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Exponential stability of a Von Karman model

with thermal effects ∗

Assia Benabdallah & Djamel Teniou

Abstract

A one-dimensional Von Karman model with thermal effects is studied.
We derive the equations that constitute the mathematical model, and
prove existence and uniqueness of a global solution. Then using Lyapunov
functions, we show that solutions decay exponentially.

1 Introduction

In the last few years, the asymptotic behaviour of the coupling between elastic
and heat phenomena has been studied by several authors. Most of their results
concern the linear case, see for example [5, 17, 6, 1, 13] and references therein.
Analysis of these articles shows that the linear thermoelastic plate models (cou-
pling of plate and heat) and the standard linear thermoelastic system (coupling
between the wave and heat equations) have different properties. The first model
is always exponentially stable (namely the energy approaches zero exponentially
when time approaches infinity), while the second model has this property only
in certain domains. The second model consists of the system

∂ttu−∆u− β grad(div u) +m grad θ = 0 in Ω

∂tθ − k∆θ +m div ∂tu = 0 in Ω

u = θ = 0 on ∂Ω ,

where β,m, k are positive constants, u is the displacement and θ the tempera-
ture. For this model, D. B. Henry, A. Perissinitto and O. Lopes [7] proved that
the exponential stability is equivalent to that of the decoupled system

∂ttu−∆u− β grad(div u) + (m2/k) grad∆−1 div ∂tu = 0 in Ω

∂tθ − k∆θ +m div ∂tu = 0 in Ω

u = θ = 0 on ∂Ω .
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2 Exponential stability of a Von Karman model EJDE–1998/07

Here the operator grad∆−1 div is a projection whose range is the irrotational
part of the velocity field. The question is whether the control of this part of
the velocity field is sufficient to ensure uniform stability. In the one-dimensional
model, in higher dimensions in the presence of symmetry properties, and in very
special domains (excluding convex domains) the answer is positive. See [7, 14]
for the one-dimensional case, [3, 17] for the presence of symmetry, and [8, 11]
for special domains.
Results for various nonlinear models have been obtained in [2, 15, 17] and

their references. In particular, [2, 15] concern Von Karman models with thermal
effects. In [1], the authors construct simple Lyapunov functions for a different
thermoelastic plate model. In this paper, we use these functions to prove sta-
bility results for a Von Karman model with thermal effects.
The plan of this paper is to derive the equations, then prove existence and

uniqueness of a global weak solution, and finally demonstrate exponential sta-
bility of the model.
Our proof of existence and uniqueness of weak solutions is directly inspired

by the techniques used in [9], where uniform stabilization of a nonlinear beam
by a nonlinear boundary feedback is obtained.
We restrict our work to the one-dimensional problem, for the following two

reasons. The first one is the difficulty in obtaining uniqueness for the multi-
dimensional Von Karman models in the energy space we consider. To our
knowledge, there exist only partial results in this case, [16, 18]. In [16], ex-
istence and uniqueness of a global strong solution in two dimensional bounded
domains is proven, but without uniqueness for finite energy solutions. In [18],
the authors prove existence and uniqueness for finite energy solutions in R2,
in rectangular domains, and outside a convex obstacle. These difficulties also
appear in the thermal case. In fact, for (1) with γ > 0, it is known that the
linear part has no regularization property. The second reason is the presence
of planar strain in the coupling (see the first and third equation in (1)). Recall
that exponential stability for the thermoelastic system has been proved in the
one-dimensional case, and only for special domains in higher dimensions.

2 Derivation of the model

Consider the planar motion of a beam that occupies, in the reference position,
the region

U = {(x, y, z); 0 ≤ x ≤ L, −1 ≤ y ≤ 1,
−h

2
≤ z ≤

h

2
} .

In this setting, L is the length of the beam, and the segment {0 ≤ x ≤ L, y =
z = 0} is called the medium line of the beam.
The fact that the beam is stretchable implies the existence of nonlinear terms

in the equations describing the motion. In addition to the mechanical load, we
assume that the body is subjected to an unknown heat distribution, τ , that
vanishes at the boundary of the beam.
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Let the displacement be denoted by (u,w) = ((u1, u2), w), and the domain
by

Ω = {(x, y, 0), 0 < x < L, −1 < y < 1} .

It is known [9, 10] that, up to a normalization of both the physical constants
and h, the mechanical energy of the system is given by

K(t) =
1

2
{

∫
Ω

|∂tu|
2
dxdy +

∫
Ω

|∂tw|
2
dx dy + γ2

∫
Ω

|∂t∇w|
2
dx dy

+(C(ε(u(t) + f(∇w(t)), ε(u(t) + f(∇w(t)))0

+

∫
Ω

|∆w|2 dx−

∫
Ω

α(θ̃ div u+ θ∆w) dx dy } ,

where C(ε(u(t)+f(∇w(t)) is the strain tensor in the plane (x, y), ε is the tensor

of deformations, α a positive constant, and θ̃ and θ are thermal strain resultants
with

f(∇w) =
1

2
∇w ⊗∇w , θ̃ =

1

h

∫ ∫ h
2

−h2

τ dz , θ =
12

h3

∫ ∫ h
2

−h2

zτ dz .

We also assume that the motion occurs in the xz-plane, in which case the
energy becomes

K(t) =

∫ L
0

(
|∂tu1(t)|

2 + |∂tw(t)|
2 + γ2 |∂t∂xw(t)|

2
)
dx

+

∫ L
0

[|∂xxw|
2 + |∂xu1 +

1

2
(∂xw)

2|2] dx−

∫ L
0

α(ϕ∂xu1 + ψ∂xxw) dx ,

where

ϕ =

∫ 1
−1
θ̃ dy , ψ =

∫ 1
−1
θ dy .

Finally, we suppose that on the boundary, the displacement is only horizontal,
which implies

w(x, .) = ∂xw(x, .) = 0 , for x = 0, x = L .

Then the dynamical variation δ satisfies

δK = 0 ,

and we deduce the following equations (where u1 is denoted by u).
∂ttu− ∂x(∂xu+

1
2 (∂xw)

2) = ∂xϕ, (x, t) ∈]0, L[×R+

∂tt(I − γ2∂xx)w + ∂xxxxw
−∂x[(∂xu+

1
2 (∂xw)

2)∂xw] = −α∂xxψ, (x, t) ∈]0, L[×R+

∂xu(0, t) = ∂xu(L, t) = w(0, t) = w(L, t) = ∂xw(0, t) = α∂xw(L, t) = 0 .
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The two heat equations have the following form. (see [10])
∂tϕ− ∂xxϕ = α∂x∂tu, (x, t) ∈]0, L[×R+

∂tψ − ∂xxψ = α∂xx∂tw, (x, t) ∈]0, L[×R+

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, t ∈ R+

So that for α = 1, we obtain

∂ttu− ∂x(∂xu+
1
2 (∂xw)

2) = ∂xϕ, (x, t) ∈]0, L[×R+

∂tt(I − γ2∂xx)w + ∂xxxxw

−∂x[(∂xu+
1
2 (∂xw)

2)∂xw] = −∂xxψ, (x, t) ∈]0, L[×R+

∂tϕ− ∂xxϕ = ∂x∂tu, (x, t) ∈]0, L[×R+

∂tψ − ∂xxψ = ∂xx∂tw, (x, t) ∈]0, L[×R+

∂xu(0, t) = ∂xu(L, t) = 0

w(0, t) = w(L, t) = ∂xw(0, t) = ∂xw(L, t) = 0, t ∈ R+

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, t ∈ R+

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈]0, L[

w(x, 0) = w(x), ∂tw(x, 0) = w1(x), x ∈]0, L[

ϕ(x, 0) = ϕ(x), ψ(x, 0) = ψ0(x), x ∈]0, L[

(1)

3 Existence and uniqueness of a solution

Existence follows from the argument in the paper by J. Lagnese and G. Leuger-
ing [9]. Nevertheless, we provide all the details for the coupled equation. Let
Ω = (0, L), and rewrite the system above in the form

CY ′ = AY + F (Y ) (2)

Y (0) = Y0 ,

where

Y =


u
v
ϕ
w
z
ψ

 , C =


I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 (I − γ2∂xx) 0
0 0 0 0 0 I

 ,

A =


0 I 0 0 0 0
∂xx 0 ∂x 0 0 0
0 ∂x ∂xx 0 0 0
0 0 0 0 I 0
0 0 0 −∂xxxx 0 −∂xx
0 0 0 0 ∂xx ∂xx

 ,
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and

F (Y ) =


0

1
2∂x((∂xw)

2)
0
0

∂x[ (∂xu+
1
2 (∂xw)

2)∂xw]
0

 .

Let the energy space be

H = H̃1(Ω)× L2(Ω)× L2(Ω)×H20 (Ω)×H
1
0 (Ω)× L

2(Ω) ,

where H̃1(Ω) is the Sobolev space H1(Ω)with null average,

H̃1(Ω) = {u ∈ H1(Ω);

∫
Ω

u(x) dx = 0} .

Let |.| denote the norm in L2(Ω), and ‖.‖ denote the norm in H ,

‖Y ‖2 = |∇u|2 + |v|2 + |ϕ|2 + |∆w|2 +
∣∣∣L1/2γ z

∣∣∣2 + |ψ|2 .
with Lγ = (I − γ2∆) and ∆ being the Dirichlet-Laplace operator.

Theorem 1 For all Y0 ∈ H there exists a unique weak solution Y of (2) such
that

Y ∈ C(R+, H) .

We prove this theorem as follows: First it is shown that the linear part
defines a semigroup of solutions, and the nonlinear part is Lipschitz. From
these two facts, we conclude the existence of a local solution. The proof is then
completed by establishing estimates, on the local solution, that avoid blowup in
finite time; hence, ensuring global existence.

Lemma 2 C−1A is a generator of a semigroup of contractions in H.

Proof. One has

D(C−1A) =
{
Y ∈ H : ∆u ∈ L2(Ω), v ∈ H̃1(Ω), ϕ ∈ H2(Ω) ∩H10 (Ω),

w ∈ H4(Ω) ∩H20 (Ω) z ∈ H
1
0 (Ω), ψ ∈ H

2(Ω) ∩H10 (Ω)
}
.

The operator C−1A is a generator of a semigroup of contractions, because it
is the diagonal matrix of two operators that are generators of semigroups of
contractions. Those two operators are: the thermoelasticity

A1 =

 0 I 0
∂xx 0 ∂x
0 ∂x ∂xx

 ,

and the thermoplates

A2 =

 0 I 0
−L−1γ ∂xxxx 0 −L−1γ ∂xx

0 ∂xx ∂xx

 .
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Existence and uniqueness of a local solution

The nonlinear part C−1F of (2) can be considered as a perturbation of the
operator C−1A. So, to prove local existence and uniqueness of a solution, we
have to verify that C−1F is locally Lipschitz continuous in H . (See Theorem
4.3.4. p. 57 in [4])

Lemma 3 The function F is locally Lipschitz continuous in H

Proof. For Y ∈ H , define the energy

E(Y ) =
1

2

{∣∣∣∣∂xu+ 12(∂xw)2
∣∣∣∣2 + |v|2 + |ϕ|2 + |∂xxw|2 + ∣∣∣L1/2γ z

∣∣∣2 + |ψ|2} .

For Y1, Y2 ∈ B(0, R), one has

‖F (Y1)− F (Y2)‖

=
1

2

∣∣∂x((∂xw1)2)− ∂x((∂xw2)2)∣∣ (3)

+

∣∣∣∣L−1/2γ

(
∂x[ (∂xu1 +

1

2
(∂xw1)

2)∂xw1]− ∂x[ (∂xu2 +
1

2
(∂xw2)

2)∂xw2]

)∣∣∣∣ .
The first term on the right is estimated as follows:∣∣∂x((∂xw1)2)− ∂x((∂xw2)

2)
∣∣

= |∂x ((∂xw1 − ∂xw2)(∂xw1 + ∂xw2))|

≤ |∂xx(w1 − w2)|
(
‖∂xw1‖L∞(Ω) + ‖∂xw2‖L∞(Ω)

)
+‖∂xw1 − ∂xw2‖L∞(Ω) (|∂xxw1|+ |∂xxw2|) .

As the space has dimension one, we have the embedding

H1(Ω) ⊂ L∞(Ω) .

Therefore, there exist positive constants denoted by C such that(
‖∂xw1‖L∞(Ω) + ‖∂xw2‖L∞(Ω)

)
≤ C (‖Y1‖+ ‖Y2‖) ,

‖∂xw1 − ∂xw2 ‖L∞(Ω) ≤ C‖Y1 − Y2‖ .

Since (‖Y1‖+ ‖Y2‖) ≤ 2R, the first term on the right-hand side of (3) is bounded
by

K(R)‖Y1 − Y2‖ .

Let’s estimate the second term in the right-hand side of (3).∣∣∣∣L−1/2γ

(
∂x[ (∂xu1 +

1

2
(∂xw1)

2)∂xw1]− ∂x[(∂xu2 +
1

2
(∂xw2)

2)∂xw2]

)∣∣∣∣
≤

∣∣∣∣(∂xu1 + 12(∂xw1)2)− (∂xu2 + 12(∂xw2)2)
∣∣∣∣ ‖∂xw1‖L∞(Ω)

+

∣∣∣∣(∂xu2 + 12(∂xw2)2)
∣∣∣∣ ‖∂xw1 − ∂xw2‖L∞(Ω) .
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So that∣∣∣L−1/2γ

(
∂x[(∂xu1 +

1
2 (∂xw1)

2)∂xw1]− ∂x[(∂xu2 +
1
2 (∂xw2)

2)∂xw2]
)∣∣∣

≤ E(Y1 − Y2)
(
‖∂xw1‖L∞(Ω) +

∣∣(∂xu2 + 12 (∂xw2)2)∣∣) ,
where once again we have used the embedding of H1(Ω) into L∞(Ω).
Furthermore, we have

‖Y ‖2

=

∣∣∣∣∂xu+ 12(∂xw)2 − 12(∂xw)2
∣∣∣∣2 + |v|2 + |ϕ|2 + |∂xxw|2 + ∣∣∣L1/2γ z

∣∣∣2 + |ψ|2 (4)

≤ 2

∣∣∣∣∂xu+ 12(∂xw)2
∣∣∣∣2 + |v|2 + |ϕ|2 + |∂xxw|2 + ∣∣∣L1/2γ z

∣∣∣2 + |ψ|2 + 2 ∣∣∣∣12(∂xw)2
∣∣∣∣2

≤ 2
√
E(Y (t))E(Y (t)) ,

and
E(Y (t)) ≤ 2‖Y (t)‖2‖Y (t)‖ . (5)

Since for all Y ∈ B(0, R), there exist constants C1(R), C2(R) such that

C1‖Y ‖
2 ≤ E(Y ) ≤ C2‖Y ‖

2 .

From the previous estimates, we deduce

‖F (Y1)− F (Y2)‖ ≤ C3‖Y1 − Y2‖ ,

where C3 is a constant depending on R. This proves the existence of a local
solution to (2).

Existence of a global solution

Existence of a global solution follows from the decay of the energy E(Y ). First,
we notice that for initial data in the domain of C−1A, the local solution of (2)
remains in the same domain. To see this, we have to verify only that

C−1F (D(C−1A) ∩B(O,R)) ⊂ D(C−1A) ,

which is obtained from calculations similar to the ones above, and by the em-
bedding of H1(Ω) into L∞(Ω).
For Y0 ∈ D(C−1A), the corresponding solution of (2) satisfies

d

dt
E(Y ) = − |∂xϕ|

2 − |∂xψ|
2
. (6)

So that
E(Y (t)) ≤ E(Y (0)) ,

and using (5) and (6), one gets

‖Y (t)‖2 ≤ 2E(Y (0))3/2 .

Which proves boundedness of Y in the H-norm, and therefore, global existence
is proven. (see Theorem 4.3.4 page 57 in [4])
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4 Exponential decay

Theorem 4 For all R > 0 and all Y0 ∈ B(0, R) there exist positive constants
M(R) and ω(R) such that solutions to (2) satisfy

E(Y (t)) ≤M(R)e−ω(R) tE(Y0) .

Proof. Our argument is based on the choice of a suitable Lyapunov function,

σε(t) = E(Y (t)) + ε

(∫
Ω

ψ(−∂xx)
−1Lγ zdx+

1

2

(∫
Ω

v u dx+
1

2

∫
Ω

Lγz w dx

))
−ε

(
α

∫
Ω

Lγz (h(x)∂xw) dx−
1

2

∫
Ω

ϕq dx

)
,

where

(−∂xx)
−1 : L2(Ω)→ H2(Ω)∩H10 (Ω) , h(x) =

2

L
x− 1 , q(x) =

∫ x
0

v(y, t) dy ,

and ε and α are positive constants which will be chosen later.
This Lyapunov function consists of two parts: One concerns the thermoe-

lastic equations and the other the thermoplates. For the thermoelasticity, J.S.
Gibson, G.Rosen and Tao [6] have constructed the same multiplier, but it does
not work for the thermoplates equations. For this system, we use the multiplier
introduced by F.Ammar Khodja and A.Benabdallah [1] and prove that it works
for the nonlinear term.
Our purpose is to show that

d

dt
σε(t) ≤ −cσε(t) , c > 0 ,

from which we will deduce that

σε(t) ≤ σε(0)e
−ct . (7)

Then, noticing that there exist two positive constants a1, a2 such that

a1E(Y (t)) ≤ σε(t) ≤ a2E(Y (t))

we conclude the theorem. Inequality (7) is obtained in the following 5 steps.

1.) Estimate for ddt
∫
Ω ψ(−∂xx)

−1Lγz dx:

d

dt

∫
Ω

ψ(−∂xx)
−1Lγzdx =

∫
Ω

ψt(−∂xx)
−1Lγzdx+

∫
Ω

ψ(−∂xx)
−1Lγzt dx .

But

ψt = ∂xxψ − ∂xxz .
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So ∫
Ω

ψt(−∂xx)
−1Lγ zdx =

∫
Ω

ψLγz dx−

∫
Ω

zLγz dx

≤ −|L1/2γ z|2 + |L1/2γ ψ||L1/2γ z|

≤ −(1− δ1)|L
1/2
γ z|2 +

1

4δ1
|L1/2γ ψ|2

≤ −(1− δ1)|L
1/2
γ z|2 +

c1

δ1
|∂xψ|

2 ,

where δ1 is an arbitrary positive constant which will be chosen later.
On the other hand∫

Ω

ψ(−∂xx)
−1Lγzt dx =

∫
Ω

(−∂xx)
−1ψ Lγzt dx ,

but

Lγzt = −∂xxxxw + ∂x[(∂xu+
1

2
(∂xw)

2)∂xw]− ∂xxψ (8)

and

−

∫
Ω

(−∂xx)
−1ψ ∂xxxxwdx =

∫
Ω

ψ ∂xxw dx− ∂x(−∂xx)
−1ψ(L)(∂xxw)(L)

+∂x(−∂xx)
−1ψ(0)(∂xxw)(0) .

So

−

∫
Ω

(−∂xx)
−1ψ ∂xxxxw dx ≤ |ψ||∂xxw| + |∂x(−∂xx)

−1ψ(L)||∂xxw(L)|

+|∂x(−∂xx)
−1ψ(0)| |∂xxw(0)| .

But ∣∣∣∣∫
Ω

∂x(−∂xx)
−1ψ[(∂xu+

1

2
(∂xw)

2)∂xw] dx

∣∣∣∣
≤ ‖∂xw‖L∞(Ω)|∂xu+

1

2
(∂xw)

2||∂x(−∂xx)
−1ψ|

≤ δ2R
2|∂xu+

1

2
(∂xw)

2|2 +
1

4δ2
|∂x(−∂xx)

−1ψ|2 .

So, it follows

d

dt

∫
Ω

ψ(−∂xx)
−1Lγz dx ≤ −(1− δ1)|L

1/2
γ z|2 + (

c1

δ1
+
c2

δ2
)|∂xψ|

2

+δ2R
2|∂xu+

1

2
(∂xw)

2|2 + |ψ||∂xxw|

+|ψ||∂xxw|+ |∂x(−∂xx)
−1ψ(L)||∂xxw(L)|

+|∂x(−∂xx)
−1ψ(0)||∂xxw(0)| + |ψ|

2 .
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2.) Estimate for d
dt

∫
Ω
vu dx:

d

dt

∫
Ω

v u dx = |v|2 +

∫
Ω

vtu dx

and ∫
Ω

vtu dx =

∫
Ω

∂x(∂xu+
1

2
(∂xw)

2)u dx−

∫
Ω

∂xϕu , dx

≤ −

∫
Ω

(∂xu+
1

2
(∂xw)

2)∂xu dx+ |∂xϕ| |u| .

Here we have used the boundary condition on u, ∂xu(L) = ∂xu(0) = 0. So

d

dt

∫
Ω

vu dx ≤ |v|2 −

∫
Ω

(∂xu+
1

2
(∂xw)

2)∂xu dx+ |∂xϕ| |u| .

3.) Estimate for d
dt

∫
Ω
Lγw dx: One has

d

dt

∫
Ω

Lγz w dx =

∫
Ω

Lγz z dx+

∫
Ω

Lγztw =
∣∣∣L1/2γ z

∣∣∣2 + ∫
Ω

Lγztw dx .

Using (8) we obtain∫
Ω

Lγztwdx = − |∂xxw|
2 −

∫
Ω

(∂xu+
1

2
(∂xw)

2)(∂xw)
2 dx+

∫
Ω

∂xψ∂xw dx .

So

d

dt

∫
Ω

Lγz w dx− = − |∂xxw|
2 −

∫
Ω

(∂xu+
1

2
(∂xw)

2)(∂xw)
2 dx

+

∫
Ω

∂xψ∂xw dx+
∣∣∣L1/2γ z

∣∣∣2 .
4.) Estimate for d

dt

∫
Ω
Lγzh(x)∂xw dx:

−
d

dt

∫
Ω

Lγz (h(x)∂xw) dx = −

∫
Ω

Lγzth(x)∂xw dx−

∫
Ω

Lγzh(x)∂xz dx .

An integration by parts of the second term of the right member of the previous
equality gives ∫

Ω

Lγz (h(x)∂xz) dx ≤ c
∣∣∣L1/2γ z

∣∣∣2 .
Furthermore, (8) implies∫

Ω

Lγzth(x)∂xw dx ≤ c

∣∣∣∣(∂xu+ 12(∂xw)2)
∣∣∣∣ |∂xxw | ‖∂xw ‖ L∞(Ω)

+(δ3 −
3

L
) |∂xxw |

2 + c(δ3) |∂xψ|
2

+
1

2

(
|∂xxw (0)|

2 + |∂xxw (L)|
2
)
.
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5.) Estimate for d
dt

∫
Ω
ϕq dx:

d

dt

∫
Ω

ϕq dx = |v|2 −

∫
Ω

∂xϕv dx+

∫
Ω

ϕqt dx

≤ |v|2 + |∂xϕ| |v|+

∫
Ω

ϕqt dx .

To simplify notation, let

k(x, t) =

∫ x
0

ϕ(y, t) dy .

So that ∫
Ω

ϕqt dx = −

∫
Ω

k∂xqt dx = −

∫
Ω

kvt dx .

But ∫
Ω

kvtdx =

∫
Ω

∂x(∂xu+
1

2
(∂xw)

2)k dx+

∫
Ω

∂xϕk dx

= −

∫
Ω

(∂xu+
1

2
(∂xw)

2)∂xk dx−

∫
Ω

ϕ∂xk dx .

So

−
d

dt

∫
Ω

ϕq dx ≤ −(1− 2δ4) |v|
2 + δ5

∣∣∣∣(∂xu+ 12(∂xw)2)
∣∣∣∣2

+(
1

4δ4
+
1

4δ5
+ c0) |∂xϕ|

2
.

Conclusion

Gathering all the above calculations and using Cauchy-Schwarz inequality, we
obtain

d

dt
σε(t) ≤ − [1− ε(c(δ1) + c(δ2) + c1 + c(δ3))] |∂xψ|

2

−[1− ε(c( δ4) + c(δ5) + c2] |∂xϕ|
2

−ε[(
3

4
− δ1)

∣∣∣L 1
2
γ z
∣∣∣2 + (1

2
− δ4) |v|

2
]

−ε[(1− δ2R
2 −

4

L2
α)

∣∣∣∣∂xu+ 12(∂xw)2
∣∣∣∣2]

−ε[(
1

4
− ((
3

L
+R2)α− δ3) |∂xxw|

2
]

+ε
α

2
[ (|∂xxw(0)|

2
+ |∂xxw(L)|

2
)]

ε

2α
[
∣∣∂x(∂xx)−1ψ(0)∣∣2 + ∣∣∂x(∂xx)−1ψ(L)∣∣2]

+εδ6 |u|
2 +

ε

4δ6
|∂xϕ|

2

−
εα

2
(|∂xxw(0)|

2
+ |∂xxw(L)|

2
) .
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It remains to choose, in the above steps, the constants δi, α, ε sufficiently small
to make negative the constants before the energy. This is always possible, and
then we obtain

d

dt
σε(t) ≤ −cE(Y (t)).

This gives (7) and the theorem is proved. Notice that the previous constant c
depends explicitly on R.

Acknowledgment The authors are indebted to the referee for all the com-
ments, remarks, and bibliographical suggestions.
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