scheme based on a “long” distance scale X = εx can be used. However, when
the initial and boundary conditions are both nonzero, the forward and backward
going wave components (which are perturbations of the corresponding parts of
the linear wave equation) interact, leading to considerable difficulties in finding
asymptotic solutions. In [1] we developed a perturbation scheme that could deal
with this situation. This scheme involved a coupled set of first order partial
differential equations (PDEs) in terms of two scaled variables X = εx and
T = εt, governing the interaction between forward and backward going waves in
the region t > x. In many cases we showed that these PDEs could be explicitly
solved leading to uniformly valid O(1) solutions of the system. Our purpose in
this paper is to present a modified perturbation scheme using a pair of scaled
characteristic variables, and certain assumptions on averaged quantities, leading
to coupled ordinary differential equations governing the interaction of left and
right running waves. This makes the perturbation analysis considerably simpler.
In section 3 we present comparisons of results of the present analysis with those
in [1].

2 The multi-scale perturbation procedure

Equations (3)-(4) show that the solution of the hyperbolic system (1)-(2) splits
into two parts: the region 0 ≤ t ≤ x where the boundary conditions do not
affect the solution, and the region t ≥ x ≥ 0, where boundary conditions come
into play. See Figure 1. Thus the analysis proceeds differently in these two
regions.
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2.1 The region 0 ≤ t ≤ x

In 0 ≤ t ≤ x, only initial conditions affect the solution. The asymptotics in this
region is the same as in [1],[2]. The nonlinearity h will have a time-cumulative
effect on the solution in this region. To determine this effect, a slow time variable
T = εt is usually introduced, in addition to the “fast” variables t and x. Strictly
speaking, the fast variables should be relabeled, but for convenience we use t
and x as the fast variables. We then seek a formal perturbation series solution
in the form

u(x, t; ε) =

N∑
n=0

εnun(x, t, T ) +O(ε
n+1). (5)

The derivatives are replaced by ∂t −→ ∂t+ ε∂T , ∂tt −→ ∂tt+2ε∂tT + ε2∂TT . We
also introduce the characteristics σ = x − t and ξ = x + t. After substituting
into the original system and equating like powers of ε, a hierarchy of initial
boundary value problems are obtained:

−4u0ξσ = 0 (6)

−4u1ξσ + 2u0ξT − 2u0σT + h(u0, u0ξ − u0σ , u0ξ + u0σ) = 0 (7)

The solution of (6) is then sought in the form

u0(x, t, T ) = f(σ, T ) + g(ξ, T ) (8)

where σ = x − t and ξ = x + t. When ε = 0 we should recover the solution of
the linear wave equation.
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f and g are determined by requiring that the O(ε) solution, given by (7), re-
mains bounded. We eliminate secular terms that would lead to non-uniformities
at O(ε) level by substituting (8) into (7), and requiring that (1ξ )u1ξ and (

1
σ )u1σ

must go to 0 as ξ and σ grow large. Integrating (7) with respect to ξ from 0 to
M , dividing by M and taking the limit as M −→∞, we get

−2fσT + lim
M→∞

1

M

∫ M
0

h(f + g, gξ − fσ, gξ + fσ)dξ = 0. (9)

Repeating the process with respect to σ yields

2gξT + lim
M→∞

1

M

∫ M
0

h(f + g, gξ − fσ, gξ + fσ)dσ = 0. (10)

These are a coupled set of ODEs for fσ and gξ that determine the wave evolution
in the region 0 ≤ t ≤ x.

2.2 The region t ≥ x ≥ 0

In this region the boundary conditions also affect the solution. In [1], we in-
troduced a “slow” time scale T = εt and a “long” space scale X = εx. The
resulting analysis leads to a system of coupled PDEs for the slow evolution of
waves in this region. The left and right running waves interact with each other
through these stretched scales.
In this paper we introduce a set of scaled characteristic variables, ∆ = ε(t+x)

and Σ = ε(t − x), in addition to the regular “fast” characteristics µ = t − x
and ξ = t + x in this region. Introduction of these scaled variables enables us
to make certain assumptions about µ− and ξ−averaged quantities that appear
below. The resulting analysis, in many instances, is much simpler than previous
methods.
With these new variables, the perturbation expansion becomes

u(x, t; ε) =

N∑
n=0

εnun(ξ, µ,∆,Σ) +O(ε
n+1). (11)

The O(1) equation is u0ξµ = 0, for which we seek a solution in the form

u0 = p(µ,∆,Σ) + q(ξ,∆,Σ). (12)

p and q have to be determined subject to the conditions that when t = x, q
must equal g, the incoming wave in t < x, and when x = 0, the sum of p and
q must equal ρ(t). See Figure 1. In addition, we must require uniform validity
of the O(1) and O(ε) solutions – this would necessitate choosing the Σ and ∆
dependence of p and q to ensure that the O(ε) solutions remain bounded.
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The O(ε) equation is

4u1ξµ + 4qξΣ + 4pµ∆ + h(p+ q, pµ + qξ, qξ − pµ) = 0. (13)

Integrating (13) with respect to µ from 0 to M, dividing by M and taking limit
as M −→∞, we get

4qξΣ + lim
M→∞

1

M

∫ M
0

h(p+ q, pµ + qξ, qξ − pµ)dµ = 0, (14)

while the same process with respect to ξ gives

4pµ∆ + lim
M→∞

1

M

∫ M
0

h(p+ q, pµ + qξ, qξ − pµ)dξ = 0. (15)

In calculating the ξ-average in (15), the ∆ occurring in the argument of
qξ will be treated as ∆ = εξ. This is justified because for fixed ε, as ξ → ∞,
∆→∞, therefore the averaging process should include ∆. We leave p unaffected
because we are interested only in the O(1) contribution to the ξ-average, which
comes from q. Similarly in (14), the Σ that occurs in the argument of pµ will
be treated as Σ = εµ when calculating the µ integral.
The equations (14) and (15) are asymptotically equivalent to a pair of partial

differential equations derived in [1] to describe the O(1) solution in this region:

2pµT + 2pµX + limM→∞
1
M

∫M
0
h(p+ q, pµ + qξ, qξ − pµ)dξ = 0 (16)

2qξT − 2qξX + limM→∞
1
M

∫M
0 h(p+ q, pµ + qξ, qξ − pµ)dµ = 0 (17)

One can formally derive (14) and (15) from these two equations. However the
essential difference between (14)-(15) and (16)-(17) is in the way the averages
are calculated in their last terms on the left side. The limiting process in (14)
and (15) affects the scaled variables ∆ and Σ, while the limiting process in (16)
and (17) did not affect the scaled variables X and T . Up to O(1), the two sets
of equations are equivalent, since the affected terms are O(ε).
The advantage of our approach is that the resulting equations determining

the left and right running waves in the region t ≥ x are a set of coupled ODEs for
pµ and qξ, which can be solved in many cases. We next illustrate the procedure
with examples.

3 Examples

We consider the prototype nonlinear equation from [1]:

utt − uxx + ε(2ut + u(ut − ux)) = 0 (18)

with the initial boundary conditions (2).
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In the region t < x, the analysis is the same as in [1],[2], so we skip the
details. The O(1) solution is determined by u0 = f(σ, T ) + g(ξ, T ) , where

2fσT − 2fσ − 2ffσ − 2fσ < g >= 0

and
2gξT + gξ = 0.

These can be integrated with respect to σ and ξ respectively. The arbitrary
function of T resulting from the integration is identically zero because the so-
lution has to depend continuously on the initial data. Thus we get

2fT − 2(1+ < g >)− f
2 = 0

and
gT + g = 0,

where < g >= limM→∞
1
M

∫M
0 g(ξ, T )dξ. The solution, subject to the appro-

priate initial conditions, is then given by

g(ξ, T ) = G(ξ)e−T , (19)

where

G(ξ) =
1

2

(
a(ξ) +

∫ ξ
0

b(λ)dλ

)

and

f(σ, T ) =
F (σ)λ(T )

1 + 12F (σ)
∫ T
0
λ(τ)dτ

, (20)

where

F (σ) = 1
2

(
a(σ)−

∫ σ
0
b(λ)dλ

)
;

λ(T ) = exp
[
−
∫ T
0
(1+ < g >)dτ

]
.

For t > x, we follow the scaled characteristics approach outlined in section
2.2. The O(1) problem has a solution in the form

u0 = p(µ,∆,Σ) + q(ξ,∆,Σ).

The O(ε) equation is

4u1µξ + 4pµ∆ + 4qξΣ + 2(pµ + qξ) + 2(p+ q)pµ = 0.

Integrating this with respect to µ from 0 to M , dividing by M and taking
limit as M →∞, we get

qξΣ + qξ = 0. (21)
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A similar process with ξ yields

2pµ∆ + pµ + (p
2)µ+ < q > pµ = 0, (22)

where

< q >= lim
M→∞

1

M

∫ M
0

q(ξ, εξ,Σ)dξ.

By integrating (20) with respect to ξ and (21) with respect to µ, we obtain
a set of coupled ODEs:

2qΣ + q = 0 (23)

2p∆ + (1+ < q >)p+ p
2 = 0 (24)

The arbitrary functions of ∆ and Σ that result from these integrations are set
to zero because the solution has to depend continuously on initial data.

The coupled ODEs (23) and (24) have to be solved subject to the conditions
that when t = x, q equals g, the backward-going component in t < x, and when
x = 0, the sum of p and q should equal ρ(t), the boundary condition. One can
compute these solutions readily:

q(ξ,∆,Σ) = g(ξ, ∆2 )e
−Σ/2 (25)

p(µ,∆,Σ) =
(
( 12k +

1
ρ(µ)−q(µ,Σ,Σ) )e

−k(Σ−∆)/2 − 1
2k

)−1
(26)

where k(Σ; ε) = 1+ < q >. We now numerically compare the solutions obtained
in this paper, (25)-(26), with those obtained in [1].

Figure 2 plots the O(1) solution at t = 5, using equations (25)-(26) and the
solution derived in [1] by solving the PDEs resulting from (16)-(17). We used
the set of initial-boundary conditions

u(x, 0) = sin(3x) (27)

ut(x, 0) = 0 (28)

u(0, t) = 2t
1+t2 sin t . (29)

In this case < q >= 0 in equation (26). The two plots are indistinguishable.
Figure 3. plots the same solutions at x = 8.



8 A scaled characteristics method EJDE–1998/03

0 2 4 6 8 10

Figure 2.  Waveform at t=5, Epsilon =0.1
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Figure 3. Waveform at x=5,Epsilon =0.1
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Figure 4 plots the solutions at t = 5 for u(x, 0) = sin2(3x), and the other
conditions as in (28)-(29). In this case < q > 6= 0. We plotted the solution in the
region x > 5 where interaction between left and right going waves take place.
In Figure 5 are solutions at x = 8. Note that each of figures 2-5 contains two
plots which are indistinguishable except in figure 5.
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Figure 4.  Waveform at t = 5, Epsilon = 0.1
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Figure 5.  Waveform at x=8, Epsilon =0.1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t

4 Conclusion

We presented a method to develop uniformly valid asymptotic approximations
to weakly nonlinear wave equations that is considerably simpler than previ-
ously available methods. In principle, the procedure could be carried out to
higher order, although we presented only first order approximations. The new
method offers a way to study the nonlinear interaction of left and right running
waves through a set of coupled ordinary differential equations. This should be
compared with previous methods that required solving coupled sets of partial
differential equations. Our method used a pair of “slow” characteristic variables
∆ = ε(t+x) and Σ = ε(t−x) and certain assumptions on the averages of forward
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and backward going wave amplitudes to simplify the analysis. This simplifica-
tion will hopefully help analyze a variety of weakly nonlinear wave equations
that occur in applications such as gas dynamics and acoustics ([2],[4]), in which
the boundary and initial data are non-zero.
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