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Abstract

In this work we study the Cauchy problem for a class of nonlinear dissipative equa-

tions of Benjamin-Bona-Mahony’s type. We discuss the existence of a global attractor

and estimate its Hausdorff and fractal dimensions.

§1. Introduction

We consider a family of dispersive equations of Benjamin-Bona-Mahony’s type
under the effect of dissipation, and we study the existence of a global attractor and
its dimension. Our model can be written in the abstract form

Mut + ux + uux + αLu = f (1.1)

where −∞ < x < ∞, t ≥ 0 and α ≥ 0. The operators M and L can be differ-
ential operators or pseudo-differential operators, and the function f is an external
excitation.

In the simplest case, whenM and L are the differential operators M = I− ∂2

∂x2
,

L = − ∂2

∂x2
, the equation (1.1) is the well-known Benjamin-Bona-Mahony model,

which describes the unidirectional propagation of weakly nonlinear dispersive long
waves where Burger’s type dissipation is considered.

If f ≡ 0, the existence of global solutions and asymptotic behaviour in time have
been studied by several authors. The asymptotic behavior of solutions to the gen-
eralized Korteweg-de-Vries-Burgers and Benjamin-Bona-Mahony-Burgers equations
in one space dimension was studied by Amick, Bona and Schonbek in [3], by B. Wang
and W. Yang in [13], and by Bona and Luo in [7]. These results were generalized
by Zhang [14] to multiple spatial dimensions. In [4], [5], [6] the authors consid-
ered a family of equations of KdV and BBM’s type described by pseudo-differential
operators, and studied the asymptotic behaviour in one space dimension.

In [8], Ghidaglia showed that the behaviour of the periodic solution of the KdV
equation is described by a global attractor that has finite Hausdorff and fractal
dimensions. The author obtained similar results for the Schrödinger equation in [9].

The aim of this work is to investigate the existence of a global attractor and
estimate its dimension, using the techniques of [8], [9] and [10]. More specifically,
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we consider the solutions of (1.1) that are periodic in the spatial variable, that is,
solutions u(x, t) such that

u(x+ β, t) = u(x, t) (1.2)

where β is a real number. In the case that the external excitation f is independent
of time, and the orders of pseudo-differential operators M and L are µ and s with
s ≥ µ ≥ 2, we show that the behaviour, for large t, of the infinite dimensional
dynamical system (1.1) is, in fact, described by an attractor of finite dimension.

In [11] B. Wang proved the existence of a weak attractor which is also strong,
working directly with the BBM equation in H2. In [12], the same author proved the
existence of a global attractor for the generalized Benjamin-Bona-Mahony equation
in Hk for every integer k ≥ 2. He also proved that the attractor has finite Hausdorff
and fractal dimensions, and constructed approximate inertial manifolds. Here, we
consider a family of dispersive equations of BBM’s type, and we present a proof that
applies in an abstract context which includes the BBM equation. We also prove that
the Hausdorff dimension is finite.

We shall use standard notation. By Lq(Ω) we shall denote the space of functions
in Ω whose qth power is integrable, with the norm ‖g‖qLq =

∫
Ω
|f(x)|qdx, 1 ≤ q <

+∞. The norm in L2(Ω) we will denote by ‖ · ‖L2 = ‖ · ‖. By L
∞(Ω) we denote the

space of measurable essentially bounded functions in Ω with the norm

‖g‖L∞ = ess sup
x∈Ω

|g(x)| .

For each σ ∈ R we shall denote by Hσ(Ω) the usual Sobolev space of order σ.
By Hσp (Ω), σ ≥ 0, Ω = (0, 1) we shall indicate the space of functions periodic in the
sense of (1.2), with β = 1. If g ∈ Hσp (Ω) then g has an expansion in Fourier series

g(x) =
∑
k∈Z

gk exp(2kiπx) . (1.3)

The norm of g in Hσp (Ω) will be denoted by

‖g‖2σ =
∑
k∈Z

(1 + |k|2)σ|gk|
2, (1.4)

which is equivalent to Hσ(Ω) norm, σ ≥ 0, according to Temam ([10]). We shall
denote by L̇2(Ω) and Ḣσ(Ω) the space of functions g ∈ L2(Ω) or Hσ(Ω) such that∫

Ω

g(x) dx = 0. (1.5)

The space Ḣσp (Ω), σ ∈ R+, is the space of functions g ∈ L
2(Ω) such that g satisfies

(1.5) and ∑
k∈Z

(1 + |k|2)σ|gk|
2 < +∞ . (1.6)

In Ḣ1p(Ω) the Poincaré inequality holds, that is, if g ∈ Ḣ
1
p(Ω) then

‖g‖ ≤ C(Ω) ‖g′‖ . (1.7)
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The inequality (1.7) shows that Ḣ1p(Ω) is a Hilbert space with scalar product of

H10 (Ω), and ‖u‖1 = {(u, u)1}
1/2 is a norm on this space equivalent to that induced

by H1(Ω).

The operators M and L of (1.1) are pseudo-differential operators of orders µ
and s, respectively, with

M : Ḣµp (Ω) → L̇2p(Ω), µ ≥ 1, µ ∈ R

L : Ḣsp(Ω) → L̇2p(Ω), s ≥ 0, s ∈ R

and

Mg(x) =
∑
k∈Z

m(k) gk exp(2kπix) (1.8)

Lg(x) =
∑
k∈Z

`(k) gk exp(2kπix) (1.9)

where m and ` are the principal symbols of the operators M and L respectively. We
assume from now on that the symbols m and ` are even functions of k that satisfy
the growth conditions:

( i) There exist constants c1, c2 > 0 such that

c1(1 + |k|)
µ ≤ m(k) ≤ c2(1 + |k|)

µ. (1.10)

(ii) There exist constants c3, c4 > 0 such that

c3|k|
s ≤ `(k) ≤ c4|k|

s. (1.11)

The domains of operators M and L are given by

D(M) =

{
g ∈ Ḣµp (Ω),

∑
k∈Z

|m(k)|2|gk|
2 <∞

}

D(L) =

{
g ∈ Ḣsp(Ω),

∑
k∈Z

|`(k)|2|gk|
2 <∞

}
.

If X is a Banach space then we denote by C(0, T ; X) the space of continuous
functions u : [0, T ] → X. Various positive constants will be denoted by C; they
may vary from line to line.

This paper is organized as follows. In Section 2 we study the existence and
uniqueness of global solutions of the Cauchy problem associated to equation (1.1).
Then in Section 3 we provide a priori bounds for the nonlinear semigroups given
by the evolution equation, and we use them to establish the existence of a global
attractor. Finally, we show in Section 4 that this set has finite Hausdorff dimension.

§2. The Cauchy Problem

In this section we consider Problem (1.1) with initial data u(x, 0) = u0(x). We
prove that the Cauchy problem is globally well-posed in the Sobolev space Ḣrp(Ω)
where Ω = (0, 1) and r = max{µ, s}.

The lemma below is useful in proving the existence of a solution.
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Lemma 1.2. Let M : Ḣµp (Ω) → L̇
2
p(Ω), µ ≥ 1 satisfy assumptions (1.10) above.

Then

a)
M−1 exists. (2.1)

b) M−1
(
dg
dx

)
∈ Ḣµp (Ω) whenever g ∈ Ḣ

µ
p (Ω) and there exists a constant C > 0

such that

‖M−1
dg

dx
‖µ ≤ C ‖g‖µ. (2.2)

The proof of this lemma follows directly from the definition and (1.10).

Theorem 2.1 (Local Existence). Let u0 ∈ Ḣrp(Ω) with r = max{µ, s}, µ ≥ 2,

s ≥ 0. Assume f ∈ Ḣrp(Ω), and suppose M and L satisfy the assumptions (1.10),

(1.11). Then, for each T > 0, there exists a unique function u ∈ C(0, T ; Ḣµ/2p (Ω)),
with u and ut in the class C(0, T ; Ḣ

r
p(Ω)), that solves (1.1) in Ω × [0, T ] with

u(x, 0) = u0(x). The mapping that associates to u0 ∈ Ḣrp(Ω) the solution of (1.1) is

continuous from Ḣrp(Ω) to C(0, T ; Ḣ
r
p(Ω)).

Proof First, we consider the linear problem

wt + αM
−1Lw = 0 (2.3)

w(x, 0) = u0(x) ∈ Ḣ
r
p(Ω)

that has a unique solution w given by w(x, t) = E(t)u0(x), where {E(t)}t≥0 is
the strongly continuous semigroup of linear operators generated by A = −αM−1L,
α > 0. The solution w lies in the class C(0,∞; Ḣrp(Ω) and wt lies in C(0,∞; Ḣ

r
p(Ω).

Next, we consider the nonlinear problem (1.1). Using Lemma 1.2 and the
observations concerning the solution of (2.3), we can write the integral equation
associated with (1.1):

u(x, t) = E(t)u0(x)−

∫ t
0

E(t− σ)M−1
∂

∂x

(
u+
u2

2

)
dσ +

∫ t
0

E(t− σ)M−1f dσ.

(2.4)

Let R > 0, T > 0, and define the space of functions

yR(T ) =

{
sup
[0,T ]

w ∈ C(0, T ; Ḣrp(Ω) : sup
[0,T ]

‖w(·, t) − E(t)u0(·)‖r ≤ R, w(x, 0) = u0(x)

}
.

We define the map P : yR(T )→ C(0, T ; Ḣrp(Ω) by

Pw(x, t) = E(t)u0(x)−

∫ t
0

E(t− σ)M−1
∂

∂x

(
u+
u2

2

)
dσ +

∫ t
0

E(t− σ)M−1f dσ

(2.5)
for all 0 ≤ t ≤ T . Using well-known techniques we can easily prove that P is a
contraction as long as T = T0 is chosen sufficiently small. Thus, P has a fixed point,
which gives us a local solution of the integral equation (2.4). Next, since u satisfies
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equation (2.4), we can calculate ut explicitly and obtain that u satisfies (1.1) with
u(x, 0) = u0(x), and that ut ∈ C(0, T0; Ḣrp(Ω)).

Multiplying equation (1.1) by u, integrating in space, and using Poincaré and
Hölder’s inequalities and (1.10)–(1.11), we obtain the estimate

‖u(·, t)‖2µ/2 +
α

c1

∫ t
0

‖L1/2u(·, σ)‖2 dσ ≤ C ‖f‖2 T + ‖u0‖
2
µ/2 (2.6)

for all 0 ≤ t ≤ T and µ ≥ 2. Therefore, u ∈ C(0, T ; Ḣ
µ/2
p (Ω), µ ≥ 2.

Multiplying equation (1.1) by Mu, integrating in space, using Poincaré and
Hölder’s inequalities and properties (1.10)–(1.11), we have

‖u(·, t)‖2µ + C0

∫ t
0

‖L1/2M1/2u‖2 dσ ≤ C1 ‖u0‖
2
µ + ‖f‖

2T + C2

∫ t
0

‖u(·, σ)‖2µdσ.

From Gronwall’s inequality

‖u(·, t)‖2µ ≤ C (‖u0‖µ, ‖f‖, T ) e
C2T . (2.7)

Therefore, if s ≤ µ then r = µ and consequently u ∈ C(0, T ; Ḣrp(Ω).

Now, suppose that s > µ ≥ 2. Multiplying equation (1.1) by ut, integrating in
space and using the results above, we obtain

1

2
‖M1/2ut‖

2 +
α

2

d

dt
‖L1/2u‖2 ≤ C (‖f‖, T ) + ‖L1/2u‖2.

Gronwall’s inequality and (2.6) imply that u ∈ C(0, T ; Ḣ
s
2
p (Ω) for s > µ ≥ 2 and all

0 ≤ t ≤ T .

Finally, multiplying equation (1.1) by Lut and using the same sequence of ideas,
we obtain

1

2
‖L1/2M1/2ut‖

2 +
α

2

d

dt
‖Lu‖2 ≤ C (‖f‖,+‖u0‖r, T ) + C1‖Lu‖

2.

From Gronwall’s inequality and (2.6) we get

u ∈ C(0, T ; Ḣsp(Ω) for s > µ ≥ 2 and all 0 ≤ t ≤ T.

Since we know that u ∈ C(0, T ; Ḣrp(Ω), we can use the integral equation (2.4)

to find ut, and it follows from these that ut ∈ C(0, T ; Ḣrp(Ω). Uniqueness is a direct
consequence of Gronwall’s inequality.

§3. Existence of a global attractor

In this section we study the existence of a global attractor. The first step is to
prove the existence of an absorbing set in Ḣsp(Ω), s ≥ µ ≥ 2.
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We consider the Cauchy problem

Mut + ux + uux + αLu = f

u(x, 0) = u0(x) (3.1)

u(x+ 1, t) = u(x, t).

If the function f is time independent, the system (3.1) is autonomous, and for each
t ∈ R+ we define the mapping

E(t) : Ḣrp(Ω) → Ḣrp(Ω)

u0 7→ E(t)u0 = u(x, t). (3.2)

The family {E(t)}t∈R+ forms a semigroup.

Proposition 3.1. If E(t) is the mapping defined in (3.2), then there exists a con-
stant C = C(‖u0‖r, ‖f‖r, T ) such that

sup
0≤t≤T

‖E(t)u0‖r ≤ C (‖u0‖r, ‖f‖r, T )

with u0 ∈ Ḣrp(Ω), f ∈ Ḣ
r
p(Ω), r = max{µ, s}, µ ≥ 2, s ≥ 2.

The proof of this proposition follows directly from Theorem 2.1.

The next result is related to the existence of bounded absorbing set for semi-
group {E(t)}t≥0 in Ḣsp(Ω), s ≥ µ ≥ 2.

Proposition 3.2. Let f ∈ Ḣsp(Ω), s ≥ µ ≥ 2. There exists a constant ρ0 =
ρ0(‖f‖0) such that for every R > 0 there exists T > 0, T = T (R) such that

‖E(t)u0‖s ≤ ρ0 for all u0 ∈ Ḣ
s
per(Ω) with ‖u0‖s ≤ R

and t ≥ T (R), where E(t)u0(x) = u(x, t) is the solution of Cauchy problem (3.1).

Proof Multiplying the equation in (3.1) by u and integrating in (Ω), we have

d

dt
‖M1/2u‖2 + α‖L1/2u‖2 ≤ C ‖f‖2. (3.3)

Poincaré’s inequality and the fact that s ≥ µ imply that ‖M1/2u‖ ≤ C‖L1/2u‖.
Therefore, there exists a constant β > 0 such that

d

dt
‖M1/2u‖2 + β ‖M1/2u‖2 ≤ C ‖f‖2. (3.4)

From (3.4) and properties (1.10)–(1.11) we obtain

‖u(t)‖2µ/2 ≤ C0 ‖u0‖
2
µ/2e

−βt + C ‖f‖2
(
1− e−βt

)
≤ C0R

2e−βt + C‖f‖2(1− e−βt).
(3.5)

This shows that E(t)u0 is uniformly bounded in Ḣ
µ/2
p (Ω) and

‖u(t)‖2µ/2 ≤ C‖f‖
2 = ρ21 (3.6)
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for all t ≥ T0(R) =
1
β
ln C0R

2

C‖f‖2 .

Multiplying the equation (3.1) by Mu and integrating in Ω, we have, for all
t ≥ T0(R),

d

dt
‖Mu‖2 + 2α‖L1/2Mu1/2u‖2 = 2

∫
Ω

f Mudx− 2

∫
Ω

uuxMudx. (3.7)

Using Hölder’s inequality and the embedding Ḣ
µ/2
p (Ω) ↪→ L∞(Ω), µ ≥ 2, we deduce

from (3.7) that

d

dt
‖Mu‖2 + 2α‖L1/2Mu1/2u‖2 ≤ 2‖f‖ ‖Mu‖ + 2‖u‖L∞‖ux‖ ‖Mu‖. (3.8)

Therefore, for µ ≥ 2 we have

d

dt
‖Mu‖2 + 2α‖L1/2Mu1/2u‖2 ≤ 2‖f‖ ‖Mu‖ + C‖u‖2µ/2‖Mu‖

≤
(
2‖f‖+ C‖u‖2µ/2

)
‖Mu‖. (3.9)

Poincaré’s inequality implies that

‖Mu‖ ≤ C‖L1/2M1/2u‖ for u ∈ Ḣsp(Ω), s ≥ µ ≥ 2. (3.10)

From (3.10) we have for (3.9)

d

dt
‖Mu‖2 + 2α‖L1/2M1/2u‖2 ≤ C

(
‖f‖+ C‖u‖2µ/2

)
‖L1/2M1/2u‖.

Using the inequality ab ≤ a2

2 +
b2

2 , we have

d

dt
‖Mu‖2 + α‖L1/2M1/2u‖2 ≤ C

(
‖f‖+ C‖u‖2µ/2

)2
.

From (3.10) and (3.6) it follows that

d

dt
‖Mu‖2 + β1‖Mu‖

2 ≤ C
(
‖f‖+ ρ21

)2
, β1 > 0, (3.11)

and for all t ≥ T0 we obtain

‖Mu‖2 ≤ ‖Mu(T0)‖
2e−β1(t−T0) + C

(
‖f‖+ ρ21

)2 (
1− e−β1(t−T0)

)
. (3.12)

We choose T1 = T1(R) ≥ T0(R) such that

‖Mu(T0)‖
2e−β1(t−T0) ≤ C(‖f‖+ ρ21)

2 (3.13)

holds for every u0 satisfying ‖u0‖s ≤ R, s ≥ µ ≥ 2. This is possible since we know
from (2.7) that ‖u(T0)‖µ is bounded by a quantity that only depends on R and the
data of the problem. Then, according to (3.12) and (3.13),

‖Mu(t)‖2 ≤ C
(
‖f‖+ ρ21

)2
= ρ22 for all t ≥ T1(R). (3.14)
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If s = µ ≥ 2 the proof is concluded.

We now consider the case s > µ ≥ 2. Taking into account Lemma 1.2, we can
write the equation (3.1) as

ut +M
−1ux +M

−1(uux) + αM
−1Lu =M−1f. (3.15)

Multiplying (3.15) by Lu and integrating in space, we have

d

dt
‖L1/2u‖2 + 2α‖M1/2Lu‖2 = 2

[(
M−1f, Lu

)
−

(
M−1

∂

∂x

(
u2

2

)
, Lu

)]
. (3.16)

Integrating by parts and using the Cauchy-Schwarz inequality yields

d

dt
‖L1/2u‖2+2α‖M−

1
2Lu‖2 ≤ 2

[
‖M−

1
2 f‖ ‖M−

1
2Lu‖+ ‖M−

1
2
∂

∂x

(
u2

2

)
‖ ‖M−

1
2Lu‖

]
.

Using the inequality ab ≤ a2

2 +
b2

2 , we have

d

dt
‖L1/2u‖2 + α‖M−

1
2Lu‖2 ≤ C

(
‖M−

1
2 f‖2 + ‖M−

1
2
∂

∂x

(
u2

2

)
‖2
)
. (3.17)

From (1.10) we obtain

‖M−
1
2 f‖ ≤ C‖f‖. (3.18)

For µ ≥ 2 and the embedding Ḣµp (Ω) ↪→ L
∞(Ω), it follows that

‖M−
1
2
∂

∂x

(
u2

2

)
‖2 ≤ ‖u2‖2 ≤ C‖u‖2L∞‖u‖

2 ≤ C‖u‖4µ. (3.19)

From (3.19), (3.18), and (3.14), we have for (3.17)

d

dt
‖L1/2u‖2 + α‖M−

1
2Lu‖2 ≤ C

(
‖f‖2 + ρ42

)
for all t ≥ T1. (3.20)

On the other hand, Poincaré’s inequality implies

‖M−
1
2Lu‖2 ≥ C‖L

1
2u‖ for s > µ ≥ 2. (3.21)

Therefore, from (3.21) we have for (3.20)

d

dt
‖L1/2u‖2 + β2‖L

1/2u‖2 ≤ C
(
‖f‖2 + ρ42

)
(3.22)

for all t ≥ T1. Integrating (3.22) in time for t ≥ T1 we obtain

|L1/2u(t)‖2 ≤ ‖L
1
2 u(T1)‖

2e−β2(t−T1) + C
(
‖f‖2 + ρ42

) (
1− e−β2(t−T1)

)
. (3.23)

As in (3.13), we choose T2 = T2(R) ≥ T1(R) such that

‖L1/2u(T1)‖
2e−β2(t−T1) ≤ C

(
‖f‖2 + ρ42

)
. (3.24)
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Therefore, from (3.24) we have

‖L1/2u(t)‖2 ≤ C
(
‖f‖2 + ρ42

)
= ρ23 for all t ≥ T2. (3.25)

Next, we consider the equation

Lut + LM
−1ux + LM

−1(uux) + αLM
−1Lu = LM−1f. (3.26)

Multiplying (3.26) by Lu and integrating in space we obtain, after integration by
parts and the use of Hölder’s inequality,

d

dt
‖Lu‖2 + α‖M−

1
2L

3
2u‖2 ≤ C

(
‖M−

1
2L1/2f‖2 + ‖L1/2M−

1
2
∂

∂x

(
u2

2

)
‖2
)
.

(3.27)
From (1.10) and (1.11) we have

‖M−1/2L1/2f‖ ≤ C‖f‖ s
2

(3.28)

and

‖M−1/2L1/2
∂

∂x

(
u2

2

)
‖ ≤ C‖u2‖s/2 ≤ C‖u‖

2
s/2 (3.29)

because Ḣsp(Ω) is an algebra for s ≥ 1.

Using (3.28), (3.29), and Poincaré’s inequality, we obtain for (3.27)

d

dt
‖Lu‖2 + β3‖Lu‖

2 ≤ C
(
‖f‖2s/2 + ‖u‖

2
s/2

)
, ∀t ≥ T2. (3.30)

From (3.25) we have

d

dt
‖Lu‖2 + β3‖Lu‖

2 ≤ C
(
‖f‖2s

2
+ ρ23

)
, ∀t ≥ T2

and

‖Lu‖2 ≤ ‖Lu(T2)‖
2e−β3(t−T2) + C

(
‖f‖2s/2 + ρ

2
3

) (
1− e−β3(t−T2)

)
(3.31)

for all t ≥ T2. Choosing T = T (R) ≥ T2(R), we have

‖Lu‖2 ≤ C
(
‖f‖2s/2 + ρ

2
3

)
= ρ24 for all t ≥ T.

On the other hand, we know that ‖u‖ ≤ ρ1; therefore,

‖u‖2 + ‖Lu‖2 ≤ ρ21 + ρ
2
4.

Using (1.11) we deduce that

‖u‖2s ≤ C (ρ
2
1 + ρ

2
4) = ρ

2
0 for all t ≥ T (R).

This completes the proof of Proposition 3.2.
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Proposition 3.2 shows that E(t)u0 is uniformly bounded in Ḣ
s
p(Ω), for s ≥ µ ≥ 2

and every t ≥ T (R), when ‖u0‖s ≤ R. In other words, every solution with initial
data u0 in the ball {‖u0‖s ≤ R} is absorbed at time t ≥ T (R), by the ball

B0 =
{
v ∈ Ḣsp(Ω), ‖v‖s ≤ ρ0

}
.

It is natural to consider then the w-limit set of B0, which is defined as

w(B0) =
⋂
`≥0

∪t≥`E(t)B0,

where the closure is taken in Ḣsp(Ω).

In order to obtain the existence of a global attractor for the equation (1.1), we
next prove that the flow E(t) is uniformly compact, for t large.

Proposition 3.3. Let f ∈ Ḣsp(Ω), s ≥ µ ≥ 2. For every bounded set B of Ḣ
s
p(Ω)

there exists T > 0, T = T (B), such that ∪t≥TE(t)B is relatively compact in Ḣsp(Ω).

Proof The idea is to prove that E(t) = E1(t) + E2(t), where the operator E1(·) is
uniformly compact for t large, and the norm of E2(·) as a bounded operator goes to
zero as t→∞.

Decompose the solution u of (1.1) as u = v +w, where v(x, t) = E2(t)v(x, 0) is
the solution of the linear problem

Mvt + vx + αLv = 0 (3.32)

v(x, 0) = u0(x),

and w = w(x, t) is the solution to

Mwt + wx + αLw = f − uux (3.33)

w(x, 0) = 0.

In order to prove that E2(t) has decaying norm we consider the equation

Lvt + LM
−1vx + αLM

−1Lv = 0. (3.34)

Multiplying by Lv, integrating in Ω, and using the properties of operators M and
L, we obtain

‖E2(t)‖L(Ḣsp(Ω),Ḣsp(Ω)) ≤ C0 e
−Ct, ∀t ≥ 0. (3.35)

Now consider the equation

LMwt + Lwx + αLLw = Lf − L(uux).

Multiplying by Lw and using the properties of operators M and L and the fact that
‖u(t)‖s ≤ ρ0, we have

d

dt
‖LM1/2w‖2 + β5‖LM

1/2w‖2 ≤ C (‖f‖s, ρ0) , β5 > 0. (3.36)

From (3.36) we can conclude that w is uniformly bounded in Ḣ
µ
2+s
p (Ω). Using

the compact embedding from Ḣ
µ
2+s
p (Ω) into Ḣsp(Ω) it follows that ∪t≥TE1(t)B is

relatively compact in Ḣsp(Ω). The proposition follows as in the proof of Theorem 1.1,
Chapter 1 of Temam [10].
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Theorem 3.2. Let f , u0 ∈ Ḣsp(Ω), s ≥ µ ≥ 2. Then the semigroup {E(t)}t≥0 has

a global attractor A = w(B) in Ḣsp(Ω). The set A is compact in Ḣ
s
p(Ω) and has the

properties:

i) The set A is invariant under E(t), that is, E(t)A = A, ∀t ≥ 0.

ii) For every bounded set B in Ḣsp(Ω), d(E(t)B,A)→ 0 as t→ +∞.

The proof this theorem is a consequence of Temam [10], Theorem 1.1, Chapter I.

§4. Dimension of the global attractor

Our aim in this section is to study the finite dimensionality of the global at-
tractor. In the first part we shall prove the differentiability property of E(t) and in
the second part we will establish the finite dimension of the attractor.

We consider the following non-autonomous evolution equation, which corre-
sponds to a linearized version of the equation (1.1):

Mvt + vx + (uv)x + αLv = 0

v(x, 0) = v0(x) (4.1)

v(x+ 1, t) = v(x, t)

where u(t) = E(t)u0, u0 ∈ Ḣsp(Ω) is a trajectory solution of (1.1), and v0 ∈ Ḣ
s
p(Ω).

It is not difficult to prove that, since u ∈ C1([0,∞); Ḣsp(Ω)), the problem (4.1) has

a unique solution v ∈ C1([0,∞); Ḣsp(Ω)).

Next we show, with the aid of the linearized problem (4.1), that the linear
mapping (DE(t)u0) v0 ≡ v(t) is the uniform differential of E(t).

Theorem 4.1. For every 0 < R, T < ∞, there exists a positive constant C =
C(R,T ) such that for all u0, v0 ∈ Ḣsp(Ω), s ≥ µ ≥ 2, that satisfy ‖u0‖s ≤ R,
‖u0 + v0‖s ≤ R and 0 ≤ t ≤ T , we have

‖E(t)(u0 + v0)− E(t)u0 − (DE(t)u0) v0‖s ≤ C‖v0‖
2
s.

Proof Let u0, v0 ∈ Ḣsp(Ω), s ≥ µ ≥ 2, with ‖u0‖s ≤ R, ‖u0+v0‖s ≤ R. We consider
the solutions u1(t) = E(t)u0, u2(t) = E(t)(u0 + v0) and v(t) = (DE(t)u0) v0. Then
w = u2 − u1 − v satisfies the problem

Mwt + wx + u2u1x − (u1v)x + αLw = 0 (4.2)

w(0) = 0.

Since u1, u2, v ∈ C1([0,∞); Ḣsp(Ω)), we may use the sequence of ideas in the proof
of Theorem 2.1 to obtain

‖w‖2s ≤ C(R,T )‖v0‖
2

for the solution w of the problem (4.2). Therefore, E(t) is uniformly differentiable
in the bounded sets of Ḣsp(Ω). ♦
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Now we study how the operators D(E(t))u0 transform the m-dimensional vol-
umes in Ḣsp(Ω), s ≥ µ ≥ 2 where u0 ∈ A. Let v

1
0 , v

2
0 , · · · , v

m
0 in Ḣ

s
p(Ω). We study

the evolution of the quantities

‖v1(t) ∧ · · · ∧ vm(t)‖2s = det
1≤i,j≤m

(vi(t), vj(t))s (4.3)

where vi(t) = (DE(t)u0) v
i
0.

The expression (4.3) is the Gram determinant, and it represents the square
of m!-times the volume of the m-dimensional polyhedron defined by the vectors
v1(t), · · · , vm(t). The aim is to show that for sufficiently large m this determinant
decays exponentially as t → +∞. More precisely, we consider an invariant set X
which is bounded in Ḣsp(Ω), s ≥ µ ≥ 2. We have:

Theorem 4.2. Let X ⊂ Ḣsp(Ω) be an invariant bounded set. Assume s ≥ µ ≥ 2.
Then there exist positive constants b0, b1, γ such that for every u0 ∈ X, t ≥ 0 and
integer m ≥ 1, the functions vi(t) = (DE(t)u0) vi0 satisfy

‖v1(t) ∧ · · · ∧ vm(t)‖s ≤ ‖v
1
0 ∧ · · · v

m
0 ‖s b

−m
1 exp (b0m

1−2µ − γm) t

for all vi0 ∈ Ḣ
s
p(Ω).

Proof We consider wi(t) = vi(t) eγt, where γ > 0 is to be chosen. For simplicity,
we omit the index i in this part of the proof.

Clearly, w(t) is the unique solution of

Mwt + wx + (uw)x + αLw − γMw = 0 (4.4)

w(0) = v0.

Since M is invertible, we have that

Lwt + LM
−1wx + LM

−1(uw)x + αLM
−1Lw − γLw = 0. (4.5)

Multiplying (4.5) by Lw and integrating in space gives

d

dt
‖Lw‖20 + 2

(
LM−1(uw)x, Lw

)
+ 2α‖M−1/2L3/2w‖2 − 2γ‖Lw‖2 = 0 . (4.6)

Since ‖Lw‖ ≤ C‖M−1/2L3/2w‖, we can choose γ > 0 such that

γ ‖Lw‖2 ≤ 2α ‖M−1/2L3/2w‖2.

Hence,
d

dt
‖Lw‖2 ≤ −2

(
LM−1(uw)x, Lw

)
.

We now consider the following quadratic forms on Ḣsp(Ω):

g(ξ) = ‖Lξ‖2,



EJDE–1998/25 Global attractor and finite dimensionality 13

and
z(t, ξ) = −2 〈LM−1 (u(t) ξ)x, Lξ〉 (4.7)

for any t. Clearly, by Poincaré’s inequality there exist nonnegative numbers b3 and
b4 such that

b3 ‖ξ‖
2
s ≤ g(ξ) ≤ b4 ‖ξ‖

2
s ,

for all ξ ∈ Ḣsp(Ω). Moreover, the function t → g (e
γt(DE(t)u0) v0) = g(w(t)) is

differentiable and its derivative satisfies
d

dt
g(w(t)) ≤ z(t, w(t)).

On the other hand, since the order of M is µ ≥ 2, we have that M−
1
2
d
dx
is a

bounded operator and therefore, by the Schwarz inequality, (4.7) implies that

|z(t, ξ)| ≤ C‖ξ‖s‖M
−1/2ξ‖s = C‖ξ‖s

(
M−1ξ, ξ

)1/2
s

where we have used that u(t) is bounded in Ḣsp(Ω) and also in L
∞(Ω). We note

that M−1 is a continuous linear operator from Ḣsp(Ω) to Ḣ
s+µ
p (Ω) and, therefore, it

is a compact operator on Ḣsp(Ω).

The hypotheses of Theorem A in the appendix of the paper [8] by Ghidaglia
are then fulfilled, where we have taken α = b3, β = b4, σ =

1
2
, q = g, r = z and

K =M−1. Here we are using an extension of this theorem to the case where dg
dt
≤ r

(instead of dg
dt
= r), which follows immediately from the arguments given in [8]

(pg. 387).

Thus,

det (wi(t), wj(t))s ≤

(
b4
b3

)m
exp

{
Ct

b3

m∑
`=1

K`

}
det (vi0, v

j
0)s,

where {K`}∞`=1 are the eigenvalues of the operatorM
−1, namely K` = (1+C`

2µ)−1.
Since

∑m
`=1 K` ≤ Cm

1−2µ, we conclude that

det
1≤ij≤m

(
wi(t), wj(t)

)
s
≤ CeCtm

1−2µ

det
1≤i,j≤m

(vi0, v
j
0)s.

The theorem follows from the fact that wi(t) = eγtvi(t).

Theorem 4.3. The global attractor A has finite fractal and Hausdorff dimensions
in Ḣsp(Ω), s ≥ µ ≥ 2.

Proof This result is a consequence of an abstract result according to [8]. The main
idea is to apply Theorem 4.2 withX = A and to choosem such that b0m1−2µ−γm <

0, that is, m >
(
b0
γ

) 1
2µ

. For such m, according to Theorem 4.2, the mapping

DE(t)u0 contracts m-dimensional volumes in Ḣ
s
p(Ω) for sufficiently large t, uni-

formly for u0 ∈ A. With this result, according to Temam [10], Chapter V, and
Ghidaglia [8], Theorem 3.2, it follows that A has finite fractal dimension.
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