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SYMMETRY AND CONVEXITY OF LEVEL SETS OF SOLUTIONS
TO THE INFINITY LAPLACE’S EQUATION

Edi Rosset

Abstract

We consider the Dirichlet problem

−∆∞u = f(u) in Ω ,
u = 0 on ∂Ω ,

where ∆∞u = uxiuxjuxixj and f is a nonnegative continuous function. We inves-
tigate whether the solutions to this equation inherit geometrical properties from the

domain Ω. We obtain results concerning convexity of level sets and symmetry of solu-
tions.

1. Introduction

Given a bounded domain Ω ⊂ Rn, we consider the following Dirichlet problem
for the ∞-Laplace operator

−∆∞u = f(u) in Ω , (D∞)

u = 0 on ∂Ω ,

where ∆∞u = uxiuxjuxixj and f is a nonnegative continuous function. We investi-
gate whether the solutions to (D∞) inherit geometrical properties from the domain
Ω.

By a solution to (D∞) we will mean a variational solution in a sense which
extends that given in [B-D-M], that is, roughly speaking, a function which is the
limit of a sequence of solutions to the Dirichlet problems for the p-Laplace operator

−∆pu = f(u) in Ω , (Dp)

u = 0 on ∂Ω ,

as p→∞ (see Definition 2.1 below).

When Ω is a convex domain, we prove that the restriction of any solution u of
(D∞) to the convex ring Ω\ΩsM , where ΩsM = {x ∈ Ω : d(x, ∂Ω) > sM}, has convex
level sets, preserves the symmetries of Ω, and is uniquely determined (see Theorem
2.5 and Corollary 2.6). Here, the number sM is determined by f and the maximum
M of u in Ω only. If, for instance, f is strictly positive at M , then ΩsM = ∅.
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Notice that by symmetry, we mean not only a reflection but any orthogonal
transformation. When Ω is a ball BR, any solution to (D∞) is radially symmetric,
has a very simple representation, and coincides with the distance function from ∂Ω
in the annulus {sM < |x| < R}, where, again, the number sM only depends on f and
M (see Theorem 2.7 below). Our proofs involve a variational principle for solutions
to (D∞), which is inspired by [B-D-M] (see Proposition 2.3).

Concerning problem (Dp) when Ω is a ball, let us recall that radial symmetry
of solutions to (Dp) has been established when p = 2 and f is locally Lipschitz
continuous in the famous paper by Gidas, Ni and Nirenberg ([G-N-N]), via the
moving plane method. Damascelli and Pacella have recently extended the above
result to any p, 1 < p < 2, when f is locally Lipschitz continuous, via the moving
plane method ([D-P]). Brock has recently proved symmetry results for the solutions
to (Dp) (see [Br1], [Br2]), and, among these, radial symmetry of solutions to (Dp) for
any p ≥ 1 and any continuous nonnegative f , via continuous Steiner symmetrization
([Br2, Theorem 10.1]).

The hypothesis f ≥ 0 plays a crucial role in deriving the variational principle
(P ∗∞). On the other hand, when f is allowed to change sign, there are counterexam-
ples to radial symmetry for the solutions to (Dp): for p = 2 and f Hölder continuous
of any order α < 1 (see [G-N-N], [Br-H]), and for p > 2 and f ∈ C1 (see [Br-H]).

For p > 2 and f changing sign, Brock has established a partial form of symmetry,
the so-called local symmetry in every direction, and symmetry results under some
growth conditions on f in neighborhoods of its zero points, via continuous Steiner
symmetrization (see [Br1], [Br2]).

The incompleteness of the result of Theorem 2.5 is due to the fact that a vari-
ational solution u to (D∞) may be sensitive to the behaviour of f outside its range,
through the influence of f on the sequence of solutions upk to (Dpk) converging to
u. In Section 3 we provide an Example which illustrates this phenomenon.

In Section 4 we propose an alternative definition of solution which we have called
a tame variational solution (see Definition 4.1), which prevents the occurrence of the
“improper” solutions which may be introduced by the limit process described above.
We show that any tame variational solution u has convex level sets, preserves the
symmetries of the convex domain Ω and, when Ω = BR, then either u = U or u is
a truncation of U , where U(x) = R− |x| (Theorem 4.3 and Theorem 4.4).

2. Statements and proofs

Let us recall some facts about the case f = f(x), which stem from results
in [B-D-M] and [J]. Given a bounded domain Ω ⊂ Rn and a bounded nonnegative
continuous function f defined in Ω, f 6≡ 0, let up ∈W

1,p
0 be the unique weak solution

to

−∆pu = f in Ω , (2.1)

u = 0 on ∂Ω .

Then there exists a unique function u∞ ∈W 1,∞(Ω) ∩C0(Ω̄) such that

up → u∞ weakly in W 1,m(Ω),∀m > 1, and uniformly in Ω̄ .
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The function u∞ obtained by this limit process is called a variational solution to

−∆∞u = f in Ω , (2.2)

u = 0 on ∂Ω ,

and is characterized by the following two conditions:

i) The function u∞ solves the maximum problem

J∞(u∞) = max
K
J∞, (P∞)

where J∞(ϕ) =
∫
Ω
fϕ, and

K = {ϕ ∈W 1,∞(Ω) ∩ C0(Ω̄) : ‖∇ϕ‖∞ = 1}

ii) The function u∞ is a viscosity solution to

∆∞u = 0, in the interior of {f = 0}. (2.3)

Next let us consider the case f = f(u). Let f : R → R be a continuous
nonnegative function such that the Dirichlet problem (Dp) is solvable in W

1,p(Ω)
for p large enough, say p ≥ p̄. Let up be a solution to (Dp), for p ≥ p̄. Let us assume
that f is bounded or, more generally, that f(u) = O(us) as u→∞, for some s > 0.
From the weak formulation of (Dp) and the Hölder and Poincaré inequalities, it
follows easily that ‖∇up‖m is bounded uniformly in p, for any m > 1. Therefore,
one can construct a sequence pk →∞, such that

upk → u, weakly in W
1,m(Ω),∀m > 1, and uniformly in Ω̄, (2.4)

for some u ∈W 1,∞(Ω) ∩ C0(Ω̄).

In view of the above arguments, we give the following definition.

Definition 2.1. A function u ∈W 1,∞(Ω)∩C0(Ω̄) is called a variational solution to
(D∞) if there exists a sequence upk of solutions to (Dpk ), with pk → ∞, such that
(2.4) holds.

Let us notice that if u is a variational solution to (D∞), then ‖upk‖∞ is uni-
formly bounded, so that, by the continuity of f , there exists a positive constant K
such that ‖f(upk)‖∞ ≤ K. Therefore, by the Hölder and Poincaré inequalities, we
have

‖∇upk‖m ≤ C
1/(pk−1)K1/(pk−1)|Ω|

1
m+

1
n(pk−1) (2.5)

and

‖∇u‖∞ = lim
m→∞

‖∇u‖m ≤ lim
m→∞

(
lim inf
k→∞

‖∇upk‖m

)
= lim
m→∞

|Ω|1/m = 1. (2.6)

Since f ≥ 0, we have up ≥ 0 and therefore u ≥ 0. From (2.6) and from u|∂Ω ≡ 0
it follows that u is Lipschitz continuous with Lipschitz constant L ≤ 1, and u(x) ≤
d(x, ∂Ω). Summarizing, we have

‖∇u‖∞ ≤ 1 , (2.7)

0 ≤ u ≤ U , (2.8)
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where

U(x) = d(x, ∂Ω). (2.9)

Given a variational solution u to (D∞), u = limk→∞ upk , let us define

Ep =

∫
Ω

|∇up|
p =

∫
Ω

(f ◦ up)up , (2.10)

E∞ =

∫
Ω

(f ◦ u)u = lim
k→∞

Epk , (2.11)

f∗ = f ◦ u , (2.12)

Ω∗0 = {x ∈ Ω : u(x) ∈ int{f = 0}} . (2.13)

Lemma 2.2. Let u be a variational solution to (D∞). If f
∗ 6≡ 0 then u 6≡ 0 and

E∞ > 0.

Proof. Let us see that u ≡ 0 implies f∗ ≡ 0. If u ≡ 0, then there are two cases:
either f(0) = 0 or f(0) > 0. In the former case f∗ ≡ 0, whereas in the latter case,
by the continuity of f , we have f(upk) ≥ δ for k ≥ k̄, for some k̄ ∈ N, δ > 0. Let vp
be the solution to

−∆pvp = δ in Ω ,

vp = 0 on ∂Ω .

By the comparison principle for the p-Laplace operator (see [T]), we have upk ≥ vpk .
Moreover from i) it follows easily that vp → v∞ = U (see [B-D-M]), so that u ≥ U ,
contradicting u ≡ 0.

Let f∗ 6≡ 0, so that u 6≡ 0. Let us assume, by contradiction, that 0 = E∞ =∫
{f∗>0} f

∗u. Since u ≥ 0, we have u ≡ 0 in {f∗ > 0}, that is: f(u(x)) > 0 implies

u(x) = 0. Therefore, denoting M = maxΩ u, we have f(t) = 0 for every t ∈ (0,M ].
From the continuity of u it follows that f(0) = 0, that is f∗ ≡ 0, contradicting the
hypothesis. ♦

Proposition 2.3. Let u be a variational solution to (D∞) such that f
∗ 6≡ 0. Then,

i∗) the function u solves the maximum problem

J∗∞(u) = max
K
J∗∞, (P ∗∞)

where J∗∞(ϕ) =
∫
Ω
f∗ϕ and

K = {ϕ ∈W 1,∞(Ω) ∩ C0(Ω̄) : ‖∇ϕ‖∞ = 1}

and

ii∗) the function u is a viscosity solution of

∆∞u = 0 in Ω
∗
0 . (2.14)



EJDE–1998/34 Symmetry and convexity of level sets 5

Proof. From the definition of weak solution to (Dp) and from Hölder inequality,
we have ∫

Ω

(f ◦ up)ϕ =

∫
Ω

|∇up|
p−2∇up · ∇ϕ ≤ E

(p−1)/p
p ‖∇ϕ‖p,

for any ϕ ∈W 1,p0 (Ω). Hence, for any ϕ ∈W
1,∞(Ω) ∩ C0(Ω̄), ϕ 6≡ 0, we have∫

Ω
(f ◦ u)ϕ

‖∇ϕ‖∞
= lim
k→∞

∫
Ω
(f ◦ upk)ϕ

‖∇ϕ‖pk
≤ lim
k→∞

E(pk−1)/pkpk
= E∞ = J

∗
∞(u). (2.15)

Substituting ϕ = u in the above inequality and noting that E∞ > 0 by Lemma 2.2,
we have ‖∇u‖∞ ≥ 1. From (2.7) it follows that ‖∇u‖∞ = 1, that is, u ∈ K, and i∗)
follows immediately from (2.15).

In order to verify ii∗), let us consider any x ∈ Ω∗0. Since upk converges uniformly
to u, there exist a neighborhood V of x and an index k̄ such that f ◦ upk ≡ 0 in V
for every k ≥ k̄. For any p > 1, let vp be the unique solution to

∆pvp = 0 in V ,

vp = u on ∂V .

It is well known (see [J]) that vp converges uniformly to the unique viscosity solution
v∞ of

∆∞v∞ = 0 in V ,

v∞ = u on ∂V .

On the other hand, applying the comparison principle for the p-Laplace operator
(see [T]) to the functions upk , vpk in V , we have that limk→∞maxV |upk − vpk | = 0,
so that u∞ = v∞, and ii

∗) follows. ♦

Corollary 2.4. In the hypotheses of Proposition 2.3, we have

u(x) = U(x), ∀x ∈ {f∗ > 0}. (2.16)

Proof. Substituting U ∈ K in (P ∗∞), we have∫
{f∗>0}

(u− U)f∗ ≥ 0,

so that (2.16) follows from (2.8). ♦

Let us introduce the following notation:

Ωt = {x ∈ Ω : d(x, ∂Ω) > t} = {U > t},

Ωr,s = {x ∈ Ω : r < d(x, ∂Ω) < s} = Ωr \Ωs = {r < U < s},

with r, s, t ∈ R+, r < s. Given a solution u ∈ W 1,∞(Ω) ∩ C0(Ω̄) to (D∞) such that
f∗ 6≡ 0, let

M = max
Ω
u , (2.17)

sM = sup ({f > 0} ∩ (0,M)) . (2.18)
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Then 0 < sM ≤M .

The possible cases to be considered are:

α) f(M) > 0,

β) f(M) = 0, sM =M ,

γ) f(M) = 0, sM < M , with M not in the interior of {f = 0},

δ) f(M) = 0, sM < M , with M in the interior of {f = 0}.

(Note, however, that case δ) cannot occur, as proved in the Theorem below.)

Theorem 2.5 (Convexity of level sets). Let Ω ⊂ Rn be a convex domain. Let
u ∈W 1,∞(Ω) ∩C0(Ω̄) be a variational solution to (D∞) such that f∗ 6≡ 0. If either
α) or β) occurs, then every level set of u is convex; if γ) occurs, then the level sets
{u > t} are convex for every t ∈ [0, sM ); case δ) cannot occur. If, moreover, Ω
is invariant with respect to an orthogonal transformation T , then if either α) or
β) occurs, then u is symmetric with respect to T ; if γ) occurs, then u|Ω\ΩsM is
symmetric with respect to T .

Proof. Let x0 ∈ Ω be a point where u attains its maximum M , and let sM be
as defined in (2.18). Let (ci, di), i ∈ IM , be the connected components of {f >
0} ∩ (0,M).

For any half line r having origin at x0, let us denote Sr = r ∩ Ω̄. We have
u(Sr) = [0,M ]. From the convexity of Ω, it follows easily that for every d, 0 ≤ d <
U(x0), and for every half line r having origin at x0, there is a unique x ∈ Sr such
that U(x) = d. Indeed, suppose on the contrary that y, z ∈ Sr, y 6= z, are such
that U(y) = U(z) = d, and, for instance, let z belong to the segment joining x0 and
y. Then Bd(y) and BU(x0)(x0) are contained in Ω, so that, by the convexity of Ω,
we have Bd′(z) ⊂ Ω for some d′ ∈ (d,U(x0)), contradicting U(z) = d. Therefore,
recalling (2.16), we have that for every l ∈ [0,M) ∩ {f > 0} there exists a unique
x ∈ Sr such that u(x) = l = U(x). Since this fact holds for any half line r having
origin at x0, we have U(x0) ≥ sM and u = U in Ωci,di for every i ∈ IM .

The connected components of Ω0,sM \∪i∈IMΩci,di are convex rings Aj = Ωaj ,bj ,
j ∈ JM , where aj < bj and (aj , bj) are the connected components of int({f =
0}) ∩ (0, sM ). By the continuity of u, we have u = U on ∂Aj . Let us see that
u(Aj) ⊂ (aj , bj). From (2.8) it follows that u < bj in Aj . In order to prove that
u > aj in Aj , let us introduce, for any p > 1, the unique solution vp to

∆pvp = 0 in Aj ,

vp = up on ∂Aj ,

and the unique solution wp to

∆pwp = 0 in Aj ,

wp = U on ∂Aj .

From the fact that upk → u = U on ∂Aj and from the comparison principle for
the p-Laplace operator (see [T]), we see that for any ε > 0 there exists kε such that

upk ≥ vpk ≥ wpk − ε, in Aj (2.19)
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for k ≥ kε. Moreover, wp converges uniformly to the unique viscosity solution w∞
to

∆∞w∞ = 0 in Aj ,

w∞ = U on ∂Aj ,

(see [J]), so that the Harnack inequality for the ∞-Laplace operator (see [L-M])
implies that w∞(Aj) ⊂ (aj , bj). Passing to the limit as k → ∞ in (2.19), we have
u ≥ w∞ > aj in Aj .

Let us distinguish two cases: f(M) > 0 and f(M) = 0. In the former case we
have f∗(x0) > 0, so that there exists a neighborhood V of x0 where f

∗ is positive,
and, by (2.16), u = U in V . Hence x0 has to be a point of local maximum for U , and,
since Ω is convex, x0 is a point of absolute maximum for U . Indeed, otherwise, let
w be a point of absolute maximum for U and let us consider the segment L joining
x0 and w. By the convexity of Ω, we have that U(z) > U(x0), for any point z ∈ L,
z 6= x0, contradicting that x0 is a point of local maximum for U . Hence U(x0) = R,
where

R = max
x∈Ω
d(x, ∂Ω) (2.20)

is the radius of the largest ball contained in Ω, and sM =M = u(x0) = U(x0) = R.
Moreover u = U in Ωci,di for every i ∈ IM and Ω

∗
0 = ∪j∈JMAj .

If f(M) = 0, then M ≤ R by (2.8), ∪j∈JMAj ⊂ Ω
∗
0, and, by the continuity of

u and by (2.18), u ≡ sM on ∂ΩsM and u ≥ sM in ΩsM . From the convexity of Ω it
follows that Ωt is convex for every t ∈ R.

Collecting the previous results, we have: u < aj in Ω0,aj and u > bj in Ωbj
for every j ∈ JM ; u < ci in Ω0,ci and u > di in Ωdi for every i ∈ IM such that
di 6= sM ; u ≥ sM in ΩsM . It follows easily that u > 0 in Ω, so that the level set
{u > 0} = Ω is convex, and that if t ∈ (0, sM ) ∩ {f > 0}, then {u > t} = Ωt is
convex. If t ∈ (0, sM ) \ {f > 0}, then t ∈ (aj , bj) for some j ∈ JM , and, by ii∗), u is
the viscosity solution in the convex ring Aj of the capacitary problem

∆∞u = 0 in Aj ,

u = aj on {U = aj} ,

u = bj on {U = bj}

for the ∞-Laplace operator. From the previous results, {u > t} = Ωbj ∪ {x ∈
Aj : u(x) > t}, which is convex since u|Aj can be obtained as the uniform limit, as

p→∞, of the solutions up to the p-capacitary problem (see [J])

∆pu = 0 in Aj ,

u = aj on {U = aj} ,

u = bj on {U = bj},

for which Lewis ([L]) established convexity of level sets.

If Ω is invariant with respect to an orthogonal transformation T , the function
U and the sets Ωt are invariant with respect to T . If v is a viscosity solution to

∆∞v = 0 in Ωr,s,

v = r on {U = r}, (2.21)

v = s on {U = s},
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then also v ◦ T solves (2.21) since the ∞-Laplace operator is invariant under or-
thogonal transformations. By the uniqueness of the viscosity solution to (2.21),
established by Jensen ([J]), it follows that v ◦ T = v. Hence u|Ω\ΩsM is invariant
with respect to T .

If α) occurs, then sM =M = R, so that ΩsM = ∅, and convexity of all the level
sets and symmetry of u with respect to T follow.

If β) occurs, then u ≡ sM in ΩsM , and again convexity of all the level sets and
symmetry of u with respect to T follow.

Let us assume that f(M) = 0 and sM < M , that is, that either case γ) or case
δ) occurs. Let V be a neighborhood of x0 where u ≥

M+sM
2
. Let vp, wp be the

p-harmonic functions in ΩsM \ V̄ , which take the same values as up, u, respectively,
on the boundary. From the comparison principle, we have upk ≥ vpk ≥ wpk − ε for
k ≥ kε, so that u ≥ w∞ = limwp, and w∞ is ∞-harmonic in ΩsM \ V̄ . The Harnack
inequality for the ∞-Laplace operator (see [L-M]) implies that either w∞ ≡ sM , or
w∞ > sM in ΩsM \V̄ . In the former case, we have a contradiction with wp = u > sM
on ∂V , whereas in the latter case we have u > sM in all of ΩsM .

Finally, if case δ) occurs, we have that ΩsM ⊂ Ω
∗
0, and by ii

∗), ∆∞u = 0 in
ΩsM . Hence u ≡ sM in ΩsM , contradicting sM < M . ♦

From the proof of Theorem 2.5 it is clear that the values of u are uniquely
determined in the convex ring Ω \ΩsM , as summarized in the following Corollary.

Corollary 2.6 (Representation of the solutions). Let the hypotheses of The-
orem 2.5 be satisfied. Then M ∈ {f > 0}. Moreover, the values of u are uniquely
determined in Ω \ ΩsM . More precisely,

u = U in ∪i∈IM Ωci,di , (2.22)

and u is the viscosity solution to

∆∞u = 0 in Aj ,

u = aj on {U = aj}, (2.23)

u = bj on {U = bj},

where (ci, di), i ∈ IM , are the connected components of {f > 0} ∩ (0,M), Aj =
Ωaj ,bj , j ∈ JM , and where (aj , bj) are the connected components of int({f = 0}) ∩
(0, sM ). Moreover, if β) occurs, then u ≡ sM in ΩsM .

Remark. Let us notice that if sM =M , that is, if either α) or β) occurs, then u is
determined in all of Ω.

Theorem 2.7 (Spherical symmetry and representation of the solutions
when Ω = BR). Let Ω = BR and let u ∈ W 1,∞(BR) ∩ C0(B̄R) be a variational
solution to (D∞) such that f

∗ 6≡ 0. Then u is radially symmetric and radially non-
increasing. Furthermore, M ∈ {f > 0}, and case δ) cannot occur. If α) occurs, then
M = R and u = U . If β) occurs, then

u(x) =

{
U(x) ≡ R− |x| if R− sM ≤ |x| ≤ R,
sM =M if |x| ≤ R− sM .

(2.24)
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If γ) occurs, then

u(x) =



U(x) ≡ R− |x| if R− sM ≤ |x| ≤ R,
λ(R− sM − |x|) + sM if R− sM −

M−sM
λ
≤ |x| ≤ R− sM ,

M if |x| ≤ R− sM −
M−sM
λ
,

(2.25)

for some λ ∈ [M−sM
R−sM

, 1]. Here U(x) = d(x, ∂Ω) = R− |x|, as defined in (2.9).

Proof. In view of Theorem 2.5, it only remains to prove that u = U in Aj for every
j ∈ JM and that, if γ) occurs, then (2.25) holds for some λ ∈ [

M−sM
R−sM

, 1]. Since
Aj = {R − bj < |x| < R− aj}, u = aj on {|x| = R− aj}, u = bj on {|x| = R− bj},
and the Lipschitz constant of u is L = 1, we have that u = U in Aj .

Let us assume now that case γ) occurs. Let upk be a sequence of solutions to
(Dpk ) such that (2.4) holds. A recent result by Brock ([Br2, Theorem 10.1]) ensures
that the upk are radially symmetric and radially non-increasing, so that, from (2.4),
it follows that u is radially symmetric and radially non-increasing.

Finally, recalling that ∞-harmonic functions are absolutely minimizing Lips-
chitz extensions (see [J]), and that, from the proof of Theorem 2.5, u > sM in ΩsM ,
the representation (2.25) follows immediately. ♦

3. An Example

Let us show, by the following Example, that, when case γ) occurs, there may
be nontrivial variational solutions to (D∞) such that f

∗ ≡ 0.

Example. Let Ω = BR, f(t) = (t − M)χ(M,∞), with 0 < M < R, where χS
denotes the characteristic function of a set S. Let us look for a radial solution up to
(Dp), decreasing in r = |x|, such that Mp = maxBR up > M , for every p > 2. Let
rp ∈ (0, R) be such that up(rp) =M . Then

up =

{
u−p in rp < |x| < R,
u+p in |x| < rp,

where u−p is the radial solution to

∆pu
−
p = 0 in rp < |x| < R ,

u−p = 0 on |x| = rp ,

u−p =M on |x| = rp ,

and u+p is a radial solution to

−∆pu
+
p = u

+
p −M in Brp ,

u+p > M in Brp ,

u+p =M on |x| = rp ,

and the following transmission condition holds

u−p ,r (rp) = u
+
p ,r (rp). (3.1)
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An easy calculation gives

u−p =M


R p−n

p−1 − r
p−n
p−1

R
p−n
p−1 − r

p−n
p−1
p


 .

Let wp = −(u+p −M). Then wp is a negative radial solution to

−∆pwp = wp in Brp ,

wp = 0 on |x| = rp ,

or, equivalently,

(wp,r )
p−1,r +

n− 1

r
(wp,r )

p−1 + wp = 0 , (3.2)

wp(rp) = 0 , (3.3)

wp,r (0) = 0 . (3.4)

From now on, let n = 1, so that the second term in (3.2) disappears and (3.2) is an
autonomous nonlinear equation. Substituting wp,r = y, thinking of y as a function
of w, integrating (3.2), and imposing (3.4), we have

wp,r =

(
p

p− 1

)1/p(c2p − w2p
2

)1/p
, (3.5)

where cp = −wp(0) =Mp−M . By integrating over (0, r) and changing variable, we
have (

p

2(p − 1)

)1/p
r =

∫ r
0

wp,r

(c2p − w
2
p)
1/p
dr =

∫ wp(r)
−cp

dw

(c2p − w
2)1/p

.

By imposing the transmission conditions (3.1) and (3.3), we easily have

(
p

p− 1

)
c2p
2
=

(
M

R− rp

)p
, (3.6)

(
p

2(p − 1)

)1/p
rp = c

p−2
p
p

∫ 1
0

dz

(1− z2)1/p
. (3.7)

Solving (3.6) in cp and substituting in (3.7), we are led to find rp ∈ (0, R) satisfying
the equation

gp(x) = γp, (3.8)

where

gp(x) = x
1/p(R− x)

p−2
2p ,

γp =

(
2(p − 1)

p

)1/(2p)
M

p−2
2p

(∫ 1
0

dz

(1− z2)1/p

)1/p
.



EJDE–1998/34 Symmetry and convexity of level sets 11

We have gp(0) = gp(R) = 0, g
′
p(x) =

1
p
(R − x)−

p+2
2p x

1
p−1(R − p

2
x). Hence xp =

2R
p

is the unique point where gp attains its maximum

gp(xp) =

(
2R

p

)1/p(
R−

2R

p

) p−2
2p

over the interval [0, R]. Notice that γp →
√
M , whereas gp(xp) →

√
R >

√
M , as

p → ∞. Therefore, for p sufficiently large, there are exactly two points r′p, r
′′
p in

(0, R), with r′p < xp < r
′′
p which verify (3.8).

Choosing the solution pair (r′p, c
′
p) to (3.6) − (3.7), we have that r

′
p → 0 and,

by (3.6), c′p → 0, as p→∞. Let wp be the solution to (3.5), with cp = c
′
p, such that

wp(0) = −c′p. Then the regularity condition (3.4) and the transmission conditions
(3.1) and (3.3) are satisfied. The corresponding solution up to (Dp) converges to the
function ū(x) = M

R
(R− |x|) as p→∞.

Therefore, ū is a nontrivial variational solution to (D∞) for which f
∗ ≡ 0.

4. Tame variational solutions

The result of Theorem 2.5 is not fully satisfactory when case γ) holds. A
reasonable criterion for a definition of solution to problem (D∞) is that a solution
u does not depend on the behavior of f outside the range of u. Therefore it may
be convenient to select a subclass of variational solutions to the problem (D∞), in
order to prevent the anomalous phenomena which can occur when case γ) holds, as
illustrated by the Example in Section 3.

To this aim, given a continuous nonnegative function f : R→ R and a number
M > 0, let us define

fM (t) =

{
f(t) 0 ≤ t ≤M ,
0 t ≥M ,

(4.1)

if f(M) = 0, and fM = f otherwise. Let us consider the Dirichlet problem

−∆pv = fM (v) in Ω , (D̃p)

v = 0 on ∂Ω .

Definition 4.1. A function u ∈W 1,∞(Ω) ∩C0(Ω̄) such that M = maxΩ u is called
a tame variational solution to (D∞) if there exists a sequence upk of solutions to

(D̃pk ), with pk →∞, such that (2.4) holds.

Remark. It is clear, from the preceding arguments, that tame variational solutions
are variational solutions. Of course, there are either functions f for which variational
solutions which are not tame do exist (see, for instance, Section 3), or functions f
for which every variational solution is tame (for instance f strictly positive in some
interval [0, L) and vanishing outside).

Since the above definition precludes case γ), the following results follow easily
from Theorem 2.5, Corollary 2.6 and Theorem 2.7.
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Lemma 4.2. Let u be a tame variational solution to (D∞). Then u ≡ 0 if and only
if f∗ ≡ 0. If u 6≡ 0 then E∞ > 0.

Theorem 4.3. Let Ω ⊂ Rn be a convex domain. Let u ∈ W 1,∞(Ω) ∩ C0(Ω̄)
be a tame variational solution to (D∞). Then the level sets {u > t} are convex,
sM = M ∈ {f > 0}, and u is uniquely determined in all of Ω by (2.22)–(2.23) and
by u ≡ sM in ΩsM . If, moreover, Ω is invariant with respect to an orthogonal
transformation T , then u is symmetric with respect to T .

Theorem 4.4. Let Ω = BR and let u ∈ W 1,∞(BR) ∩ C0(B̄R) be a nontrivial
tame variational solution to (D∞). Then u is radially symmetric and radially non-
increasing. Moreover, sM =M ∈ {f > 0}, and u is given by (2.24).
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