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SOME REMARKS ON A SECOND ORDER EVOLUTION EQUATION

Mohammed Aassila

Abstract

We prove the strong asymptotic stability of solutions to a second order
evolution equation when the LaSalle’s invariance principle cannot be applied

due to the lack of monotonicity and compactness.

§1. Introduction and statement of the main result

In recent papers [1, 2] we studied the asymptotic stability for some
dissipative wave systems. Earlier work in the same direction is due to Nakao
[7] who treated particularly the case of abstract evolution equations. In this
work we give a new asymptotic stability theorem which extends the analysis
in [5, 8] by taking into account the new approach introduced in [1, 2].

We focus on abstract equations of the form

u′′ − div
(
(1 + |∇u|a)b|∇u|c−2∇u

)
+ g(u′) = 0 in Ω×R+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x) in Ω, (P )

u(x, t) = 0 on ∂Ω×R+,

where Ω is a domain in Rn of finite measure with smooth boundary ∂Ω and
a ≥ 1, b, c > 1 are real numbers such that ab+ c ≥ 1. Concrete examples of
(P) include the dissipative wave equation

u′′ −∆u+ g(u′) = 0 in Ω× R+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x) in Ω, (P1)

u(x, t) = 0 on ∂Ω×R+,

when a = b = 0, c = 2. The degenerate Laplace operator

u′′ − div
(
|∇u|c−2∇u

)
+ g(u′) = 0 in Ω× R+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x) in Ω, (P2)

u(x, t) = 0 on ∂Ω×R+,
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when a = b = 0, c > 1. And the quasilinear wave equation

u′′ − div
( ∇u√
1 + |∇u|2

)
+ g(u′) = 0 in Ω×R+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x) in Ω, (P3)

u(x, t) = 0 on ∂Ω×R+,

when a = 2, b = −1/2 and c = 2. Problem (P3), with −∆u′ instead of g(u′),
describes the motion of fixed membrane with strong viscosity. This problem
with n = 1 was proposed by Greenberg [3] and Greenberg-MacCamy-Mizel
[4] as a model of quasilinear wave equation which admits a global solution
for large data. Quite recently, Kobayashi-Pecher-Shibata [6] have treated
such nonlinearity and proved the global existence of smooth solutions. Sub-
sequently, Nakao [8] has derived a decay estimate of the solutions under the
assumption that the mean curvature of ∂Ω is non-positive. The object of
this paper is to study the asymptotic behavior of the solution u of (P) which
is assumed to exist in the class

u ∈ C(R+,W
1,ab+c
0 (Ω)) ∩ C1(R+, L

2(Ω)) (1.1)

without any boundedness or geometrical conditions on Ω.

We make the following assumptions on the nonlinear function g:

(H1) g : R→ R is locally Lipschitz continuous

(H2) xg(x) > 0 for all x 6= 0

(H3) There exists a number q ≥ 1 satisfying

(n− 2)q ≤ n+ 2 for (P1)

(n− c)q ≤ n(c− 1) + c for (P2)

(n− 1)q ≤ 1 for (P3) ,

and there exist positive constants c1, c2 such that

c1|x| ≤ |g(x)| ≤ c2|x|
q for all |x| ≥ 1 .

We define the energy associated to the solution given by (1.1) by the
following formula

E(u(t)) :=
1

2
‖u′(t)‖22 + ‖A(∇u)‖1 , (1.2)

where ∂A(v)
∂v
:= (1 + |v|a)b|v|c−2v.

Our main result is the following

Main Theorem. It holds that

E(u(t))→ 0 , as t→ +∞ ,

for every solution u satisfying (1.1).



EJDE–1998/18 Second order evolution equation 3

§2. Proof of the main theorem

For the proof we need the two following lemmas.

Lemma 2.1. It holds that

∫ t
0

∫
Ω

|ug(u′)| dx ds = o(t) , t→ +∞ .

Lemma 2.2. It holds that

∫ t
0

∫
Ω

|u′|2 dx ds = o(t) , t→ +∞ .

Proof of lemma 2.1. As g is locally Lipschitz continuous we have

∫
|u′|≤1

|ug(u′)| dx ≤c

∫
Ω

(|u′| |g(u′)|)1/2|u| dx

≤c
(∫
Ω

u′g(u′) dx
)1/2

‖u‖L2(Ω) .

Similarly, by (H3) we have

∫
|u′|>1

|ug(u′)| dx ≤ c
(∫
Ω

u′g(u′) dx
) 1
(q+1)′

‖u‖Lq+1(Ω)

where (q + 1)′ = q
q+1
is the Hölder conjugate of q + 1.

Then from the Hölder’s inequality we obtain

∫ t
0

∫
Ω

|ug(u′)| dx ds

≤c
(∫ t
0

∫
Ω

u′g(u′) dx ds
)1/2√

t sup
[0,t]

‖u(s)‖L2(Ω)

+ ct
1
q+1

(∫ t
0

∫
Ω

u′g(u′) dx, ds
) 1
(q+1)′

sup
[0,t]

‖u(s)‖Lq+1(Ω) .

Using the Hölder, Sobolev, and Poincaré inequalities we have

‖u(s)‖L2(Ω) ≤ c ‖u(s)‖Lq+1(Ω) ≤ cE(s)
1/2 ≤ cE(0)1/2 for all s ≥ 0.

From these estimates it follows that

∫ t
0

∫
Ω

|ug(u′)| dx, ds ≤ c
√
t+ ct

1
q+1 = o(t), t→ +∞ .
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Proof of lemma 2.2. Let ε > 0 be an arbitrarily small real and set

M(ε) = sup {
x

g(x)
; |x| ≥

√
ε

|Ω|
}

by hypotheses (H1)-(H3), we have M(ε) < +∞.

Clearly, ∫
|u′|<
√

ε
|Ω|

|u′|2 dx ≤ ε.

On the other hand
∫
|u′|≥
√

ε
|Ω|

|u′|2 dx =

∫
|u′|≥
√

ε
|Ω|

u′

g(u′)
u′g(u′) dx ≤M(ε)

∫
Ω

u′g(u′) dx .

As ∫
|u′|≥
√

ε
|Ω|

|u′|2 dx ≤
√
2E(0)

(∫
|u′|≥
√

ε
|Ω|

|u′|2 dx
)1/2
,

we deduce that
∫
Ω

|u′|2 dx ≤ ε+
√
2E(0)M(ε)

(∫
Ω

u′g(u′) dx
)1/2
,

and then by the Hölder inequality

∫ t
0

∫
Ω

|u′|2 dx ds ≤εt+
√
2E(0)M(ε)

√
t
(∫ t
0

∫
Ω

u′g(u′) dx, ds
)1/2

≤εt+ E(0)
√
2M(ε)

√
t = o(t), t→ +∞ .

Proof of the main theorem
Assume on the contrary that l := lim

t→+∞
E(t) > 0. Then we have

∫ t
0

∫
Ω

uu′ dx ds =

∫ t
0

∫
Ω

|u′|2 −A(∇u)∇u− g(u′)u dx ds

where A(∇u) := (1+ |∇u|a)b|∇u|c−2∇u. Following the approach introduced
in [1, 2], we shall prove that

‖u′‖22 +

∫
Ω

A(∇u)∇u dx ≥ c3 > 0 . (2.1)

We have
‖u′(t)‖22 + 2‖A(∇u)‖1 ≥ l ;
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hence, if ‖u′(t)‖22 ≥
l
2 we get (2.1) with c3 =

l
2 . And, if we have ‖A(∇u)‖1 ≥

l
4 , then

c4

(
‖∇u‖1 + ‖∇u‖

ab+c
ab+c

)
≥
l

4

that is
‖∇u‖ab+c ≥ c5 > 0 .

Since A is coercive (that is (A(v), v)L2 ≥ c6|v|
ab+c with |v| ≥ |v0|), we get

(2.1) with a positive constant c7 > 0.

Thanks to lemmas 1,2, and the relation (2.1), we arrive by the same
arguments in [1, 2] to

φ(t)→ −∞ as t→ +∞ ,

where φ(t) =
∫
Ω
uu′ dx. This is a contradiction to the fact that |φ(t)| ≤

c8E(0). Thus
lim
t→+∞

E(t) = 0 .

Remark. If g is linear or superlinear near the origin, then it is sufficient to
consider a domain Ω ⊂ Rn in which the Poincaré’s inequality holds.
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[1] M. Aassila, Nouvelle approche à la stabilisation forte des systèmes dis-
tribués, C. R. Acad. Sci. Paris 324 (1997), 43–48.

[2] M. Aassila, A new approach of strong stabilization of distributed sys-
tems, Differential and Integral Equations 11(1998), 369–376.

[3] J. Greenberg, On the existence, uniqueness and stability of the equation
ρ0Xtt = E(Xx)Xxx +Xxxt, J. Math. Anal. Appl. 25 (1969), 575–591.

[4] J. Greenberg, R. MacCamy and V. Mizel, On the existence, uniqueness
and stability of the equation σ′(ux)uxx+λuxtx = ρ0utt, J. Math. Mech.
17 (1968), 707–728.

[5] R. Ikehata, T. Matsuyama and M. Nakao, Global solutions to the initial
boundary value problem for the quasilinear viscoelastic wave equation
with a perturbation, Funkcialaj Ekva. 40 (1997), 293–312.

[6] T. Kobayashi, H. Pecher and Y. Shibata, On a global in time existence
theorem of smooth solutions to nonlinear wave equation with viscosity,
Math. Ann. 296 (1993), 215–234.

[7] M. Nakao, Asymptotic stability for some nonlinear evolution equations
of second order with unbounded dissipative terms, J. Diff. Eqns. 30
(1978), 54–63.



6 Mohammed Aassila EJDE–1998/18

[8] M. Nakao, Energy decay for the quasilinear wave equation with viscosity,
Math. Z. 219 (1995), 289–299.

Mohammed Aassila
Institut de Recherche Mathématique Avancée
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