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COMPLEX CONTINUED FRACTIONS WITH RESTRICTED

ENTRIES

PAWE L HANUS & MARIUSZ URBAŃSKI

Abstract. We study special infinite iterated function systems derived from
complex continued fraction expansions with restricted entries. We focus our
attention on the corresponding limit set whose Hausdorff dimension will be
denoted by h. Our primary goal is to determine whether the h-dimensional
Hausdorff and packing measure of the limit set is positive and finite.

1. Preliminaries

The theory of uniformly hyperbolic dynamical systems leads naturally to the
study of finite Markov partitions and iterated function systems obtained from a
finite number of contractions. (See [6], comp. [8] for further literature.) For
non-uniformly-hyperbolic dynamical systems, a part of the corresponding theory
has been developed. It goes back to the papers by Schweiger [12], and Thaler
[14, 15] on interval maps with an indifferent fixed point. There the concept of jump
transformation is introduced and explored. It has a natural Markov partition with
infinitely many cells. Further development of this subject can be found for example
in [1, 2, 3, 7, 13, 17, 18].
Here we discuss particular examples of conformal repellers, obtained as limit

sets of iterated function systems. Each iterated function system is obtained from
an infinite number of contractions. We show that under certain conditions the
repellers possess zero Hausdorff measure and positive finite packing measure.
Specifically, let (X, ρ) be a compact metric space, and let I be a countable set

with at least two elements. Define S = {φi : X → X | i ∈ I }, a collection of injective
contractions from X to X for which there exists 0 < s < 1 such that

ρ(φi(x), φi(y)) ≤ sρ(x, y),

for every i ∈ I and for every pair of points x, y ∈ X . Any such collection is called
an iterated function system (abbreviated as i.f.s.). Set I∗ =

⋃
m≥1 I

m, and, for
ω ∈ Im,m ≥ 1, define

φω = φω1 ◦ φω2 ◦ · · · ◦ φωm .
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If ω ∈ I∗ ∪ I∞ and m ≥ 1 does not exceed the length of ω, we denote by ω|m
the word ω1ω2 . . . ωm. In general, the main object of our interest is the limit set J
associated to the system S = {φi : X → X | i ∈ I }, that is, the set defined as

J =
⋃
ω∈I∞

∞⋂
m=1

φω|m(X). (1)

An iterated function system, S, is said to satisfy the Open Set Condition (OSC)
if there exists a nonempty open set U ⊂ X such that φi(U) ⊂ U for all i ∈ I and
also φi(U) ∩ φj(U) = ∅ for every pair i, j ∈ I, i 6= j. From now on assume that X
is a subset of a d-dimensional Euclidean space. An iterated function system is said
to be conformal if the following conditions are satisfied:
• X is compact and connected, U = IntRd(X), φi(U) ⊂ U , φi(U) ∩ φj(U) = ∅ for
i 6= j.
• There exist α, l > 0 such that for every x ∈ ∂X there exists an open cone,
Con(x, ux, α, l) with vertex x, direction vector ux, central angle of Lebesgue mea-
sure α, and altitude l, that is contained in Int(X). This is the so-called cone
property.
• There exists an open connected set V ⊂ Rd containing X such that every map φi
can be extended to a C1+ε diffeomorphism mapping V into V , and the extended
map is conformal on V .
• There exists K ≥ 1 such that |φ′ω(y)| ≤ K|φ

′
ω(x)| for every ω ∈ I

∗ and every pair
of points x, y ∈ V . This is the so-called Bounded Distortion Property (BDP).

Let X(∞) be the set of limit points of all sequences xi ∈ φi(X), i ∈ I ′, where
I ′ ranges over all infinite subsets of I.
The topological pressure function, P , for iterated function systems is defined as

follows. For every t ≥ 0 consider the series

ψ1(t) =
∑
i∈I

||φ′i||
t,

and more generally define for every integer n ≥ 1

ψn(t) =
∑
ω∈In

||φ′ω||
t.

Now set

P (t) = lim
n→∞

1

n
logψn(t). (2)

Detailed properties of this pressure function can be found in [8]. In [MU3] its
definition is extended to case of parabolic iterated function systems and in [5, 6, 16],
the topological pressure of systems of Hölder continuous functions is defined and
explored. This last concept also generalizes formula (2). As shown in [8], there are
two disjoint classes of conformal iterated function systems, regular and irregular.
A system is regular if there exists t ≥ 0 such that P (t) = 0. Otherwise the system
is irregular. The following property demonstrating the geometrical significance of
topological pressure holds (see [8, Theorem 3.15]).

Theorem 1. dimH(J) = sup{dimH(JF ) : F ⊂ I finite} = inf{t ≥ 0 : P (t) ≤ 0}.
If a system is regular and P (t) = 0 then t = dimH(J).
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A Borel probability measure m is said to be t-conformal if m(J) = 1 and for
every Borel set A and every i ∈ I,

m(φi(A)) =

∫
A

|φ′i|
t dm (3)

and

m(φi(X) ∩ φj(X)) = 0, (4)

for every pair i, j ∈ I, i 6= j. Lemma 3.13 in [8] shows that the conformal iterated
function system is regular if and only if there exists a t-conformal measure (t is
such that P (t) = 0), and then t = dimH(J).

2. Results

In this paper we focus our attention on a special example of an infinite conformal
iterated function system. Namely, let X be a closed disc on a complex plane
centered at the point 1/2 with radius 1/2, and let V = B(1/2, 3/4). Given k ≥ 1,
set Ik = {n+ ki : n ∈ N}, and for every index n+ ki ∈ I define φn+ki : V → V by

φn+ki(t) =
1

n+ ki+ t
.

One can easily verify that for every positive integer n, φn+ki(X) ⊆ X and φn+ki(V ) ⊆
V , or even more precisely

φn+ki(B(1/2, 1/2)) =
1

B(n+ 1/2 + ki, 1/2)
. (5)

Moreover we have that φ′n+ki(t) = −(n+ki+t)
−2, and hence ||φ′n+ki|| = |n+ki|

−2 <

(1+k2)−1 < 1. That gives us the universal contractive constant from the definition
of i.f.s. It is also easy to check that our system is conformal (all four conditions
from the definition are trivially satisfied). As announced at the beginning of the
paper (see (1)) we want to turn our attention to the limit set Jk associated with the
system. In particular we want to investigate the Hausdorff dimension, and then the
h-dimensional Hausdorff and packing measures of this set, where h = dimH(Jk).
Our main results are the following.

Theorem 2. Let k be such that 1/2 < h = dimH(Jk) < 1. Then Hh(Jk) = 0.

Theorem 3. Let k be such that 1/2 < h < 1. Then 0 < Ph(Jk) <∞.

Similar systems were introduced and studied in [4] and [8]. In particular, it was
shown in [8] that the limit set J related to the system where there is no restriction
for an index k (k ∈ Z arbitrary) has the following properties:

1.2484 < h = dimH(J) < 1.9,

Hh(J) = 0,

0 < Ph(J) <∞,

where Hh and Ph denote h-dimensional Hausdorff and packing measures respec-
tively.
We start our investigation with the following lemma.

Lemma 1. limk→∞ dimH(Jk) = 1/2.
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Proof. According to what we said earlier, dimH(Jk) = inf{t ≥ 0 : P (t) ≤ 0}. One
can prove using the chain rule that the sequence ψn(t) is subadditive, that is

K−tψn(t)ψm(t) ≤ ψn+m(t) ≤ ψn(t)ψm(t) ≤ ψ1(t)
n+m. (6)

Therefore the fact that P (t) = ∞ is equivalent to saying that ψ1(t) = ∞. In our
case,

ψ1(t) =
∞∑
n=1

||φ′n+ki||
t =

∞∑
n=1

1

|n+ ki|2t
.

In particular ψ1(1/2) =
∑∞
n=1 |n + ki|−1 = ∞. This proves that the system is

regular and dimH(Jk) > 1/2 for all k.
Fix ε > 0, and choose k, depending on ε, so big that

ψ1

(1
2
+ ε
)
=

∞∑
n=1

1

|n+ ki|1+ε/2
< 1.

Then using the subadditive property (6) we obtain

P
(1
2
+ ε
)
= lim
m→∞

1

m
logψm

(1
2
+ ε
)
≤ lim
m→∞

1

m
logψ1

(1
2
+ ε
)m

= logψ1

(1
2
+ ε
)
< 0.

We get that dimH(Jk) < 1/2 + ε, since our system is regular. When we let ε↘ 0,
which implies k →∞, our proof is finished. ♣

Remark. Notice that if k = 0 we have a system of real continued fractions φn(x) =
(n+ x)−1, for which the limit set J0 is the unit interval without rational numbers.
Obviously in this case the Hausdorff dimension of the limit set is equal to 1, and
both 1-dimensional Hausdorff measure of J0 and 1-dimensional packing measure of
J0 are 1.

Proof of Theorem 2. Letm be the conformal measure associated to our conformal
iterated function system. The idea of the proof is based on the following fact
(Lemma 4.9 in [8]):
If S is a regular c.i.f.s. and there exists a sequence of points zj ∈ X(∞) and a
sequence of positive reals rj , j ≥ 1, such that rj → 0 and

lim sup
j→∞

m(B(zj , rj))

rhj
=∞,

then Hh(Jk) = 0.
In our case, zj = 0 for every j, since 0 is the only point in X(∞). Hence it is

sufficient to show that

lim
r→0

m(B(0, r))

rh
=∞. (7)
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Notice that

m(B(0, r)) ≥
∑

φn+ki(X)⊆B(0,r)

m(φn+ki(X))

=
∑

φn+ki(X)⊆B(0,r)

∫
X

|φn+ki|
h dm

≥
∑

φn+ki(X)⊆B(0,r)

K−h||φ′n+ki||
h

= K−h
∑

φn+ki(X)⊆B(0,r)

|n+ ki|−2h

� K−h
∑

φn+ki(X)⊆B(0,r)

n−2h,

where by A � B we mean that there exists some constant C ≥ 1 such that C−1 ≤
A/B ≤ C.
We have to find out for how many n, B(0, r) ∩ φn+ki(X) 6= ∅ or for which n,

φn+ki(X) ⊂ B(0, r). Now,

y ∈ B(0, r) ∩ φn+ki(X)⇔ |y| < r and y ∈
1

B(n+ 1/2 + ki, 1/2)

⇔
1

|y|
>
1

r
and

1

y
∈ B(n+ 1/2 + ki, 1/2).

Hence B(0, r)∩φn+ki(X) 6= ∅ if and only if B(n+1/2+ki, 1/2) contains a complex
number of modulus bigger than 1/r.

Notice that if z is a point in B(n+ 1/2 + ki, 1/2) of maximal possible modulus,
then

|z| =

√
n2 + n+

1

4
+ k2 +

1

2
.

Therefore B(0, r) ∩ φn+ki(X) 6= ∅ only if√
n2 + n+ k2 +

1

4
+
1

2
>
1

r
.

Let A = {n|
√
n2 + n+ k2 + 1/4+1/2 > 1/r}, and let n(r) be the minimal element

of A. One can see that n(r) � 1/r by the minimality of n(r). Using the integral
test we are able to evaluate the limit introduced at the beginning of the proof:

lim
r→0

m(B(0, r))

rh
≥ lim
r→0

K−h
∑
n≥n(r)+1 n

−2h

rh
� lim
r→0

K−h
∫∞
n(r) x

−2h dx

rh

= lim
r→0

n(r)1−2h

(2h− 1)Khrh
� lim
r→0

r2h−1

(2h− 1)Khrh

= lim
r→0

rh−1

(2h− 1)Kh
=∞.

We conclude that Hh(Jk) = 0, which completes the proof. ♣

Now we turn our attention to the h-dimensional packing measure of the limit
set Jk. We begin with a simple lemma.
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Lemma 2. If f is the function defined on the complex plane by f(z) = 1/z and
C(x, r) is the circle centered at x and of radius r, then

f(C(x, r)) = C
( x

|x|2 − r2
,

r

||x|2 − r2|

)
. (8)

Proof. Recall from the theory of analytic functions that for λ > 0, λ 6= 1 the
equation ∣∣∣z − p

z − q

∣∣∣ = λ
represents the circle with respect to which the points p and q are symmetric, see
[11]. Moreover the center and the radius of this circle are given by the formulas

x =
p− λ2q

1− λ2
, r = λ

|p− q|

|1− λ2|
.

Fix C(x, r). Let p = x + r/2, q = x+ 2r; one can see that p and q are symmetric
with respect to the circle C(x, r). Using point x + r which lies on this circle we
obtain that λ = 1/2.
The image of our circle under function f is the circle

|w − 1/p|

|w − 1/q|
= λ
∣∣∣ q
p

∣∣∣.
Notice that the points p′ = 1/p = 2/(2x + r) and q′ = 1/q = 1/(x + 2r) are
symmetric with respect to the new circle. Let λ′ = λ|q/p|. Then

λ′ = λ
|x+ 2r|

|x + r/2|
=
1

2

|x+ 2r|

|x+ r/2|
=
|x+ 2r|

|2x+ r|
.

Let C(x′, r′) = f(C(x, r)). Then

x′ =
p′ − λ

′2q′

1− λ′2
=

2
2x+r −

∣∣∣x+2r
2x+r

∣∣∣2 1
x+2r

1−
∣∣∣x+2r

2x+r

∣∣∣2
=

2
2x+r −

x+2r

(2x+r)(2x+r)

(2x+r)(2x+r)−(x+2r)(x+2r)

(2x+r)(2x+r)

=
2(2x+ r)− x+ 2r

(2x+ r)(2x + r)− (x+ 2r)(x + 2r)

=
4x+ 2r − x− 2r

4|x|2 + 2xr + 2xr + r2 − |x|2 − 2xr − 2xr − 4r2

=
x

|x|2 − r2
,

and also

r′ = λ′
|p′ − q′|

|1− λ′2|
=
∣∣∣x+ 2r
2x+ r

∣∣∣
∣∣∣ 2

2x+r −
1

x+2r

∣∣∣∣∣∣1−
∣∣∣x+2r

2x+r

∣∣∣2
∣∣∣

=

∣∣∣x+2r
2x+r

∣∣∣ |2x+4r−2x−r|
|(2x+r)(x+2r)|∣∣∣ |2x+r|2−|x+2r|2

|2x+r|2

∣∣∣ =
3r

|2x+r|2

|3|x|2−3r2|
|2x+r|2

=
r

||x|2 − r2|
,

which finishes the proof. ♣

Proof of Theorem 3. It is a general fact that if the limit set J of a c.i.f.s. has
nonempty intersection with an interior of the set X , then the packing measure of
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this set is always positive. Hence we only need to show that the packing measure
of Jk is finite.
Following Theorem 2.5 from [9] we must prove that there exist three constants

L > 0, ξ > 0, and γ ≥ 1, and a finite set F , such that for all n ∈ I \ F and for all
r with γ diam(φn+ki(X)) < r ≤ ξ there is some x ∈ φn+ki(X) such that

m(B(x, r))

rh
≥ L. (9)

According to the result proven in the lemma above the diameter of the ball φp+ki(X)
is

diam(φp+ki(X)) = 2
1/2

||p+ 1/2 + ki|2 − 1/4|
�
1

p2
, (10)

for p large enough. Let Γp denote the arc that is the image of the half-line pt+ki, t ≥
1, under the function f . One can see that two the most distant points of Γp lying
in φp+ki(X) are (p + 1 + ki)

−1 and (p + ki)−1. Therefore we can choose x to be
the point in Γp ∩φp+ki(X) with |x| = 1/(p+1). Additionally, set ξ = 1 and γ = 8.
To prove the theorem we only have to find L > 0 such (9) holds. We consider two
separate cases.
Case 1. Suppose that |x| ≤ r. In this case the ball B(x, r) contains infinitely many
balls of the form φn+ki(X); in fact it contains all the balls for n greater than some
n0. On the arc Γp choose a point y such that ρ(x, y) = r. Let l denote the length
of a part of Γp from 0 to y. There exists a unique 1 ≤ m ≤ p so that

m

p+ 1
≤ r ≤

m+ 1

p+ 1
.

Simple geometry gives us that

|y| >
1

π
l >
1

π

( 1

p+ 1
+ r
)
>
1

π

m+ 1

p+ 1

=
1

π(p+1)
m+1

≥
1

8[p/m]

The above computation tells us that

1

B(8bp/mc+ 1/2 + ki, 1/2)
∩B(x, r) 6= ∅, (11)

so in other words we can assume that n0 = 8bp/mc. We have that

m(B(x, r)) ≥
∞∑

n=8b pm c+1

n−2h �

∫ ∞
8b pm c

x−2h dx

=
1

2h− 1

1

(8b pmc)
2h−1

=
1

82h−1(2h− 1)

1

b pmc
2h−1

≥
1

82h−1(2h− 1)

1

b p
r(p+1)c

2h−1
>

1

82h−1(2h− 1)

1

(1
r
)2h−1

=
1

82h−1(2h− 1)
r2h−1 ≥

1

82h−1(2h− 1)
rh.

Case 2. Assume that r < |x|. In this case the ball B(x, r) contains only finitely
many balls of the form φn+ki(X). It certainly contains the pth ball, so all we have
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to do is to find the maximum index l so that φl+ki(X) ⊂ B(x, r). Then there exists
a unique l ≥ p such that

l∑
n=p

diam
( 1

B(n+ 1
2 + ki,

1
2 )

)
≤ r ≤

l+1∑
n=p

diam
( 1

B(n+ 1
2 + ki,

1
2 )

)

The formula (10) for the diameter of φn+ki(X) immediately gives that for n large
enough

1

(n+ 1)2
< diam

( 1

B(n+ 1/2 + ki, 1/2)

)
<
1

n2
(12)

Hence, using the integral test, we obtain

1

p+ 1
−
1

l + 2
=

∫ l+2

p+1

x−2 dx ≤
l+1∑
n=p+1

1

n2
< r

<

l+1∑
n=p

1

n2
≤

∫ l+1

p−1

x−2 dx =
1

p− 1
−
1

l + 1
.

This shows that

1

p+ 1
−
1

l + 2
≤ r ≤

1

p− 1
−
1

l + 1
(13)

Applying the Mean Value Theorem we get

m(B(x, r)) ≥
l∑
n=p

n−2h �

∫ l
p

x−2h dx

=
1

2h− 1

((1
p

)2h−1

−
(1
l

)2h−1)

≥
1

2h− 1

(1
p
−
1

l

)
(2h− 1)

(1
z

)2h−2

=
(1
p
−
1

l

)( 1
z2

)h−1

,

for some p ≤ z ≤ l. Recall that r ≥ 8/p2, which implies z−2 ≤ r/8. Hence, using
(13)

m(B(x, r)) ≥
(1
p
−
1

l

)( r
8

)h−1

=
[(1
p
−
1

p− 1

)
+
( 1

p− 1
−
1

l + 1

)
+
( 1
l + 1

−
1

l

)]
81−hrh−1

≥
[
−

1

p(p− 1)
+ r −

1

l(l+ 1)

]
81−hrh−1

≥
[
r −

2

p(p− 1)

]
81−hrh−1

≥
[
r −

4

p2

]
81−hrh−1 ≥

[
r −

r

2

]
81−hrh−1 =

1

2
81−hrh.

Choosing L to be min{81−2h(2h− 1)−1, 2−181−h} completes the proof of the the-
orem. ♣
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3. Additional Remarks

According to the first equality of Theorem 1, since the Hausdorff dimension
of the limit set of the system {φn+ki : n ≥ 1, k ∈ Z} is greater than 1, we can
add to the family Φl = {φn+li : n ≥ 1}, l ≥ 1, finitely many mappings from
{φn+ki : n ≥ 1, k ∈ Z} to obtain the systems whose limit sets J have Hausdorff
dimensions greater than 1. Then, employing methods similar to those used in the
proofs of Theorems 2 and 3, we find that 0 < Hh(J) <∞ and Ph(J) <∞. (Here
instead of using Lemma 4.9 from [8] and Theorem 2.5 from [9] one should use
Lemma 4.11 from refMU1 and Theorem 2.6 from [9].) Let us remark that this fact
distinguishes these systems from the full family {φn+ki : n ≥ 1, k ∈ Z} and the
families investigated in this paper, since for them the packing measure is finite and
positive, whereas here the Hausdorff measure is positive and finite.

Acknowledgements. We would like to thank the referees for valuable remarks
which improved our paper and the editors of the EJDE for their attention to the
final form of this article.
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