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STABILITY ESTIMATE FOR STRONG SOLUTIONS OF THE

NAVIER-STOKES SYSTEM AND ITS APPLICATIONS

Tadashi Kawanago

Abstract. We obtain a ‘stability estimate’ for strong solutions of the Navier–Stokes

system, which is an Lα-version, 1 < α < ∞, of the estimate that Serrin [Se] used
in obtaining uniqueness of weak solutions to the Navier-Stokes system. By applying

this estimate, we obtain new results in stability and uniqueness of solutions, and

non-blowup conditions for strong solutions.

1. Introduction

We consider the Navier-Stokes system in RN (N ≥ 2),

ut −∆u+ (u · ∇)u+∇π = 0 in R
N × R+,

∇ · u = 0 in RN × R+,

u(x, 0) = u0(x) in R
N ,

(NS)

where u(x, t) = (u1, · · · , uN ) is the velocity field and π(x, t) is the scalar pressure.
Let P be the Helmholtz projection, and let ‖·‖p denote the Lp(RN ) norm. Kato [K]
showed that for any u0 ∈ PLN the problem (NS) has a unique local mild solution

u(t ; u0) ∈ C([0, T ) ; PL
N ) ∩ Lr((0, T ) ; PLq) ,

where q, r > N and N/q + 2/r = 1. He also proved in [K, the end note] that if
‖u0‖N is sufficiently small then

u(t;u0) ∈ C0([0,∞) ; PL
N) := {u ∈ C([0,∞) ; PLN ) ; lim

t→∞
‖u(t)‖N = 0} ,

(see Theorem 2.1 below). See Section 2 for the definition of mild solution. This
unique (local) mild solution also has the smoothing effect and is regular (see Remark
2.3). Therefore, we call it strong solution of (NS) for the remaining of this paper.
Our main result is Theorem 3.1 which establishes the ‘stability estimate’ (which

we call) for strong solutions just mentioned. This estimate leads us to corollaries
on uniqueness and stability, and to a non-blowup condition for strong solutions.
First, we state a new uniqueness result.

1991 Mathematics Subject Classifications: 35Q30, 76D05.

Key words and phrases: Navier-Stokes system, strong solutions, stability, uniqueness,

non-blowup condition.
c©1998 Southwest Texas State University and University of North Texas.
Submitted February 17, 1998. Published June 3, 1998.

1



2 Tadashi Kawanago EJDE–1998/15

Corollary 1.1. (Uniqueness). Mild solutions of (NS) are unique in the space
C([0, T ) ; PLN ) ∩ Lrloc((0, T ) ; PL

q) with a pair of numbers (q, r) that satisfies

N < q <∞ and
N

q
+
2

r
= 1. (1.1)

See Theorem 2.1 below for previous uniqueness results. Our improvement con-
sists of imposing fewer restriction on the behavior of solution near t = 0. This
uniqueness result and its proof were suggested in [B] and [K2, Introduction]. Our
proof in Section 3 is, however, different from the one suggested in [B] and [K2].
Next, we give a stability result.

Corollary 1.2. (Global Stability). Let u(t;u0) ∈ C0([0,∞) ; PLN ) be a global
strong solution of (NS). We have the following.
(i) There exist constants δ0 = δ0(N,u0) ∈ R+ and C0 = C0(N) ∈ R+ such that if

v0 ∈ PL
N and ‖v0 − u0‖N ≤ δ0 ,

then we have u(t ; v0) ∈ C0([0,∞) ; PLN ) and

‖u(t ; v0)− u(t;u0)‖N ≤ ‖v0 − u0‖N exp (C0

∫ t
0

‖u(s ;u0)‖
N+2
N+2 ds) (1.2)

for all t ∈ R+.
(ii) In addition, we assume that u0 ∈ PLN ∩PLα for a constant α ∈ (1,∞)− {N}.
Then there exist constants δ1 = δ1(N,α, u0) ∈ (0, δ0], q = q(N,α) ∈ (N,∞) and
C1 = C1(N,α) ∈ R+ such that if

v0 ∈ PL
N ∩ PLα and ‖v0 − u0‖N ≤ δ1

then for α ∈ [2,∞) we have

‖u(t ; v0)− u(t;u0)‖α ≤ ‖v0 − u0‖α exp (C1

∫ t
0

‖u(s ;u0)‖
r
q ds) (1.3)

for all t ∈ R+ and for α ∈ (1, 2) we have (1.3) with the norm‖ · ‖α replaced by
| · |α for all t ∈ R+. Here, r is the constant that satisfies (1.1).

See Notation (just after this section) for the difference between ‖ · ‖α and | · |α.
Note that u(t;u0) ∈ C0([0,∞) ; PLN ) implies u(t;u0) ∈ Lr(R+ ; PLq) for any
(q, r) satisfying (1.1) (see Proposition 2.2). Global strong solutions in the class
C0([0,∞) ; PLN ) are important since all global strong solutions belong to this
class provided that 2 ≤ N ≤ 4 and u0 ∈ PL2∩PLN (see Propositions 4.1 and 4.2).
Corollary 1.2 gives the first global LN -stability result. Related global L2 ∩ Lq-
stability results with q > N were given in [VS, Theorem A], [Wi, Theorem 2].
Global H1-stability results for N = 3 can be found in [PRST]. We remark that
our estimates (1.2) and (1.3) are simpler than those in the previous works, and we
clarify that the Lα-estimate holds if the LN -norm of v0 − u0 is small. In Section
4 we give another version of Corollary 1.2 for non-global solutions (see Corollary
4.1).
We also have the following result. Let [0, tmax(u0)) be the maximal interval in

which the strong solution u(t;u0) exists.
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Corollary 1.3 (Non-blowup condition). Let the strong solution u(t;u0) exist
on [0, T ) with T < ∞. Then, we have tmax(u0) > T if and only if u(t;u0) ∈
Lr((0, T ) ; PLq). Here, (q, r) is a pair of numbers that satisfies (1.1).

This result has a ‘global’-version (see Proposition 2.2). For example, we can
apply Corollary 1.3 to obtain that u(t;u0) ∈ C0([0,∞) ; PL2) for any u0 ∈ PL2

when N = 2 (see Proposition 4.1).
The contents of this paper is presented as follows. In Section 2, preliminary

results; In Section 3, statement and proof of main result; In Section 4, applications
of our stability estimate and proofs of Corollaries 1.1-1.3. Notice that part of the
contents of this paper was announced in [Ka3] and [Ka4].

Notation.
1. R+ := (0,∞).
2. Lq := Lq(RN ; R) or Lq(RN ; RN ).
3. f ∈ Lrloc((0, T ) ; L

q) means f ∈ Lr((ε, T ) ; Lq) for any ε ∈ (0, T ).
4. We often write C = C(α, β, γ, · · · ) to indicate that C depends only on α, β, γ, · · · .
5. For a Banach space V with the norm ‖ · ‖ we set

C0([0,∞) ; V ) := {u ∈ C([0,∞) ; V ) ; lim
t→∞

‖u(t)‖ = 0}.

6. P is the Helmholtz projection, i.e. the continuous projection from Lp onto
{u = (u1, · · · , uN ) ∈ Lp ; ∇ · u = 0}.

7. We denote by u(t;u0) the strong solution, i.e. the unique mild solution of (NS)
whose existence is ensured by Theorem 2.1. See Definitions 2.2.

8. For u = (u1, · · · , uN ) ∈ Lq(RN ; RN) we write

|u| :=
√
|u1|2 + · · ·+ |uN |2, |∇u| := (

N∑
i,j=1

|∂ui/∂xj |
2)1/2

|u|q := (

∫
|u|qdx)1/q and ‖u(t)‖q := (

N∑
j=1

∫
|uj |

qdx)1/q .

Note that | · |q and ‖ · ‖q are equivalent Lq-norms.
9. We often write |u|q−1u = uq (0 < q <∞) for vector (or scalar) u.
10. ∂j := ∂/∂xj .

2. Preliminaries

Definition 2.1. Amild solution u of (NS) on [0, T ) is a function u ∈ C([0, T ) ; PLN )
satisfying the integral equation

u(t) = et∆u0 −

∫ t
0

e(t−s)∆P (u · ∇)u(s)ds (2.1)

= et∆u0 −

∫ t
0

P∇ · e(t−s)∆(u · u(s))ds

for t ∈ (0, T ). Here, we assume that there exists a constant α ∈ (1,∞) such that

P∇ · e(t−·)∆(u · u(·)) ∈ L1((0, t) ; PLα) for t ∈ (0, T ). (2.2)
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Remark 2.1.
(i) The second equality in (2.1) holds since (u · ∇)uj = ∇ · (uju).
(ii) The value of integral in (2.1) is independent of the choice of α, and is unique.
We understand that for each t ∈ [0, T ) the equalities (2.1) hold for a.e. x ∈ RN .
The assumption u ∈ C([0, T ) ; PLN ) guarantees (2.2) for e.g. α = 2N/3 in view
of the next Lp-Lq estimate

‖P∇ · e(t−s)∆(u · u(s))‖α ≤C(t− s)
−3/2+N/2α‖u · u(s)‖N/2

≤C(t− s)−3/2+N/2α‖u(s)‖2N .
(2.3)

(iii) The next Theorem 2.1 ensures that for any u0 ∈ PLN Problem (NS) has a local
mild solution.

The following result is a small extension of the results in [K] and [G].

Theorem 2.1.
(i) (Existence) Let 1 < α <∞. For any u0 ∈ PLN ∩PLα there exists T ∈ R+ such
that (NS) has a unique local mild solution

u(t) ∈ C([0, T ] ; PLN ∩ PLα) ∩ Lr((0, T ) ; PLq) (2.4)

for any pair of numbers (q, r) satisfying (1.1), and

t(1−N/q)/2u ∈ C([0, T ] ; PLq) with the value zero at t = 0 (2.5)

for any q ∈ (N,∞].
(ii) (Uniqueness)
(ii-a) Mild solutions of (NS) are unique in C([0, T ] ; PLN ) ∩ Lr((0, T ) ; PLq)
with a pair of numbers (q, r) satisfying (1.1).
(ii-b) Mild solutions u(t) ∈ C([0, T ] ; PLN ) of (NS) satisfying (2.5) for a number
q ∈ (N,∞) are unique.

(iii) (Existence of global solutions) There exists a constant ε∗ = ε∗(N) ∈ R+ such
that if ‖u0‖N ≤ ε∗ then (NS) has a unique global mild solution

u(t) ∈ C0([0,∞) ; PL
N) ∩ Lr(R+ ; PLq).

Here, (q, r) is any pair of numbers which satisfies (1.1).

Remark 2.2.
(i) More precisely, Giga [G] obtained the uniqueness of solutions of (NS) in the class
Lr((0, T ) ; PLq) which satisfy the integral equation (2.1).

(ii) Kato [K] and Giga [G] obtained Theorem 2.1 with (1.1) replaced by

N < q < N2/(N − 2) and N/q + 2/r = 1 , (1.1’)

which is more restrictive than (1.1). We obtain Theorem 2.1 from these previous
results and Lemma 2.1 below.

Definition 2.2. For u0 ∈ PLN we denote by u(t;u0) the unique mild solution of
(NS) satisfying (2.4). We call u(t;u0) the strong solution of (NS). We set

tmax(u0) := sup{T ∈ R
+ ; u(t;u0) exists on the time interval [0, T ]},

i.e., [0, tmax(u0)) be the maximal time-interval where the strong solution u(t;u0)
exists.
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Remark 2.3.
(i) The strong solution u(t;u0) is regular for t ∈ (0, tmax(u0)) (see e.g. [GM]).
(ii) The strong solution has the semigroup property, i.e. u(t ; u(s ; u0) ) =
u(s+ t ; u0) for s, t > 0 and s+ t < tmax(u0).

Lemma 2.1. Let u(t) be a mild solution on [0, T ). Assume that u ∈ Lr((0, T ) ; PLq)
with a pair of numbers (q, r)satisfying (1.1). Then we have u ∈ Lr((0, T ) ; PLq)
for any pair of numbers (q, r) satisfying (1.1).

Proof. By (2.1), u(t) = et∆u0 − I(t), where

I(t) :=

∫ t
0

P∇ · e(t−s)∆(u · u(s)) ds.

In [G, Lemma (p.196)] we find that

et∆u0 ∈ L
r((0, T ) ; PLq)

for any pair of numbers (q, r) which satisfy (1.1). We will estimate I(t). Let
q′ ≥ q/2. We apply the Lp-Lq estimate and have

‖I(t)‖q′ ≤ C

∫ t
0

(t− s)−1/2−(2/q−1/q
′)N/2‖u(s)‖2q ds .

Here, C = C(N, q, q′) ∈ R+ is a constant. By the generalized Young inequality (see
[RS, p.31]) we have (P )⇒ (Q) and (R)⇒ (S), where (P ), (Q), (R), (S) are defined
as follows:
(P) u ∈ Lr((0, T ) ; PLq) with a (q, r) satisfying (1.1) and 2N ≤ q
(Q) u ∈ Lr

′
((0, T ) ; PLq

′
) for any (q′, r′) satisfying q/2 ≤ q′ and

N < q′ <∞ and
N

q′
+
2

r′
= 1 (2.6)

(R) u ∈ Lr((0, T ) ; PLq) with a (q, r) satisfying (1.1) and N < q ≤ 2N
(S) u ∈ Lr

′

((0, T ) ; PLq
′

) for any (q′, r′) satisfying (2.6) and q′ < Nq/(2N − q).
It suffices to show that u ∈ L4((0, T ) ; PL2N ) is necessary and sufficient con-

dition for u ∈ Lr((0, T ) ; PLq) with a pair of numbers (q, r) satisfying (1.1). The
sufficiency is obvious by (P ) ⇒ (Q) with setting q = 2N . We obtain the necessity
in the case q > 2N (resp. N < q < 2N) by applying (P )⇒ (Q) (resp. (R)⇒ (S) )
finitely many times. �
The next result shows how tmax(u0) depend on u0.

Proposition 2.1. Let u0 ∈ PLN and q ∈ (N,∞). Then there exists a number
Sq = Sq(N, q) ∈ R+ such that for any τ ∈ R+ if

t(1−N/q)/2‖et∆u0‖q ≤ Sq for t ∈ [0, τ ] (2.7)

then the strong solution u(t;u0) exists on the time interval [0, τ ].

Sketch of Proof. We can verify this result by observing carefully the method for
the construction of strong solutions in the proof of [K, Theorem 1] and [G, Section
2]. For the convenience of the reader, we will sketch the proof.
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By induction we define the sequence of functions {Un(t)}∞n=0:

U0(t) := e
t∆u0, Un+1(t) := U0(t)−

∫ t
0

P∇ · e(t−s)∆(Un · Un(s))ds.

Set ν := (1 − N/q)/2 and Kn := supt∈[0,τ ] t
ν‖Un(t)‖q . We denote by Cj ∈ R+

(j = 1, 2, · · · ) constants depending only on N and q. It follows from the usual
Lp-Lq estimates (see e.g. [K, (2.3) and (2.3)’]) that

‖Un+1(t)‖q ≤ ‖U0(t)‖q + C1

∫ t
0

(t− s)−(1−ν)‖Un(s)‖
2
qds (2.8)

≤ ‖U0(t)‖q + C1K
2
n

∫ t
0

(t− s)−(1−ν)s−2νds

for t ≥ 0. It follows that
Kn+1 ≤ K0 + C2K

2
n.

If the algebraic equation x = K0+C2x
2 has real solutions, i.e. 1−4C2K0 ≥ 0 then

we see by induction that {Kn}∞n=1 is bounded and

Kn ≤ K∗ :=
1−
√
1− 4C2K0
2C2

for n ≥ 0 .

Here, K∗ is the smaller solution of the algebraic equation. By an estimation similar
to (2.8),

‖Un+1(t)− Un(t)‖q

≤C1

∫ t
0

(t− s)−(1−ν)(‖Un+1(s)‖q + ‖Un(s)‖q)‖Un+1(s)− Un(s)‖q ds

≤ 2C1K∗(

∫ t
0

(t− s)−(1−ν)s−2νds) sup
s∈[0,τ ]

‖Un+1(s)− Un(s)‖q

for t ∈ [0, τ ], which leads to

sup
t∈[0,τ ]

tν‖Un+1(t)− Un(t)‖q ≤ 2C2K∗ sup
t∈[0,τ ]

tν‖Un+1(t)− Un(t)‖q .

Now, set Sq := K0 < 1/4C2. Then 2C2K∗ < 1. Therefore, {tνUn(t)}∞n=1 is a
Cauchy sequence in C([0, τ ] ; PLq) and u(t) = limn→∞ Un(t) exists on [0, τ ]. We
verify that u(t) is a strong solution on [0, τ ], i.e. u(t) = u(t;u0) (see [G]). �

Remark 2.4. Under the same assumption of Proposition 2.1 we have

lim
t→+0

t(1−N/q)/2‖et∆u0‖q = 0. (2.9)

This well-known result follows from the density of Lq ∩LN in LN and the estimate
(2.11) below.
From Proposition 2.1, we can immediately obtain
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Corollary 2.1. Let u(t;u0) be a strong solution on [0, T ) with T < ∞. Then
statements (a) - (f) are equivalent.
(a) lim t→+0 sups∈(T−ε, T ) t

(1−N/q)/2‖et∆u(s ;u0)‖q = 0 for some q ∈ (N,∞) and
ε ∈ (0, T ).

(b) lim t→+0 sups∈(T−ε, T ) t
(1−N/q)/2‖et∆u(s ;u0)‖q < Sq for some q ∈ (N,∞) and

ε ∈ (0, T ), where Sq is the same constant in the statement of Proposition 2.1.
(c) tmax(u0) > T , i.e. the strong solution u(t;u0) exists on [0, T + δ) with a small
constant δ ∈ R+.

(d) lim inf t→T−0 ‖u(t;u0)‖q <∞ for some q ∈ (N,∞).
(e) lim supt→T−0 ‖u(t;u0)‖∞ <∞.
(f) limt→T−0 u(t;u0) exists in L

N .

Proof. First we will prove the equivalence of (a), (b) and (c).
(a)⇒ (b): This is obvious.
(b)⇒ (c): We can choose δ > 0 satisfying

sup
s∈(T−ε, T )

t(1−N/q)/2‖et∆u(s ;u0)‖r ≤ Sq for t ∈ [0, δ).

Thus, it follows from Proposition 2.1 and the semigroup property of the mild solu-
tion (see Remark 2.3 (ii) ) that u(t;u0) exists on [0, T + δ).
(c) ⇒ (a): By (c) and the definition of the strong solution (see Definition 2.2)

we have
sup

s∈(T−ε,T )
‖u(s ;u0)‖q <∞. (2.10)

We obtain (a) from (2.10) and the basic inequality:

‖et∆f‖q ≤ ‖f‖q. (2.11)

Thus, (a), (b) and (c) are equivalent.
(c)⇒ (d) and (e) and (f): This is obvious from Theorem 2.1.
(d)⇒ (c): We fix τ ∈ R+ so small that

lim inf
t→T−0

‖u(t;u0)‖q < τ
−(1−N/q)/2Sq.

Then, we choose a constant s such that

T −
τ

2
< s < T and ‖u(s ;u0)‖q < τ

−(1−N/q)/2Sq.

It follows that

t(1−N/q)/2‖et∆u(s ;u0)‖q ≤ t
(1−N/q)/2‖u(s ;u0)‖q < Sq for t ∈ [0, τ ].

Thus, by Proposition 2.1 u(t;u0) exists on [ 0, T + τ/2 ].
(e)⇒ (d): Let ε > 0 be a small number which will be determined later. We set

u(t) := u(t;u0). We have

u(t+ T − ε) = et∆u(T − ε)−

∫ t
0

P∇ · e(t−s)∆(u · u(s+ T − ε))ds (2.12)
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for t ∈ (0, ε). We fix a number q ∈ (N,∞). We have

‖u(t+T − ε)‖q ≤ ‖u(T − ε)‖q +C0

∫ t
0

(t− s)−1/2‖u(s+T − ε)‖∞‖u(s+T − ε)‖qds,

(2.13)
where C0 = C0(N, q) ∈ R+. We set

Cε = 2C0ε
1/2 sup {‖u(τ)‖∞ ; τ ∈ [T − ε, T )},

M(t) = sup {‖u(τ)‖q ; τ ∈ [T − ε, T − ε+ t)}.

It follows from (2.13) that

M(t) ≤ ‖u(T − ε)‖q +CεM(t) for t ∈ [0, ε). (2.14)

We fix ε > 0 so small that Cε < 1. Then (2.14) implies M(ε) < ∞. Thus, we
obtain (d).
(f)⇒ (b): We write u(t) := u(t;u0) and

u(T ) := lim
t→T−0

u(t) ∈ PLN .

t(1−N/q)/2‖et∆u(s ;u0)‖q ≤ t
(1−N/q)/2‖et∆(u(s)− u(T ))‖q + t

(1−N/q)/2‖et∆u(T )‖q .

It follows from the Lp-Lq estimate and (2.9) that

t(1−N/q)/2‖et∆(u(s)− u(T ))‖q ≤ C1‖u(s)− u(T )‖N ,

lim
t→+0

t(1−N/q)/2‖et∆u(T )‖q = 0 .

Thus, we have (b). The proof is complete. �
Remark 2.5. It seems to be an open problem whether (c) is equivalent to (d) with
q = n.
We will characterize the strong solutions belonging to C0([0,∞) ; PLN). The

next result is a ‘global’-version of Corollary 1.3.

Proposition 2.2. Let u(t) = u(t;u0) be a global strong solution of (NS). Then,
we have u ∈ C0([0,∞) ; PLN ) if and only if u ∈ Lr(R+ ; PLq) for a pair of (or
equivalently for any pair of) numbers (q, r) satisfying (1.1).

Remark 2.6. When N = 3, Ponce et al [PRST] obtained a similar result under
an assumption: u0 ∈ PL2 ∩H1.
Proof of Proposition 2.2. Let u ∈ C0([0,∞) ; PLN ). Fix a constant T ∈ R+

such that ‖u(T )‖N ≤ ε∗, where ε∗ is the constant appeared in the statement of The-
orem 2.1. Set u(T ) as the initial value and apply Theorem 2.1 (iii). Then we have
u ∈ Lr([T,∞) ; PLq). Combining this with u ∈ Lr([0, T ) ; PLq), we conclude that
u ∈ Lr(R+ ; PLq).
Next, we will prove the inverse. Let u ∈ Lr(R+ ; PLq). In view of Lemma 2.1,

we can assume without loss of generality that N < q ≤ 2N . Although the essence
of the proof below is given in the proof of [K, Theorem 2’], we will describe it for
the convenience of the reader. Applying the Lp-Lq estimate to (2.1), we have

‖u(t)‖N ≤ ‖e
t∆u0‖N +C1

∫ t
0

(t− s)−(2/q−1/N)N/2−1/2‖u(s)2‖q/2ds := I1(t)+ I2(t).
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The function I1(t) is a decreasing function. Moreover, we can easily verify from the
density of L1 ∩ LN in LN that

I1(t)→ 0 as t→∞. (2.15)

Now we estimate I2(t). By the Hölder’s inequality, we obtain

1

T

∫ T
0

I2(t)dt =
C1

(1−N/q)T

∫ T
0

(T − s)1−N/q‖u(s)‖2qds (2.16)

≤
C1

1−N/q
T−N/q

∫ T
0

‖u(s)‖2qds

≤
C1

1−N/q

(∫ T
0

‖u(s)‖rq ds

)2/r
.

It follows from (2.15) and (2.16) that

lim inf
t→∞

‖u(t)‖N ≤
C1

1−N/r

(∫ ∞
0

‖u(s)‖rqds

)2/r
. (2.17)

If we choose u(T ) as the initial value then we obtain from the same argument as
above that

lim inf
t→∞

‖u(t)‖N ≤
C1

1−N/q

(∫ ∞
T

‖u(s)‖rqds

)2/r
. (2.18)

Here, T ∈ R+ is any constant. Therefore, we have

lim inf
t→∞

‖u(t)‖N = 0.

It follows from Theorem 2.1 (iii) that u(t;u0) ∈ C0([0,∞) ; PLN ). �

3. Main result and its proof

Our main result is the following:

Theorem 3.1. (Stability estimate). Let α ∈ (1,∞) be a constant, and let u0,
v0 be in PL

N ∩ PLα. Let q ∈ (N, q∗] be a constant, where q∗ = q∗(N,α) is the
number defined by

q∗ =




Nα

(N − α)(α − 1)
if 1 < α < 2 and α > N − 2,

Nα

2(α − 1)
if 1 < α < 2 and α ≤ N − 2,

∞ if α = 2 or [N ≤ 4 and α ≥ N ],

Nα

α− 2
if 2 < α < N − 2,

Nα

N − 4
if N − 2 ≤ α and α > 4 and N ≥ 5,

2Nα

(α− 2)(N − α)
if N − 2 ≤ α < N and 2 < α ≤ 4.

(3.1)
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Then there exist constants dαq, Aαq ∈ R+ depending only on N , α and q such that
if

0 < T < min( tmax(u0), tmax(v0) ) (3.2)

and

‖u(t ; v0)− u(t;u0)‖N ≤ dαq for t ∈ [0, T ] (3.3)

then we have the estimate

‖u(t ; v0)− u(t;u0)‖α ≤ ‖v0 − u0‖α exp (Aαq

∫ t
0

‖u(s ;u0)‖
r
q ds) for t ∈ [0, T ]

(3.4)
for the case α ∈ [2,∞), and

|u(t ; v0)−u(t;u0)|α ≤ |v0−u0|α exp (Aαq

∫ t
0

‖u(s ;u0)‖
r
q ds) for t ∈ [0, T ] (3.5)

for the case α ∈ (1, 2]. Here, r ∈ R+ is the constant satisfying (1.1).
Moreover, for the special case α = 2 we can take dαq =∞.

Remark 3.1.
(i) Theorem 3.1 applies to the N -α region:

{ (N,α) ; N ∈ N, N ≥ 2 and 1 < α <∞}.

(ii) For the special case α = 2, the estimate (3.4) was obtained by [Se, Theorem 6]
for more general (what we call) weak solutions.

(iii) It seems difficult to state the contents of Theorem 3.1 by using only one norm
‖ · ‖q or | · |q . The main reason is that the estimate (3.9) [resp. (3.31)] below
does not hold in the case 1 < α < 2 [ resp. in the case α > 2].

(iv) It seems that α = 2 is the exceptional case in which we can take dαq = ∞.
Indeed, if dαq =∞ then by setting u(t;u0) ≡ 0 in (3.4) we have

‖u(t; v0)‖α ≤ ‖v0‖α, t ≥ 0 (3.6)

for any v0 ∈ PLN ∩ PLα. This monotonicity is valid for the special case α = 2.
However, it does not seem to hold for any α 6= 2. To confirm it for each case,
we have only to find a initial value v0 which does not satisfy (3.6). Combining
the analytical method and the numerical method, we will show in [Ka5] that for
the two cases (N,α) = (3, 4), (3, 3) there exist v0 which do not satisfy (3.6). We
remark that it is possible to apply the same arguments as in [Ka5] to the other
cases (N,α) with α 6= 2.

We obtain immediately the following.

Corollary 3.1. Let α ∈ (1,∞) and q ∈ (N, q∗) be constants and u0, v0 ∈ PLN ∩
PLα. We set dq := dNq and Aq := ANq. Here, we use the notations in the
statement of Theorem 3.1. Assume (3.2) and

‖v0 − u0‖N exp (AN+2

∫ T
0

‖u(s ;u0)‖
N+2
N+2 ds) < min (dN+2, dαq). (3.7)
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Then we have (3.4) [resp. (3.5)] for the case α ∈ [2,∞) [resp. for the case α ∈
(1, 2)].

Proof of Corollary 3.1. The proof is complete if we derive (3.3). By Theorem
3.1 and (3.7) it suffices to obtain (3.4) for (α, q) = (N,N + 2). To this end we will
prove t∗ = T , where

t∗ := max{τ ∈ [0, T ] ; (3.4) with (α, q) = (N,N + 2) holds for t ∈ [0, τ ]}.

We proceed by contradiction. Suppose t∗ < T . Then, it follows from the conti-
nuity of ‖u(t; v0) − u(t;u0)‖N that there exists a small constant ε > 0 such that
‖u(t; v0)−u(t;u0)‖N < dN+2 for t ∈ [ 0, t∗+ε ]. Therefore, by Theorem 3.1 we have
(3.4) with (α, q) = (N,N + 2) for t ∈ [ 0, t∗ + ε ]. This contradicts the definition of
t∗. Thus we conclude t∗ = T . The proof is complete. �
Proof of Theorem 3.1. Our method of proof is close to the argument in [N] and
[Ka] for the porous media equations. Set w(t) := u(t; v0) − u(t;u0) and u(t) :=
u(t;u0) for simplicity. The solutions u(t;u0) and u(t; v0) are regular for t ∈ (0, T ].
In particular, w,wt ∈ C((0, T ] ; W 2,p) for p ≥ min (N,α) (see e.g. [K] and [GM,
Section 3]). We verify that w = (w1, · · · , wN ) satisfies

wt −∆w + (w · ∇)w + (u · ∇)w + (w · ∇)u+∇π = 0 in R
N × R+,

∇ · w = 0 in R
N × R+.

(3.8)

For short notation, we use ∂j := ∂/∂xj .

Case α > 2. We denote wpj := |wj |
p−1wj (0 < p < ∞). By the integration by

parts, we have

1

α

d

dt
‖w(t)‖αα =

1

α

d

dt

N∑
j=1

∫
RN

|wj(t)|
α =

N∑
j=1

∫
wα−1j (wj)t dx (3.9)

= −
4(α − 1)

α2
J(w)2 − I1 − I2 − I3 − I4,

where we set

J(w) = (

N∑
j=1

‖∇wα/2j ‖
2
2)
1/2, I1 =

N∑
j=1

∫
wα−1j (w · ∇)wj ,

I2 =
N∑
j=1

∫
wα−1j (u · ∇)wj , I3 =

N∑
j=1

∫
wα−1j (w · ∇)uj , I4 =

N∑
j=1

∫
wα−1j ∂jπ .

We will estimate Ij (j = 1, 2, 3, 4).

I1 =
1

α

N∑
j=1

∫
∇(|wj |

α) · w = −
1

α

N∑
j=1

∫
|wj |

α∇ · w = 0.

It follows from the integration by parts and the Hölder’s inequality that

|I2|+ |I3| ≤ C
N∑
j=1

∫
|u||w|α/2|∇wα/2j | (3.10)

≤ C(

∫
|u|2|w|α)1/2J(w) ≤ C|u|q |w|

α/2
αq/(q−2)J(w).
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By the Hölder’s inequality and the Sobolev inequality,

|w|αq/(q−2) ≤ |w|
1−N/q
α |w|N/q

Nα/(N−2), (3.11)

|w|Nα/(N−2) = | |w|
α/2|2/α2N/(N−2) ≤ CJ(w)

2/α for N ≥ 3. (3.12)

Combining (3.11) and (3.12), we have

|w|αq/(q−2) ≤ C‖w‖
1−N/q
α J(w)2N/αq . (3.13)

This estimate is what we call (a version of) the Gagliardo-Nirenberg inequality (see
e.g. [N]). Note that (3.12) holds for N ≥ 3, but not for N = 2. However, (3.13)
does hold for N ≥ 2. In what follows , we often use the Hölder’s inequality and the
Sobolev inequality in the same way as above in order to make clear the essence of
the argument below. Although the case N = 2 is exceptional in such situation, we
will not mention it. But it is easy to rewrite it rigorously by the same argument as
above. It follows from (3.10) and (3.13) that

|I2|+ |I3| ≤ C‖u‖q‖w‖
α(q−N)/2q
α J(w)1+N/q ≤ εJ(w)2 + Cε‖u‖

r
q‖w‖

α
α. (3.14)

Next we will estimate I4, which is the most difficult part. It follows from the
integration by parts and the Hölder’s inequality that

|I4| ≤
2(α− 1)

α

N∑
j=1

∫
|π wα/2−1j ∂jw

α/2
j | (3.15)

≤
2(α− 1)

α
(
N∑
j=1

∫
π2|wj |

α−2)1/2J(w)

≤ C‖π2‖1/2a ‖ |w|α−2 ‖
1/2
b J(w) = C‖π‖2a|w|

α/2−1
b(α−2)J(w).

Here, a and b are positive constants which satisfy

1

a
+
1

b
= 1 and 1 < b <∞. (3.16)

We will later determine a and b. By (3.8) we have

−∆π =
N∑
i,j=1

∂jwi · ∂i(2uj + wj) =
N∑
i,j=1

∂i∂j [wi(2uj + wj) ]. (3.17)

With the aid of the Calderón - Zygmund inequality and the Hölder’s inequality,

‖π‖2a ≤ C
∑
i,j

‖wi(2uj + wj)‖2a ≤ C‖w‖
2
4a + C‖u‖q‖w‖2aq/(q−2a) . (3.18)

Combining (3.15) and (3.18), we have

|I4| ≤ C‖w‖
2
4a‖w‖

α/2−1
b(α−2)J(w) + C‖u‖q‖w‖2aq/(q−2a)‖w‖

α/2−1
b(α−2)J(w). (3.19)
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We choose a and b such that the following two conditions hold.
(P) Both 4a and b(α− 2) are between N and Nα/(N − 2)
(Q) Both 2aq/(q − 2a) and b(α− 2) are between α and Nα/(N − 2)
Assuming that (P) and (Q) hold, from the Hölder’s inequality and (3.12) we obtain

‖w‖4a ≤ ‖w‖
1−θ1
N ‖w‖θ1

Nα/(N−2) ≤ C‖w‖
1−θ1
N J(w)2θ1/α, (3.20)

‖w‖b(α−2) ≤ ‖w‖
1−θ2
N ‖w‖θ2

Nα/(N−2) ≤ C‖w‖
1−θ2
N J(w)2θ2/α, (3.21)

‖w‖2aq/(q−2a) ≤ ‖w‖
1−θ3
α ‖w‖θ3

Nα/(N−2) ≤ C‖w‖
1−θ3
α J(w)2θ3/α, (3.22)

‖w‖b(α−2) ≤ ‖w‖
1−θ4
α ‖w‖θ4

Nα/(N−2) ≤ C‖w‖
1−θ4
α J(w)2θ4/α. (3.23)

Here, θj ∈ [0, 1] (1 ≤ j ≤ 4) are constants, and exactly (θ1, θ2, θ3, θ4) =

(
α (N − 4a)

4a (N − 2− α)
,

α (N + 2b− αb)

αbN − 2bN + 4b− α2b
,
N

2
−
αN

4a
+
αN

2q
,
N (αb− α− 2b)

2b(α− 2)
).

(3.24)
It follows from (3.16), (3.19) and (3.20)-(3.23) that

|I4| ≤ C‖w‖
2(1−θ1)+(α/2−1)(1−θ2)
N J(w)1+ 4θ1/α+(1−2/α)θ2 (3.25)

+ C‖u‖q‖w‖
(1−θ3)+(α/2−1)(1−θ4)
α J(w)1+2θ3/α+(1−2/α)θ4

= C‖w‖NJ(w)
2 + C‖u‖q‖w‖

α(q−N)/2q
α J(w)1+N/q .

Therefore, when q > N we have

|I4| ≤ C‖w‖NJ(w)
2 + εJ(w)2 + Cε‖u‖

r
q‖w‖

α
α. (3.26)

Thus we obtain

1

α

d

dt
‖w(t)‖αα ≤ −(

α− 1

α2
− C0‖w‖N )J(w)

2 +Aαq‖u‖
r
q‖w‖

α
α.

Set dαq := (α− 1)/α2C0. Then, by (3.3) we have

1

α

d

dt
‖w(t)‖αα ≤ Aαq‖u‖

r
q‖w‖

α
α for t ∈ [0, T ].

Therefore, we obtain (3.4) for t ∈ [0, T ].
Finally, we observe how the conditions (P) and (Q) (⇐⇒ 0 ≤ θj ≤ 1 for 1 ≤

j ≤ 4) restrict the range of q. First, we study the case 2 < α < N − 2. We
have α < Nα/(N − 2) < N . In order to satisfy (P) and (Q), we need to choose
b(α− 2) = Nα/(N − 2). Then we have

a =
Nα

2(N + α− 2)
, (θ1, θ2, θ3, θ4) = (

1

2
, 1, 1−

α(q −N)

2q
, 1 ).

The condition 0 ≤ θ3 ≤ 1 is equivalent to N ≤ q ≤ q∗ := Nα/(α − 2). Next, we
study the case N − 2 ≤ α. The condition 0 ≤ θ1 ≤ 1 is equivalent to

(N − 4)b ≤ N and (Nα− 4N + 8)b ≥ Nα . (3.27)
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By (3.24) we have
1

q
=
1

2
−
1

α
+
2θ3
Nα
−
1

2b
. (3.28)

Let N − 2 ≤ α < N and 2 < α ≤ 4. Since α < N ≤ Nα/(N − 2), the conditions
(P) and (Q) implies N ≤ b(α− 2) ≤ Nα/(N − 2). Thus we have

N

α− 2
≤ b ≤

Nα

(α− 2)(N − 2)
. (3.29)

Remark that (3.29) leads to θ2, θ4 ∈ [0, 1] and (3.27). We see that q achieves the
maximum at (θ3, b) = (0,N/(α− 2)) and the minimum at (θ3, b) = (1,

Nα
(α−2)(N−2) ).

Thus we have

N < q ≤ q∗ :=
2Nα

(N − α)(α − 2)
.

Let N − 2 ≤ α and α > 4 and N ≥ 5. It follows from (3.27) and the condition
θ2, θ4 ∈ [0, 1] that

Nα

N(α− 4) + 8
≤ b ≤

N

N − 4
,

max (N,α)

α− 2
≤ b ≤

Nα

(N − 2)(α − 2)
.

Here, we see that

max (N,α)

α− 2
≤

Nα

N(α− 4) + 8
and

Nα

(N − 2)(α − 2)
≤

N

N − 4
.

It follows that
Nα

N(α− 4) + 8
≤ b ≤

Nα

(N − 2)(α − 2)
.

In view of this inequality and (3.28), q achieves the maximum at (θ3, b) =
(0,Nα/(N(α − 4) + 8) ) and the minimum at (θ3, b) = (1,Nα/(α − 2)(N − 2)).
Therefore, we have

N < q ≤ q∗ :=
Nα

N − 4
.

Finally, let N ≤ 4 and α ≥ N . Since N ≤ α, the conditions (P) and (Q) lead to
α ≤ b(α− 2) ≤ Nα/(N − 2). Thus we have

α

α− 2
≤ b ≤

Nα

(N − 2)(α − 2)
,

which implies that θ2, θ4 ∈ [0, 1] and also that θ1 ∈ [0, 1]. By this inequality
and (3.28) we see that q achieves the maximum at (θ3, b) = (0, α/(α − 2)) and the
minimum at (θ3, b) = (1,Nα/(α − 2)(N − 2)). We conclude that N < q ≤ q∗ :=∞.

Case α = 2. The above estimates of I1, I2, I3 holds in this case. Moreover, by the
integration by parts we have

I4 =

N∑
j=1

∫
RN

wj∂jπ = −

∫
π∇ · w = 0.

Therefore, we have
1

2

d

dt
‖w(t)‖22 ≤ A2,q‖u‖

r
q‖w‖

2
2. (3.30)

Here, q ∈ (N,∞] is any number. The estimate (3.30) implies (3.4) with α = 2.
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Case: 1 < α < 2. We write wp := |w|p−1w (1 < p < ∞) for simplicity. By
Lemma 3.2 (at the end of this section) and integration by parts, we have

1

α

d

dt
|w(t)|αα =

1

α

d

dt

∫
RN

|w(t)|α =

∫
w · wt
|w|2−α

(3.31)

= (

∫
wα−1 ·∆w )− I1 − I2 − I3 − I4

≤ −(α− 1)K(w)2 − I1 − I2 − I3 − I4,

where we set

K(w) = (

∫
RN

|∇w|2

|w|2−α
)1/2, I1 =

∫
wα−1 · (w · ∇)w =

∫
wα · ∇|w|,

I2 =

∫
wα−1 · (u · ∇)w, I3 =

∫
wα−1 · (w · ∇)u, I4 =

∫
wα−1 · ∇π .

It follows from (3.12) and Lemma 3.2 that

|w|Nα/(N−2) ≤ CK(w)
2/α for N ≥ 3 . (3.32)

We have

|I1| ≤

∫
|w|α|∇w| ≤ |w|

(α+2)/2
α+2 K(w) ≤ |w|N |w|

α/2
Nα/(N−2)K(w) ≤ C‖w‖NK(w)

2.

(3.33)
We note that (3.33) holds also for N = 2 (see the argument just after (3.13) ). By
the integration by parts,

|I2|+ |I3| ≤ C

∫
|u||w|α−1|∇w| ≤ C(

∫
|u|2|w|α)1/2K(w).

This is the same estimate as (3.10). Therefore, the same argumentation as in the
case α ∈ (2,∞) leads to

|I2|+ |I3| ≤ εK(w)
2 + C‖u‖rq|w|

α
α. (3.34)

Next, we will estimate I4 in the similar way as in the case: α ∈ (2,∞). We
denote by Rk the Riesz operator, i.e.

Rk := F
−1 ξk
|ξ|
F .

Here, F is the Fourier transform operator. It follows from (3.17) that

−∂kπ =
∑
i,j

RkRi∂j [wi(2uj + wj)] =
∑
i,j

RkRi[(∂jwi)(2uj + wj)]. (3.35)

Let a ∈ (1, 2) be a constant which we will determine later. By Lp-boundedness of
the Riesz operator (see [St, Chapter 3]), we have

|∇π|a ≤ C
∑
i,j

‖∂jwi(2uj + wj)‖a.
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Therefore, we obtain

|I4| ≤|∇π|a|w|
α−1
a(α−1)/(a−1)

≤C
∑
i,j

‖∂jwi(2uj + wj)‖a |w|
α−1
a(α−1)/(a−1)

≤C|w|(4−α)/2
a(4−α)/(2−a) |w|

α−1
a(α−1)/(a−1)K(w)

+ C|u|q|w|
(2−α)/2
aq(2−α)/(2q−aq−2a) |w|

α−1
a(α−1)/(a−1)K(w).

(3.36)

We estimate this in a similar way as in (3.25). Choose a such that the following
two conditions hold.
(R) Both a(4− α)/(2 − a) and a(α − 1)/(a − 1) are between N and Nα/(N − 2)
(S) Both aq(2−α)/(2q−aq−2a) and a(α−1)/(a−1) are between α and Nα/(N−2)
Assuming that (R) and (S) hold, it follows from the Hölder’s inequality and

(3.32) that

|w|a(4−α)/(2−a) ≤ |w|
1−θ1
N |w|θ1

Nα/(N−2) ≤ C‖w‖
1−θ1
N K(w)2θ1/α, (3.37)

|w|a(α−1)/(a−1) ≤ |w|
1−θ2
N |w|θ2

Nα/(N−2) ≤ C‖w‖
1−θ2
N K(w)2θ2/α, (3.38)

|w|aq(2−α)/(2q−aq−2a) ≤ |w|
1−θ3
α |w|θ3

Nα/(N−2) ≤ C|w|
1−θ3
α K(w)2θ3/α, (3.39)

|w|a(α−1)/(a−1) ≤ |w|
1−θ4
α |w|θ4

Nα/(N−2) ≤ C|w|
1−θ4
α K(w)2θ4/α, (3.40)

where(θ1, θ2, θ3, θ4) =

(
α(2N − aN + aα− 4a)

a(4− α)(N − α− 2)
,
α(aN + a− aα−N)

a(α− 1)(N − α− 2)
,
N(aα+ aq − αq)

aq(2− α)
,
N(α− a)

2a(α − 1)
).

(3.41)
It follows from (3.36) and (3.37)-(3.41) that

|I4| ≤ C‖w‖NK(w)
2 +C‖u‖q |w|

α(q−N)/2q
α K(w)1+N/q .

Therefore, when q > N we have

|I4| ≤ C‖w‖NK(w)
2 + εK(w)2 + Cε‖u‖

r
q |w|

α
α.

Thus, we obtain

1

α

d

dt
|w(t)|αα ≤ −(

α− 1

2
− C0‖w‖N )K(w)

2 +Aαq‖u‖
r
q |w|

α
α. (3.42)

Set dαq := (α− 1)/2C0. Then, by (3.3) and (3.42) we have (3.5) for t ∈ [0, T ].
Finally, we determine the available range of q. First we consider the case: 1 <

α ≤ N − 2. We have α < Nα/(N − 2) ≤ N . By (R) and (S), we need to choose
a(α− 1)/(a − 1) := Nα/(N − 2), i.e.

a :=
Nα

N + 2(α− 1)
(< 2) .
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It leads to

θ1 =
2− α

4− α
∈ (0, 1), θ3 = 1−

α(q −N)

q(2− α)
.

By the conditions θ3 ∈ [0, 1] and q > N we have

N < q ≤
Nα

2(α− 1)
:= q∗.

Next, let N − 2 < α < 2. Since α < N < Nα/(N − 2), (R) and (S) implies
N ≤ a(α− 1)/(a − 1) ≤ Nα/(N − 2), i.e.

Nα

N + 2α − 2
≤ a ≤

N

N − α+ 1
. (3.43)

We remark that (3.43) is equivalent to θ2, θ4 ∈ [0, 1]. We verify that (3.43) also
implies θ1 ∈ [0, 1]. By (3.41) we have

1

q
=
2− α

Nα
θ3 +

1

a
−
1

α
.

Thus, q achieves the minimum at (θ3, a) = ( 1, Nα/(N+2α−2) ) and the maximum
at (θ3, a) = ( 0, N/(N −α+1) ). Combining this and the condition q > N , we have

N < q ≤
Nα

(N − α)(α − 1)
:= q∗.

The proof is complete. �
Lemma 3.2. . Let α ∈ (1, 2) be a number and w = (w1, · · · , wN ) ∈W 2,α(RN ; RN ).
Then we have |w|α/2 ∈ H1(:=W 1,2) and

4(α− 1)

α2
‖∇|w|α/2‖22 ≤ (α− 1)

∫
RN

|∇w|2

|w|2−α
≤ −

∫
RN

wα−1 ·∆w dx (<∞). (3.44)

Here, we define |∇w|2/|w|2−α = 0 when |w(x)| = 0.

Proof. Since |∇|w| | ≤ |∇w|, we have

∫
RN

|∇w|2

|w|2−α
≥

∫
RN

|w|α−2|∇|w| |2 =
4

α2

∫
|∇|w|α/2 |2.

Thus we obtained the first inequality in (3.44).
To show the second inequality in (3.44), it suffices to derive

−

∫
RN

|w|α−2w · ∂2jw ≥ (α− 1)

∫
RN

|∂jw|2

|w|2−α
. (3.45)

Let j = 1. (We omit the other cases: j 6= 1 since they are same.) With the aid of
the Fubini Theorem we have

−

∫
RN

|w|α−2w · ∂21w = −

∫
RN−1

dx′
∫
R

|w|α−2w · ∂21w dx1. (3.46)
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Here, x′ := (x2, · · · , xN ). By the assumption: w ∈W 2,α we have

w(·, x′) ∈ C1(R ; RN ) (3.47)

for a.e. x′ ∈ RN−1. We fix any x′ such that (3.47) holds and set

W (·) := w(·, x′) ∈ C1(R ; RN ).

Then, there exist countable numbers of open intervals {Ik}∞k=1 such that W (x) 6= 0
on each Ik. Actually, W (x) is positive definite or negative definite on each interval
Ik. Each ∂Ik (:= the boundary of Ik in R) consists of at most two points. Therefore,⋃∞
k=1 ∂Ik is a set whose measure is zero. It follows from the integration by parts
that

−

∫
R

|W |α−2W ·Wxx dx = −
∞∑
k=1

∫
Ik

|W |α−2W ·Wxx (3.48)

=
∞∑
k=1

∫
Ik

[−(2− α)|W |α−2|W |xWx + |W |
α−2(Wx)

2 ]

≥
∞∑
k=1

∫
Ik

[−(2− α)|W |α−2(Wx)
2 + |W |α−2(Wx)

2 ]

= (α− 1)

∫
R

|W |α−2(Wx)
2.

Combining (3.46) and (3.48), we obtain (3.45). �

4. Applications

In this section we give the proofs of Corollaries 1.1-1.3 and some other applica-
tions of our Theorem 3.1.

Proof of Corollary 1.1. Let v be any mild solution of (NS) which satisfies
v ∈ C([0, T ) ; PLN ) ∩ Lrloc((0, T ) ; PL

q). It suffices to show that

v(t) = u(t ; v(0)) on [0, T ).

Here, u(t ; v(0)) is a strong solution, which satisfies

u(t ; v(0)) ∈ C([0, T ) ; PLN) ∩ LN+2((0, T ) ; PLN+2)

(see Definition 2.2). We set u(t) := u(t ; v(0) ) and w(t) := v(t) − u(t). Let dN+2
and AN+2 be the constants defined in Corollary 3.1. We choose a small constant
τ ∈ (0, T ) such that

‖w(t)‖N ≤ dN+2 for t ∈ [0, τ ].

Let ε ∈ (0, τ). By the semigroup property of the mild solution, v(t) is a strong
solution on [ε, T ) with the initial value v(ε). We apply Theorem 3.1 and obtain

‖w(t)‖N ≤ ‖w(ε)‖N exp (AN+2

∫ τ
ε

‖u(s)‖N+2N+2 ds) for t ∈ [ε, τ ].

Let ε → +0. Then we have w(t) = 0 for t ∈ [0, τ ]. Now, we easily verify from the
continuity of w(t) that T = sup {τ ; w(t) = 0 for t ∈ [0, τ ]}. �
The next result is a ‘local’-version of Corollary 1.2.
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Corollary 4.1. (Local Stability). Let u0 ∈ PLN ∩ PLα with a constant α ∈
(1,∞) and u(t;u0) be a strong solution. Then, for any T < tmax(u0) there exist
constants δ0 = δ0(N,u0, T ) ∈ R+ and C0 = C0(N) ∈ R+ such that if

v0 ∈ PL
N and ‖v0 − u0‖N ≤ δ0

then we have tmax(v0) > T and

‖u(t ; v0)− u(t;u0)‖N ≤ ‖v0 − u0‖N exp (C0

∫ t
0

‖u(s ;u0)‖
N+2
N+2 ds) (4.1)

for t ∈ [0, T ].
Moreover, when α 6= N there exist constants δ1 = δ1(N,α, u0, T ) ∈ (0, δ0],

q = q(N,α) ∈ (N,∞) and C1 = C1(N,α) ∈ R+ such that if v0 ∈ PLN ∩ PLα and
‖v0 − u0‖N ≤ δ1 then we have for α ∈ [2,∞)

‖u(t ; v0)− u(t;u0)‖α ≤ ‖v0 − u0‖α exp (C1

∫ t
0

‖u(s ;u0)‖
r
q ds) (4.2)

for t ∈ [0, T ], and for α ∈ (1, 2) the estimate (4.2) with the norm ‖ · ‖α replaced by
| · |α. Here, r is the constant which satisfies (1.1).

Proof. We use the notation in the statement of Theorem 3.1 and Corollary 3.1.
We denote u(t) := u(t;u0) and v(t) := u(t; v0). We fix constants α0 ∈ (N,∞) and
q0 ∈ (N, q∗(N,α0)). For example, set (α0, q0) = (2N, 2N). We choose δ0 ∈ R+

such that

δ0 < min (dN+2, dα0,q0) exp (−AN+2

∫ T
0

‖u(s)‖N+2N+2 ds)

and assume ‖v0 − u0‖N ≤ δ0. Let C0 := AN+2. Then, by Corollary 3.1 we have
(4.1) for t ∈ [0, T0) and

‖v(t)− u(t)‖N < min(dN+2, dα0,q0) for t ∈ [0, T0). (4.3)

Here, T0 := min(T, tmax(v0)). We complete the proof if we prove tmax(v0) > T . We
fix a constant t0 ∈ (0, T0). Then, by (4.3) and Theorem 3.1 we have

‖v(t) − u(t)‖α0 ≤ ‖v(t0)− u(t0)‖α0 exp (Aα0,q0

∫ T
0

‖u(s)‖r0q0 ds) <∞

for t ∈ (0, T0), where r0 is the constant which satisfies N/q0 + 2/r0 = 1. Thus,
‖v(t)‖α0 is bounded on [0, T0). In view of Corollary 2.1 we have T0 = T < tmax(v0).
When α 6= N , we choose δ1 ∈ R+ such that

δ1 < min (dN+2, dα0,q0 , dαq) exp (−AN+2

∫ T
0

‖u(s)‖N+2N+2 ds).

Here, q ∈ (N, q∗(N,α)) is a constant. Then we can verify (4.2) in the same argument
as above. �
The following lemma will be used in the proof of Corollary 1.2.
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Lemma 4.2. Let v(t) = u(t; v0) ∈ C0([0,∞) ; PLN ) be a global strong solution.
And let α ∈ [N,∞) be a constant. Then there exists a constant T∗ = T∗(N,α, v0) ∈
R
+ such that ‖u(t; v0)‖α is non-increasing on [T∗,∞).

Proof. We use the notation in the statement of Theorem3.1 and Corollary 3.1.
We choose T∗ such that ‖v(T∗)‖N < min(dN+2, dαα). Let u0 := 0. Then u(t;u0)
is a trivial solution. It follows from Corollary 3.1 that ‖v(t)‖α ≤ ‖v(T∗)‖α <
min (dN+2, dαα) for t ≥ T∗. Applying Corollary 3.1 again, we see that ‖u(t; v0)‖α
is non-increasing for t ≥ T∗. �
Remark 4.1. Actually, we can verify the decay estimate

‖v(t)‖α ≤ Ct
−(1−N/α)/2 for t ≥ 1. (4.4)

See [K, Theorem 4]. We can prove (4.4) using the same argument as in the proof
of [Ka, Theorem 4.1]. We omit it since we do not use (4.4) in this paper.

Proof of Corollary 1.2. We use the notation in the statement of Theorem 3.1 and
Corollary 3.1. We fix constants α0 ∈ (N,∞) and q0 ∈ (N, q∗(N,α0)). For example,
set (α0, q0) = (2N, 2N).
(i) We write u(t) := u(t;u0) and v(t) := u(t; v0). We choose δ0 ∈ R+ such that

δ0 exp (AN+2

∫ ∞
0

‖u(s)‖N+2N+2 ds) < min (dN+2, dα0,q0 ,
1

2
ε∗).

Here, ε∗ is the constant in the statement of Theorem 2.1 (iii). We set C0 := AN+2.
Let ‖v0 − u0‖N ≤ δ0. Then, by Corollary 3.1 we have (1.2) and

‖v(t)− u(t)‖N < min(dN+2, dα0,q0 ,
1

2
ε∗) (4.5)

for t ∈ (t0, tmax(v0)). We will show tmax(v0) = ∞. We fix a constant t0 ∈
(0, tmax(v0)). By (4.5) and Theorem 3.1 we have

‖v(t)− u(t)‖α0 ≤ ‖v(t0)− u(t0)‖α0 exp (Aα0,q0

∫ ∞
t0

‖u(s)‖r0q0 ds) <∞ (4.6)

for t ∈ (t0, tmax(v0)), where r0 is the constant which satisfies N/q0 + 2/r0 = 1.
Since ‖u(t)‖α0 is bounded on [t0,∞) (see Lemma 4.2), ‖v(t)‖α0 is bounded on
[t0, tmax(v0)). With the aid of Corollary 2.1, we have tmax(v0) = ∞. Thus, v(t)
is a global solution. We choose a constant T1 such that ‖u(T1)‖N < ε∗/2. Then,
by (4.5) we have ‖v(T1)‖N < ε∗. Therefore, we obtain from Theorem 2.1 that
v(t) ∈ C0([0,∞) ; PLN ).
(ii) We choose a constant q such that N < q < q∗(N,α). We choose δ1 ∈ R+

such that

δ1 < min (dN+2, dα0,q0 ,
1

2
ε∗, dαq) exp (−AN+2

∫ ∞
0

‖u(s)‖N+2N+2 ds).

Then we can easily verify (1.3) for t ∈ R+ by the same argument as in (i). �
Proof of Corollary 1.3. We denote u(t) := u(t;u0). It follows from Theo-
rem 2.1 that tmax(u0) > T implies u(t) ∈ Lr((0, T ) ; PLq). Next, we will prove
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the inverse. Let u(t) ∈ Lr((0, T ) ; PLq). In view of Corollary 2.1, it suffices
to prove that lim t→T−0 u(t) exists in PL

N . By Lemma 2.1 we have u(t;u0) ∈
LN+2((0, T ) ; PLN+2). Let {tj}∞j=1 be any monotone increasing sequence such that
t1 ≥ T/2 and tj → T (j → ∞). Setting u0 := u(tk − T/2) and v0 := u(tl − T/2)
(k < l), we apply Corollary 3.1. We have

‖u(tl)− u(tk)‖N

≤‖u(tl − T/2) − u(tk − T/2)‖N exp(AN+2

∫ T/2
0

‖u(s + tk − T/2)‖
N+2
N+2 ds)

→ 0 (k →∞).

Thus, lim j→∞ u(tj) exists in PL
N . �

Finally we mention the topological structure of the space of strong solutions. We
set

A := {u0 ∈ PL
N ; u(t ; u0) ∈ C0([0,∞) ; PL

N ) }. (4.7)

Then A is open in PLN by Corollary 1.2. When N = 3 the open set A is unbounded
in PL3 since u0 ∈ A if u0(x) is axially symmetric and u0 ∈ PL2 ∩ PL3 (which was
shown in [UI]). We also set

B :={u0 ∈ PL
N ; tmax(u0) <∞} (4.8)

={u0 ∈ PL
N ; ‖u(t;u0)‖∞ blows up in finite time }.

The second equality holds by the equivalence of (e) and (c) in Corollary 2.1.

Proposition 4.1. When N = 2, we have A = PL2.

This result was proved in [KM], [M] and [Wi]. However, we give a simple and
different proof by using Corollary 1.3 and Proposition 2.2.

Proof. Let fix any u0 ∈ PL2. We write u(t) := u(t;u0). We have the energy
equality

‖u(t)‖22 + 2

∫ t
0

‖∇u(s)‖22ds = ‖u0‖
2
2 for t ∈ [0, tmax(u0)). (4.9)

By the Gagliardo-Nirenberg inequality

‖u(t)‖4 ≤ C‖u(t)‖
1/2
2 ‖∇u(t)‖

1/2
2 . (4.10)

In view of (4.9) and (4.10) we have u(t;u0) ∈ L4((0, T ) ; PL4). Here T ∈ R+

is a constant such that T ≤ tmax(u0). By Corollary 1.3 we have T < tmax(u0).
Thus, we obtain tmax(u0) = ∞, i.e. u(t;u0) is a global solution. Now we have
u(t;u0) ∈ L4(R+ ; PL4). Therefore, we apply Proposition 2.2 to conclude u(t;u0) ∈
C0([0,∞) ; PLN ). �
Proposition 4.2. Let N = 3, 4. Then we have the following results:
(i) For u0 ∈ PL2 ∩ PLN the solution u(t;u0) blows up in finite time or u(t;u0) ∈
C0([0,∞) ; PLN ), i.e. we have

(A ∪B) ∩ PL2 = PL2 ∩ PLN . (4.11)
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(ii) the set B ∩ PL2 is closed in PL2 ∩ PLN .
(iii) the set B is empty or B is not open in PLN .

Proof. (i) Let u0 ∈ PL2 ∩PLN and tmax(u0) =∞. In view of the energy equality
(4.9), ‖u(t)‖2 is bounded for t ≥ 0 and lim inft→∞ ‖∇u(t)‖2 = 0. Thus, by the
Gagliardo - Nirenberg inequality, we have lim inft→∞ ‖u(t)‖N = 0. It follows from
Theorem 2.1 that u ∈ C0([0,∞) ; PLN). Hence, we have (4.11).
(ii) By Corollary 1.2, the set A∩PL2 is open in PL2∩PLN . Therefore, B∩PL2 =

(PL2 ∩ PLN)− (A ∩ PL2) is closed in PL2 ∩ PLN .
(iii) We proceed by contradiction. Suppose that B is non-empty open set in

PLN . Since PL2 ∩ PLN is dense in PLN , there exists u0 ∈ (PL2 ∩ B)− {0}. We
set

C := {τ ∈ R ; τu0 ∈ A}.

In view of Corollary 1.2 and Theorem 2.1 (iii), the set C is non-empty open set in
R. Since C 6= R, we have ∂C 6= φ. Set B1 := {τu0 ; τ ∈ ∂C}. Then, we obtain
from (4.11) that B1 ⊂ ∂A ∩ B. This implies A ∩ B 6= ∅, which is a contradiction.
Thus, B is empty or B is not open in PLN . �
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