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On multi-lump solutions to the non-linear

Schrödinger equation ∗

Robert Magnus

Abstract

We present a new approach to proving the existence of semi-classical
bound states of the non-linear Schrödinger equation which are concen-
trated near a finite set of non-degenerate critical points of the potential
function. The method is based on considering a system of non-linear
elliptic equations. The positivity of the solutions is considered. It is
shown how the same method yields “multi-bump” solutions “homoclinic”
to an equilibrium point for non-autonomous Hamiltonian equations. The
method provides a calculable asymptotic form for the solutions in terms
of a small parameter.

1 Introduction

In this paper we study a system of non-linear elliptic equations which can yield
the existence of multilump solutions to the non-linear Schrödinger equation
(NLS)

i~
∂ψ

∂t
= −
~
2

2
∆ψ + V (x)ψ − γ|ψ|p−1ψ .

If we seek standing wave solutions over the whole of n-dimensional Euclidean
space Rn of the form ψ = e−iEt/~v(x), we find that the function v(x) satisfies
the equation

−
~
2

2
∆v + (V (x)− E)v − γ|v|p−1v = 0.

Now set ~2/2 = ε2, rename V (x) − E as V (x) and put γ = 1 to obtain the
equation

−ε2∆v + V (x)v − |v|p−1v = 0 . (1)

We shall assume that V (x) is bounded from below by a positive constant.
Floer and A. Weinstein [4] showed that, given a non-degenerate critical point

b of V (x), equation (1) has a positive solution for all sufficiently small ε which
concentrates at b, in the sense that, as ε→ 0 the solution tends to 0 uniformly
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in the complement of any given neighbourhood of b. (We omit some technical
conditions on V (x) which the reader can look up in [4]). Y. G. Oh [9] showed
that a similar result holds in which b is replaced by finitely many non-degenerate
critical points b1, . . . , bm. These are the multi-lump (-bump or -hump) solutions.
Oh showed that they are positive, and furthermore, that the corresponding
standing wave solution is unstable if there is more than one hump.
The method used by Oh is a generalization of the method of Floer and

Weinstein. Although the main idea, based on Liapunov-Schmidt splitting, is
simple enough, the details are rather difficult, involving many subtle estimates.
In this paper we propose an alternative method. This has several points of
contact with the previous method, but we hope the reader will agree that it is
somewhat simpler. Moreover it provides a computable asymptotic form for the
solution. This will be clarified in the course of the paper.
In a recent paper [2], Ambrosetti, Badiale and Cingolani showed how to

obtain single-hump states by an attractive method which is simpler than that
of Floer and Weinstein. It is not clear whether their method can be used to
prove the results presented in this paper. A number of treatments have appeared
based on variational principles and they typically do not require non-degeneracy
of the critical points of the potential function [5, 6, 10, 11, 12].
As in previous approaches we transform the independent variable, setting

y = x/ε. Thus, renaming y as x and dropping the absolute-value signs, we have
the equation in the form in which we shall treat it

−∆v + V (εx)v − vp = 0. (2)

Let b1, . . . , bm be non-degenerate critical points of V (x). Now we seek solutions
that are concentrated near to the points b1/ε, . . . , bm/ε. These points draw
apart as ε tends to 0. Let v1, . . . , vm be approximate single-hump solutions
with vk concentrated near to bk/ε. Then approximately

−∆
(∑

vi

)
+ V (εx)

(∑
vi

)
−
(∑

vi

)p
≈
∑(

−∆vi + V (εx)vi − v
p
i

)
≈ 0 .

for small ε. We have approximate additivity of the non-linear operator as the
products of them functions v1, . . . , vm grow small due to their maxima drawing
apart. We exploit this by writing m equations, one for each vi, and coupling
them by products of the variables v1, . . . , vm, in such a way that the sum v1 +
· · ·+ vm satisfies (2).
In fact there is an obvious way to write m equations so that the sum v1 +

· · ·+ vm satisfies (2), namely

−∆vi + V (εx)vi −
( m∑
k=1

vk

)p−1
vi = 0, i = 1, . . . ,m.

Unfortunately there is a hidden degeneracy here which causes technical problems
(see section 2.1 and the condition ND). These can be overcome by distributing

the polynomial
(∑m

k=1 vk

)p
in a different fashion over the right-hand sides of

the m equations.
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We propose therefore to study a system of elliptic equations

−∆vi + V (εx)vi −Gi(v) = 0, i = 1, . . . ,m,

where v = (v1, . . . , vm), and the functions Gi are homogeneous polynomials of
degree p in the m variables v1, . . . , vm with real coefficients. The results which
we obtain concern existence of solutions of such systems. We also investigate the
positivity of the solutions in a systematic way. To obtain multilump solutions
of the non-linear Schrödinger equation we can choose the functions Gi so that

m∑
i=1

Gi(v) =
( m∑
i=1

vi

)p

and such that the non-degeneracy condition referred to above is satisfied.
We are going to assume a polynomial non-linearity throughout this paper.

This means that p will be an integer greater than 1, and imposes some restriction
as we will also need the upper bound p < (n+2)/(n−2). The reason for taking
p to be an integer is to facilitate an algebraic treatment of functions of sums of
the form Gi(u+ v). It is likely that a homogeneous non-linearity of non-integer
degree can be treated by an analytic method (similar to a Taylor expansion).
We shall not attempt this here. However it means that p is not restricted from
above if n = 1 or 2; for n = 3 we have p = 2, 3 or 4; for n = 4 or 5 we have only
p = 2; while for n > 5 there are no cases.
We shall show how the same approach can be used to study the equation

−∆v + v − (1 + εh(x))vp = 0

where h is a bounded measurable function. We view this as a small perturbation
of

−∆v + v − vp = 0 ,

which possesses a spherically symmetric positive solution φ in the spaceH2(Rn).
All translates of the function φ are solutions. However the perturbation breaks
the translational symmetry of the equation and by [8] we should look for so-
lutions near to a translate φ(x − c) where c ∈ Rn is a critical point of the
function

F (s) =

∫
h(x)φ(x + s)p+1 dnx.

Such a solution has one hump. We assume that h is periodic and find solutions
near a linear combination of translates

∑m
i=1 φ(x− ci) provided the separations

‖ci − cj‖ are large enough. In one dimension (n = 1) these are the homoclinic
solutions investigated in [3] and [14] by variational methods. Our solutions are
like homoclinic solutions in that they decay at infinity and we are able to give
calculable asymptotic forms.
Here is a brief summary of the contents of the sections. In section 2 we

study the existence of solutions to the system of elliptic equations; in section 3
we apply this to the non-linear Schrödinger equation; in section 4 we consider
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positivity of the solutions of the system of elliptic equations studied in section 2,
with an application to the non-linear Schrödinger equation; in section 5 we study
multi-dimensional “homoclinics”; in section 6 we provide a few technical results
needed in previous sections, including a version of the implicit function theorem
adapted to our needs.

2 A system of equations

2.1 Hypotheses and statement of theorem

We consider the system

−∆vi + V (εx)vi −Gi(v) = 0, i = 1, . . . ,m (3)

where v = (v1, . . . , vm) and the functions Gi are homogeneous polynomials of
degree p in the m variables v1, . . . , vm with real coefficients. We seek solutions
vi(x) belonging to the real Hilbert space H

2(Rn), hereafter abbreviated to H2,
of real-valued functions on all of Rn which have square-integrable derivatives up
to the second order.
We assume that V is a bounded, C2, real-valued function, with bounded

first and second derivatives. These conditions can be relaxed somewhat (Oh
employs weaker conditions), but they allow our method to run smoothly. We
assume that there exists δ > 0 such that V (x) > δ for all x.
We emphasize that we are concerned with real-valued solutions. If the non-

linear term in (2) appears as |v|p−1v then for every solution v we obtain another
by multiplying by a phase-factor eiα. It then makes sense to seek complex-valued
solutions which look like a sum of lumps with possibly different phase factors.
This may be taken up in another paper.
If we assume that 2 ≤ p <∞ in case n = 1, 2, 3 or 4 and 1 ≤ p ≤ n/(n− 4)

in case n ≥ 5, then the Sobolev Embedding Theorem [1] guarantees that the
space H2 is continuously embedded in L2p. Thus if v ∈ H2 then Gi(v) ∈ L2.
However we have to make the further restriction that p < (n+2)/(n−2). This

is to ensure the existence of the positive, radially symmetric solution v = φ(x)
to the equation

−∆v + v − vp = 0 .

The existence and uniqueness of this solution was shown by M. Weinstein [16]
in the case n = 1 and in the cases n = 3, 1 < p ≤ 2. The missing material
needed for the complete proof was then supplied by M. K. Kwong [7].
Let bk, k = 1, . . . ,m, be distinct, non-degenerate critical points of V (one

for each equation). We set ak = V (bk). Let

ui(x) = a
1
p−1

i φ(
√
aix), i = 1, . . . ,m.

Then ui is the unique, positive, radially-symmetric solution of

−∆v + aiv − v
p = 0.
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It is known that the space of all solutions in H2 to the equation

−∆v + v − φ(x)p−1v = 0

is one-dimensional and spanned by φ(x); whilst the space of all solutions to

−∆v + v − pφ(x)p−1v = 0

is n-dimensional and spanned by the partial derivatives Dkφ(x), k = 1, . . . , n.
For proofs or further references see [9, 7, 16]. The Fredholm alternative is valid
here and tells us that if h ∈ L2 then the equation

−∆v + v − pφ(x)p−1v = h

has a solution if and only if h is orthogonal to the partial derivatives of φ(x).
Let Σ denote the set of complex numbers λ for which the equation

−∆v + v − λφ(x)p−1v = 0

has a non-trivial solution in H2. It is known that Σ is a real sequence tending
to ∞. The lowest member of Σ is 1, and certainly in the case n = 1 it is clear
that its next lowest member is p. (The problem can be viewed as an eigenvalue
problem for a compact, self-adjoint operator; see Appendix section 6.3.)
The equations are coupled by means of the functions Gi. Concerning them

we assume that
Gi(v) = v

p
i + gi(v)vi

and

gi(v) =

m∑
j=1

λijv
p−1
j +mixed terms.

Mixed terms are monomials involving two or more different variables. We as-
sume that λii = 0. This means that Gi(v) consists of v

p
i plus mixed terms. We

shall require λij to satisfy the following non-degeneracy condition:

λij 6∈ Σ for each i and j. (ND)

Note that we are assuming that the mixed terms in Gi all contain the factor
vi. This assumption can be dropped at the expense of a more complicated non-
degeneracy condition. It has not seemed worthwhile to treat this here but it
could be examined in a later paper.

Theorem 1 Under the above assumptions the system of equations (3) possesses
a solution v = (v1, . . . , vm) for each sufficiently small ε > 0, which depends
continuously on ε in the H2-norm, and is such that vi(·+

bi
ε ) tends to ui in the

H2-norm as ε→ 0.
We have moreover the following asymptotic information. The solution has

the form

vi(x) = ui

(
x−

bi

ε
+ si

)
+ ε2wi

(
x−

bi

ε
+ si

)
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where si is a vector in R
n and the function wi is orthogonal in L

2 to the partial
derivatives of ui. Both si and wi depend on ε in such a way that:
(i) limε→0+ si = 0;
(ii) limε→0+ wi = ηi in H

2;
where ηi is the unique solution of

−∆ηi(x) + aiηi(x) − pui(x)
p−1ηi(x) = −

1

2
V ′′(bi)(x, x)ui(x)

which is orthogonal to the partial derivatives of ui.

Note that the function ηi is in principle calculable and it is to that extent
that we consider the asymptotic form of the solution calculable.

2.2 First part of the proof

In this subsection we give the proof of Theorem 1 apart from a technical lemma,
and derive much other useful information about the asymptotic form of v as
ε→ 0.
The system of equations (3) defines a non-linear operator

v 7→ F (ε, v) : (H2)m → (L2)m

which depends on a parameter ε > 0. Our strategy is to solve the equations
for sufficiently small ε by means of a substitution, careful consideration of the
limiting problem as ε→ 0, and the implicit function theorem.
Introduce the subspaces

Wk =
{
w ∈ H2 :

∫
wDjuk = 0, j = 1, . . . , n

}

and set
W =W1 × · · · ×Wm .

Introduce the variable vectors s1, . . . , sm, each in R
n, and let

ξk = −
bk

ε
+ sk .

Note that ‖ξi − ξj‖ → ∞ as ε→ 0 provided i 6= j. We let s = (s1, . . . , sm) but
we emphasize that each component of the m-tuple s is a vector in Rn.
We shall now use the substitution

vi = ui(x+ ξi) + ε
2wi(x+ ξi), i = 1, . . . ,m

where wi ∈ Wi. The independent variables are the functions wi ∈ Wi and the
vectors si implicit in ξi. We shall prove the existence of a solution for each
sufficiently small ε, and as ε → 0 we shall see that s → 0 and wi → ηi in the
norm topology of H2, where ηi are the functions referred to in Theorem 1.
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We make the substitution and, for each i, translate the ith equation, re-
placing x by x − ξi. Divide each equation by ε2. The result is a new operator
equation f(ε, s, w) = 0 involving an operator

(s, w) 7→ f(ε, s, w) : (Rn)m ×W → (L2)m

which we proceed to describe. To ease the exposition we split the description
into three parts:

(A) terms not involving w = (w1, . . . , wm);

(B) terms linear in w;

(C) terms quadratic or higher in w.

We consider each part separately with a view to taking the limit as ε→ 0.

(A) Before division by ε2 the ith component is as follows:

−∆ui(x) + V (ε(x− ξi))ui(x)−Gi
(
u1(x+ ξ1 − ξi), . . . , um(x+ ξm − ξi)

)

=
(
V (ε(x−ξi))−ai

)
ui(x)+ui(x)

p−Gi
(
u1(x+ξ1−ξi), . . . , um(x+ξm−ξi)

)

=
(
V (ε(x− ξi))− ai

)
ui(x)− gi

(
u1(x+ ξ1− ξi), . . . , um(x+ ξm− ξi)

)
· ui(x).

The second term in the last line consists of sums of monomials. In each we
have the unshifted factor ui(x) together with at least one other shifted factor
of the form uk(x+ ξk − ξi) for which k 6= i. Such a monomial tends to 0 in the
L2-norm as ε→ 0. In fact the convergence to 0 is faster than that of any power
of ε because of the exponentially fast decrease of the function φ at infinity.
Division by ε2 leads therefore to the limit

1

2
V ′′(bi)(x − si, x− si)ui(x),

where the second derivative V ′′(bi) is regarded as a symmetric, bilinear form.
Note that the limit is attained in the L2-norm thanks to the boundedness of
the second derivatives of V . But in fact, owing to the rapid decrease of ui(x)
we get the same result if the second derivatives of V have polynomial growth.
The expression (A) defines a mapping

f0 : R+ × (R
n)m → (L2)m

where R+ denotes the interval [0,∞[ and the ith component of f0 is given by

(
f0(ε, s)

)
i
= ε−2

(
V (ε(x − ξi))− ai

)
ui(x)

− ε−2gi
(
u1(x+ ξ1 − ξi), . . . , um(x+ ξm − ξi)

)
· ui(x)
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if ε > 0, and (
f0(0, s)

)
i
=
1

2
V ′′(bi)(x − si, x− si)ui(x) .

Note that the derivative of f0(ε, s) with respect to s converges to the corre-
sponding derivative of f0(0, s) as ε → 0. Convergence occurs in the uniform
operator topology (the operator norm) thanks to the boundedness of the sec-
ond derivatives of V (and, as before, polynomial growth would suffice).

(B) After division by ε2 the ith component comprises the following terms:

−∆wi(x) + V (ε(x− ξi))wi(x)− pui(x)
p−1wi(x)

− gi
(
u1(x+ ξ1 − ξi), . . . , um(x+ ξm − ξi)

)
wi(x)

−
m∑
k=1

(
Dvkgi

)(
u1(x+ ξ1 − ξi), . . . , um(x+ ξm − ξi)

)
ui(x)wk(x+ ξk − ξi).

(Note that Dvkgi denotes the partial derivative of gi with respect to the variable
vk.) This expression may be thought of as

f1(ε, s)w

where f1(ε, s) is a linear mapping from W to (L2)m for each ε > 0 and s.
The main difficulty we have to face is the fact that f1(ε, s) does not behave

well in the operator norm as ε→ 0, as we now proceed to see.
The last two terms in the expression consist of sums of monomials of the

form

uk1(x + ξk1 − ξi) · · ·ukp−1(x+ ξkp−1 − ξi)wi(x)

and of the form

uk1(x+ ξk1 − ξi) · · ·ukp−2(x+ ξkp−2 − ξi)ui(x)wk(x+ ξk − ξi)

Let us consider these as linear maps acting on the functions wi. A monomial of
the first kind defines a linear map that tends to 0 with ε in the operator norm
provided at least two distinct shifts are present to cause the function multiplying
wi(x) to converge uniformly to 0. This occurs unless k1 = · · · = kp−1. Similarly
a monomial of the second kind defines a linear map that tends to 0 with ε in
the operator norm unless k1 = · · · = kp−2 = i. Throwing out terms that tend
to 0 in the operator norm leaves

−∆wi(x) + V (ε(x− ξi))wi(x)− pui(x)
p−1wi(x)

−
m∑

k=1,k 6=i

λikuk(x+ ξk − ξi)
p−1wi(x)

−
m∑

k=1,k 6=i

γikui(x)
p−1wk(x+ ξk − ξi)
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for certain constants γik. This defines a linear map acting on the functions wi
but it is plain that it does not attain a limit in the norm topology, but only in
the strong operator topology, as ε→ 0.
In fact the strong operator limit is the linear mapping f1(0, s) given by

f1(0, s)w = −∆wi(x) + aiwi(x) − pui(x)
p−1wi(x).

Note that it is independent of s.

(C) This may be written as ε2f2(ε, s, w) and tends to zero, along with any
derivatives it possesses, as ε → 0. The convergence is uniform for s and w in
bounded sets.

The limiting problem is the following.

1

2
V ′′(bi)(x− si, x− si)ui(x)−∆wi(x) + aiwi(x)− pui(x)

p−1wi(x) = 0,

i = 1, . . . ,m.

It has a non-degenerate solution si = 0, wi = ηi, i = 1, . . . ,m, where ηi(x) is
the unique solution in Wi of

−∆ηi(x) + aiηi(x)− pui(x)
p−1ηi(x) = −

1

2
V ′′(bi)(x, x)ui(x)

(see section 6.2).
For ε > 0 our problem takes the form

f(ε, s, w) = f0(ε, s) + f1(ε, s)w + ε
2f2(ε, s, w) = 0 . (4)

At this point we would like to apply the implicit function theorem to derive a
solution for all sufficiently small ε > 0. But this requires that the derivative
w.r.t. (s, w) converges in the operator-norm as ε→ 0. This fails for terms (B).
However we can still use the implicit function theorem via a modification which
is discussed in the appendix (see Theorem 4 in section 6).
For convenience let us denote the space (Rn)m × W by E and the space

(L2)m by F . Define an operator-valued function A : R+ → L(E,F ) given by

A(ε)(σ, z) = Dsf0(0, 0)σ + f1(ε, 0)z. (5)

To apply Theorem 4 we have to check the following properties of A.

(1) A is continuous for ε > 0 w.r.t. the strong operator-topology. (This is
needed to ensure that the solution depends continuously on ε; see Theo-
rem 4.)

(2) The limit limε→0A(ε) = D(s,w)f(0, 0, η) is attained in the strong operator
topology. (The importance of s = 0, w = η is that it is the solution of the
limiting problem. Compare condition (c) of Theorem 4.)
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(3) The limit limε→0,s→0,w→η

(
A(ε) −D(s,w)f(ε, s, w)

)
= 0 is attained in the

operator-norm topology. (Compare condition (d) of Theorem 4.)

(4) There exist M > 0 and ε0 > 0 such that A(ε) is invertible for 0 ≤ ε < ε0
and ‖A(ε)−1‖ < M . (Compare condition (e) of Theorem 4. Here, and in
similar contexts, we say that a bounded operator from Banach space X
to Banach space Y is invertible if it has a bounded inverse defined on all
of Y .)

Properties 1 and 2 are fairly obvious. Let us check property 3. We have

A(ε)(σ, z)−D(s,w)f(ε, s, w)(σ, z) = Dsf0(0, 0)σ + f1(ε, 0)z

−Dsf0(ε, s)σ − f1(ε, s)z −
(
Dsf1(ε, s)σ

)
w +O(ε2)

where the remainder term is uniformly of order ε2 for bounded s, σ, w and z.
Since the variable s (and hence also σ) belongs to a finite-dimensional space, we

see that the linear maps σ 7→ Df0(0, 0)σ−Dsf0(ε, s)σ and σ 7→
(
Dsf1(ε, s)σ

)
w

converge to 0 in the strong operator topology as ε→ 0, s→ 0 and w → η. This
leaves the difference term f1(ε, 0)z − f1(ε, s)z. This also tends to 0 as s → 0,
uniformly for bounded z, owing to the uniform continuity of the functions uk(x)
and their products, and the boundedness of the first derivatives of V .
The proof of property 4 requires more effort. This will be carried out in

a separate subsection. We note now the conclusion. For all sufficiently small
ε > 0 equation (4) has a unique solution (s, w) which tends to (0, η) as ε → 0
and depends continuously on ε.

2.3 Proof of property 4

It suffices to show that if we have sequences εν ∈ R+, σν ∈ (Rn)m and zν ∈ W
such that

εν → 0, ‖σν‖(Rn)m + ‖zν‖(H2)m ≤ 1

whilst
A(εν)(σν , zν) = Dsf0(0, 0)σν + f1(εν , 0)zν → 0

in the norm topology of (L2)m, then a subsequence of (σν , zν) tends to 0 in
the norm topology of (Rn)m ×W . This will prove that A(ε) is injective for
sufficiently small ε and that its inverse has a uniform bound. Using the fact
that A(ε) is a Fredholm operator of index 0 we see that A(ε) is invertible in the
normal sense.
The ith component of Df0(0, 0)σ + f1(ε, s)z can be written as

−V ′′(bi)(x, σi)ui(x)−∆zi(x) + V (ε(x− ξi))zi(x)

− pui(x)
p−1zi(x) −

m∑
k=1,k 6=i

λikuk(x+ ξk − ξi)
p−1zi(x)

−
m∑

k=1,k 6=i

γikui(x)
p−1zk(x + ξk − ξi) + Ji(ε, s)z (6)
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where the remainder term is expressed in terms of an operator Ji(ε, s) which
tends to 0 in norm with ε. This term may be safely discarded.
Introduce sequences as above with subscript ν ∈ N. Recalling that s = 0 we

have

ξν,k = −
bk

εν
.

Recall that in a Hilbert space a bounded sequence has a weakly convergent
subsequence. By going to a subsequence we may assume that

(a) limν→∞ σν = σ∞;

(b) limν→∞ zν,i = z∞,i weakly in Wi for each i;

(c) limν→∞ zν,i(·+ ξν,i − ξν,j) = yij weakly in H2 for each i.

We recall the following facts. If a sequence is weakly convergent in H2 it is
convergent in the sense of distributions. Its restriction to a bounded set is norm
convergent in L2 on that set. If we multiply by a fixed function which tends to
0 at infinity the resulting sequence is norm convergent in L2 over all of Rn.
Let j 6= i and translate the expression (6) by replacing x by x+ ξi− ξj . The

resulting expression

−V ′′(bi)(x + ξν,i − ξν,j , σν,i)ui(x+ ξν,i − ξν,j)

−∆zν,i(x + ξν,i − ξν,j) + V (εν(x− ξν,j))zν,i(x+ ξν,i − ξν,j)

− pui(x+ ξν,i − ξν,j)
p−1zν,i(x + ξν,i − ξν,j)

−
m∑

k=1,k 6=i

λikuk(x+ ξν,k − ξν,j)
p−1zν,i(x+ ξν,i − ξν,j)

−
m∑

k=1,k 6=i

γikui(x+ ξν,i − ξν,j)
p−1zν,k(x+ ξν,k − ξν,j)

tends to 0 in L2. It therefore tends to 0 in the sense of distributions; but,
recalling that j 6= i, this implies that

−∆yij(x) + ajyij − λijuj(x)
p−1yij(x) = 0 .

This is where the assumption that λij 6∈ Σ is brought into play. It implies that
yij = 0. In particular the distribution limit of zν,k(·+ ξν,k − ξν,i) is 0 if k 6= i.
Next we consider the distribution limit without translation. Using what we

have just proved we obtain

V ′′(bi)(x, σ∞,i)ui(x) −∆z∞,i(x) + aiz∞,i(x) − pui(x)
p−1z∞,i(x) = 0.

From this we deduce that σ∞,i = 0 and z∞,i = 0. (The non-degeneracy of
bi is needed here; the calculation needed to verify this is similar to that in
section 6.2.)
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We now have that the weak limit of zν,i(·+ ξν,i− ξν,j) is 0 for any pair (i, j).
Since ui decays at infinity we have that both

ui(·)
p−1zν,j(·+ ξν,j − ξν,i)

and
ui(·+ ξν,i − ξν,j)

p−1zν,j(·)

tend to 0 in L2. Hence, also

−∆zν,i + V (εν(x− ξν,i))zν,i

tends to 0 in L2. By Wang’s Lemma [15] (see Appendix section 6.4) this implies
that zν,i tends to 0 in L

2.

3 Deductions from Theorem 1

3.1 Multi-lump solutions of NLS

We seek a solution to
−∆v + V (εx)v + vp = 0

for which v =
∑m
i=1 vi and vi is near a

1
p−1

i φ(
√
ai(x−

bi
ε )).

We write ( m∑
i=1

vi

)p
=

m∑
i=1

Gi(v) =
m∑
i=1

(vpi + gi(v)vi)

where the functions gi are chosen so that the constants λij fall outside Σ (see
Section 2 for the definition of Σ). In fact if p ≥ 3 we can arrange things so that
λij = 0. For

( m∑
i=1

vi

)p
=

m∑
i=1

vpi +
∑
i6=j

pviv
p−1
j + other monomials.

If p ≥ 3 we can split this into the sum of m polynomials. We group viv
p−1
j with

vpj . For any other monomial choose one of its variables vk arbitrarily and group
it with vpk.
If a concise prescription is required we could use the following, although it

does not recommend itself above any other method. Using the usual multi-
indices we write ( m∑

i=1

vi

)p
=
∑
|α|=p

bαv
α.

For each multi-index α letm(α) be the highest subscript at which the maximum
coordinate occurs, that is,

m(α) = max{j : αj = maxα}.
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Then we set
Gi(v) =

∑
m(α)=i

bαv
α .

This works only for p ≥ 3 and so we are left with the case p = 2. To handle
this we choose gi(v) =

∑m
j=1 αijvj where αii = 0, αij + αji = 2 for i 6= j and

αij 6∈ Σ.

3.2 Multilump solutions with sign

Now we seek real-valued solutions to

−∆v + V (εx)v + vp = 0

for which v =
∑m
i=1 yi and yi is near κia

1
p−1

i φ(
√
ai(x−

bi
ε
)), where κi = ±1.

Let us assume that p is odd. Then we seek solutions vi to the system

−∆vi + V (εx)vi − v
p
i − gi(v)vi = 0, i = 1, . . . ,m

for which vi is near a
1
p−1

i φ(
√
ai(x−

bi
ε
)), choosing the polynomials gi(v) so that

( m∑
i=1

κivi

)p
=

m∑
i=1

(κiv
p
i + κigi(v)vi)

and so that λij 6∈ Σ. This is clearly possible since p is odd.
The required solution is then

∑m
i=1 κivi.

4 Positivity

4.1 Positive solutions of the system

In this section we prove that solutions of (3) are positive under appropriate
conditions. Throughout the section we let vi be the solutions the existence of
which were established in section 2. They depend on ε but this dependence
will not be explicitly indicated. We maintain all the conditions of section 2. In
particular we recall the non-degeneracy condition ND. In the following general
result we impose a further restriction on the constants λij .

Theorem 2 Assume that the constants λij all satisfy λij < 1. Then the solu-
tions vi are all positive and without zeros.

We begin by noting that vi satisfies the linear differential equation

Lεy := −∆y + V (εx)y − (v
p−1
i + gi(v))y = 0 .

Our strategy is the usual one of showing that vi is the ground-state eigenfunc-
tion of the operator Lε; in other words Lε has no negative eigenvalues if ε is
sufficiently small. For operators of this kind it is known that the ground state
is positive up to a numerical factor (see, for example, [13]).
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Lemma 1 There exist ε0 > 0 and ρ0 > 0 such that for 0 < ε < ε0 the eigenvalue
0 of Lε is simple and is the only eigenvalue in the interval ]−ρ0, ρ0[.

Note: For the lemma the assumption that λij < 1 is not needed.

Proof of Lemma 1. Consider the linear mapping

Tε : (λ, z) 7→ λvi(x) + Lεz

from R× Zε to L2 where

Zε =
{
y ∈ H2 :

∫
yvi = 0

}
.

Here we have
vi(x) = ui(x+ ξi) + ε

2wi(x+ ξi)

where, as before,

ξi = −
bi

ε
+ si ,

wi and si having values, depending on ε, which give a solution of the system (3).
We shall show that Tε is invertible for all sufficiently small ε and that its

inverse satisfies a bound in norm independent of ε.
It suffices to show that if we have sequences εν ∈ R+, λν ∈ R and zν ∈ Zεν

such that
εν → 0, |λν |+ ‖zν‖H2 ≤ 1

whilst
λνvν,i(x) + Lενzν → 0 (7)

in L2 as ν → ∞, then a subsequence of (λν , zν) converges to 0 in norm. Note
that we have written vν for the solution of (3) with ε = εν ; we use likewise the
notation ξν,i. Going to a subsequence we may suppose that the following limits
exist in the weak topology of H2:

lim
ν→∞

zν(· − ξν,j) = z∞,j j = 1, . . . ,m;

also that
lim
ν→∞

λν = λ∞.

Shifting the left-hand side of (7) by replacing x by x−ξν,i, taking the distribution
limit and recalling the form of v(x) for small ε we find

λ∞ui(x) −∆z∞,i(x) + aiz∞,i(x) − ui(x)
p−1z∞,i(x) = 0.

Since
∫
zνvν,i = 0 we have that

∫
z∞,iui = 0 and we deduce that λ∞ = 0 and

z∞,i = 0. Shifting the left-hand side of (7) by replacing x by x − ξν,j where
j 6= i, and taking the distribution limit we find

−∆z∞,j(x) + ajz∞,j(x)− λiju∞,j(x)
p−1z∞,j(x) = 0
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which, since λij 6∈ Σ, implies z∞,j = 0. Returning to (7) we see that

−∆zν + V (ενx)zν → 0

in the L2-norm. By Wang’s Lemma (section 6.4) this implies zν → 0 in the
H2-norm.
Thus there exists ε0 > 0 and K > 0 such that Tε is invertible for 0 < ε < ε0

and ‖T−1ε ‖ < K. In particular it follows that the kernel of the operator Lε from
H2 to L2 is one-dimensional if ε is small enough.
By the last paragraph there exists ρ0 > 0 such that the map

(λ, z) 7→ Tε(λ, z) + ρz

from R× Zε to L2 is invertible for 0 < ε < ε0 and |ρ| < ρ0. Suppose a value of
ρ in this range is an eigenvalue of Lε with eigenfunction y. Then

−∆y + V (εx)y − (vi(x)
p−1 + gi(v(x)))y = ρy .

Write
y = λvi + z

where z ∈ Zε. Since Lεvi = 0 we have that

Tε(−ρλ, z)− ρz = 0 .

But then ρλ = 0 and z = 0 whence ρ = 0. Thus the only eigenvalue in the
range |ρ| < ρ0 is 0 provided 0 < ε < ε0. This ends the proof.

Proof of Theorem 2. We prove that for all sufficiently small ε > 0 the operator
Lε has no negative eigenvalues. Suppose the contrary holds. Then we can find
sequences

εν → 0, λν < 0, yν ∈ H
2

such that ‖yν‖H2 = 1 and

Lενyν = −∆yν + V (ενx)yν − (v
p−1
ν,i + gi(vν))yν = λνyν .

It is clear that λν is bounded below, and by the lemma λν ≤ −ρ0 < 0 for
sufficiently large ν. Going to a subsequence we may assume that

λν → λ∞ < 0, yν(· − ξν,k)→ zk

weakly in H2, for k = 1, . . . , m.
Replace x by x − ξν,k and take the limit in the sense of distributions. For

k 6= i we obtain

−∆zk + akzk − λikuk(x)
p−1zk = λ∞zk.

But the operator −∆ + ak − ui(x)p−1 has no negative spectrum, λik < 1 and
λ∞ < 0. We deduce that zk = 0. (For future reference we note that this would
also be true if λik = 1.) For k = i we obtain

−∆zi + aizi − ui(x)
p−1zi = λ∞zi .
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From this we deduce that zi = 0 (note that here we need the fact that λ∞ is
strictly negative).
Now we consider the limit in L2. We find that

−∆yν + (V (εx)− λν)yν → 0

in the L2-norm. By Wang’s Lemma (section 6.4) this implies that yν → 0 in
the H2-norm, which is a contradiction.

For future reference we note that without using Lemma 1 the arguments of
the last paragraphs show that if Lε has negative eigenvalues then the lowest
eigenvalue tends to 0 as ε→ 0. This even works if λij = 1.

4.2 Deductions from Theorem 2

Theorem 2 indicates that in the case p ≥ 3 the multilump solution to

−∆v + V (εx)v + vp = 0

for which v =
∑m
i=1 vi and vi is near a

1
p−1

i φ(
√
ai(x −

bi
ε )) is positive. In these

cases we can arrange for λij to be 0 and the individual components vi are all
positive.
The case p = 2 is somewhat different. For simplicity let us consider the case

of two humps. Here we take λ12 < 1 and λ21 > 1. Theorem 2 indicates that v1
is positive but says nothing about v2.
In fact in this case the function v2 cannot be positive. Recall that v = (v1, v2)

satisfies the system

−∆v1 + V (εx)v1 − (v1 + λ12v2)v1 = 0
−∆v2 + V (εx)v2 − (v2 + λ21v1)v2 = 0

where λ12 + λ21 = 2 and λ12 6= 1. Multiply the first equation by v2, the second
by v1, subtract and integrate. The result is

∫
v21v2+ v

2
2v1 = 0 so that v2 cannot

be everywhere positive.

4.3 The case m = 2, p = 2

Even though v2 is not everywhere positive, more subtle arguments suffice to
show that the sum v1 + v2 is positive. Similar arguments can handle the case
of more than two humps.
For technical reasons we shall suppose that n (the dimension of the ambient

space) is at most 3. This is because we need H2 to be embedded in the space
of bounded continuous functions.
Let v = (v1, v2) be the solution of the system

−∆v1 + V (εx)v1 − (v1 +
1
2v2)v1 = 0

−∆v2 + V (εx)v2 − (v2 +
3
2v1)v2 = 0
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for small ε > 0 given by Theorem 1. We shall not indicate the dependence on ε
explicitly. The function v1 + v2 satisfies the equation −∆y + V (εx)y + y2 = 0.
Define the operator

Sεy := −∆y + V (εx)y − (v1(x) + v2(x))y.

We shall show that Sε has no negative eigenvalues if ε is sufficiently small. So
v1 + v2 is positive, being the ground state of a Schrödinger operator.
Introduce the linear mapping (cf. the proof of Lemma 1)

Tε : (λ, µ, z) 7→ λv1 + µv2 + Sεz

from R2 × Zε to L2, where Zε now denotes the space

Zε =
{
y ∈ H2 :

∫
yv1 =

∫
yv2 = 0

}
.

Lemma 2 Tε is invertible for all sufficiently small ε > 0 and its inverse satisfies
a bound in norm independent of ε.

Proof. It suffices to show that if we have sequences εν ∈ R+, λν ∈ R, µν ∈ R
and zν ∈ Zεν such that

εν → 0, |λν |+ |µν |+ ‖zν‖H2 ≤ 1

whilst
λνvν,1 + µνvν,2 + Sενzν → 0

in L2 as ν →∞, then a subsequence of (λν , µν , zν) converges to 0 in norm. We
have written (vν,1, vν,2) for the solution corresponding to the value εν . A similar
notation, ξν,1, ξν,2, is used for the relevant shifts.
By going to a subsequence we may assume that the limits

lim
ν→∞

zν(·+ ξν,1) = z∞,1, lim
ν→∞

zν(·+ ξν,2) = z∞,2

exist in the weak H2-topology. Following the proof of Lemma 1 we now deduce
that λν → 0, µν → 0, z∞,1 = 0 and z∞,2 = 0. We then find zν → 0 in the norm
topology of H2 using the same argument as in Lemma 1. This ends the proof.

We note that the arguments of the last paragraphs of subsection 4.1 suffice
to show that, if Sε has negative eigenvalues, then the lowest eigenvalue must
tend to 0 as ε→ 0. It suffices therefore to prove the following lemma.

Lemma 3 There exist ε1 > 0 and ρ1 > 0 such that Sε has no eigenvalues in
the interval ]−ρ1, 0[ for 0 < ε < ε1.

Proof. Suppose that Sε has a negative eigenvalue. Let ρ be its lowest eigenvalue
and choose a positive normalized eigenfunction y. Write y = λv1+µv2+z where
z ∈ Zε. Since v1 + v2 is an eigenfunction with eigenvalue 0 we have

0 =

∫
y(v1 + v2) = λ

∫
v1(v1 + v2) + µ

∫
v2(v1 + v2).
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If ε is sufficiently small both the integrals are positive; in fact

lim
ε→0

∫
vi(v1 + v2) =

∫
u2i , i = 1, 2.

We conclude that λ and µ have opposite signs. Let β(ε) =
∫
v1(v1 + v2) and

γ(ε) =
∫
v2(v1 + v2). Then λβ(ε) + µγ(ε) = 0. We shall assume that λ ≥ 0 and

µ ≤ 0. A similar argument will dispose of the other possibility.
Substituting y = λv1 + µv2 + z into the equation Sεy = ρy we find

1

2
(λ− µ)v1v2 + Sεz − ρλv1 − ρλv2 − ρz = 0.

Hence applying Lemma 2 and again assuming ε sufficiently small we can write

(−ρλ,−ρµ, z) = T−1ε

(
ρz −

1

2
(λ− µ)v1v2

)
.

It follows that

|ρλ|+ |ρµ|+ ‖z‖H2 ≤ K‖ρz‖L2 +
1

2
K|λ− µ| · ‖v1v2‖L2 .

Now assume that |ρ| < 1/2K. We deduce

1

2
‖z‖L2 ≤

(1
2
K‖v1v2‖L2 − |ρ|

)
(|λ| + |µ|)

If ε is small enough the right-hand side becomes negative, which is a contradic-
tion. The problem is that how small ε should be depends on ρ. We need to
deduce a contradiction from making ε small in a way not depending on ρ.
Dropping ρ from the inequality we may write

1

2
‖z‖L2 ≤

1

2
K‖v1v2‖L2(|λ| + |µ|) =

1

2
K‖v1v2‖L2

(
γ(ε)

β(ε)
+ 1

)
|µ|. (8)

Consider the ball Iε of volume 1 centred at −ξ2, the point of maximum of
u2(x + ξ2). We know that vi(· − ξi) → ui in the H

2-norm. It is here that we
need to limit the number of dimensions to 3, for this implies that vi(·− ξi)→ ui
uniformly. So we can find M > 0 such that v2(x) > M for all x ∈ Iε, and for
any δ > 0 we can ensure that |v1(x)| < δ for all x ∈ Iε provided only that ε is

small enough. Fix δ so that M − γ(ε)
β(ε)δ > 0 for sufficiently small ε. Since y ≥ 0

we have
λv1(x) + µv2(x) + z(x) ≥ 0

which implies

z(x) ≥ −λv1(x) + |µ|v2(x) ≥ −λδ + |µ|M =
(
M −

γ(ε)

β(ε)
δ
)
|µ|

for all x ∈ Iε. Integrating we deduce

‖z‖L2 ≥
(
M −

γ(ε)

β(ε)
δ
)
|µ|.

But this is inconsistent with (8) if ε is small enough.
This concludes the proof that v1 + v2 is positive.
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5 Application to homoclinics

The equation
−∆v + v − vp = 0

considered over all of Rn has a manifold of positive solutions. These may be de-
scribed as the n-dimensional plane of functions φ(x−c) parametrized by c ∈ Rn,
where φ is the positive, radially-symmetric solution introduced in section 2. We
perturb the equation to

−∆v + v − (1 + εh(x))vp = 0 (9)

where h is measurable and periodic in Rn. Now we can seek multi-bump solu-
tions looking like linear combinations of translates of φ. The method of section 2
carries through easily enough if we assume that h has bounded second deriva-
tives. (This is much stronger than is needed. Another approach is possible
which does not even require h to be continuous, and yet gives more precise
asymptotic information. The calculations are too unwieldy to present here.)
Let

F (s) =

∫
h(x)φ(x + s)p+1 dnx

for s ∈ Rn. Let c1, . . . , cm be non-degenerate critical points of F (not necessarily
distinct). We seek solutions to (9) near to

∑m
i=1 φ(x+ki+ci), where the vectors

ki are periods of h for which the separations ‖ki − kj‖ are sufficiently large.
We consider therefore a system

−∆vi + vi − (1 + εh(x))Gi(v) = 0, i = 1, . . . ,m,

where the polynomials Gi(v) satisfy the same conditions as in section 2. We use
the substitution

vi = φ(x+ si + ki) + εwi(x+ si + ki)

where, for each i, si is a variable vector in R
n, ki is a period of h, and the

function wi belongs to the subspace

Wi =
{
w ∈ H2 :

∫
wDjφ = 0, j = 1, . . . , n

}
.

We let
W =W1 × · · · ×Wm .

Make the substitution, translate the ith equation by replacing x by x− si − ki,
divide by ε with a view to taking the limit as ε→ 0 and ‖ki − kj‖ → ∞, i 6= j.
The result of this is

ε−1gi

(
φ(x + s1 + k1 − si − ki), . . . , φ(x + sn + kn − si − ki)

)
φ(x)

− h(x− si)φ(x)
p −∆wi(x) + wi(x)− pφ(x)

p−1wi(x)

−
m∑

j=1,j 6=i

λijφ(x+ sj + kj − si − ki)
p−1wi(x)
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−
m∑

j=1,j 6=i

γijφ(x)
p−1wj(x+ sj + kj − si − ki)

where we have thrown out all terms of order ε and all terms containing a product
of two distinct translates of φ, with the exception that we have retained the first
term since it also involves division by ε.
As usual the details of the limit are a bit tricky. The first term will converge

exponentially fast to 0 provided the separations ‖ki − kj‖ do not grow too
slowly compared to 1/ε. With this proviso we obtain the limiting problem in
the variables si, wi:

−h(x− si)φ(x)
p −∆wi + wi − pφ(x)

p−1wi = 0, i = 1, . . . ,m .

This has the non-degenerate solution si = ci, wi = ηi, (i = 1, . . . ,m), where ηi
is the unique solution in Wi of

−∆wi + wi − pφ(x)
p−1wi = h(x− ci)φ(x)

p.

The existence of solutions for sufficiently small ε follows much as in section 2.
We have to use the implicit function theorem in the form given in section 6.1
(Theorem 4). Let A(ε) be the operator from (Rn)m×W to (L2)m for which the
ith component of A(ε)(σ, z) is

(∇h(x− ci) · σi)φ(x)
p −∆zi(x) + zi(x) − pφ(x)

p−1zi(x)

−
m∑

j=1,j 6=i

λijφ(x + sj + kj − si − ki)
p−1zi(x)

−
m∑

j=1,j 6=i

γijφ(x)
p−1zj(x+ sj + kj − si − ki).

The condition that λij 6∈ Σ is used, as in section 2.3, to verify that ‖A(ε)−1‖
has a uniform upper bound as ε → 0. Another detail to note is that as the
ki are periods of h they depend discontinuously on ε. The other conditions of
Theorem 4 are straightforward to verify.

6 Appendix

6.1 The implicit function theorem

Let E and F be real Banach spaces and let f : R+×E → F , where R+ denotes
the interval [0,∞[. We write fε(x) = f(ε, x) to emphasize the distinct role of ε as
a small parameter. Assume that fε is differentiable for each ε ≥ 0. For reasons
which should be clear from section 5 we do not assume that f is a continuous
function of ε.
We say that a solution x0 of fε(x) = 0 is non-degenerate if the derivative

Dfε(x0) is an invertible linear mapping of E onto F . The following is just the
implicit function theorem (in a slightly non-standard form but its proof is just
the standard one).
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Theorem 3 Make the assumptions:
(a) the equation f0(x) = 0 has a non-degenerate solution x0;
(b) the limit limε→0,x→x0 fε(x) is 0;
(c) the limit limε→0,x→x0 Dfε(x) = Df0(x0) is attained in the operator-norm

topology.
Then for each sufficiently small ε > 0 the equation fε(x) = 0 has a unique

solution near to x0, which tends to x0 as ε→ 0. If f is jointly continuous in ε
and x then the solution depends continuously on ε.

In the problems treated in this paper the third condition (c) fails. The limit
is only attained in the strong operator topology. In this case we can use the
following.

Theorem 4 Assume as before that:
(a) the equation f0(x) = 0 has a non-degenerate solution x0; and
(b) the limit limε→0,x→x0 fε(x) is 0.

Assume in addition that there exists an operator-valued function A : [0, ε0[→
L(E,F ) such that:
(c) the limit limε→0A(ε) = A(0) = Df0(x0) is attained in the strong operator

topology;

(d) the limit limε→0,x→x0

(
A(ε) −Dfε(x)

)
= 0 is attained in the operator-

norm topology.
(e) A(ε) is invertible for 0 ≤ ε < ε0 and there exists a constant M such that

its inverse satisfies ‖A(ε)−1‖ < M .
Then for each sufficiently small ε > 0 the equation fε(x) = 0 has a unique

solution near to x0, which tends to x0 as ε → 0. If A is continuous in ]0, ε0[
(w.r.t. the strong operator-topology) and f is jointly continuous in ε and x then
the solution depends continuously on ε.

To prove Theorem 4 we apply Theorem 3 to the problem

A(ε)−1fε(x) = 0 .

Condition (b) of Theorem 3 follows from the fact that the limit limε→0A(ε)
−1 =

Df0(x0)
−1 is attained in the strong operator topology. To verify (c) of Theorem

3 we have

‖A(ε)−1Dfε(x) − I‖ ≤ ‖A(ε)
−1‖ · ‖Dfε(x)−A(ε)‖ ≤M‖Dfε(x)−A(ε)‖ → 0

as x→ x0 and ε→ 0.

6.2 The solution of the limiting problem

Here we solve the limiting problem from section 2.2:

1

2
V ′′(bi)(x− si, x− si)ui(x)−∆wi(x) + aiwi(x)− pui(x)

p−1wi(x) = 0,

i = 1, . . . ,m.
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Recall that si is a vector in R
n for each i. By the Fredholm alternative we must

have
1

2

∫
V ′′(bi)(x− si, x− si)ui(x)Dkui(x) dx = 0

for k = 1, . . . , n, i = 1, . . . ,m. Since ui is an even function we have that Dkui
is an odd function and the condition reduces to

V ′′(bi)

(
si,

∫
xui(x)Dkui(x) dx

)
= 0 .

The integral
∫
xui(x)Dkui(x) dx is a vector whose j

th component is the integral∫
xjui(x)Dkui(x) dx. Now Dkui is an odd function of xk, but an even function
of xj for j 6= k. Hence

∫
xjui(x)Dkui(x) dx = 0 unless j = k in which case the

integral is plainly non-zero. Hence the Fredholm alternative gives

V ′′(bi)(si, ek) = 0

for k = 1, . . . , n, i = 1, . . . ,m, where ek is the k
th standard basis vector of Rn.

Since V ′′(bi)(x, y) is a non-degenerate, symmetric, bilinear form we obtain the
non-degenerate solutions si = 0, i = 1, . . . ,m. For these values of si we can
solve the limiting problem for the functions wi, uniquely, in the spacesWi. The
solutions are the functions ηi.

6.3 A weighted eigenvalue problem

The set Σ of complex numbers λ, for which the equation

−∆v + v − λφ(x)p−1v = 0

has a non-trivial solution in H2, can be viewed as the set of reciprocals of the
spectrum of a compact, self-adjoint operator. Let A be the operator −∆ + 1.
Then A is a positive, self-adjoint operator in L2(Rn) with spectrum [1,∞[. Let
A
1
2 be its positive, self-adjoint square-root and let v = A−

1
2 y where y ∈ L2(Rn).

We write the weighted eigenvalue problem as

y = λ
(
A−

1
2φ p−1A−

1
2

)
y, 0 6= y ∈ L2.

Now the operator A−
1
2φ p−1A−

1
2 is clearly self-adjoint and positive, but it is

also compact. The reason is that A−
1
2 can be viewed as a bounded operator

from L2 to H1, while the multiplication operator φ p−1 is compact from H1 to
L2 since the function φ decays at infinity. It follows that Σ is a sequence of
positive numbers tending to infinity.
We can easily show that the lowest eigenvalue is 1, corresponding to the

eigenfunction φ. Let L be the self-adjoint operator

Lu = −∆u+ u− φ(x)p−1u .
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The lowest eigenvalue of L is 0 and corresponds to the positive ground state φ.
Hence, using the inner-product and norm in L2, we have

0 ≤ 〈Lu, u〉 = 〈Au, u〉 − 〈φ p−1u, u〉

for all u in the domain of L. Putting u = A−
1
2 y and using self-adjointness we

have
0 ≤ ‖y‖2 − 〈A−

1
2φ p−1A−

1
2 y, y〉.

From this it follows that the lowest eigenvalue of the weighted eigenvalue prob-
lem is 1.

6.4 Wang’s Lemma

If V (x) is bounded and satisfies V (x) > δ > 0 for some constant δ, then

‖ −∆v + V (εx)v‖L2(Rn) ≥ K‖v‖H2(Rn)

for all u ∈ H2 and for some constant K > 0 independent of u and ε. The proof
is very short and is in the appendix of [15].
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