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The Schrödinger equation on

non-stationary domains ∗

Gunther Karner

Abstract

We investigate the dynamical effects of non-stationary boundaries on
the stability of a quantum Hamiltonian system described by a periodic
family

{
H(γ, t), t ∈ [0,Γ],Γ > 0

}
of Sturm-Liouville operators, a Schrödinger

equation i∂tψ = H(γ, t)ψ defined on

Ω(a) =
{
(t, x) ∈ R2 : x ∈ (a(t),∞), a ∈ C3(R), a(t) = a(t+ kΓ), k ∈ Z

}
,

as well as boundary conditions at x = a(t) modeled by the Γ-periodic
function γ. Employing extended Hilbert space methods, stability condi-
tions for the spectra of the evolution operators U(a, γ,Γ, 0) to the families{
H(γ, t)} under perturbations induced by variations of boundary oscilla-
tions, respectively conditions, are derived.

In particular, it is shown that the existence of a pure point finitely de-
generate realization U(a, γ̂,Γ, 0)

)
implies pure point U(a, γ,Γ, 0) for all γ ∈

C1(R), a ∈ C3(R), whereas in case of infinitely degenerate σpp
(
U(a, γ̂,Γ, 0)

)

the existence of σac
(
U(a, γ,Γ, 0)

)
6= ∅, respectively σsc

(
U(a, γ,Γ, 0)

)
6= ∅,

is possible.

1 Dynamical Preliminaries

This article is concerned with the stability (as introduced in Definition 1.2 be-
low) of certain quantum systems under specific, time-dependent perturbations.
In particular, the following one degree-of-freedommodels will be studied (for the
exact definition, see Hypothesis 1.1): Let a family of Sturm-Liouville differential
operators

{
H̃(t), t ∈ R

}
be defined on Hilbert spaces H̃(t) = L2 ([a(t),∞), dx)

and the boundary motion described by the non-negative function a ∈ C3(R)
with a(t) = a(t + kΓ), k ∈ Z and some period Γ > 0. Then there exists a
(heuristic) Schrödinger equation of the type

i∂tφ(t, y) = H̃(t)φ(t, y) (1.1)
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2 The Schrödinger equation EJDE–1998/20

valid on Ω̃(a) =
{
(t, y) ∈ R2 : y ∈ (a(t),∞), t ∈ R

}
. Together with the given

initial condition φ(t = t0) and boundary condition function γ ∈ C1(R). Equa-
tion (1.1) represents the initial-boundary value problem S̃(a, γ). In the sequel,
assume that the Hamiltonians H̃ are chosen such that H̃(t) = H̃(t+kΓ) and the
allowed boundary functions obey γ(t) = γ(t + kΓ) for all k ∈ Z. Furthermore,
assume that for a given boundary motion â there exists a family of boundary
conditions γ̂ such that the system S̃(â, γ̂) is stable in the sense of Definition
1.2 below. Now the main question discussed in this article can be phrased as
follows:

Are there perturbations of S̃(â, γ̂) induced by a change in the
boundary function γ̂ → γ, while the boundary motion â is kept fixed,
which break the confinement in S̃(â, γ̂), i.e. allow for instabilities in
the perturbed system S̃(â, γ)?

In physical terms, one might think of different forms of energy exchange (be-
tween moving boundary and quantum system) being represented by different
functions γ, see [1] for instance.
To obtain a first impression of the influence of the boundary oscillations and

to simplify matters, map (1.1) onto R × R+ \ {0} with the aid of (point-wise)
unitary transformations generated by (t, y) 7→ (t, x = y− a(t)) and assume that
the families

{
H̃(t), t ∈ R

}
behave under these shifts such that

i∂tψ(t, x) =
{
Hc + iȧ(t)∂x + V

(
t
)}
ψ(t, x),

respectively the equivalent form

i∂tφ(t, x) =
{
Hc + V

(
t
)
+ xä(t)/2− ȧ2(t)/4

}
φ(t, x). (1.2)

result on R×R+ \ {0}, where Hc is now time-constant. To ensure unitary time
evolutions of initial states ψ(t = t0) ∈ L2 (R+, dx), the bracketed expression in
(1.2) has to be a self-adjoint operator on L2 (R+, dx) for each t ∈ R. In order
to address problems in quantum dynamics, [1] for instance, and to focus on
the influence of the non-stationary boundary rather than the properties of the
potentials, the following assumptions will be valid throughout this article.

Hypothesis 1.1 (A1) For each t ∈ R, h(a, t) := hc+ v
(
t, ·+a(t)

)
+xä(t)/2 is

a minimal Sturm-Liouville differential operator, i.e. hcψ = −(p ψ′)′ +
w ψ, where ψ′ := dψ/dx and p ∈ C1(R+), p > 0 everywhere, w ∈
C1(R+), v

(
◦, · + a(◦)

)
∈ C1(R) × C1(R+) and all three functions are real-

valued. The potentials w and v are chosen such at x = 0 the limit
circle case, respectively at x = ∞ the limit point case are present as
well as D

(
h(a, t)

)
= D

(
h(a, t = 0)

)
=
{
f ∈ L2 (R+, dy) : supp f ⊂

R
+and h(a, t = 0)f ∈ L2 (R+, dy)

}
. (See [2, 3], for instance.) The bound-

ary oscillation function a obeys a ∈ C3Γ(R), where C
k
Γ(R) :=

{
f ∈ Ck(R) :

f(t) = f(t+ Γ), k ∈ Z, ḟ := df/dt 6= 0 a.e.
}
.

(A2) For each t ∈ R, any self-adjoint realization H(a, α, t) of h(a, t) is purely
discrete.
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(A3) The theory of Sturm-Liouville operators implies that self-adjointness of
H(a, α, t) is achieved by requiring

(
ψx/ψ

)
(t)
∣∣
x=0
= α(t) ∈ R (1.3)

for each t ∈ R and ψ ∈ D
(
H(a, α, t)

)
. In the sequel, the boundary con-

dition function α will be assumed to be time-periodic, i.e. α ∈ C1Γ(R)
piece-wise, so the Dirichlet condition α =∞ is allowed as well.

Choosing boundary motion, boundary function and external perturbation
of the same period Γ naturally restricts the number of physical realizations.
Yet, as time-periodic systems are intensively explored in the search for quan-
tum realizations of chaos, the present investigation covers an important class of
quantum mechanical systems, see for instance [4 - 9].
Now the notion of stability can be defined as follows.

Definition 1.2 The system represented by H(a, α, t = 0) is said to be stable if

sup
t≥0
|
〈
U(a, α, t, 0)Ψ(0), H(a, α, t = 0) U(a, α, t, 0)Ψ(0)

〉
H
| <∞

for a total set of initial conditions Ψ(0).

Here U(a, α, t, s) is the propagator (see Definition 2.4) corresponding to the
family

{
H(a, α, t)

}
and 〈·, ·〉H is the canonical scalar product on L2 (R+, dx).

Following [10], the unitary family
{
U(a, α, t, 0), t ∈ R

}
is also said to have

time-bounded energy H(a, α, t = 0), see [4, 5] as well. A remarkable feature of
time-periodic families such as

{
H(a, α, t)

}
, which is proven in [10], is the fact

that stability leads to a pure point Floquet operator U(a, α,Γ, 0). The converse,
however, is not true since a pure point spectrum of the Floquet operator does
not necessarily imply that any solution of (1.2), which remains in the domain
of H(a, α, t = 0) for all t > 0, has time-bounded energy, see [4, 5, 10].
The main findings of this article (as expressed in Theorem 3.2, Proposition

3.4 and Theorem 3.6) demonstrate the generic stability of the systems {(1.2),
(A1)-(A3)} in the following sense:

Suppose there exists a realization of (1.2) such that the corre-
sponding Floquet operator U0(a,Γ, 0) is pure point with finitely de-
generate eigenvalues, then the generic Floquet operator U(a, α,Γ, 0),
where α is of the type (A3), is pure point as well.

To be more precise, finite degeneracy of σpp
(
U0(a,Γ, 0)

)
excludes absolutely

continuous spectrum for all U(a, α,Γ, 0) under assumption (A3). Singular con-
tinuous spectrum, however, might be present as a limiting case U(a, α,Γ, 0) of
a (pure) absolutely continuous sequence

{
U(aj , αj ,Γ, 0), j ∈ N

}
if (aj , αj , ) →

(a, α) in C3Γ(R) × C
1
Γ(R). For that reason merely pure point Floquet opera-

tors are called generic. (Remark that detailed conditions are part of Theo-
rem 3.6). Section 3 contains as well exact requirements for the existence of
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σac
(
U(aj , αj,Γ, 0)

)
6= ∅. As mentioned, a necessary condition for the latter is

the infinite degeneracy of (a subset of) σpp
(
U0(aj ,Γ, 0)

)
, i.e. the presence of a

resonance situation in the reference model.

An implication of these results concerns the relationship between quantum
system and classical analogon. As discussed in [1], see also [11], there is at least

one rigorously studied classical model, corresponding toHc = −
d2

dx2
+x, V (t) ≡ 0

in (1.2), which exhibits unbounded phase space trajectories (≡ unlimited energy
gain) for a set of initial conditions with non-zero Lebesgue measure. Since this
unlimited acceleration basically stems from the nearly random time-distribution
of the collisions between moving boundary and classical system, one might think
that regular boundary conditions of the type (A3) in the quantum model are
not entirely adequate to capture the variety of the classical dynamics. On
the other hand, there are no experiments which determine the behaviour of a
quantum wave packet colliding with a moving, impenetrable wall. (Whatever
some of these words might mean in quantum theory?) Therefore, the answer
to the choice of physically correct boundary conditions has to be left open to
discussions.

A natural extension of the above scheme is the choice of different periods
such as Γα 6= Γa. That may lead to quasi-periodic models and based on earlier
investigations [5, 7], instabilities can be expected in such systems.

An even more general case is the assumption of boundary conditions ran-
domly distributed in time. As mentioned, that situation resembles the mech-
anism which leads to the chaotic effects encountered in certain near-integrable
classical systems [1, 6, 11] and probably quantum manifestations of classical
chaos might be observed in a set-up with random boundary conditions. (See
[12, 13], where potentials with random time-dependence have been employed.)

Remark that the techniques applied in the sequel cover as well problems with
non-local kick conditions imposed periodically in time. A prominent example is
the kicked rotor model (or quantum standard map), for instance [5, 14], where
the condition Ψ(kΓ+, x) = exp

(
−iV (x)

)
Ψ(kΓ−, x) for all x ∈ S1, k ∈ Z

is imposed on the evolution of the quantum system under consideration. A
detailed discussion of the latter will appear somewhere else.

2 Extended Hilbert space dynamics

An appropriate frame for the study of (1.2) in case of a common period Γ of
boundary-oscillations, -conditions and external potentials is the so-called ex-
tended Hilbert space formalism, which provides a Hilbert space structure in the
time-variable as well [15]. (This idea is borrowed from the theory of dynamical
systems, where it runs under the notion extended phase space, [5] for instance.)

Introduce the extended Hilbert space H as the direct integral

H =

∫ ⊕
πΓ

dsH(s) (2.1)



EJDE–1998/20 Gunther Karner 5

with canonical norm ‖Ψ‖2H =
∫ Γ
0
ds ‖Ψ(s)‖2H(s), where H(s) ≡ L

2 (R+, dx),

πΓ :=
{
(0,Γ], s = 0 identified with s = Γ

}
. On H define the symmetric family

H(a) :=
{
H(a, s), s ∈ πΓ

}
by

H(a, s) = hc + v
(
s, ·+ a(s)

)
+ ä(s) x/2 (2.2)

where H(a, s) fulfills assumption (A1), i.e. the boundary perturbation is rep-
resented by a certain function a obeying (A1). In addition, introduce on H
the differential operators Ḋ = −id/ds ⊗ I and K̇(a) = Ḋ + H(a). The latter,
respectively its various self-adjoint realizations K(a, α), which are called Flo-
quet Hamiltonians, are the cornerstones in the investigation of the dynamical
structure of the models sketched by

{
(1.2), (A.1)− (A.3)

}
.

Self-adjoint realizations of H(a, s) are introduced as follows.

Lemma 2.1 (i) Assume (A1)-(A3) and define H(a, α, s) by

D (H(a, α, s)) =
{
Ψ ∈ H(s),H(a, α, s)Ψ ∈ H(s) :

Ψx/Ψ(s, x = 0) = α(s) a.e.
}

H(a, α, s) Ψ = H(a, s)∗ Ψ ∀Ψ ∈ D (H(α, s)) .

Then H(a, α) =
∫ ⊕
πΓ
ds H(a, α, s) and the fibers H(a, α, s) are self-adjoint

on H, respectively H(s).

(ii) The self-adjoint realization D of Ḋ is the closure of Ḋ when defined on
functions obeying the periodic boundary condition Ψ(Γ) = Ψ(0).

Proof The claims for H(a, α) and D follow from the direct integral structure.
The fibers H(a, α, s) are covered by the Sturm-Liouville theory. �
As stated in the introduction, the aim of this article is the classification of

boundary functions α which provide pure point evolution operators U(a, α; Γ, 0)
corresponding to the families

{
H(a, α, s), s ∈ πΓ

}
in presence of a given bound-

ary motion a. This task is simplified under the assumption that there exists
at least one self-adjoint Floquet Hamiltonian K0(a) with pure point spectrum
such that the corresponding propagator U0(a; t, 0) has time-bounded energy, see
Definition 1.2. Remark that the common opinion justifies that assumption in
the sense that most Floquet Hamiltonians in two dimensions are expected to be
pure point, see [5, 8, 9] for instance. In [1] a concrete example, for which the
following hypothesis is fulfilled, is presented.

Hypothesis 2.2 (A4) Assume the existence of a self-adjoint pure point Flo-
quet Hamiltonian K0(a) = D+ H0(a) ⊃ K(a) := D + H(a), where H0(a) is a
self-adjoint realization of H(a) defined in (2.2) and the corresponding propagator{
U0(a; t, s); (s, t) ∈ R2

}
is strongly differentiable with eigenvalues

{
εk/Γ, k ∈ K

}
obeying ε−1kn =

n→∞
o
(
n−1/2

)
for all sequences

{
kn, n ∈ N

}
of pair-wise different

elements of K. (See Definition 2.4 and Theorem 2.5 below.)
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In that case there is an entire family of self-adjoint Floquet Hamiltonians pa-
rametrized by the boundary functions α. (As the boundary motion a is fixed in
the sequel, the dependence on a is omitted for the rest of this section.)

Lemma 2.3 Assume (A1)-(A4) and define H(α) and D as in Lemma 2.1. Then
there exist self-adjoint Floquet Hamiltonians K(α) given by the operator closures
of K̇(α), which are defined as K̇(α) = D+ H(α) on D (D) ∩ D (H(α)).

Proof General principles [16] yield K ⊂ K0 ⊂ K∗, which implies that the
defect indices of K are equal and bigger than one [2]. Thus, among others, there
exists a family of self-adjoint extensions of K parametrized by α when the latter
is chosen according to (A3). Its elements are denoted by K(α) with

K(α)Ψ =
(
−i

∂

∂s
⊗ I+

∫ ⊕
πΓ

dsH(s)∗
)
Ψ

for all Ψ ∈ D
(
K(α)

)
. Obviously, K ⊂ K̇(α) ⊂ K(α) and the form of K(α) implies

that D
(
K(α)

)
and D

(
K̇(α)

)
are characterized by the same boundary conditions.

Hence, to every Φ ∈ D (K(α)) there exists a sequence
{
Ψn ∈ D

(
K̇(α)

)}
n∈N

such that Ψn
s
→ Φ and

{
‖K̇(α)Ψn‖H

}
n∈N

< M(Φ) < ∞, since no diverg-

ing contributions from different boundary values of Φ and Ψn arise. Thus,
K̇(α)Ψk

w
→ K(α)Φ for k →∞ follows.

Let ξ ∈ ker(K̇(α)∗ − z). Then
〈
K̇(α)∗ξ,Ψk

〉
H
=
〈
ξ, z Ψk

〉
H
=
〈
ξ, K̇(α)Ψk

〉
H

for all Ψk ∈ D(K̇(α)) implies
〈
ξ, [z − K(α)] Φ

〉
H
= 0 for all Φ ∈ D (K(α)).

Therefore, ξ ≡ 0 and K̇(α) has deficiency indices (0, 0). �

On account of Lemma 2.3 the Trotter product formula [2] applies:

exp (−iτ K(α)) = s− lim
n→∞

[
exp (−i Dτ/n) · exp (−i H(α)τ/n)

]n
(2.3)

and a straightforward calculation yields the existence and uniqueness of solu-
tions of the initial-boundary value problem {(1.2), (A.1)-(A.3)} as expressed in
the next theorem. Before that, however,

Definition 2.4 [15] A two-parameter unitary family
{
V(t, s); s, t ∈ R

}
is called

a propagator if, for all s, t ∈ R

(i) V(r, t) = V(r, s) V(s, t) (groupoid)

(ii) V(t, t) = I

(iii) V(t, s) is jointly strongly continuous in s and t.

The next statement connects Floquet Hamiltonians K(α) and propagators to
the corresponding Schrödinger equations.
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Theorem 2.5 Define K(α),D, and H(α, s) as in Lemmata 2.1 and 2.3. Then

exp (−iτ K(α)) = U(α, τ) exp (−iτ D)

with unitary multiplications U(α, τ) =
{
U(α; s+ τ, s) : τ ∈ R)

}
where the fibers

U(α; t, r) are part of the unique propagator to

i
U(α(t); t, r)Ψ(r)

dt
= H(α(t), t) U(α(t); t, r)Ψ(r)

In particular, exp (−i Γ K(α)) = U(α,Γ) for entire periods τ = Γ.

Proof Based on the shifts exp (−iτ D)Ψ(s) = Ψ(s−τ) and the direct integral
properties

[
exp (−iτ H(α)) Ψ

]
(s) = exp [−iτ H(α, s)] Ψ(s), a short evaluation

provides for almost every s ∈ πΓ
[
exp (−i Dτ/n) · exp (−i H(α)τ/n)

]n
Ψ(s)

=

n−1∏
k=0

exp
[
−i H

(
α, s− τ/(n− k)

)
τ/(n− k)

]
exp (−iτ D)Ψ (s). (2.4)

Hence, with (2.3) and the definition (2.1) of the norm on H

s− lim
n→∞

n−1∏
k=0

exp
[
−i H

(
α, · − τ/(n− k)

)
τ/(n− k)

]
= U(α; ·+ τ, ·)

almost everywhere. Differentiation onD(K̇(α)) shows that U(α; ·+τ, ·) solves the
given Schrödinger equation. The propagator properties of

{
U(α; t, r); t, r ∈ R

}
as stated in Definition 2.4 follow from the group structure of

{
exp (−iτ K(α)) , τ ∈

R
}
. (See [15] as well.) �

Remark Theorem 2.5 implies the spectral equivalence of K(α) and U(α; Γ, 0).
For instance, if λ ∈ σpp

(
K(α)

)
with corresponding Γ-periodic eigenfunctions Ψλ,(

exp (−i Γ K(α))Ψλ
)
(Γ) = exp (−i Γλ)Ψλ(0) = U(α; Γ, 0)Ψλ(0). (2.5)

Hence, it suffices to study the spectrum σ
(
K(α)

)
in order to understand the

dynamics of the models (1.2), (A.1)-(A.3), i.e. the stability of the system.
Having settled existence and uniqueness of solutions to (1.2), the next ques-

tion addresses the long-term behaviour of these solutions. On account of The-
orem 2.5 and (2.5), the latter is characterized by σ

(
K(α)

)
.

The determination of σ
(
K(α)

)
presented in the next section is based upon

the assumed properties of K0 as stated in (A4) and Krein’s formula [17] for the
resolvent difference of two distinct self-adjoint extensions of a given symmetric
operator. Thus, the spectral nature of K(α) is revealed through a comparison
between K(α) and the given operator K0 as a starting point. The confirmation
of the existence of such a reference system K0 in individual examples, such as
the kicked rotor or Pustylnikov’s model, is an independent problem left open in
this article. (See for instance [1, 5, 14].)
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3 Spectral properties of K(a, α), Krein’s formula

This section deals with the determination of σ
(
K(a, α)

)
for boundary motions

and functions (a, α) ∈ C3Γ(R) × C
1
Γ(R) in the sense that a pure-point reference

operator K0(a) is assumed to exist (Hypothesis A.4) and the operators K(a, α)
are determined through alterations of the boundary functions α in presence of
the common boundary motion a.
The technical instrument employed is Krein’s formula. According to [17],

the latter is introduced as follows: Denote by k̇(a) the maximal symmetric
common part of the operators K(a, α) and K0(a) as defined in Lemma 2.3 and
Hypothesis 2.2 respectively. (I.e. k̇(a) is an extension of every k ⊂ K(a, α) and
k ⊂ K0(a), in particular of K(a) defined in (A4).) Introduce an orthonormal
basis {Φk(a, z), k ∈ K} of the (infinite-dimensional) Hilbert space ker(k̇∗(a)−z).
(Relevant properties of such a basis are discussed in the Appendix, see Lemma
A.1.) Then Krein’s formula for the resolvent difference between K(a, α) and
K0(a) is given by

(K(a, α)− z)−1 f = (K0(a)− z)
−1
f +
∑
k

∑
l

λkl(a, α, z)
〈
Φl(a, z), f

〉
H
Φk(a, z)

(3.1)

for all f ∈ H and =z 6= 0. The coefficients λkl(a, α, z) are uniquely determined
by the domain properties of K(a, α) and K0(a) as well as the choice of the basis{
Φk(a, z), k ∈ K

}
. In particular,

λkl(a, α, z) =

〈
Φk(a, z),

[
(K(a, α)− z)−1 − (K0(a)− z)

−1]
Φl(a, z)

〉
H

. (3.2)

(More information concerning λkl(a, α, z) is contained in the Appendix. Merely

remark that
[
(K(a, α)− z)−1 − (K0(a)− z)

−1]
g ≡ 0 for all g ∈ ran(k̇(a) − z),

see [17] for a proof.) In the determination of the spectral properties of K(a, α),
Krein’s formula is useful in conjunction with the following result going back to
de la V allèe Poussin. (Whenever obvious, the dependence on a is suppressed
in the sequel.)

Proposition 3.1 Define K(α) as in Lemma 2.3 and denote by %ac (K(α), φ) the
absolutely continuous spectral measure associated with φ and by %sing (K(α), φ)
the singular measure. Introduce

Ssing(α, φ) :=
{
y ∈ R : lim

ε↓0
=
(〈
φ, (K(α)− y − iε)−1 φ

〉
H

)
=∞

}

and

Sac(α, φ) :=
{
y ∈ R : lim

ε↓0
=
(〈
φ, (K(α)− y − iε)−1 φ

〉
H

)
= ξ(y) 6= 0

}
.

Then
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(i) supp
(
%sing (K(α), φ)

)
= Ssing(α, φ)

(ii) supp
(
%ac (K(α), φ)

)
⊃ Sac(α, φ), |supp

(
%ac (K(α), φ)

)
| = |Sac(α, φ)|

(iii) Sac(α, φ) ∩ Ssing(α, φ) = ∅.

(For a proof see [18, 19], for instance.) As demonstrated in the sequel, (3.1)
and Proposition 3.1 are cornerstones in the determination of σ

(
K(α)

)
.

The first in a series of statements on the spectral properties of K(α) concerns
the absence of absolutely continuous spectrum. The following Theorem 3.2
provides a sufficient condition for σac

(
K(α)

)
= ∅ in terms of the behaviour

of the functions
(
αΦk −

∂Φk
∂x

)
(z; ·, x = 0). In most cases, however, the latter

cannot be explicitly determined. Therefore, Proposition 3.4 below relates the
above features to the reference spectrum σpp

(
K0
)
and it turns out that a finitely

degenerate σpp
(
K0
)
is sufficient for σac

(
K(α)

)
= ∅ for all α ∈ C1Γ(R). (The point

spectrum σpp
(
K0
)
is defined as the (in general R-dense) set of eigenvalues of

K0.) Note that the resolvent difference in (3.1) in general is not trace class.
Therefore, the Birman-Krein argument cannot be used to deduce σac

(
K(α)

)
= ∅

from the emptiness of σac
(
K0
)
. (The method of trace class differences between

the resolvents or Floquet operators of pure point reference operators and the
(spectrally) unknown operators has been used in [8, 18], for instance.)

Theorem 3.2 Define K(α) by Lemma 2.3, assume (A1)-(A4) and

∣∣(α Φk − ∂Φk
∂x

)
(z; s, x = 0)

∣∣ > 0
for all k ∈ K\Kf , where the set Kf is finite, all s ∈ πΓ, <z /∈

{(
σsc ∪

σpp
)(
K(α)

)
∪ σpp

(
K0
)}
and 0 ≤ =z ≤ c for some c > 0. (Here {Φk(z), k ∈ K}

is an orthonormal basis of ker(k̇∗ − z) in the sense of Lemma A.1.) Then K(α)
is purely singular, i.e.

σac
(
K(α)

)
= ∅.

Proof Let z = y + iκ, κ 6= 0 and y /∈ σpp
(
K0
)
. At first, note that χl(α, z) :=

(K(α)− z)−1Φl(z) and χl,0(z) := (K0 − z)
−1
Φl(z) are elements of D (H(α))

and D (H0), respectively, as seen from the following: (Formal) application of
−i∂t on (K(α)− z)χl(α, z), (A1) and Lemma A.1 (i) yield

−i∂tχl(α, z) = (K(α)− z)
−1
{
−i∂tΦl(z) +

(
ix
...
a (t)/2 + ivt(t)

)
χl(α, z)

}
∈ H.

Now the claim follows with Lemma 2.3 and Hypothesis2.2. Therefore, with (3.1),
both

∑
k λkl(α, z)Φk(z)

∣∣
x=0
and ∂

∂x

(∑
k λkl(α, z)Φk(z)

)∣∣
x=0
are well-defined and
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for all f ∈ linspan
{
Φl(z), l ∈ L

}
, Krein’s formula (3.1) implies

∑
l

{
∂

∂x

(
(K0 − z)

−1
Φl(z)

)∣∣∣∣
x=0

− α (K0 − z)
−1
Φl(z)

∣∣
x=0

}〈
Φl(z), f

〉
H

=
∑
l

{
Ψl(z, α

}∣∣
x=0

〈
Φl(z), f

〉
H

(3.3)

=
∑
l

{
α

(∑
k

λkl(α, z)Φk(z)

)∣∣∣∣
x=0

−
∂

∂x

(∑
k

λkl(α, z)Φk(z)

)∣∣∣∣
x=0

}
×

〈
Φl(z), f

〉
H
. (3.4)

As f is arbitrary from a dense subset of ker
(
k̇∗− z

)
, the equality of the expres-

sions in the parenthesis follows for all κ 6= 0.
The existence of lim

κ→0
Ψl(y ± iκ, α)

∣∣
x=0
=: Ψl(y, α)

∣∣
x=0
for all l ∈ K is de-

duced as follows: Lemma A.2 provides the existence of s− lim
= z→0

(K0 − z)
−1
Φl(z).

(Lemma A.2 applies in particular in case of dense σpp
(
K
)
. For discrete, how-

ever infinitely degenerate, eigenvalues of K0 the statement is obvious.) Together

with the absolute continuity of (K0 − z)
−1
Φl(z) for all κ 6= 0 the latter im-

plies for all s ∈ πΓ the existence of lim
= z→0

(K0 − z)
−1Φl(z)

∣∣
x=0
as well as of

lim
= z→0

(
∂
∂x (K0 − z)

−1
Φl(z)

∣∣
x=0

)
. Thus, with (3.3)

Ψl(y, α; s)
∣∣
x=0

= lim
= z→0

{
α(s)

(∑
k

λkl(α, z)Φk(z)

)
(s, x = 0)−

−
∂

∂x

(∑
k

λkl(α, z)Φk(z)

)
(s, x = 0)

}

and with Lemma A.3 (i), that becomes

Ψl(y, α; s)
∣∣
x=0

= lim
= z→0

∑
k∈K

λkl(α, z)

(
α(·)Φk(z)−

∂Φk(z)

∂x

)
(s, x = 0)

= lim
= z→0

SK,l(α, z, s)

for all s ∈ πΓ and l ∈ K.
Now restrict to y /∈

{(
σsc ∪ σpp

)(
K(α)

)
∪ σpp

(
K0
)}
. Then, with Lemma A.1

(i), (ii) and Lemma A.3 (ii),

lim
= z→0

SKf ,l(α, z, s) =
∑
k∈Kf

λkl(α, y)

(
αΦk(y)−

∂Φk(y)

∂x

)
(s, x = 0) (3.5)

follows for all finite subsets Kf ⊂ K. Thus,

lim
= z→0

(
SK,l(α, z, s)− SKf ,l(α, z, s)

)

= lim
= z→0

∑
k∈K\Kf

λkl(α, z)

(
αΦk(z)−

∂Φk(z)

∂x

)
(s, x = 0) (3.6)
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exists for all s ∈ πΓ, l ∈ K and Kf ⊂ K. Together with the properties of
{Φk(z), k ∈ K} described in Lemma A.1 (iii), (3.6) yields
lim
= z→0

∑
k∈K\Kf

|λkl(α, z)| ∈ R for all Kf ⊂ K and with Lemma A.3 (i) the uni-

form boundedness in Kf of the latter follows. Hence, lim
= z→0

∑
k∈K |λkl(α, z)| ≥∑

k∈K |λkl(α, y)| results, i.e.
{
λkl(y), k ∈ K

}
∈ `2 for all l ∈ K. Now, with

Lemma A.3 (iii), σac
(
K(α)

)
= ∅ is implied. �

Theorem 3.2 demonstrates that the non-resonant behaviour of infinitely
many Φk(z) in some neighborhood of the real axis essentially causes the ab-
sence of σac

(
K(α)

)
. That statement is underlined by the following example of a

Floquet Hamiltonian
(
K(α)

)
with non-empty absolutely continuous spectrum.

The latter is essentially caused by resonances between some H(α, s) and H0(s),
due to the specific form of the boundary function α, and occurring away from
a set ε0(α) ⊂ πΓ where H(α, s) = H0(s) is possible.

Theorem 3.3 Define K(α) by Lemma 2.3, assume (A1) - (A4) and, in addi-
tion, H(α, s) 6= H0(s) on πΓ\ε0(α) as well as the presence of (at most) countable
sets D(α, y) ⊂ πΓ, with D(α, y) ∩ ε0(α) = ∅, and intervals A(α) = [a, b]. If

α(s) Φk(y; s, x = 0) =
∂Φk
∂x

(
y; s, x = 0).

for each s ∈ D(α, y), y ∈ A(α) and k ∈ K, then σac
(
K(α)

)
⊃ A(α).

Proof At first, remark that A(α) ∩ σpp
(
K(α)

)
= ∅ on account of the reso-

nance condition since eigenfunctions ξj of K(α) obey the boundary conditions

αξj
∣∣
x=0
=
∂ξj
∂x

∣∣
x=0
everywhere, which contradicts the countability of D(α, y).

Choose y ∈ A(α) such that y /∈
{
σsc
(
K(α)

)
∪σpp

(
K0
)}
and assume

{
λkl(α, y) =

lim
=z→0

λkl(α, z)
}
k∈K
∈ l2 for all l ∈ K. As the latter implies with Lemma A.3 (iii

a) that y /∈ σac
(
K(α)

)
, dist

(
σ
(
K(α)

)
, y
)
> ε for some ε > 0 follows. Therefore,

with (3.1) and Lemma A.2,
∑
k∈K λkl(α, z)Φk(z)

s
→
=z→0

∑
k∈Kf

λkl(α, y)Φk(y)

for all l ∈ K and with the smoothness properties described in the proof of
Lemma A.3 (i), respectively the resonance condition

α(ŝ) lim
=z→0

∑
k∈K

λkl(α, z)Φk(z)(ŝ, x = 0)

= α(ŝ) lim
Kf→K

∑
k∈Kf

λkl(α, y)Φk(y, ŝ, x = 0)

= lim
Kf→K

∂

∂x

∑
k∈Kf

λkl(α, y)Φk(y, ŝ, x = 0)

=
∂

∂x

∑
k∈K

λkl(α, y)Φk(y)(ŝ, x = 0)

= lim
=z→0

∂

∂x

∑
k∈K

λkl(α, z)Φk(z)(ŝ, x = 0)
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results for all ŝ ∈ D(α, y). Hence, with the definition of SK,l(z, α, ŝ) from
Theorem 3.2

lim
=z→0

SK,l(z, α, ŝ) = 0

for all ŝ ∈ D(α, y). However, in contradiction, the assumption H(α, s) 6= H0(s)
on D(α, y), (3.3) and (3.4) yield that lim

=z→0
SK,l(z, α, s) 6= 0 on D(α, y). There-

fore, Lemma A.3 (iii) implies that y ∈ A(α) is an accumulation point of σ
(
K(α)

)
.

Now σac
(
K(α)

)
6= ∅ follows from the closedness of σsc

(
K(α)

)
. �

Hence, the resonance condition αΦj(y)
∣∣
x=0
=
∂Φj(y)
∂x

∣∣
x=0
on some (count-

able) subset of πΓ indeed has a decisive influence on the nature of σ
(
K(α)

)
.

(The countability is necessary since certain eigenfunctions of K(α) may fulfill

αξj
∣∣
x=0
=
∂ξj
∂x

∣∣
x=0
on some interval B(α, y) and αξj

∣∣
x=0
=
∂ξj
∂x

∣∣
x=0
= 0 on

πΓ\B(α, y).) Unfortunately, this condition is hard to verify in explicit exam-
ples. Therefore, a connection between the defect functions Φk(z) and the given
structure of σpp

(
K0
)
is desirable. The next statement provides such a relation-

ship.

Proposition 3.4 Define K(α) by Lemma 2.3 and assume (A1)–(A4). If K0 is
pure point with finitely degenerate eigenvalues, then there is a non-resonant set
of defect functions

{
Φk(y), k ∈ K

}
, with the properties described in Lemma A.1,

for all y ∈ R, i.e. the assumptions of Theorem 3.3 are nowhere fulfilled.

The proof of Proposition 3.4 is part of the Appendix. As infinite degeneracy
of σpp

(
K0
)
is not the rule, the appearance of absolutely continuous K(α) can be

seen as exceptional. (See below.) However, the set of exceptional realizations
might be considerable. For example, any Γ = 2π(p/q) with (p, q) ∈ N2 in the
kicked rotor model (mentioned at the end of Section 1) yields pure absolutely
continuous Floquet operators, see [14] for instance.
It remains to determine a distinction between the singular operators K(α).

To this end, introduce

Hypothesis 3.5 (A5) Assume that there is a sequence of pairs (aj , αj) →
j→∞

(a, α) in C3Γ(R)× C
1
Γ(R) obeying (A1) and (A3) for each j ∈ N such that

(i) [
αj(ŝ) Φk(y, aj ; ŝ)−

∂Φk
∂x

(
y, aj ; ŝ)

]∣∣
x=0
= 0

for infinitely many k ∈ K(j, ŝ), ŝ ∈ D(αj), y ∈ A(αj) and all j ∈ N.

(ii) [
αj(s) Φk(y, a; s)−

∂Φk
∂x

(
y, a; s)

]∣∣
x=0
= 0

for finitely many k ∈ K(s), all s ∈ πΓ and y ∈ R. (Here {Φk(z, a), k ∈
K} and {Φk(z, aj), k ∈ K} are orthonormal basis of ker(k̇∗(a) − z) and
ker(k̇∗(aj)− z) respectively, see Lemma A.1.)
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(iii) (
K0(aj)− z

)−1
Φl(aj , z)

∣∣
x=0

s
→
j→∞

(
K0(a)− z

)−1
Φl(a, z)

∣∣
x=0

exists for all =z 6= 0.

The idea behind (A5) is to characterize certain singular continuous Floquet
Hamiltonians K(a, α) as limiting cases of sequences of pure absolutely continuous
operators K(aj , αj).

Theorem 3.6 Define K(a, α) by Lemma 2.3, assume (A1)-(A5) and, in par-
ticular, that σ

(
K(aj , αj)

)
= σac

(
K(aj , αj)

)
for all j ∈ N. Then σ

(
K(a, α)

)
=

σsc
(
K(a, α)

)
iff the following condition is fulfilled:

lim
j→∞
Ψl(y ± iε, aj, αj ; s)

∣∣
x=0
= Ψl(y ± iε, a, α; s)

∣∣
x=0

(C)

is uniform in ε ≥ 0, y /∈ ∪
j∈N

σpp
(
K0(aj)

)
, s ∈ πΓ and l ∈ K. (See (3.3) for the

definition of Ψl(z, a, α).)

Proof (i) Theorem 3.2 and (A5) imply that K(a, α) is pure singular. Condition
(C), respectively (3.3) provides that the sequence

{∑
k∈K

λkl(aj , αj; z)
[
αjΦk(aj , z)−

∂Φk
∂x
(aj , z)

]

−λkl(a, α; z)
[
αΦk(a, z)−

∂Φk
∂x
(a, z)

]}
j∈N

is uniformly in =z ≥ 0, respectively =z ≤ 0, convergent for all s ∈ πΓ and
y /∈ ∪j∈Nσpp

(
K0(aj)

)
. Together with the assumption of absolutely continu-

ous K(aj , αj) the above yields a s-dependent divergence rate of the sequence{∑
k∈K λkl(a, α, z)Φk(a, z)

}
, whereas by assumption

lim
=z→0

∑
k∈K λkl(aj , αj , z)Φk(aj , z) exists for all s /∈ D(αj) (See also Lemma A.3

(iv).) These features exclude σpp
(
K(a, α)

)
6= ∅, since in that case the existence

of Ψl(z, a, α) in the limit =z → 0, with <z := Eĵ , would origin from s-constant

cancellations between the diverging functions α
(
Eĵ − z

)−1〈
ξĵ ,Φl(z)

〉
H
ξĵ and(

Eĵ−z
)−1〈

ξĵ ,Φl(z)
〉
H

∂ξĵ
∂x
, with

(
Eĵ, ξĵ

)
a certain eigenvalue/function of K(a, α).

If condition (C) is violated, remark that
{
Ψl(y, aj , αj), j ∈ N

}
is unbounded

everywhere on account of (A5), (iii). In addition, if K(a, α) is pure singular
continuous, ker(K(a, α) − y) = ∅. Thus, none of the cancellation mechanisms
of part (i) applies, whereas (3.4) is supposed to hold for all y /∈ σpp

(
K0(a)

)
.

However, as some of the sequences
{∑

k∈K λkl(a, α, z)Φk(a, z)
}
are diverging

for =z → 0, see Lemma A.3 (iv), this requirement cannot be fulfilled for all
y /∈ σpp

(
K0(a)

)
and l ∈ K. �

The mechanism generating singular continuous Floquet Hamiltonians as de-
scribed above seems to be present in the kicked rotor models, whenever irra-
tional periods Γ of Liouville type are approximated by sequences of rationals,
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see [14]. However, the more general investigation in [21], which uses Baire
category arguments, indicates that the occurrence of singular continuous quasi-
energies is more frequent and caused as well by conditions different from the
one given in Theorem 3.6. Therefore, as a natural question, the size of the
set of boundary perturbations which provide the stability of generic systems{
(1.2), (A.1)− (A.3)

}
, i.e. in situations where the assumptions of Theorem 3.6

do not hold, has to be addressed.
The presence of absolutely continuous K(a, α) seems basic to the existence

of singular continuous Floquet Hamiltonians - which is obvious in the above
discussion, however, Baire category arguments such as in [21] indicate that
this is a more general statement. Hence, the size of the set of (un-)stable pairs
(a, α) is connected to the (in-)finite degeneracy of σpp

(
K0(a)

)
and the resonance

condition of Theorem 3.3. The proof of Proposition 3.4 gives a vague idea of that
relationship, in particular (4.1) and (4.2), however, more detailed information
(as for quantum twist maps, see [14, 21]) is hard to obtain as long as no precise
knowledge of the defect functions

{
Φk(z)

}
is available. Yet, it should be noted

that the influence of the boundary at x = 0 can be (partially) circumvented
(in an unphysical way) by introducing a Hilbert space H =: L2 (R+)⊕L2 (R+)
and defining a self-adjoint momentum operator on H. Then the generator iP of
unitary shifts on H can be introduced by

P =

(
−i ∂
∂x

0
0 i ∂

∂y

)

with domain

D (P) =

{
Ψ =

(
ψ+

ψ−

)
: ψ+, ψ−absolutely continuous,ψ+(x = 0) = ψ−(y = 0)

}
.

In the same way a Laplacian P2 is introduced. In [1] this idea has been applied to

the case ofHc = −
d2

dx2
+x, where it turns out that no infinitely degenerate K0(a)

exists for all a ∈ C3Γ(R) as long as |ä(t)| < 2 everywhere. It is conceivable that
this method can be extended to the corresponding class of potential introduced
in [9], thus providing a pool of pure point reference systems as well as estimates
on the size of any exceptional set.
Finally, remark that the presence of singular continuous K(a, α) as indicated

by Hypothesis 3.5 and Theorem 3.6 seems to be very unstable to independent
alterations of a, respectively α, since the defect functions

{
Φk(z)

}
do not depend

on the boundary function α, whereas the resonance condition in Theorem 3.3
combines influences from a and α.
As a concluding observation, note that generic (i.e. pure point) systems are

indeed stable:

Proposition 3.7 Define K(a, α) and U(a, α; Γ, 0) as in Lemma 2.3 and The-
orem 2.5, respectively, and choose (a, α) generic. Then H(a, α, 0) has time-
bounded energy in the sense that

sup k ∈ N

∣∣∣∣〈U(a, α; kΓ, 0)φ0,H(a, α, 0) U(a, α; kΓ, 0)φ0〉H(t=0)
∣∣∣∣ <∞
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for all φ0 ∈ linspan
{
ψj = eigenfunctions to U(a, α; Γ, 0)

}
.

Proof The eigenfunctions to K(a, α) are given by

{
Ψj(a, α; s, x) = exp

(
iλj(s− s

′)
)(
U(a, α; s, s′)ψj

)
(x), j ∈ J

}
,

see [15]. Thus, U(a, α; kΓ, 0)ψj ∈ D
(
H(a, α, 0)

)
for all (j, k) ∈ J × N and

H(a, α, 0) + c is non-negative for sufficiently large c. That implies

‖
(
H(a, α, 0) + c

)1/2
U
(
a, α; kΓ, 0)φ0‖

= ‖
∑
j∈J

exp
(
iλjkΓ

)
〈φ0, ψj〉

(
H(a, α, 0) + c

)1/2
ψj‖

≤
∑
j∈J

|〈φ0, ψj〉|‖
(
H(a, α, 0) + c

)1/2
ψj‖ <∞

for all φ0 ∈ linspan
{
ψj , j ∈ J

}
. �

4 Appendix

The Appendix contains a collection of auxiliary statements employed in the
proofs of the main results in Section 3. (The dependence on the boundary
motion a is suppressed.)

Lemma A. 1 Assume (A1)-(A4), define k̇ as the maximal symmetric common
part of the operators K(α) and K0 as well as Ḣ to be the the maximal common
part of H(α) and H0. Then there exists an orthonormal basis {Φk(z), k ∈ K} of
ker(k̇∗ − z) such that

(i) Φk(y ± iε) ∈ D(D) ∩ D(Ḣ∗) ∀ε ≥ 0.

(ii) Φk(y ± iε)
s
→ Φk(y)

(iii) Does not exist a sequence of pairwise different elements {kj , j ∈ N} such
that

[
α(s) Φkj (y ± iε; s)−

∂Φkj
∂x

(
y ± iε; s)

]∣∣
x=0

→
j→∞

0 for all s ∈ πΓ, ε > 0 .

Proof (i) The operator k̇∗ is bounded on the Hilbert space ker(k̇∗ − z) and
(D(D)∩D(Ḣ∗))∩ker(k̇∗−z) forms a core. Thus, as a pre-Hilbert space, the latter
contains an orthonormal basis of ker(k̇∗−z), which is denoted by {Φk(z), k ∈ K}
in the sequel.
(ii) Let fker(z) be the orthogonal projection of f ∈ H onto ker(k̇∗ − z).

As ϕ(z)
s
→ ϕ(<z) for all ϕ(z) ∈ ran

(
k − z̄

)
, fker(z)

s
→ fker(<z) for =z → 0

follows. Hence, the projections obey 〈f,Φk(z)〉H → αk(f) for =z → 0 and
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from ‖Φk(z)‖H = 1 for all =z > 0,αk(f) = 〈f, χk(<z)〉H results, i.e. Φk(z)
w
→

χk(<z). Now, from

0 = 〈ker
(
k̇ − z

)
ξ,Φk(z)〉H →

Imz→0
0 = 〈ξ, ker

(
k̇∗ − z

)
χk(<z)〉H

for all ξ ∈ D
(
k̇
)
, the identification χk(<z) ≡ φk(<z) follows.

To prove strong continuity, introduce k as k := k̇ � C∞0
(
(0,Γ)× (0,∞)

)
,

which implies k̇∗ ⊂ k∗ see [14]. An orthonormal basis of ker(k∗ − z) is formed
by
{
ξn(z; s, x) = c(z) exp(izs) U0(s, 0) φn(x), n ∈ N

}
, where

{
φn, n ∈ N

}
is

the complete set of eigenfunctions to the Floquet operator U0(Γ, 0) introduced
in (A4), see also [13], and c(z) is the normalization.
Obviously, s− lim

=z→0
ξn(z) = ξn(<z) and {Φk(z), k ∈ K} ⊂ ker (k∗ − z).

Therefore,
∑
n∈Nf

|〈ξn(z),Φk(z)〉H|2 →
∑
n∈Nf

|〈ξn(<z), χk(<z)〉H|2 for all (fi-

nite) subsets Nf ⊂ N and the convergence rate is N -uniform on account of the
form of all ξn(z). Thus, ‖Φk(z)‖H → ‖χk(<z)‖H.
(iii) Remark that merely eigenfunctions ξ(α, y) to some K(α) obey

[
αξ(y)−

∂ξ
∂x(y)

]∣∣
x=0
= 0 for all s ∈ πΓ and y ∈ σpp

(
K(α)

)
. In addition, Φk(z)

∣∣
x=0
and

∂Φk
∂x (z)

∣∣
x=0
cannot converge simultaneously to zero since only χ ∈ D

(
Ḋ
)
∩D
(
H
)

obeys χ
∣∣
x=0
= ∂χk

∂x

∣∣
x=0
= 0, see (2.2). �

Lemma A. 2 Define K0 as in Hypothesis 2.2 and {Φk(z), k ∈ K} as in Lemma

A.1. Then s− lim
=z→0

(
K0 − z

)−1
Φl(z) :=

(
K0 − <z

)−1
Φl(<z) exists for all <z /∈

σpp
(
K0
)
and (k, l) ∈ K2.

Proof Using the Floquet representation of the propagator U0(s, 0) introduced
in (A4), i.e. U0(s, 0) = P0(s) exp

(
−isG0)

)
with self-adjoint G0 and strongly

differentiable family
{
P0(s), s ∈ [0,Γ]

}
obeying P0(0) = P0(Γ) = I, the eigen-

functions of K0 are represented by

{
ξγ
(
Eγ ; s, x

)
= Γ−1/2 exp(2πijs/Γ) P0(s) φk(x), γ := (j, k) ∈ Z×K

}
.

(Here
{
φk, k ∈ K

}
is the set of normalized eigenfunctions to G0.)

Let y := <z /∈ σpp
(
K0
)
. As λk := Eγ − 2πij/Γ ∈ σ

(
G0
)
is of order o

(
k−1/2

)
by assumption (A4), the convergence of

{∥∥(K0 − z)−1Φl(z)∥∥,=z ≥ 0} follows
with Theorem 3.1 from [19] and Lemma A.1, since both together imply

∑
j∈Z

sup
k∈K

((
2πj/Γ− y

)
λk
−1 + 1

)−2
sup
k∈K

∣∣〈ξ(j,k),Φl(y)〉H
∣∣2 <∞.

In addition,
〈
χ, (K0 − z)

−1
Φl(z)

〉
H
→
〈
χ, (K0 − y)

−1
Φl(y)

〉
H
for =z → 0 and

all χ ∈ linspan
{
ξγ
}
. �
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Lemma A. 3 Define λkl(α, z) by (3.2), K(α) as in Lemma 2.3 and assume
(A4).

(i) Let =z 6= 0. Then
{
λkl(α, z), k ∈ K

}
∈ `1.

(ii) If y := <z /∈ S(α) :=

{(
σpp∪σsc

)
(K(α))∪σpp (K0)

}
then lim

=z→0
λkl(α, z) :=

λ(α, y) ∈ C.

(iii) Let y /∈ S(α).

(a) If
{
λkl(α, y), k ∈ K

}
∈ l2 for all l ∈ K, then y /∈ σac (K(α)).

(b) If
{
λkl(α, y), k ∈ K

}
/∈ l2 for some l ∈ K, then y is an accumulation

point of σ (K(α)).

(iv) Let y ∈ σsing (K(α)) and y /∈
{
σac (K(α)) ∪ σpp (K0)

}
. Then

{
λkl(α, z)

}
diverges to infinity for some (k, l) ∈ K2.

Proof (i) From (3.1) and the first part of the proof of Theorem 3.2 it follows
that

{
λkl(α, z), k ∈ K

}
∈ `2 and

∑
k∈K λkl(α, z)Φk(z) is absolutely continuous

w.r.t. s ∈ πΓ and H22 w.r.t. x ∈ R
+. Therefore,

lim
Kf→K

[ ∑
k∈K\Kf

λkl(α, z)Φk(z)
]
(s, x) = 0

for all (s, x) ∈
(
πΓ,R

+
)
. This fact and the absolute continuity of

∂/∂x
[∑

k∈K\Kf
λkl(α, z)Φk(z)

]
for allKf provide that

∑
k∈K λkl(α, z)Φk(z, s, x =

0) and
∑
k∈K λkl(α, z)

∂Φk
∂x
(z, s, x = 0) exist. Now the claim follows by applying

the arguments used in the Proof of Lemma A.1 (iii) to
∑
k∈K λkl(α, z)

(
αΦk(z)−

∂Φk
∂x (z)

)
(s, x = 0).

(ii) Define ϕk(z) := Pac(α)Φk(z), with Pac(α)H = Hac (K(α)) and let
µkl(α, z) :=

〈
ϕk(z), (K(α)− z)

−1
ϕl(z)

〉
H
. Spectral and Radon-Nikodym theo-

rems imply

µkl(α, z) =

∫
R

(
λ− z

)−1
d
〈
ϕk(z), Eac(α, λ)ϕl(z)

〉
H

=

∫
R

(
λ− z

)−1
fkl(α, λ, z) dλ

with integrable, non-negative fkl(α, z) → fkl(α, y) a.e. on account of Lemma
A.1 (ii). That information and the distributional limit

lim
ε↓0

(
λ− y − iε

)−1
= P
(
(λ− y)−1

)
− iπδ(λ− y)

where P(·) is Cauchy’s principal value and δ the Dirac distribution. [20], for
example, demonstrates the existence of lim

ε↓0
µkl(α, y + iε). The existence of the

remaining limits

lim
ε↓0

{〈
ϕk(z)

⊥, (K(α)− z)−1 ϕl(z)
⊥
〉
H
−
〈
Φk(z), (K0 − z)

−1
Φl(z)

〉
H

}
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respectively lim
ε↓0

λkl(y + iε) in case of y /∈ σac (K(α)) ∪ S(α, 0) are implied by

Proposition 3.1. An analogue procedure applies to =z ↑ 0.
(iii) (a) Equations (3.1), (3.2), Lemma A.2 and the assumption imply that

lim
=z→0

∥∥(K(α) − z
)−1
Φl(z)

∥∥
H
exists. Now the claim follows with the spectral

theorem, see part (ii).
(iii) (b) In this case the corresponding assumption implies∥∥(K(α)− z)−1Φl(z)∥∥H →∞, i.e. dist

(
z, σ (K(α))

)
→ 0 for =z → 0.

(iv) Let y ∈ σsing (K(α)) and ξk(y) := Psc(α)Φk(y) with ξk(y) 6= 0. Then

the claimed
〈
ξk(y), (K(α)− y − iε)

−1
ξl(y)

〉
H
→
ε↓0
∞ is implied by spectral rep-

resentation, polarization identity, Proposition 3.1 and Lemma A.1 (ii) �

Finally, as the last statement of the Appendix, the Proof of Proposition 3.4,
which has been omitted in the main text.

Proof of Proposition 3.4 Let U0(s, 0) and B0 :=
{
ξγ , γ ∈ Z×N

}
be as in

the Proof of Lemma A.2 and expand Φk(y)−
∂Φk
∂x (y) into the orthonormal basis

B0. As P0(s) is strongly differentiable by assumption and Φk(y),
∂Φk
∂x (y) ∈

D(D) according to Lemma A.1,

∂

∂s

(
αΦk(y)−

∂Φk
∂x
(y)
)
=

[
α̇ Φk +

2πi

Γ

∑
γ=(j,k)

j
(
α〈ξγ ,Φk〉H − 〈ξγ ,

∂Φk
∂x
〉H
)
ξγ

+
∂P0(s)

∂s
[P0(s)]

−1
(
αΦk(y)−

∂Φk
∂x

)]
(y).

Now assume
(
αΦk(ŷ)−

∂Φk
∂x
(ŷ)
)∣∣
x=0
(ŝ) = 0 for some ŝ ∈ πΓ, ŷ ∈ R and infinitely

many k ∈ K̂. Then the above yields

∂

∂s

(
αΦk −

∂Φk
∂x

)∣∣
x=0
(ŷ, ŝ) = ∆k 6= 0 (4.1)

with ∆ki 6= ∆kj for infinitely many pairwise different (i, j) ∈ N
2, since otherwise

α̇+ α 2πj/Γ = 〈ξγ ,
∂Φk
∂x
〉H
[
〈ξγ ,Φk〉H

]−1
(4.2)

respectively Φk replaced by Φki − Φkj , for all γ and k ∈ K̂. Now the claim
follows from contradiction with the implicit function theorem, which implies
that the locations of the zeroes of

(
αΦk(y)−

∂Φk
∂x (y)

)∣∣
x=0
(s) are k-dependent.
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