A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING

G. G. Doronin, N. A. Lar'kin, \& A. J. Souza

Abstract

The initial boundary value problem for the wave equation with nonlinear second-order dissipative boundary conditions is considered. Existence and uniqueness of global generalized solutions are proved.

1. Introduction

In [1], J.L. Lions considers nonlinear problems on manifolds in which the unknown ω satisfies the Laplace equation in a cylinder Q and a nonlinear evolution equation of the form

$$
\begin{equation*}
\frac{\partial \omega}{\partial \nu}+\omega_{t t}+\left|\omega_{t}\right|^{\rho} \omega_{t}=0 \tag{1.1}
\end{equation*}
$$

on the lateral boundary Σ of Q. Here ν is an outward normal vector on Σ. This problem models water waves with free boundaries ([2], [3]).

The boundary condition

$$
\begin{equation*}
\frac{\partial \omega}{\partial \nu}+\left|\omega_{t}\right|^{\rho} \omega_{t}=0 \tag{1.2}
\end{equation*}
$$

arises when one studies flows of a gas in channels with porous walls $[4,5]$. The presence of the second derivative with respect to t in the boundary condition is due to internal forces acting on particles of the medium at the outward boundary.

Motivated by this, we study in the present paper the wave equation

$$
\begin{equation*}
u_{t t}-\Delta u=f \quad \text { in } \quad Q \tag{1.3}
\end{equation*}
$$

with the nonlinear boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}+K(u) u_{t t}+\left|u_{t}\right|^{\rho} u_{t}=0 \quad \text { on } \quad \Sigma \tag{1.4}
\end{equation*}
$$

and with the initial data

$$
\begin{equation*}
u(x, 0)=u_{t}(x, 0)=0 . \tag{1.5}
\end{equation*}
$$

The term $K(u) u_{t t}$ models internal forces when the density of the medium depends on the displacement.

[^0]In [1] it is shown that (1.1) can be replaced by the evolution equation

$$
u_{t t}+A(u)+\left|u_{t}\right|^{\rho} u_{t}=0 \quad \text { on } \quad \Sigma,
$$

where A is a linear positive self-adjoint operator. In that sense, the expression (1.2) looks like a semilinear hyperbolic equation on the manifold Σ. Equation (1.4) also behaves as a hyperbolic equation with nonlinear principal operator.

Generally speaking, quasilinear hyperbolic equations do not have global regular solutions. There are examples of "blow-up" at a finite time. (See, for instance, [6].) Nevertheless, the presence of linear damping allows proof of the existence of global solutions for small initial data ([7]). Moreover, a nonlinear damping makes it possible to prove global existence theorems for some quasilinear wave equations without restrictions on a size of the initial conditions ([8], [9]).

Here we use the ideas from [8] to prove the existence of global generalized solutions to the problem (1.3)-(1.5). We exploit the Faedo-Galerkin method, a priori estimates and compactness arguments. Uniqueness is proved in the one-dimensional case.

We consider the classical wave equation only to simplify calculations. Similar results hold for a second-order evolution equation of the form

$$
u_{t t}+A(t) u+F\left(u, u_{t}\right)=f
$$

where $A(t)$ is a linear, strictly elliptic operator, and $F\left(u, u_{t}\right)$ is a suitable function of u and u_{t}. Moreover, hyperbolic-parabolic or elliptic equations also may be considered.

2. The Main Result

For $T>0$, let Ω be a bounded open set of R^{n} with sufficiently smooth boundary Γ and $Q=\Omega \times(0, T)$. We consider the hyperbolic problem

$$
\begin{gather*}
u_{t t}-\Delta u=f(x, t), \quad(x, t) \in Q \tag{2.1}\\
\left.\left(\frac{\partial u}{\partial \nu}+K(u) u_{t t}+\left|u_{t}\right|^{\rho} u_{t}\right)\right|_{\Sigma_{1}}=0 ;\left.\quad u\right|_{\Sigma_{0}}=0 ; \tag{2.2}\\
u(x, 0)=u_{t}(x, 0)=0 \tag{2.3}
\end{gather*}
$$

Here $K(u)$ is a continuously differentiable positive function; ν is the outward unit normal vector on $\Gamma ; \Gamma=\Gamma_{0} \cup \Gamma_{1} ; \Gamma_{0} \cap \Gamma_{1}=\varnothing ; \Sigma_{i}=\Gamma_{i} \times(0, T) \quad(i=0,1)$; $\rho \in(1, \infty)$.

We denote by $H_{1}(\Omega)$ the Sobolev space $H^{1}(\Omega)$ with the condition $\left.u\right|_{\Gamma_{0}}=0$; $(u, v)(t)=\int_{\Omega} u(x, t) v(x, t) d x ;\|u\|$ is the norm in $L^{2}(\Omega):\|u\|^{2}(t)=(u, u)(t) ;$ $\Delta u=\sum_{i=1}^{n} \partial^{2} u / \partial x_{i}^{2}$.
Definition. A function $u(x, t)$ such that

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T ; H_{1}(\Omega)\right), \\
& u_{t} \in L^{\infty}\left(0, T ; H_{1}(\Omega)\right) \cap L^{\rho+2}\left(\Sigma_{1}\right), \\
& u_{t t} \in L^{\infty}\left(0, T ; L^{2}(\Omega) \cap L^{2}\left(\Gamma_{1}\right)\right), \\
& u(x, 0)=u_{t}(x, 0)=0
\end{aligned}
$$

is a generalized solution to (2.1)-(2.3) if for any functions $v \in H_{1}(\Omega) \cap L^{\rho+2}(\Gamma)$ and $\varphi \in C^{1}(0, T)$ with $\varphi(T)=0$ the following identity holds:

$$
\begin{gather*}
\int_{0}^{T}\left\{\left(u_{t t}, v\right)(t)+(\nabla u, \nabla v)(t)+\int_{\Gamma_{1}}\left[\left|u_{t}\right|^{\rho} u_{t}-K^{\prime}(u) u_{t}^{2}\right] v d \Gamma\right\} \varphi(t) d t \\
-\int_{0}^{T} \varphi^{\prime}(t) \int_{\Gamma_{1}} K(u) u_{t} v d \Gamma d t=\int_{0}^{T}(f, v) \varphi(t) d t \tag{2.4}
\end{gather*}
$$

We consider functions $K(u)$ satisfying the assumptions

$$
\begin{gather*}
0<K_{0} \leq K(u) \leq C\left(1+|u|^{\rho}\right), \tag{2.5}\\
\left|K^{\prime}(u)\right|^{\frac{\rho}{\rho-1}} \leq C(1+K(u)) . \tag{2.6}
\end{gather*}
$$

These conditions mean that the density of the medium can not increase too rapidly as a function of displacement. The condition (2.6) appears quite naturally because functions with polynomial growth, such as $K(u)=1+|u|^{s}$ with $1 \leq s \leq \rho$, satisfy it. The inequality $K(u) \geq K_{0}$ means that the vacuum is forbidden.

The main result of this paper is the following.
Theorem. Let the function $K(u)$ satisfy assumptions (2.5) and (2.6) and suppose $f(x, t) \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$. Then for all $T>0$ there exists at least one generalized solution to the problem (2.1)-(2.3). If $n=1$, this solution is unique.
Proof. We prove the existence part of the Theorem by the Faedo-Galerkin method. First, we construct approximations of the generalized solution. Then we obtain a priori estimates necessary to guarantee convergence of approximations. Finally, we prove the uniqueness in the one-dimensional case.

3. Approximate solutions

Let $\left\{w_{j}(x)\right\}$ be a basis in $H_{1}(\Omega) \cap L^{\rho+2}\left(\Gamma_{1}\right)$. We define the approximations

$$
\begin{equation*}
u^{N}(x, t)=\sum_{i=1}^{N} g_{i}(t) w_{i}(x) \tag{3.1}
\end{equation*}
$$

where $g_{i}(t)$ are solutions to the Cauchy problem

$$
\begin{gather*}
\left(f, w_{j}\right)(t)=\left(u_{t t}^{N}, w_{j}\right)(t)+\left(\nabla u^{N}, \nabla w_{j}\right)(t)+\int_{\Gamma_{1}}\left\{K\left(u^{N}\right) u_{t t}^{N}+\left|u_{t}^{N}\right|^{\rho} u_{t}^{N}\right\} w_{j} d \Gamma \tag{3.2}\\
g_{j}(0)=g_{j}^{\prime}(0)=0 ; \quad j=1, \ldots, N . \tag{3.3}
\end{gather*}
$$

It can be seen that (3.2) is not a normal system of ODE; therefore, we can not apply the Caratheodory theorem directly. To overcome this difficulty, we have to prove that the matrix A defined by

$$
\begin{equation*}
\left(A g^{\prime \prime}\right)_{j}=g_{j}^{\prime \prime}(t)+\int_{\Gamma_{1}}\left\{K\left(u^{N}\right) \sum_{i=1}^{N} g_{i}^{\prime \prime}(t) w_{i}(x)\right\} w_{j}(x) d \Gamma ; j=1, \ldots, N \tag{3.4}
\end{equation*}
$$

has an inverse. Multiplying (3.2) by $g_{j}^{\prime \prime}(t)$ and summing over j, we obtain the quadratic form

$$
q\left(g_{1}^{\prime \prime}, \ldots, g_{N}^{\prime \prime}\right)=\sum_{j=1}^{N}\left[\left(g_{j}^{\prime \prime}\right)^{2}+\sum_{i=1}^{N} \int_{\Gamma_{1}} K\left(u^{N}\right) w_{i} w_{j} d \Gamma g_{i}^{\prime \prime} g_{j}^{\prime \prime}\right] .
$$

The condition $K(u) \geq K_{0}>0$ implies that for any $g^{\prime \prime}(t) \neq 0$

$$
q=\sum_{j=1}^{N}\left(g_{j}^{\prime \prime}\right)^{2}+\int_{\Gamma_{1}} K\left(u^{N}\right)\left(\sum_{j=1}^{N} g_{j}^{\prime \prime} w_{j}\right)^{2} d \Gamma \geq \sum_{j=1}^{N}\left(g_{j}^{\prime \prime}\right)^{2}+K_{0}\left\|u_{t t}^{N}\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2}>0 .
$$

Hence, the quadratic form q is positive definite and all eigenvalues of the symmetric matrix A in (3.4) are positive. Thus, (3.2) can be reduced to normal form and, by the Caratheodory theorem, the problem (3.2),(3.4) has solutions $g_{j}(t) \in H^{3}\left(0, t_{N}\right)$ and all the approximations (3.1) are defined in $\left(0, t_{N}\right)$.

4. A priori estimates

Next, we need a priori estimates to show that $t_{N}=T$ and to pass to the limit as $N \rightarrow \infty$. To simplify the exposition, we omit the index N whenever it is unambiguous to do so.

Multiplying (3.2) by $2 g_{j}^{\prime}$ and summing from $j=1$ to $j=N$, we obtain

$$
\begin{aligned}
2\left(f, u_{t}\right)(t)= & \frac{d}{d t}\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}\right)(t)+2 \int_{\Gamma_{1}}\left|u_{t}\right|^{\rho+2} d \Gamma \\
& +\int_{\Gamma_{1}}\left\{\frac{d}{d t}\left(K(u) u_{t}^{2}\right)-K^{\prime}(u)\left(u_{t}\right)^{3}\right\} d \Gamma .
\end{aligned}
$$

Integrating with respect to τ from 0 to t, we get

$$
\begin{aligned}
2 \int_{0}^{t}\left(f, u_{\tau}\right) d \tau= & \left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}\right)(t) \\
& +2 \int_{0}^{t} \int_{\Gamma_{1}}\left\{\left|u_{\tau}\right|^{\rho+2}-\frac{1}{2} K^{\prime}(u)\left(u_{\tau}\right)^{3}\right\} d \Gamma d \tau+\int_{\Gamma_{1}} K(u) u_{t}^{2} d \Gamma
\end{aligned}
$$

Notice that

$$
\begin{gathered}
2 \int_{0}^{t} \int_{\Gamma_{1}}\left|u_{\tau}\right|^{2}\left\{\left|u_{\tau}\right|^{\rho}-\frac{1}{2} K^{\prime}(u) u_{\tau}\right\} d \Gamma d \tau \\
\geq 2 \int_{0}^{t} \int_{\Gamma_{1}}\left|u_{\tau}\right|^{2}\left\{\left|u_{\tau}\right|^{\rho}-\varepsilon\left|u_{\tau}\right|^{\rho}-C(\varepsilon)\left|K^{\prime}(u)\right|^{\frac{\rho}{\rho-1}}\right\} d \Gamma d \tau
\end{gathered}
$$

where ε is an arbitrary positive number. From now on, we denote by " C " all constants independent of N.

Fixing $\varepsilon=1 / 2$, taking into account (2.6), and applying the Cauchy-Schwarz inequality, we get

$$
\begin{align*}
& \left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}\right)(t)+\int_{0}^{t} \int_{\Gamma_{1}}\left|u_{\tau}\right|^{\rho+2} d \Gamma d \tau+\int_{\Gamma_{1}} K(u) u_{t}^{2} d \Gamma \tag{4.1}\\
\leq & \int_{0}^{t}\left(\|f\|^{2}+\left\|u_{\tau}\right\|^{2}\right)(\tau) d \tau+C \int_{0}^{t} \int_{\Gamma_{1}}\left|u_{\tau}\right|^{2}(1+K(u)) d \Gamma d \tau .
\end{align*}
$$

Note that $K(u) \geq C_{0}(1+K(u))$ where $2 C_{0}=\min \left\{1, K_{0}\right\}$. Therefore, for the function

$$
E_{1}(t)=\left(\left\|u_{t}\right\|^{2}+\|\nabla u\|^{2}\right)(t)+C_{0} \int_{\Gamma_{1}}(1+K(u))\left|u_{t}\right|^{2} d \Gamma
$$

we have from (4.1) the inequality

$$
E_{1}(t) \leq C\left(1+\int_{0}^{t} E_{1}(\tau) d \tau\right)
$$

By Gronwall's lemma, we conclude that, for all $t \in(0, T)$ and for all $N \geq 1$,

$$
E_{1}(t) \leq C .
$$

This and (4.1) give that for all $t \in(0, T)$,

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Gamma_{1}}\left|u_{\tau}\right|^{\rho+2} d \Gamma d \tau \leq C \\
& \int_{\Gamma_{1}} K\left(u^{N}\right)\left(u_{t}^{N}\right)^{2} d \Gamma \leq C
\end{aligned}
$$

where C does not depend on N.
In order to obtain the second a priori estimate, we observe that

$$
\begin{align*}
\left\|u_{t t}\right\|(0) & \leq\|f\|(0) \tag{4.2}\\
\int_{\Gamma_{1}} u_{t t}^{2}(x, 0) d \Gamma & \leq\|f\|^{2} / K(0) . \tag{4.3}
\end{align*}
$$

Indeed, multiplying (3.2) by $g_{j}^{\prime \prime}(0)$, summing over j, and setting $t=0$, we obtain

$$
\left(u_{t t}, u_{t t}\right)(0)+\int_{\Gamma_{1}} K(0) u_{t t}^{2}(x, 0) d \Gamma=\left(f, u_{t t}\right)(0)
$$

which implies (4.2). Consequently,

$$
\int_{\Gamma_{1}} K(0) u_{t t}^{2}(x, 0) d \Gamma \leq\|f\|(0) \cdot\left\|u_{t t}\right\|(0) \leq\|f\|^{2}(0)
$$

which gives (4.3).
Differentiating (3.2) with respect to t, multiplying by $g_{j}^{\prime \prime}$, and summing over j, we obtain the identity

$$
\begin{aligned}
\left(f_{t}, u_{t t}\right)(t)= & \frac{1}{2} \frac{d}{d t}\left(\left\|u_{t t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}\right)(t) \\
& +\int_{\Gamma_{1}}\left\{K(u) u_{t t} u_{t t t}+K^{\prime}(u) u_{t} u_{t t}^{2}+(\rho+1)\left|u_{t}\right|^{\rho} u_{t t}^{2}\right\} d \Gamma .
\end{aligned}
$$

Notice that

$$
K(u) u_{t t} u_{t t t}=\frac{1}{2} \frac{d}{d t}\left(K(u) u_{t t}^{2}\right)-\frac{1}{2} K^{\prime}(u) u_{t} u_{t t}^{2}
$$

and

$$
\begin{aligned}
\left|\int_{\Gamma_{1}} K^{\prime}(u) u_{t} u_{t t}^{2} d \Gamma\right| & \leq \varepsilon \int_{\Gamma_{1}}\left|u_{t}\right|^{\rho}\left|u_{t t}\right|^{2} d \Gamma+C(\varepsilon) \int_{\Gamma_{1}}\left|K^{\prime}(u)\right|^{\frac{\rho}{\rho-1}} \cdot\left|u_{t t}\right|^{2} d \Gamma \\
& \leq \varepsilon \int_{\Gamma_{1}}\left|u_{t}\right|^{\rho}\left|u_{t t}\right|^{2} d \Gamma+C(\varepsilon) \int_{\Gamma_{1}}(1+K(u))\left|u_{t t}\right|^{2} d \Gamma .
\end{aligned}
$$

Setting $\varepsilon=\rho$, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{t t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+\int_{\Gamma_{1}} K(u) u_{t t}^{2} d \Gamma\right)(t)+\int_{\Gamma_{1}}\left|u_{t}\right|^{\rho}\left|u_{t t}\right|^{2} d \Gamma \tag{4.4}\\
& \quad \leq\left(\left\|f_{t}\right\|^{2}+\left\|u_{t t}\right\|^{2}\right)(t)+C \int_{\Gamma_{1}}(1+K(u))\left|u_{t t}\right|^{2} d \Gamma .
\end{align*}
$$

Defining $E_{2}(t)$ as

$$
\begin{equation*}
E_{2}(t)=\left(\left\|u_{t t}\right\|^{2}+\left\|\nabla u_{t}\right\|^{2}+C_{0} \int_{\Gamma_{1}}(1+K(u))\left|u_{t t}\right|^{2} d \Gamma\right) \tag{t}
\end{equation*}
$$

and taking into account (4.2), (4.3), we reduce (4.4) to the form

$$
E_{2}(t) \leq C\left(1+\int_{0}^{t} E_{2}(\tau) d \tau\right)
$$

By Gronwall's lemma, for all $t \in(0, T), N \geq 1$ we obtain

$$
E_{2}(t) \leq C .
$$

Taking into consideration that $\left.u\right|_{\Sigma_{0}}=0$, we obtain the following statements

$$
\begin{align*}
& u^{N} \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) ; \\
& u_{t}^{N} \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right) \cap L^{\rho+2}(\Sigma) \cap L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) ; \\
& u_{t t}^{N} \in L^{\infty}\left(0, T ; L^{2}(\Omega) \cap L^{2}(\Gamma)\right) ; \tag{4.5}\\
& \frac{\partial}{\partial t}\left|u_{t}^{N}\right|^{1+\rho / 2} \in L^{2}(\Sigma) ; \\
& K^{1 / 2}\left(u^{N}\right) u_{t t}^{N} \in L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) .
\end{align*}
$$

5. Passage to the limit

Multiply (3.2) by $\varphi \in C^{1}(0, T)$ with $\varphi(T)=0$ and integrate with respect to t from 0 to T. After integration by parts, we obtain

$$
\begin{align*}
& \int_{0}^{T}\left\{\left(u_{t t}^{N}, w_{j}\right)+\left(\nabla u^{N}, \nabla w_{j}\right)+\int_{\Gamma_{1}}\left|u_{t}^{N}\right|^{\rho} u_{t}^{N} w_{j} d \Gamma\right\} \varphi(t) d t \\
& \quad-\int_{0}^{T} \varphi^{\prime}(t) \int_{\Gamma_{1}} K\left(u^{N}\right) u_{t}^{N} w_{j}(x) d \Gamma d t+\left.\varphi(t) K\left(u^{N}\right) u_{t}^{N}\right|_{0} ^{T} \tag{5.1}\\
& \quad-\int_{0}^{T} \varphi(t) \int_{\Gamma_{1}} K^{\prime}\left(u^{N}\right)\left(u_{t}^{N}\right)^{2} w_{j} d \Gamma d t=\int_{0}^{T}\left(f, w_{j}\right) \varphi(t) d t .
\end{align*}
$$

Because of (4.5) we can extract a subsequence u^{μ} from u^{N} such that:

$$
\begin{aligned}
& u^{\mu} \rightarrow u \text { weakly star in } L^{\infty}\left(0, T ; H_{1}(\Omega)\right) ; \\
& u_{t}^{\mu} \rightarrow u_{t} \text { weakly star in } L^{\infty}\left(0, T ; H_{1}(\Omega)\right) \cap L^{\rho+2}(\Sigma) ; \\
& u_{t t}^{\mu} \rightarrow u_{t t} \text { weakly star in } L^{\infty}\left(0, T ; L^{2}(\Omega) \cap L^{2}(\Gamma)\right) ; \\
& u^{\mu}, u_{t}^{\mu} \rightarrow u, u_{t} \quad \text { a.e. on } \Sigma .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left|u_{t}^{\mu}\right|^{\rho} u_{t}^{\mu} \in L^{q}(\Sigma), \quad q=(\rho+2) /(\rho+1)>1, \text { and converges a.e. on } \Sigma ; \\
K\left(u^{\mu}\right) u_{t}^{\mu} \in L^{q}(\Sigma), \quad \text { and converges a.e. on } \Sigma ; \\
K^{\prime}\left(u^{\mu}\right)\left(u_{t}^{\mu}\right)^{2} \in L^{q}(\Sigma), \quad \text { and converges a.e. on } \Sigma \text {. }
\end{gathered}
$$

Thus, we are able to pass to the limit in (5.1) to obtain

$$
\begin{gather*}
\int_{0}^{T}\left\{\left(u_{t t}, w_{j}\right)+\left(\nabla u, \nabla w_{j}\right)+\int_{\Gamma_{1}}\left(\left|u_{t}\right|^{\rho} u_{t}-K^{\prime}(u) u_{t}^{2}\right) w_{j} d \Gamma\right\} \varphi(t) d t \\
-\int_{0}^{T} \varphi^{\prime}(t) \int_{\Gamma_{1}} K(u) u_{t} w_{j} d \Gamma d t=\int_{0}^{T}\left(f, w_{j}\right) \varphi(t) d t \tag{5.2}
\end{gather*}
$$

It can be seen that all the integrals in (5.2) are defined for any function $\varphi(t) \in$ $C^{1}(0, T), \varphi(T)=0$. Taking into account that $\left\{w_{j}(x)\right\}$ is dense in $H^{1}(\Omega) \cap L^{\rho+2}(\Gamma)$, we conclude that (2.4) holds.

If $n=1,2$, one can get more regular solutions. In this case $u \in L^{\infty}\left(0, T ; L^{q}(\Gamma)\right)$ for any $q \in[1, \infty)$. Hence, $K(u) u_{t t} \in L^{\infty}\left(0, T ; L^{p}(\Gamma)\right)$, where p is an arbitrary number from the interval $[1,2$). This allows us to rewrite (5.2) in the form

$$
\int_{0}^{T}\left(f, w_{j}\right) d t=\int_{0}^{T}\left\{\left(u_{t t}, w_{j}\right)+\left(\nabla u, \nabla w_{j}\right)+\int_{\Gamma_{1}}\left(K(u) u_{t t}+\left|u_{t}\right|^{\rho} u_{t}\right) w_{j} d \Gamma\right\} \varphi(t) d t .
$$

Taking into account that almost every point $t \in(0, T)$ is a Lebesgue point and that $w_{j}(x)$ are dense in $H^{1}(\Omega)$ and therefore in $L^{q}(\Gamma)$, we obtain

$$
\left(u_{t t}, v\right)(t)+(\nabla u, \nabla v)(t)+\int_{\Gamma_{1}}\left\{K(u) u_{t t}+\left|u_{t}\right|^{\rho} u_{t}\right\} v d \Gamma=(f, v)(t),
$$

where v is an arbitrary function from $H^{1}(\Omega)$.

6. Uniqueness

Let $n=1$. Let u and v be two solutions to (2.1)-(2.3), and set $z(x, t)=u(x, t)-$ $v(x, t)$. Then for fixed t, for every function $\phi \in H_{1}(\Omega)$, we have

$$
\begin{gathered}
\left(z_{t t}, \phi\right)(t)+(\nabla z, \nabla \phi)(t) \\
+\int_{\Gamma_{1}}\left\{K(u) z_{t t}+v_{t t}(K(u)-K(v))+\left|u_{t}\right|^{\rho} u_{t}-\left|v_{t}\right|^{\rho} v_{t}\right\} \phi d \Gamma=0
\end{gathered}
$$

Since $z_{t}(x, t) \in L^{\infty}\left(0, T ; H_{1}(\Omega)\right)$, we may take $\phi=z_{t}$, and this equation can be reduced to the inequality

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left[E(t)+\int_{\Gamma_{1}} K(u)\left(z_{t}\right)^{2} d \Gamma\right] \\
+\int_{\Gamma_{1}}\left\{v_{t t} z_{t}(K(u)-K(v))-\frac{1}{2} K^{\prime}(u) u_{t}\left(z_{t}\right)^{2}\right\} d \Gamma \leq 0 .
\end{gathered}
$$

Here we set $E(t)=\left\|z_{t}\right\|^{2}(t)+\|\nabla z\|^{2}(t)$ and use the monotonicity of $\left|u_{t}\right|^{\rho} u_{t}$, the differentiability of K, and the regularity of $K(u) u_{t t}$ (see the end of previous section). Condition (2.6) then implies that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left[E(t)+\int_{\Gamma_{1}} K(u)\left(z_{t}\right)^{2} d \Gamma\right] \\
& \quad \leq C \max _{\Gamma_{1}}(1+K(u))^{\frac{\rho-1}{\rho}}\left|u_{t}\right| \int_{\Gamma_{1}}\left(z_{t}\right)^{2} d \Gamma+\frac{1}{2} \int_{\Gamma_{1}}\left\{\left|z_{t}\right|^{2}+\left|v_{t t}\right|^{2}|K(u)-K(v)|^{2}\right\} d \Gamma \\
& \quad \leq C \int_{\Gamma_{1}}\left|z_{t}\right|^{2} d \Gamma+\max _{\Gamma_{1}}|K(u)-K(v)|^{2} \int_{\Gamma_{1}}\left|v_{t t}\right|^{2} d \Gamma \\
& \quad \leq C_{1}\left\|z_{t}\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2}+C_{2}\left\|v_{t t}\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2} \cdot\|z\|_{C\left(\Gamma_{1}\right)}^{2} .
\end{aligned}
$$

Integrating from 0 to t, using (2.5) and the Sobolev embedding theorem ([10]), we obtain

$$
\left\|z_{t}\right\|^{2}(t)+\|\nabla z\|^{2}(t)+\left\|z_{t}\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2}(t) \leq C \int_{0}^{t}\left[\left\|z_{t}\right\|_{L^{2}\left(\Gamma_{1)}\right.}^{2}(\tau)+\|\nabla z\|^{2}(\tau)\right] d \tau
$$

This implies that $\|z\|=0$ and $u=v$ a.e. in Q. The proof of the Theorem is completed.

Remark. We use homogeneous initial conditions (2.3) for technical reasons. Nonhomogeneous initial data also can be considered without any restrictions on their size ([10]). In fact, suppose that initial conditions are imposed as follows

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega .
$$

Using the transformation $v(x, t)=u(x, t)-u_{0}(x)-u_{1}(x) \cdot t$, we obtain the problem

$$
\begin{gather*}
v_{t t}-\Delta v=F(x, t) \quad \text { in } Q ; \tag{6.1}\\
\frac{\partial v}{\partial \nu}+\frac{\partial \phi}{\partial \nu}+K(v+\phi) v_{t t}+\left|v_{t}+u_{1}\right|^{\rho}\left(v_{t}+u_{1}\right)=0 \quad \text { on } \Sigma_{1} ; \tag{6.2}\\
v+\phi=0 \quad \text { on } \Sigma_{0} ; \tag{6.3}\\
v(x, 0)=v_{t}(x, 0)=0 \quad \text { in } \Omega . \tag{6.4}
\end{gather*}
$$

Here $\phi(x, t)=u_{0}(x)+u_{1}(x) \cdot t$ and $F(x, t)=(f+\Delta \phi)(x, t)$ are given functions. It is clear that for regular solutions the compatibility conditions

$$
\frac{\partial u_{0}}{\partial \nu}+K\left(u_{0}\right)\left(f+\Delta u_{0}\right)+\left.\left|u_{1}\right|^{\rho} u_{1}\right|_{\Gamma_{1}}=0 ;\left.\quad u_{0}\right|_{\Gamma_{0}}=0
$$

need to be satisfied. This implies that conditions (6.2)-(6.4) are also compatible.
If $\left(u_{0}, u_{1}\right)(x) \in H^{2}(\Omega)$, than $F(x, t) \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$. Moreover, if $u_{1} \in$ $L^{\rho+2}\left(\Gamma_{1}\right)$, then we are able to obtain necessary a priori estimates and to pass to the limit by the method of Sections 4 and 5 . Of course, the use of conditions (6.2), (6.3) in place of (2.2) complicates calculations, but does not affect the final result.

Acknowledgments. We thank the referee for his/her valuable suggestions.

REFERENCES

[1] Lions, J.-L., Quelques méthodes de résolution des problèmas aux limites non linéaires, Paris, Dunod, 1969.
[2] Garipov, R.M., On the linear theory of gravity waves: the theorem of existence and uniqueness, Archive Rat. Mech. Anal., 24 (1967), 352-367.
[3] Friedman A., Shinbrot M., The initial value problem for the linearized equations of water waves, J. Math. Mech., 17 (1967), 107-180.
[4] Couzin A.T., Lar'kin N.A., On the nonlinear initial boundary value problem for the equation of viscoelasticity, Nonlinear Analysis. Theory, Methods and Applications, 31 (1998), 229-242.
[5] Greenberg J.M., Li Ta Tsien, The Effect of Boundary Damping for the Quasilinear Wave Equation, J. of Differential Equations, 52 (1984), 66-75.
[6] Roždestvenskii, B.L., Janenko, N.N., Systems of Quasi-linear Equations and their Applications to Gas Dynamics, Providence, AMS, 1983.
[7] Matsumura A., Global existence and asymptotics of the solutions of second-order quasilinear hyperbolic equations with first-order dissipation, Publ. Res. Inst. Sci. Kyoto Univ., 13 (1977), 349-379.
[8] Larkin, N.A., Global solvability of boundary value problems for a class of quasilinear hyperbolic equations, Siber. Math. Journ., 22, (1981), 82-88.
[9] Frota, C., Larkin, N.A., On local and global solvability of nonlinear mixed problems modeling vibrations of a string, Proc. of 7 -th Intern. Col. on Diff. Equats., August 1966, Plovdiv, Bulgaria, VSP Edition, (1997), 101-108.
[10] Sobolev, S.L., Some Applications of Functional Analysis in Mathematical Physics, Providence, AMS, 1991.
G. G. Doronin

Current address: DME-CCT-UFPB, CEP 58109-970, Campina Grande, PB, Brazil. Permanent address: 630090, Institute of Theoretical and Applied Mechanics, NovosiBIRSK, RUSSIA

E-mail address: gleb@dme.ufpb.br
N. A. LAR'KIN

Departamento de Matemática, Fundação Universidade Estadual de Maringá, CEP 97020-900, Maringá, PR, Brazil

E-mail address: nalarkin@gauss.dma.uem.br
A. J. Souza

Departamento de Matemática e Estatística, Universidade Federal da Paraíba, CEP 58109-970, Campina Grande, PB, Brazil

E-mail address: cido@dme.ufpb.br

[^0]: 1991 Mathematics Subject Classifications: 35A05, 35L20, 35A35, 49M15.
 Key words and phrases: Initial Boundary-Value Problem, Faedo-Galerkin Method.
 (c)1998 Southwest Texas State University and University of North Texas.

 Submitted May 22, 1998. Published October 30, 1998.
 Partially supported by the Conselho Nacional de Desenvolvimento Tecnológico e Científico, Brazil, under Grants 523258/95-0, 450042/97-9 and 452722/97-8.

