Electronic Journal of Differential Equations, Vol. 1998(1998) No. 18, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 147.26.103.110 or 129.120.3.113

SOME REMARKS ON A SECOND ORDER EVOLUTION EQUATION

Mohammed Aassila

Abstract

We prove the strong asymptotic stability of solutions to a second order evolution equation when the LaSalle's invariance principle cannot be applied due to the lack of monotonicity and compactness.

§1. Introduction and statement of the main result

In recent papers [1, 2] we studied the asymptotic stability for some dissipative wave systems. Earlier work in the same direction is due to Nakao [7] who treated particularly the case of abstract evolution equations. In this work we give a new asymptotic stability theorem which extends the analysis in $[5,8]$ by taking into account the new approach introduced in $[1,2]$.

We focus on abstract equations of the form

$$
\begin{gather*}
u^{\prime \prime}-\operatorname{div}\left(\left(1+|\nabla u|^{a}\right)^{b}|\nabla u|^{c-2} \nabla u\right)+g\left(u^{\prime}\right)=0 \quad \text { in } \quad \Omega \times \mathbb{R}_{+}, \\
u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega, \tag{P}\\
u(x, t)=0 \quad \text { on } \quad \partial \Omega \times \mathbb{R}_{+},
\end{gather*}
$$

where Ω is a domain in \mathbb{R}^{n} of finite measure with smooth boundary $\partial \Omega$ and $a \geq 1, b, c>1$ are real numbers such that $a b+c \geq 1$. Concrete examples of (P) include the dissipative wave equation

$$
\begin{gather*}
u^{\prime \prime}-\Delta u+g\left(u^{\prime}\right)=0 \quad \text { in } \quad \Omega \times \mathbb{R}_{+}, \\
u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x) \quad \text { in } \Omega, \tag{P1}\\
u(x, t)=0 \quad \text { on } \quad \partial \Omega \times \mathbb{R}_{+},
\end{gather*}
$$

when $a=b=0, c=2$. The degenerate Laplace operator

$$
\begin{gather*}
u^{\prime \prime}-\operatorname{div}\left(|\nabla u|^{c-2} \nabla u\right)+g\left(u^{\prime}\right)=0 \quad \text { in } \Omega \times \mathbb{R}_{+}, \\
u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x) \quad \text { in } \Omega \tag{P2}\\
u(x, t)=0 \quad \text { on } \quad \partial \Omega \times \mathbb{R}_{+},
\end{gather*}
$$

when $a=b=0, c>1$. And the quasilinear wave equation

$$
\begin{gather*}
u^{\prime \prime}-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)+g\left(u^{\prime}\right)=0 \quad \text { in } \quad \Omega \times \mathbb{R}_{+}, \\
u(x, 0)=u_{0}(x), u^{\prime}(x, 0)=u_{1}(x) \quad \text { in } \Omega \tag{P3}\\
u(x, t)=0 \quad \text { on } \quad \partial \Omega \times \mathbb{R}_{+},
\end{gather*}
$$

when $a=2, b=-1 / 2$ and $c=2$. Problem (P3), with $-\Delta u^{\prime}$ instead of $g\left(u^{\prime}\right)$, describes the motion of fixed membrane with strong viscosity. This problem with $n=1$ was proposed by Greenberg [3] and Greenberg-MacCamy-Mizel [4] as a model of quasilinear wave equation which admits a global solution for large data. Quite recently, Kobayashi-Pecher-Shibata [6] have treated such nonlinearity and proved the global existence of smooth solutions. Subsequently, Nakao [8] has derived a decay estimate of the solutions under the assumption that the mean curvature of $\partial \Omega$ is non-positive. The object of this paper is to study the asymptotic behavior of the solution u of (P) which is assumed to exist in the class

$$
\begin{equation*}
u \in C\left(\mathbb{R}_{+}, W_{0}^{1, a b+c}(\Omega)\right) \cap C^{1}\left(\mathbb{R}_{+}, L^{2}(\Omega)\right) \tag{1.1}
\end{equation*}
$$

without any boundedness or geometrical conditions on Ω.
We make the following assumptions on the nonlinear function g :
(H1) $g: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz continuous
(H2) $x g(x)>0$ for all $x \neq 0$
(H3) There exists a number $q \geq 1$ satisfying

$$
\begin{gathered}
(n-2) q \leq n+2 \quad \text { for } \quad(P 1) \\
(n-c) q \leq n(c-1)+c \text { for }(P 2) \\
(n-1) q \leq 1 \quad \text { for } \quad(P 3)
\end{gathered}
$$

and there exist positive constants c_{1}, c_{2} such that

$$
c_{1}|x| \leq|g(x)| \leq c_{2}|x|^{q} \quad \text { for all } \quad|x| \geq 1 .
$$

We define the energy associated to the solution given by (1.1) by the following formula

$$
\begin{equation*}
E(u(t)):=\frac{1}{2}\left\|u^{\prime}(t)\right\|_{2}^{2}+\|\mathcal{A}(\nabla u)\|_{1} \tag{1.2}
\end{equation*}
$$

where $\frac{\partial \mathcal{A}(v)}{\partial v}:=\left(1+|v|^{a}\right)^{b}|v|^{c-2} v$.
Our main result is the following
Main Theorem. It holds that

$$
E(u(t)) \rightarrow 0, \quad \text { as } \quad t \rightarrow+\infty
$$

for every solution u satisfying (1.1).

§2. Proof of the main theorem

For the proof we need the two following lemmas.
Lemma 2.1. It holds that

$$
\int_{0}^{t} \int_{\Omega}\left|u g\left(u^{\prime}\right)\right| d x d s=o(t), \quad t \rightarrow+\infty
$$

Lemma 2.2. It holds that

$$
\int_{0}^{t} \int_{\Omega}\left|u^{\prime}\right|^{2} d x d s=o(t), \quad t \rightarrow+\infty
$$

Proof of lemma 2.1. As g is locally Lipschitz continuous we have

$$
\begin{aligned}
\int_{\left|u^{\prime}\right| \leq 1}\left|u g\left(u^{\prime}\right)\right| d x & \leq c \int_{\Omega}\left(\left|u^{\prime}\right|\left|g\left(u^{\prime}\right)\right|\right)^{1 / 2}|u| d x \\
& \leq c\left(\int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x\right)^{1 / 2}\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

Similarly, by (H3) we have

$$
\int_{\left|u^{\prime}\right|>1}\left|u g\left(u^{\prime}\right)\right| d x \leq c\left(\int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x\right)^{\frac{1}{(q+1)^{\prime}}}\|u\|_{L^{q+1}(\Omega)}
$$

where $(q+1)^{\prime}=\frac{q}{q+1}$ is the Hölder conjugate of $q+1$.
Then from the Hölder's inequality we obtain

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|u g\left(u^{\prime}\right)\right| d x d s \\
& \leq \\
& \leq \\
& \quad \\
& \quad+\left(\int_{0}^{t} \int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x d s\right)^{1 / 2} \sqrt{t} \sup _{[0, t]}\|u(s)\|_{L^{2}(\Omega)} \\
&
\end{aligned}
$$

Using the Hölder, Sobolev, and Poincaré inequalities we have

$$
\|u(s)\|_{L^{2}(\Omega)} \leq c\|u(s)\|_{L^{q+1}(\Omega)} \leq c E(s)^{1 / 2} \leq c E(0)^{1 / 2} \quad \text { for all } \quad s \geq 0
$$

From these estimates it follows that

$$
\int_{0}^{t} \int_{\Omega}\left|u g\left(u^{\prime}\right)\right| d x, d s \leq c \sqrt{t}+c t^{\frac{1}{q+1}}=o(t), \quad t \rightarrow+\infty
$$

Proof of lemma 2.2. Let $\varepsilon>0$ be an arbitrarily small real and set

$$
M(\varepsilon)=\sup \left\{\frac{x}{g(x)} ; \quad|x| \geq \sqrt{\frac{\varepsilon}{|\Omega|}}\right\}
$$

by hypotheses (H1)-(H3), we have $M(\varepsilon)<+\infty$.
Clearly,

$$
\int_{\left|u^{\prime}\right|<\sqrt{\frac{\varepsilon}{\Omega \mid}}}\left|u^{\prime}\right|^{2} d x \leq \varepsilon .
$$

On the other hand

$$
\int_{\left|u^{\prime}\right| \geq \sqrt{\frac{\varepsilon}{|\Omega|}}}\left|u^{\prime}\right|^{2} d x=\int_{\left|u^{\prime}\right| \geq \sqrt{\frac{\varepsilon}{|\Omega|}}} \frac{u^{\prime}}{g\left(u^{\prime}\right)} u^{\prime} g\left(u^{\prime}\right) d x \leq M(\varepsilon) \int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x .
$$

As

$$
\int_{\left|u^{\prime}\right| \geq \sqrt{\frac{\varepsilon}{|\Omega|}}}\left|u^{\prime}\right|^{2} d x \leq \sqrt{2 E(0)}\left(\int_{\left|u^{\prime}\right| \geq \sqrt{\frac{\varepsilon}{|\Omega|}}}\left|u^{\prime}\right|^{2} d x\right)^{1 / 2}
$$

we deduce that

$$
\int_{\Omega}\left|u^{\prime}\right|^{2} d x \leq \varepsilon+\sqrt{2 E(0) M(\varepsilon)}\left(\int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x\right)^{1 / 2}
$$

and then by the Hölder inequality

$$
\begin{aligned}
\int_{0}^{t} \int_{\Omega}\left|u^{\prime}\right|^{2} d x d s & \leq \varepsilon t+\sqrt{2 E(0) M(\varepsilon)} \sqrt{t}\left(\int_{0}^{t} \int_{\Omega} u^{\prime} g\left(u^{\prime}\right) d x, d s\right)^{1 / 2} \\
& \leq \varepsilon t+E(0) \sqrt{2 M(\varepsilon)} \sqrt{t}=o(t), \quad t \rightarrow+\infty
\end{aligned}
$$

Proof of the main theorem

Assume on the contrary that $l:=\lim _{t \rightarrow+\infty} E(t)>0$. Then we have

$$
\int_{0}^{t} \int_{\Omega} u u^{\prime} d x d s=\int_{0}^{t} \int_{\Omega}\left|u^{\prime}\right|^{2}-A(\nabla u) \nabla u-g\left(u^{\prime}\right) u d x d s
$$

where $A(\nabla u):=\left(1+|\nabla u|^{a}\right)^{b}|\nabla u|^{c-2} \nabla u$. Following the approach introduced in $[1,2]$, we shall prove that

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{2}^{2}+\int_{\Omega} A(\nabla u) \nabla u d x \geq c_{3}>0 \tag{2.1}
\end{equation*}
$$

We have

$$
\left\|u^{\prime}(t)\right\|_{2}^{2}+2\|\mathcal{A}(\nabla u)\|_{1} \geq l ;
$$

hence, if $\left\|u^{\prime}(t)\right\|_{2}^{2} \geq \frac{l}{2}$ we get (2.1) with $c_{3}=\frac{l}{2}$. And, if we have $\|\mathcal{A}(\nabla u)\|_{1} \geq$ $\frac{l}{4}$, then

$$
c_{4}\left(\|\nabla u\|_{1}+\|\nabla u\|_{a b+c}^{a b+c}\right) \geq \frac{l}{4}
$$

that is

$$
\|\nabla u\|_{a b+c} \geq c_{5}>0
$$

Since A is coercive (that is $(A(v), v)_{L^{2}} \geq c_{6}|v|^{a b+c}$ with $|v| \geq\left|v_{0}\right|$), we get (2.1) with a positive constant $c_{7}>0$.

Thanks to lemmas 1,2 , and the relation (2.1), we arrive by the same arguments in [1, 2] to

$$
\phi(t) \rightarrow-\infty \quad \text { as } \quad t \rightarrow+\infty
$$

where $\phi(t)=\int_{\Omega} u u^{\prime} d x$. This is a contradiction to the fact that $|\phi(t)| \leq$ $c_{8} E(0)$. Thus

$$
\lim _{t \rightarrow+\infty} E(t)=0
$$

Remark. If g is linear or superlinear near the origin, then it is sufficient to consider a domain $\Omega \subset \mathbb{R}^{n}$ in which the Poincaré's inequality holds.

References

[1] M. Aassila, Nouvelle approche à la stabilisation forte des systèmes distribués, C. R. Acad. Sci. Paris 324 (1997), 43-48.
[2] M. Aassila, A new approach of strong stabilization of distributed systems, Differential and Integral Equations 11(1998), 369-376.
[3] J. Greenberg, On the existence, uniqueness and stability of the equation $\rho_{0} X_{t t}=E\left(X_{x}\right) X_{x x}+X_{x x t}$, J. Math. Anal. Appl. 25 (1969), 575-591.
[4] J. Greenberg, R. MacCamy and V. Mizel, On the existence, uniqueness and stability of the equation $\sigma^{\prime}\left(u_{x}\right) u_{x x}+\lambda u_{x t x}=\rho_{0} u_{t t}$, J. Math. Mech. 17 (1968), 707-728.
[5] R. Ikehata, T. Matsuyama and M. Nakao, Global solutions to the initial boundary value problem for the quasilinear viscoelastic wave equation with a perturbation, Funkcialaj Ekva. 40 (1997), 293-312.
[6] T. Kobayashi, H. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to nonlinear wave equation with viscosity, Math. Ann. 296 (1993), 215-234.
[7] M. Nakao, Asymptotic stability for some nonlinear evolution equations of second order with unbounded dissipative terms, J. Diff. Eqns. 30 (1978), 54-63.
[8] M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z. 219 (1995), 289-299.

Mohammed Aassila
Institut de Recherche Mathématique Avancée
Université Louis Pasteur et C.N.R.S.
7, rue René Descartes
67084 Strasbourg Cédex, France.
E-mail: aassila@math.u-strasbg.fr

