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Existence and regularity results for the gradient

flow for p-harmonic maps ∗

Masashi Misawa

Abstract

We establish existence and regularity for a solution of the evolution
problem associated to p-harmonic maps if the target manifold has a non-
positive sectional curvature.

1 Introduction

LetM and N be compact, smooth Riemannian manifolds without boundary, of
dimensions m and k, with metrics g and γ, respectively. Since N is compact, by
Nash’s embedding theorem we can regard N as being isometrically embedded
in a Euclidean space Rn for some n. For a C1−map u : M → N ⊂ Rn, we
define the p-energy E(u) by

E(u) =

∫
M

1
p
|Du|pdM, p ≥ 2, (1.1)

where, in local coordinates on M ,

dM =
√
|g|dx, |Du|2 =

m∑
α,β=1

n∑
i=1

gαβDαu
iDβu

i,

with
(
gαβ
)
= (gαβ)

−1, |g| = | det(gαβ)| and Dα = ∂/∂xα, α = 1, · · · ,m.
The Euler-Lagrange equation of the p-energy is

−4pu+Ap(u)(Du,Du) = 0 , (1.2)

where 4p denotes the p-Laplace operator

4pu = 1√
|g|
Dα

(√
|g|gαβ|Du|p−2Dβu

)

onM , which is a degenerate elliptic operator, and where Ap(u)(Du,Du) is given
by

Ap(u)(Du,Du) = |Du|
p−2gαβA(u)(Dαu,Dβu)
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2 Existence and regularity results EJDE–1998/36

in terms of the second fundamental form A(u)(Du,Du) of N in Rn at u.

Here and in what follows, the summation notation over repeated indices is
adopted.

We call (weak) solutions of (1.2) (weakly) p-harmonic maps.

One method to look for p-harmonic maps is to exploit the gradient flow
related to the p-energy, which is called p-harmonic flow. The gradient flows are
described by a system of second order nonlinear degenerate parabolic partial
differential equations

∂tu−4pu+Ap(u)(Du,Du) = 0 in (0,∞)×M, (1.3)

u(0, x) = u0(x) for x ∈M . (1.4)

For p = 2, Eells and Sampson showed in [12] that there exists a global
smooth solution provided that the target manifold N has nonpositive sectional
curvature and that the solution converges to a harmonic map suitably as tk →
∞. This result concerns the homotopy problem, that is, to find a harmonic
map homotopic to a given map. When the target manifold N is of non-positive
sectional curvature and p > 2, the homotopy problem was solved by Duzzar and
Fuchs [11] by applying the direct method in the calculus of variations for the
regularized p-energy functional (see (2.2) below) and using C1α−estimates for
solutions of the Euler-Lagrange equation (1.2). In this paper we establish the
global existence and C0,1α −regularity of a weak solution to the p-harmonic flow
provided that the target manifold N has non-positive sectional curvature. The
regularity of weak solutions of degenerate parabolic systems with only principal
terms was discussed and the C0,1α −regularity of solutions was established in[2,
7, 8, 9]. (Also see [4, 5, 28, 29] for corresponding elliptic systems.) The global
existence of a weak solution to the p-harmonic flow was shown when the target
manifold is a sphere in [1], and, more generally, a homogeneous space in [18, 19].
For p = m, the global existence of a partial C0,1α − weak solution was established
in [20]. For the regularity of harmonic maps and flows, we refer to [25, 14, 27, 3].

To state our results, we need some preliminaries. Let us define the metric
δq, q ≥ 1, by

δq(z1, z2) = max{|t1 − t2|
1/q, |x1 − x2|}

for any zi = (ti, xi) ∈ (0,∞) × Rm, i = 1, 2. If q = 2, the metric δ2 is the
usual parabolic metric. For a bounded domain Ω ⊂ Rm, we use the usual
function spaces Ckα(Ω, R

n), Lq(Ω, Rn) and W 1q (Ω, R
n). For any T > 0, denote

by Cα/q,α([0, T ]×Ω, Rn) the space of functions defined on [0, T ]×Ω with values
in Rn, Hölder continuous with respect to the metric δq with an exponent α,
0 < α < 1. In particular, C1/q,1([0, T ] × Ω, Rn) is the space of functions with
values in Rn that are Lipschitz continuous with respect to the metric δq. We
also use the notation

C1,2α ([0, T ]× Ω, R
n) = C0α/2([0, T ];C

2
α(Ω, R

n)) ∩ C1α/2([0, T ];C
0
α(Ω, R

n)),

C0,1α ([0, T ]× Ω, R
n) = C0α/2([0, T ];C

1
α(Ω, R

n)).
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If the domain is a compact, smooth Riemannian manifold M , then, for zi =
(ti, xi) ∈ (0,∞)×M , i = 1, 2, we replace the metric δq, q ≥ 1, by

max
{
|t1 − t2|

1/q
, distM (x1, x2)

}
,

where distM (x1, x2) means the geodesic distance of x1, x2 ∈ M with respect

to the metric g on the manifold M , and we define Ckα(M,R
n), C

1/q,1
α ([0, T ] ×

M,Rn), C
α/q,α
α ([0, T ]×M,Rn), C1,2α ([0, T ]×M,R

n) and C0,1α ([0, T ]×M,R
n)

to be the spaces of functions belonging to the corresponding spaces above with
Ω = U for any local coordinate neighborhood U on M . We now define a set of
Sobolev mappings from M to N , which is called the energy space:

W 1,p(M,N) = {u ∈ W 1,p(M,Rn) : u(x) ∈ N for almost all x ∈M},

equipped with the topology inherited from the one of the linear Sobolev spaces
W 1,p(M,Rn).
We are interested in a global weak solution u ∈ L∞((0,∞);W 1,p (M,N))

∩W 1,2((0,∞);L2(M,Rn)) of (1.3) and (1.4), satisfying, for all
φ ∈ Lp

′
((0,∞);W 1,p

′
(M,Rn))∩L∞( (0,∞) ×M,Rn) with p′ the dual exponent

of p, the support of which is compactly contained in (0,∞)×U for a coordinate
chart U on M ,∫
(0,∞)×M

{
φ · ∂tu+ |Du|

p−2gαβDβu ·Dαφ+ φ · Ap(u)(Du,Du)
}
dM dt = 0,

(1.5)
and satisfying the initial condition

|u(t)− u0|L2(M) → 0, t→ 0. (1.6)

Our main theorem is the following:

Theorem 1.1 Assume that the sectional curvature of the target manifold N is
nonpositive. Let u0 ∈ C2β(M,N) with 0 < β < 1, the image of which is contained
in a geodesic ball B (a0) in N around a point a0 ∈ N . Then there exists a global
weak solution u ∈ L∞((0,∞);W 1,p(M,N)) ∩ W 1,2((0,∞);L2(M,Rn)) with the
energy inequality∫

(0,T )×M
|∂tu|

2dMdt+ sup
0≤t≤T

E(u(t)) ≤ E(u0) for all T > 0. (1.7)

Moreover, for a positive number α, 0 < α < 1, u ∈ Cα/p,α
loc

((0,∞)×M,Rn) and

Du ∈ C
α/2,α

loc
((0,∞)×M,Rn).

2 The regularized p-energy

First we will make a special isometric embedding of (Nk, γ) in (Rn, h). (Refer
to [20].) Let us define a metric h as follows. Since N is compact, we can use
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the standard Nash embedding of N in Rn and choose a tubular neighborhood
O2δ(N) ⊂ Rn of N such that O2δ(N) = {x ∈ Rn : dist(x,N) < 2δ}, where δ is
a sufficiently small positive constant, and dist is the usual Euclidean distance.
Then let us put (γ̃ij) = (γij) ⊗ (δij) locally on N × B

n−k
2δ , where B

n−k
2δ is a

ball in Rn−k with a radius 2δ. We can extend γ̃ij smoothly to R
n by defining

hij = φγ̃ij+(1−φ)δij for φ ∈ C∞0 (R
n, R) with support in O2δ(N) and φ ≡ 1 on

Oδ(N). By such an embedding of N into Rn, we have an involutive isometry π
from a tubular neighborhood Oδ to itself, which has exactly the target manifold
N for its fixed points.
For u ∈ Rn, let

Γlik(u) =
1
2
hij
(
dhjk
dui
(u)− dhik

duj
(u)+

dhij

duk
(u)

)
,
(
hij
)
= (hij)

−1
, (2.1)

be the Christoffel symbol for the metric (hij). For ε > 0, the regularized p-
energy (refer to [11], [20]) of a map u : (M, g)→ (Rn, h) is defined by

Eε(u) =

∫
M

eε(u)dM, eε(u) =
1
p

(
ε+ |Du|2

) p
2 , (2.2)

where, in local coordinates (xα) of M and (ui) of Rn,

|Du|2 = gαβ(x)hij(u)Dαu
iDβu

j . (2.3)

We consider the gradient flow for Eε, described by the parabolic system

∂tu−∆
ε
pu− Γ

ε
p(u)(Du,Du) = 0, (2.4)

where, in local coordinates of M and Rn,

∆εpu =
1√
|g|
Dα

(
(ε+ |Du|2)

p
2−1
√
|g|gαβDβu

)
,

Γεp(u)(Du,Du) = (ε+ |Du|
2)
p
2−1gαβΓlij(u)Dαu

iDβu
j. (2.5)

Recall that u0 is a member of C
2
β(M,N), 0 < β < 1, and has image in the

geodesic ball B (a0) ⊂ N around the point a0 ∈ N . Let us consider the initial
value problem for the equation (2.4) with (1.4). We apply the Leray-Schauder
fixed point theorem to show the existence of a solution uε to the problem for
any ε, 0 < ε < 1.
For this purpose we introduce the linearized parabolic system: Let us take
T > 0 arbitrarily. For any τ , 0 ≤ τ ≤ 1, and w ∈ C0,1α ([0, T ]×M,R

n), we find
a classical solution u ∈ C1,2α ([0, T ]×M,R

n) of the linear parabolic system

∂tu
i = Aαβij (t, x)DαDβu

j +Bβij(t, x)Dβu
j in (0, T )×M, i = 1, · · · , n,

u = expa0
(
τ exp−1a0 (u0)

)
on {t = 0} ×M , (2.6)

where expa0 (·) is the exponential map defined on a Euclidean ball B(0) ⊂ R
k

around the origin with values in B (a0) ⊂ N , and the coefficients are, in local
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coordinates of M and Rn,

Aαβij (t, x) = (peε(w))
1− 2p

(
gαβδij + (p− 2)

gβνDνw
khjk(w)g

αµDµw
i

(peε(w))
2
p

)
,

Bβij(t, x) = δij(peε(w))
1− 2p

{
1√
|g|
Dα

(√
|g|gαβ

)

+ ( p
2
− 1) g

αβDµw
kDνw

l

(peε(w))
2
p

(
dgµν

dxα
(x) hkl(w) + gµνDαw · dh

kl

du
(w)
)}

+(peε(w))
1− 2p gαβΓijk(w)Dαw

k. (2.7)

The equation (2.6) is written as

hil(w)∂tu
i = hil(w)A

αβ
ij (t, x)DαDβu

j + hil(w)B
β
ij(t, x)Dβu

j , (2.8)

in which

hil(w)A
αβ
ij (t, x)

= (peε(w))
1− 2p

(
gαβhjl(w) + (p− 2)

gβνDνw
khjk(w)g

αµDµw
ihil(w)

(peε(w))
2
p

)
,

which is a positive definite matrix. Here we note the relation for the principal
term of (2.4) with 0 ≤ ε < 1:(

∆pu
j +
(
Γεp(u)(Du,Du)

)j)
hij(u)

= 1√
|g|
Dα

(
(peε (u))

1− 2p
√
|g|gαβhij(u)Dβu

j
)

− 1
2
(peε (u))

1− 2p gαβ
dhjk
dui
(u) Dαu

jDβu
k.

We fix an “approximating number” ε, 0 < ε < 1. We define an operator P :
[0, 1]×C0,1α ([0, T ]×M,R

n) 3 (τ, w) 7→ u = P (τ, w) ∈ C0,1α ([0, T ]×M,R
n) such

that u = P (τ, w) is a classical solution to (2.6). The exponent α, 0 < α < 1,
will be stipulated later.
To exploit the Leray-Schauder fixed point theory, we have to verify the following
conditions:

1. There exists a unique classical solution to (2.6), which implies that the
operator P is well-defined.

2. The operator P is continuous and compact on [0, 1]×C0,1α ([0, T ]×M,R
n).

3. If τ = 0, there exists a unique solution determined uniformly on all w ∈
C0,1α ([0, T ]×M,R

n).

4. Fixed points uτ of the operator P (τ, ·), which are solutions to the equation
with w = uτ in (2.6), are uniformly bounded in C

0,1
α ([0, T ]×M,R

n) with
respect to τ , 0 ≤ τ ≤ 1 (and ε, 0 < ε < 1).

In the following sections, we will show the validity of the above statements.
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3 Linearized parabolic system

In this section, we prove the existence of a classical solution to the linearized
parabolic system (2.6), and show that the corresponding operator P is contin-
uous and compact.

Let the exponent α be 0 < α ≤ β, where β is a Hölder exponent of the initial
value u0.

Lemma 3.1 There exists a unique classical solution to the linearized parabolic
system (2.6).

Noting (2.7), we immediately see that the coefficients Aαβij and B
α
ij , α, β =

1, · · · ,m; i, j = 1, · · · , n, are Hölder continuous in [0, T ]×M with the exponent
α and the Hölder constant depending only on

(
gαβ
)
, (hij), ε, p and |w|C0,1α , and

that

ε
p
2−1 |ξ|2 ≤ Aαβij ξ

j
βξ
k
αhki(w) ≤

(
ε+ sup[0,T ]×M |Dw|

2
) p
2
−1
|ξ|2 (3.1)

holds for any (t, x) ∈ [0, T ]×M and ξ =
(
ξiα
)
∈ Rmn, where

|ξ|2 =
m∑
α=1

n∑
i=1

(ξiα)
2 .

The parabolic system of the same type as (2.6) is investigated in [22] and the
maximum principal for a classical solution is obtained. By combination of it
with the Schauder estimates in [23](see [22]), we have the uniform boundedness
in C1,2α ([0, T ]×M,R

n) for classical solutions u:

|u|C1,2α ≤ γ
(
|f |Cα/2,α + |u0|C2α

)
, (3.2)

where a positive constant γ depends only on the Hölder constant of
(
Aαγjl

)
and(

Bβ
)
and hence γ depends on p, ε and |w|C0,1α . Thus we conclude the following

result.

Lemma 3.2 Let u ∈ C1,2α ([0, T ]×M,R
n) be a solution to the parabolic system

(2.6). Then there exists a positive constant γ depending only on |w|Cα/2,α ,
|u0|C2α , ε, p, (gαβ) and (hij) such that

|u|C1,2α ≤ γ. (3.3)

As in [22], we can prove the existence of a classical solution of (2.6).

Now we prove the continuity and compactness of the operator P .

Lemma 3.3 The operator P is continuous and compact in [0, 1]×C0,1α ([0, T ]×
M,Rn).
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Proof. (Compactness) For all w ∈ X := C0,1α ([0, T ] × M,R
n) such that

|w|X ≤ U with a uniform positive constant U , and all τ , 0 ≤ τ ≤ 1, let
u = P (τ, w). Then, by Lemma 3.2, we have

|u,Du,D2u, ∂tu|Cα/2,α ≤ γ, (3.4)

with a positive constant γ depending only on U , |u0|C2α , ε and p. Here we
note that the coefficients in (2.7) are Lipschitz continuous in w and Dw with
a Lipschitz constant depending on ε. By the uniform boundedness of D2u and
∂tu, we can apply Lemma 3.1 in [21, pp.78-9] with α = β = 1 to find that
|Du|C1/2,1([0,T ]×M) is uniformly bounded. The family {u} of such functions is
actually a compact set in X , since α < 1. Consequently, the operator P (τ, ·),
0 ≤ τ ≤ 1, maps a bounded set in X into a compact set in X .
(Continuity) Take w1, w2 ∈ X satisfying, for δ > 0,

|w1 − w2|X ≤ δ (3.5)

and let u1 = P (τ, w1) and u2 = P (τ, w2) for any τ , 0 ≤ τ ≤ 1. Subtract the
equation for u1 from the one for u2 to obtain, for u = u2 − u1,

∂tu = A(x,w2, Dw2) ·D
2u+B(x,w2, Dw2) ·Du+ F (t, x), (3.6)

where A(x, v,Dv) and B(x, v,Dv) are
(
Aαγjl

)
and

(
Bβ
)
in (2.7) with w = v,

respectively, and

F (t, x) = (A(x,w2, Dw2)−A(x,w1, Dw1)) ·D
2u1

+(B(x,w2, Dw2)−B(x,w1, Dw1)) ·Du1 .

Noting the Lipschitz continuity in the variables w,Dw of the coefficients
A(x,w,Dw) and B(x,w,Dw), we obtain, from (3.2),

|u|C1,2α ≤ γ|F |Cα/2,α , (3.7)

where we note that u = 0 on {t = 0} ×M , and that the positive constant γ is
determined by |A|Cα/2,α and |B|Cα/2,α , and hence γ depends only on |w2|C0,1α , ε,
(gαβ) and (hij). F is estimated from above by

|F |Cα/2,α ≤ γ|w1 − w2|X , (3.8)

where the positive constant γ depends only on |Du1|Cα/2,α , |D
2u1|Cα/2,α , ε,

(gαβ) and (hij). Thus, we choose a positive constant γ depending only on
|w1|X , |u0|C2α , ε, (gαβ) and (hij) such that

|u1 − u2|X ≤ |u|C1,2α ≤ γδ. (3.9)

As above, we can verify that P (τ, w) is continuous on τ for each w ∈ X : For
τ1, τ2, 0 ≤ τ1, τ2 ≤ 1, we put u1 = P (τ1, w) and u2 = P (τ2, w) for fixed w ∈ X .
Then u = u2 − u1 satisfies the equation

∂tu = A(x,w,Dw) ·D2u+B(x,w,Dw) ·Du in [0, T ]×M,

u(0) = expa0
(
τ2 exp

−1
a0
(u0)
)
− expa0

(
τ1 exp

−1
a0
(u0)
)
. (3.10)



8 Existence and regularity results EJDE–1998/36

Noting the definition of the exponential map expa0 (·), we have, with a positive
constant γ depending only on (hij),

|u(0)|C2α ≤ γ |τ2 − τ1| |u0|C2α . (3.11)

Applying Schauder estimates (3.2) and (3.11) for (3.10), we obtain

|u|C1,2α ≤ γ |τ2 − τ1| |u0|C2α , (3.12)

where the positive constant γ depends only on p, ε, |w|C0,1α and (hij). Conse-
quently, we find that the operator P is continuous in [0, 1]×X .
We now consider the case τ = 0. If τ = 0, then, for any w ∈ X , u = P (0, w) is
a solution of (2.6) with the initial condition

u = a0 on {t = 0} ×M. (3.13)

By the uniqueness of the solution of (2.6) with this initial condition, P (0, w) =
a0 for all w ∈ X . Thus, P (0, ·) maps all w ∈ X into the constant map a0.

4 Uniform boundedness of Du

Now we consider a priori estimates for fixed points of the operator P (τ, ·),
0 ≤ τ ≤ 1, which are solutions to the parabolic system

∂tu = 1√
|g|
Dα

(
(peε(u))

1− 2p
√
|g|gαβDβu

)
+(peε(u))

1− 2p gαβΓij(u)Dαu
iDβu

j in (0, T ]×M, (4.1)

u = expa0
(
τ exp−1a0 (u0)

)
on {t = 0} ×M. (4.2)

First we establish an energy inequality for solutions of (4.1).

Lemma 4.1 Let u ∈ C1,20 ([0, T ] × M,R
n) be a solution to (4.1). Then the

energy inequality∫
(t0,t1)×M

|∂tu|
2dMdt+ Eε(u(t1)) ≤ Eε(u(t0)) (4.3)

holds for all t0, t1, 0 ≤ t0 < t1 ≤ T .

Proof. We multiply (4.1) by hij(u)∂tu
i. For the right hand side of the result-

ing equality, we use (refer to [26, pp.558-9, pp.564-5])

1√
|g|
Dα

(
(peε(u))

1− 2p
√
|g|gαβDβu

j∂tu
ihij(u)

)
= 1√

|g|
Dα

(
(peε(u))

1− 2p
√
|g|gαβDβu

j
)
∂tu

ihij(u) (4.4)

+(peε(u))
1− 2p gαβDβu

jDα
(
∂tu

ihij(u)
)

= ∂teε(u) +
(
∆εpu

j + (peε(u))
1− 2pΓj(u)(Du,Du)

)
∂tu

ihij(u).
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Integrate (4.4) on [t0, t1]×M to obtain∫
(t0,t1)×M

hij(u)∂tu
i∂tu

jdMdt+

∫
M

{eε(u(t1))− eε(u(t0))} dM = 0

and hence the desired estimate. In particular, noting that Du(0) = τDu0 inM ,
we have obtained (4.3) with Eε (u(t0)) replaced by Eε (τu0) for all t1, 0 ≤ t1 ≤ T .

Lemma 4.2 Let u ∈ C1,20 ([0, T ]×M,R
n) be a solution to (4.1). Suppose that

the image of u is contained in the target manifold N . Then we have, with a
positive constant γ depending only on M,N, T and supM |Du0|,

sup
(0,T )×M

|Du| ≤ γ = γ

(
M,N, T, sup

M
|Du0|

)
. (4.5)

For solutions to (4.1), we have the Bochner formula (refer to [10, pp.134-135]
and [15, pp.128-131]): Put v = (ε+ |Du|2)/2. Then we have, in (0, T )×M ,

∂tv − 1√
|g|
Dα

(
(2v)

p
2−1aαβDβv

)
+ (p− 2)(2v)

p
2−2gαβDαvDβv

+(2v)
p
2−1gγγ̄gββ̄DγDβu

iDγ̄Dβ̄u
jhij(u) + (2v)

p
2−1RαβM Dαu

iDβu
jhij(u)

= (2v)
p
2−1gαᾱgββ̄RNijklDαu

iDβu
jDᾱu

kDβ̄u
l, (4.6)

where we put

aαβ (t, x) =
√
|g|
(
gαβ + (p− 2) g

αµgβνDµu
iDνu

jhij(u)

2v

)
.

Since we assume that the sectional curvature of N is nonpositive, we have

gαᾱgββ̄RNijklDαu
iDβu

jDᾱu
kDβ̄u

l ≤ 0. (4.7)

Thus we obtain, from (4.7) and (4.6), with a positive constant γ depending only
on (gαβ) and the derivative,

∂tv − 1√
|g|
Dα

(
(2v)

p
2−1aαβDβv

)
≤ γ(2v)

p
2 in (0, T )×M. (4.8)

For brevity, we assume that (gαβ) = Id. (We can argue similarly in the general
case.) Then the formula (4.8) becomes

∂tv −Dα
(
(2v)

p
2−1aαβDβv

)
≤ γvp/2. (4.9)

Let k be k ≥ k̂ = max{1, supM |Du0|
2} and put Mt = (0, t)×M for 0 < t < T .

Then we substitute a test function φ = (v−k)+ = max{v−k, 0} into the formula
(4.9) to obtain∫
Mt

{
∂tv(v − k)

+ + (2v)
p
2−1 aαβDβvDα(v − k)

+
}
dz ≤ γ

∫
Mt

vp/2(v − k)+dz.

(4.10)
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Now we estimate
∫
Mt
vp/2(v − k)+dz. First we deform vp/2(v − k)+ as

((v − k)+)
p
2+1 + k

p
2+1.

We estimate the quantity
∫
Mt
((v−k)+)p/2+1dz by using the Hölder and Sobolev

inequalities. Set V = (v − k)+. Then∫
Mt

V
p
2+1dz

≤ sup
0≤τ≤t

(∫
{τ}×M

V 2dx

)1/a
sup
0≤τ≤t

(∫
{τ}×M

V
p
2 dx

)1/b
×

∫ t
0

(∫
{τ}×M

V
m
m−2 (

p
2+1)dx

) 1
c

dτ

≤ sup
0≤τ≤t

(∫
{τ}×M

V 2dx

)1/a
sup
0≤τ≤t

(∫
{τ}×M

V p/2dx

)1/b
×

γ
(
m, |M |−

1
m

)
t

c(m−2)
(c−1)m−2c

(∫
Mt

(
V
p
2+1 + |DV

1
2 (
p
2+1)|2

)
dz

) m
c(m−2)

,

where the exponents a, b and c satisfy

1

a
=

2p

m(p− 2) + 2p
,
1

b
=

2(p− 2)

m(p− 2) + 2p
,
1

c
=
(m− 2)(p− 2)

m(p− 2) + 2p
. (4.11)

Noting that 1/a+m/c(m− 2) = 1, we have

∫
Mt

V
p
2+1dz ≤ γ

(
m, p, |M |−

1
m

)
t

c(m−2)
(c−1)m−2c sup

0≤τ≤t

(∫
Mt

V p/2dx

)1/b
×{

sup
0≤τ≤t

∫
{τ}×M

V 2dx+

∫
Mt

(
V
p
2+1 +

∣∣∣DV p+2
4

∣∣∣2) dz}.
Using the energy inequality (4.3) and choosing t > 0 to be small, we estimate

γ
(
m, p, |M |−

1
m

)
t

c(m−2)
(c−1)m−2c sup

0≤τ≤t

(∫
Mt

V p/2dx

) 1
b

≤ γ
(
m, p, |M |−

1
m

)
t

c(m−2)
m(c−1)−2c

(∫
Mt

|Du0|
pdx

)1/b
≤
1

2
,

where we note that c(m− 2)/(m(c− 1)− 2c) > 0 and that the positive number
t depends only on E(u0) and γ(m, p, |M |−1/m). Thus we have∫

Mt

V
p
2+1dz ≤ γ̃

(
m, p, |M |−

1
m

)
t

c(m−2)
(c−1)m−2c sup

0≤τ≤t

(∫
Mt

V p/2dx

)1/b
×{

sup
0≤τ≤t

∫
M

V 2dx+

∫
Mt

∣∣∣DV p+2
4

∣∣∣2 dz}. (4.12)
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Next we treat kp/2+1|Mt × {v > k}|. By Hölder’s inequality, we have

k
p+2
2 |Mt × {v > k}| ≤ k

2δ sup
0≤τ≤t

(∫
M

vp/2dx

)1/b ∫ t
0

|{v > k}|
1
a+

1
c dτ, (4.13)

where the exponent δ is determined by

2δ =
(p− 2)(p+ 2) + 8p

2(m(p− 2) + 2p)
. (4.14)

Now we note that, if we take the exponents κ, q and r to satisfy

2(1 + κ)

r
= 1,

r

q
=
1

a
+
1

c
,
1

r
+
m

2q
=
m

4
, (4.15)

then
κ > 0, 0 < δ < 1 + κ.

Combining (4.12) with (4.13) and substituting the resulting inequalities into
(4.10), we have

sup
0≤τ≤t

∫
Mτ

((v − k)+)2dx+

∫
Mt

v
p
2−1|D(v − k)+|2dz

≤ γ
(
m, p, |M |−

1
m

)
t

c(m−2)
m(c−1)−2c sup

0≤τ≤t

∫
{τ}×M

((v − k)+)
p
2 dx

)1/b
×(

sup
0≤τ≤t

(∫
{τ}×M

((v − k)+)2dx+

∫
Mt

∣∣∣D((v − k)+) p+24 ∣∣∣2 dz) (4.16)
+γ(m, p) sup

0≤τ≤t

(∫
{τ}×M

vp/2dx

)1/b
k2δ
∫ t
0

|{v > k}|
1
a
+ 1
c dt,

where we used the facts that the matrix
(
aαβ
)
is positive definite and that

v ≤ max{1, supM |Du0|
2} on {t = 0} ×M .

Using (4.3) and noting that c(m− 2)/(m(c− 1)− 2c) > 0, we choose t1 = t > 0
to satisfy

t
c(m−2)

m(c−1)−2c

(
p+ 2

4

)2
γ
(
m, p, |M |

1
m

)
E1(u0)

1
b ≤ 1

2
. (4.17)

Then we obtain, from (4.16), with a positive constant γ depending only on m
and p,

sup
0≤τ≤t1

∫
{τ}×M

((v − k)+)2dx+

∫
Mt1

|D(v − k)+|2dz (4.18)

≤ γ(m, p) sup
0≤τ≤t1

(∫
{τ}×M

vp/2dx

)1/b
k2δ
∫ t1
0

|{v > k}|
1
a+

1
c dt,

where we used that k ≥ 1 and∫
Mt1

∣∣∣D((v − k)+) p+24 ∣∣∣2 dz ≤ ( p+24 )2
∫
Mt1

v
p
2−1|D(v − k)+|2dz.
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Now apply Theorem 6.1 in [21, pp.102-103] for (4.18) to obtain

sup
Mt1

v ≤ γ(m, p)max

{
1, sup
M
|Du0|

2

}
.

Noting that, by (4.17), the positive number t1 depends on E1(u0), |M |,m and
p, and arguing as in [21, p.186], we have

sup
(0,T )×M

v ≤ γ(m, p)max

{
1, sup
M
|Du0|

2

}
.

Once we have the uniform boundedness (4.5), we can argue as in [6, p.245,
Theorem 1.1; p.291, 14, pp.217–218] (also see [5]) to arrive at the following:

Lemma 4.3 Let u ∈ C1,20 ([0, T ]×M,R
n) be a solution of (4.1). We can choose

positive constants γ, depending only on M,N, p, sup(0,T )×M |Du|, and α̃, 0 <
α̃ < 1, depending only on m and p, such that

|u|Cα̃/p,α̃ + |Du|Cα̃/2,α̃ ≤ γ. (4.19)

We now specify the value of the exponent α, 0 < α ≤ β, which has not yet been
determined. We set α = min{α̃, β}, where α̃ is selected in Lemma 4.3.
Now we prove the uniqueness of a solution of (4.1).

Lemma 4.4 Let u1, u2 ∈ C
1,2
0 ([0, T ]×, R

n) be two solutions to (4.1) with the
same initial value expa0

(
τ exp−1a0 (u0)

)
. Then u1 ≡ u2 in [0, T ]×M .

Proof. We consider only the case τ = 1, since u(0) = expa0
(
τ exp−1a0 (u0)

)
∈ N

on M and the case 0 ≤ τ < 1 is investigated similarly. Let u ∈ C1,2α ([0, T ] ×
M,Rn) be a solution to (4.1) with τ = 1. Then u(0) = u0 in M .
Since the image of u0 is contained in the target manifold N , we can choose a
positive number T̃ = T̃ (u) such that u ∈ Oδ(N) in [0, T̃ ] ×M . Then, by the
definition of the metric (hij) of R

n, we find that

gαᾱgββ̄RNijkl(u)Dαu
iDβu

jDᾱu
kDβ̄u

l ≤ 0 in [0, T̃ ]×M , (4.20)

since the sectional curvature of N is nonpositive. Thus, by Lemma 4.2, we have
(4.5) with replacing T by T̃ . Let u1, u2 ∈ C1,2α ([0, T ]×M,R

n) be two solutions

to (4.1) with τ = 1. Set T̃ = min{T̃ (u1), T̃ (u2)}. Subtract the equation for u1
from the one for u2 and take a test function u2 − u1 in the resulting equation
for t, 0 ≤ t ≤ T̃ to obtain, with v = u2 − u1,∫
Mt

v · ∂tv dM dt

+

∫
Mt

{
(peε(u2))

1− 2phij(u2)Dβu
j
2 − (peε(u1))

1− 2phij(u1)Dβu
j
1

}
gαβDαv

idMdt

=

∫
Mt

gαβ
{
(peε(u2))

1− 2pΓij(u2)(Dαu
i
2, Dβu

j
2)

−(peε(u1))
1− 2pΓij(u1)(Dαu

i
1, Dβu

j
1)

}
· v dM dt .
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We estimate each term of this equality. Put w(s) = (1 − s)u1 + su2 for s,
0 ≤ s ≤ 1. Then(
(peε(u2))

1− 2phij(u2)Du
j
2 − (peε(u1))

1− 2phij(u1)Du
j
1

)
gαβDαv

i

=

∫ 1
0

{
(peε(w(s)))

1− 2p |Dv|2 + (p− 2)(peε(w(s)))
1− 4p 〈Dv,Dw(s)〉2

+(peε(w(s)))
1− 2p gαβDβv

jDαw
i(s) dh

ij

du
(w(s)) · v

+ p−2
2
(peε(w(s)))

1− 4p gαβDβw
j(s)Dαw

i(s)v ·
dhij

du
(w(s))〈Dw(s), Dv〉

}
ds.

The third and fourth terms on the right hand side are bounded from above by

γ

(
p,N, sup

MT̃

|Du1|, sup
MT̃

|Du2|

)∫ 1
0

|v|2ds

+ 1
2

∫ 1
0

(peε(w(s)))
1− 2p

(
|Dv|2 + (p− 2) 〈Dw(s),Dv〉

2

(peε(w(s)))
2
p

)
ds .

As above, we have

gαβ
(
(peε(u2))

1− 2pΓij(u2)(Dαu
i
2, Dβu

j
2)− (peε(u1))

1− 2pΓij(u1)(Dαu
i
1, Dβu

j
1)
)
·v

≤ γ

(
p,M,N, sup

MT̃

|Du1|, sup
MT̃

|Du2|

)∫ 1
0

|v|2ds

+ 1
2

∫ 1
0

(peε(w(s)))
1− 2p

(
|Dv|2 + (p− 2) 〈Dw(s),Dv〉

2

(peε(w(s)))
2
p

)
ds.

As a result we have∫
Mt

{
v · ∂tv + 1

2

∫ 1
0

(peε(w(s)))
1− 2p

(
|Dv|2 + (p− 2) 〈Dw(s),Dv〉

2

(peε(w(s)))
2
p

)
ds

}
dMdt

≤ γ

(
p,M,N, sup

MT̃

|Du1|, sup
MT̃

|Du2|

)∫
Mt

|v|2 dM dt . (4.21)

Putting F (t) =
∫
Mt
|v|2dMdt for any t, 0 ≤ t ≤ T̃ , and noting v(0) = 0, we find

from (4.21) that

d
dt
F (t) ≤ γ

(
p,M,N, sup

MT̃

|Du1|, sup
MT̃

|Du2|

)
F (t)

for all 0 ≤ t ≤ T̃ , from which it follows that exp(−γt)F (t) ≤ 0 for all t ∈ [0, T̃ ].

Therefore we have F (T̃ ) = 0, which implies that v = 0 in [0, T̃ ] ×M . Now we
observe that the images of u1 and u2 are in the target manifold N . We consider
u = u1. Take a positive number T̃ = T̃ (u) such that u ∈ Oδ(N) in [0, T̃ ]×M .
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We use the involutive isometry π from Oδ(N) to itself such that the fixed point
set of π is exactly the target manifold N . Compare π(u) with u: Since the
image of u0 is imposed on N , π(u)(0) = u(0) in M . Noting that the operator
π : Oδ(N) → Oδ(N) is isometry, we know that π(u) satisfies (4.1) with τ = 1,
of which u is also a solution. By the arguments above, we find that π(u) ≡ u in

[0, T̃ ]×M and that the image of u in [0, T̃ ]×M is on the fixed point set N of
π. Therefore we have verified that u1 = u2 ∈ N in [0, T̃ ]×M .

Replacing an initial value u0 with u1(T̃ )(= u2(T̃ )) and repeating the above
argument, we conclude our uniqueness assertion: u1 ≡ u2 in [0, T ] × M . In
addition, we have proven the following:

Lemma 4.5 Let u ∈ C1,20 ([0, T ]×M,R
n) be a solution to (4.1). Then u ∈ N

in [0, T ]×M .

By combination of Lemmata 4.2, 4.3 with Lemma 4.5, we conclude that (4.5)
and (4.19) hold uniformly for all solutions u ∈ C1,20 ([0, T ]×M,R

n) of (4.1).

5 The limit ε→ 0

First we claim the existence and uniqueness of the regularized p-harmonic flow,
which is a solution of (4.1) with τ = 1. By the arguments in Sect.3 and Sect.4,
we can apply the Leray-Schauder fixed point theorem and obtain a unique fixed
point uε in C

1,2
α ([0, T ]×M,N) of the operator P1.

Lemma 5.1 For any ε, 0 < ε < 1, there exists a unique solution uε in
C1,2α ([0, T ]×M,N) of (2.4) with the initial value (1.4).

We now explain how to pass to the limit ε→ 0 and show the validity of Theo-
rem 1.1.
By Lemma 4.1, we choose a subsequence {uk} with uk = uεk , 0 < εk < 1, and
a function u defined on (0, T )×M with value in Rn such that, as εk → 0,

Duk → Du weakly* in L∞((0, T );Lp(M)),

∂tuk → ∂tu weakly in L2((0, T )×M), (5.1)

Noting Lemmata 4.2 and 4.3, we apply the Ascoli-Arzela theorem to obtain

uk → u strongly in C0,10 ([0, T ]×M,R
n). (5.2)

By Lemma 4.5 and (5.2), we know that

u ∈ N in [0, T ]×M . (5.3)

By (5.1) and (5.2), we can take the limit εk → 0 in the weak form of the equation
(2.4) with a test function φ ∈ C∞([0, T ]×M,Rn):∫

(0,T )×M

{
φ · ∂tuk + (peεk(uk))

1− 2p gαβDβuk ·Dαφ

−(peεk(uk))
1− 2p gαβΓij(uk)Dαu

i
k ·Dβu

j
k

}
dM dt = 0
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and find that the limit function u satisfies (1.5), where we note (5.3). Using
(5.1) in the energy inequality (4.3) with ε = εk and u = uk, we have (1.7).
Lemma 4.3 with (5.2) implies the Hölder continuity of u andDu in the statement
of Theorem 1.1 with the Hölder exponent α = min{α̃, β}.
Finally, we use the energy inequality (4.3) to make the estimate∫

M

|uk(t)− u0|
2
dM ≤ t

∫
(0,t)×M

|∂tuk|
2
dMdt ≤ tE1(u0). (5.4)

By (5.2), we take the limit k →∞ in (5.4) to show the validity of (1.6).
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